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Abstract—In the United States, heart disease is the leading
cause of death, killing about 695,000 people each year. Myocardial
infarction (MI) is a cardiac complication which occurs when
blood flow to a portion of the heart decreases or halts, leading to
damage in the heart muscle. Heart failure and Atrial fibrillation
(AF) are closely associated with MI. Heart failure is a common
complication of MI and a risk factor for AF. Machine learning
(ML) and deep learning techniques have shown potential in
predicting cardiovascular conditions. However, developing a sim-
plified predictive model, along with a thorough feature analysis,
is challenging due to various factors, including lifestyle, age,
family history, medical conditions, and clinical variables for
cardiac complications prediction. This paper aims to develop
simplified models with comprehensive feature analysis and data
preprocessing for predicting cardiac complications, such as heart
failure and atrial fibrillation linked with MI, using a publicly
available dataset of myocardial infarction patients. This will help
the students and health care professionals understand various
factors responsible for cardiac complications through a simplified
workflow. By prioritizing interpretability, this paper illustrates
how simpler models, like decision trees and logistic regression,
can provide transparent decision-making processes while still
maintaining a balance with accuracy. Additionally, this paper
examines how age-specific factors affect heart failure and atrial
fibrillation conditions. Overall this research focuses on making
machine learning accessible and interpretable. Its goal is to equip
students and non-experts with practical tools to understand how
ML can be applied in healthcare, particularly for the cardiac
complications prediction for patients having MI.

Index Terms—machine learning, heart, myocardial infarction,
health

I. INTRODUCTION

Cardiovascular diseases, including myocardial infarction
(MI), are among the leading causes of mortality worldwide.
MI occurs when the blood flow to a part of the heart is blocked
for an extended period, leading to damage or death of heart
tissue. Early prediction of MI is crucial for preventing fatal
outcomes, improving treatment, and reducing healthcare costs.
Heart failure and Atrial fibrillation (AF) are closely associated
with MI. Heart failure is a common complication of MI and
a risk factor for AF.

Machine learning (ML) has revolutionized healthcare, par-
ticularly in the prediction and diagnosis of diseases. Various
ML algorithms are well-suited for predicting outcomes based
on large and complex datasets. By developing predictive
models using machine learning, healthcare providers can make
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data-driven decisions to assess the risk of heart failure and AF
and take preventive measures. This research explores the use
of machine learning techniques to build a predictive model
for predicting cardiac complications, such as heart failure
and atrial fibrillation, using a publicly available dataset of
myocardial infarction patients.

Cardiac complication prediction is challenging due to the
multifactorial nature of the disease with various factors in-
volved, including lifestyle, age, family history, medical con-
ditions, and clinical variables. Machine learning (ML) and
deep learning techniques have shown potential in predicting
cardiac conditions. Several studies [1]-[5] have explored the
use of ML models to predict cardiovascular conditions and
associated outcomes. Although these studies show promising
results however none of these studies have developed a simpli-
fied and interpretable framework to understand various factors
associated with cardiac complications.

This paper aims to develop simplified models with compre-
hensive feature analysis and data preprocessing for predicting
cardiac complications, such as heart failure and atrial fibrilla-
tion, using a publicly available dataset of myocardial infarction
patients. Our major contributions in this paper are as follows:

o We develop simplified and interpretable machine learning
models that predict heart failure and atrial fibrillation
complications closely linked with myocardial infarction,
utilizing clinical, physiological, and laboratory data.

o We performed a comprehensive feature analysis and data
preprocessing to understand various factors involved in
predicting cardiac complications.

o We extensively experiment on the given dataset and eval-
uate the performance using various metrics in predicting
cardiac complications.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 describes the dataset
followed by the data description and proposed framework.
Section 4 describes the experiments and results and Section 5
concludes the paper.

II. RELATED WORK

Recent research on cardiac complications prediction asso-
ciated with MI includes machine learning and deep learning
methods. Jadhav et al. [1] demonstrated that decision trees



and random forests could be highly effective in predicting
cardiovascular diseases by identifying key risk factors such
as hypertension and cholesterol levels. Other research, such
as the work by Agham et al. [2], explored the use of neural
networks and deep learning to capture complex relationships
in the data, which traditional models might overlook. Khera
et al. [3], explored ML models to predict in-hospital mortality
after acute myocardial infarction (AMI), comparing them with
conventional logistic regression. Their findings suggested that
although models like XGBoost and meta-classifiers offered
improved risk resolution, the overall improvement in discrim-
ination was modest.

Similarly, Than et al. [4] developed the Myocardial Ischemic
Injury Index (MI3), which combined patient age, sex, and
serial troponin levels using a gradient boosting algorithm
to predict the likelihood of MI. Their model outperformed
conventional approaches, demonstrating excellent calibration
and area under the receiver operating characteristic curve
(AUC). Chen et al. [5] applied ML models to classify MI
presence and severity using clinical and paraclinical features.
Their study highlighted that troponin levels had the strongest
correlation with MI severity and that ML models, such as
random forest and gradient boosting, achieved high accuracy
in both classification and regression tasks.

III. METHODOLOGY

This section briefly describes our data description, data
preprocessing methods, exploratory data analysis, and machine
learning methods applied for the predictive models.

A. Data Collection

We utilized a publicly available dataset sourced from the
UCI Machine Learning Repository at [6]. This dataset con-
tains 1700 patient data and 124 features, including patient
demographics, clinical history, physiological measurements,
laboratory values (such as troponin levels), and outcomes
associated with myocardial infarction. The outcomes include
in-hospital mortality, MI severity, and other cardiac compli-
cations (i.e., atrial fibrillation, heart failure, Supraventricular
tachycardia, Ventricular tachycardia, Ventricular fibrillation,
Myocardial rupture, etc.).The dataset comprises both numeri-
cal and categorical variables, covering patient demographics,
medical history, cardiovascular conditions, diagnostic tests,
and interventions related to myocardial infarction (MI). These
attributes can be systematically categorized as follows:

a) Demographic Attributes: Age: Age is a critical risk
factor in cardiovascular diseases, including MI. Research has
demonstrated a positive correlation between advancing age and
MI prevalence due to cumulative vascular damage and reduced
cardiac resilience. Gender: Gender differences influence MI
risk, with men at higher risk overall, particularly under 60
years. Post-menopausal women, however, exhibit an increased
MI risk due to estrogen depletion.

b) Medical History Attributes: Previous Myocardial In-
farctions (INF_ANAM) Patients with a history of MI are at
a heightened risk for subsequent infarctions, primarily due to

existing damage to the cardiac musculature and compromised
vascular function. Hypertension (GB): Hypertension is one of
the strongest predictors of MI, imposing chronic stress on the
heart and arteries, potentially leading to ischemia and MI.
Chronic Heart Failure (ZSN): Chronic heart failure indicates
existing cardiac insufficiency, a condition that complicates MI
management and exacerbates patient outcomes. Arrhythmias
and Atrial Fibrillation (e.g., nr1l, nr03): Historical data on
arrhythmias and fibrillations highlight structural and electrical
anomalies within the heart, increasing susceptibility to MI and
complicating recovery.

c) Angina and Coronary Disease Attributes: Exertional
Angina (STENOK_AN): Angina experienced during exertion
often reflects underlying ischemic episodes. Such episodes
can lead to MI as the heart’s demand for oxygen surpasses
its supply. Functional Class of Angina (FK_STENOK): The
functional class of angina, specifically Classes III and IV,
indicates severe ischemia, correlating with increased MI risk.
Coronary Heart Disease (IBS_POST): Recent diagnoses of
coronary heart disease, particularly those involving unstable
angina, serve as immediate precursors to MI, suggesting
increased vulnerability in the days or weeks leading up to
the event.

d) Cardiac and Blood Pressure Measurements:
Systolic and Diastolic Blood Pressure (S_AD_KBRIG,
D_AD_KBRIG): Both elevated and fluctuating blood pres-
sure readings are pivotal indicators of cardiovascular stress,
closely linked to MI risk. Heart Failure Severity and Duration
(DLIT_AG): The chronicity and intensity of hypertension
correlate with increased MI likelihood, as prolonged pressure
on cardiac tissues causes progressive structural damage.

e) Laboratory Values and Electrolyte Levels: Serum
Potassium and Sodium Levels (K_BLOOD, NA_BLOOD):
Electrolyte imbalances significantly influence cardiac function;
hypokalemia and hypernatremia, in particular, are associated
with heightened MI risk. ALT, AST, and CPK Levels: Elevated
alanine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST) indicate possible hepatic strain, while creatine
phosphokinase (CPK) is elevated in cases of muscle damage,
including the myocardium during MI.

f) Electrocardiogram (ECG) Findings: ECG Patterns
(e.g., ant_im, lat_im): Indicators such as QRS complex ab-
normalities in various leads suggest ischemia in specific heart
regions (anterior, lateral), each corresponding to different
MI locations. ECG Rhythm Variations (e.g., ritm_ecg_p_0O1,
MP_TP_POST): ECG rhythms, especially arrhythmias, are
monitored as they often accompany and exacerbate MI.

g) Medication and Intervention History: Medications
(e.g., Beta-blockers, Calcium Channel Blockers, Anticoagu-
lants): These medications are commonly administered post-
MI to stabilize cardiac function, reduce thrombotic risk, and
alleviate myocardial strain. Pain Management (Opioids and
NSAIDs): Use of pain management drugs indicates pain
severity during cardiac episodes, which is often correlated with
ischemic intensity and myocardial stress.



h) Complications and Outcomes: Pulmonary Edema,
Cardiogenic Shock, and Myocardial Rupture: Severe com-
plications are tracked as they have significant impacts on
patient survival and MI outcomes. Lethal Outcomes (LET_IS):
This attribute categorizes mortality causes related to MI, such
as cardiogenic shock and myocardial rupture, contributing to
understanding fatal MI events.

These data attributes comprehensively capture critical fac-
tors associated with MI, offering insights into both risk pre-
diction and outcome assessment. By integrating demographic,
clinical, and diagnostic data, this dataset enables robust analy-
ses that can deepen understanding of MI risk profiles, improve
prognostic modeling, and inform targeted interventions.

B. Data Preprocessing

Data preprocessing is a crucial step in preparing the dataset
for analysis and model building, ensuring data quality, man-
aging missing values, and transforming variables into suitable
formats for machine learning algorithms. For this study, the
dataset of 124 attributes related to myocardial infarction (MI)
underwent the following preprocessing steps:

a) Identification and Extraction of Numerical Vari-
ables: Twelve variables in the dataset were identified
as numerical, including age (AGE), systolic and dias-
tolic blood pressure measurements taken at various treat-
ment stages (S_AD_KBRIG, D_AD_KBRIG, S_AD_ORIT,
D_AD_ORIT), and biochemical markers like serum potassium
(K_BLOOD) and serum sodium (NA_BLOOD). These vari-
ables were extracted into a separate DataFrame to streamline
the processing of numerical data.

The descriptive statistics of the data reveal notable patterns
related to the patient cohort and specific health indicators.
The mean age of 62 years suggests an older patient group,
although the range extends from 26 to 92 years, reflecting
diverse age profiles. Blood pressure values, including systolic
and diastolic measures recorded by both the emergency team
(S_AD_KBRIG and D_AD_KBRIG) and in intensive care
(S_AD_ORIT and D_AD_ORIT), show high means and maxi-
mums, indicating patients with significant cardiac stress; how-
ever, the minimum values of zero in systolic readings suggest
potential data entry errors. Biochemical markers like serum
potassium (K_BLOOD) and sodium (NA_BLOOD) indicate
instances of extreme electrolyte imbalances, with some values
outside the normal ranges, highlighting cases of hypokalemia
and hypernatremia that could complicate heart conditions. Fur-
thermore, ALT (ALT_BLOOD), AST (AST_BLOOD), CPK
(KFK_BLOOD), white blood cell counts (L_BLOOD), and
ESR (ROE) levels include variations, with several outliers
that suggest the presence of patients with active inflammation,
muscle damage, or compromised liver function, all of which
are relevant to myocardial infarction prognosis and severity.
These observations underscore the complexity of the patient
profiles and the presence of severe cardiovascular and systemic
conditions.

b) Outlier Detection and Treatment: : Outlier detec-
tion was performed on numerical variables to identify ex-

treme values that might distort model predictions. Attributes
such as systolic and diastolic blood pressure (S_AD_KBRIG,
D_AD_KBRIG) and serum potassium levels (K_BLOOD)
were analyzed for extreme values using Z-score calculations,
where values exceeding three standard deviations from the
mean were flagged as potential outliers. Outliers were cross-
referenced against known medical ranges to determine whether
they should be excluded or retained, taking into account each
variable’s clinical relevance.

Several critical measurements, such as systolic and di-
astolic blood pressure recorded by both emergency and
ICU teams (S_AD_KBRIG, D_AD_KBRIG, S_AD_ORIT,
D_AD_ORIT), showed high mean and maximum values,
which were consistent with patients experiencing significant
cardiovascular strain typical in myocardial infarction (MI)
cases. However, the minimum values of zero in systolic blood
pressure readings were flagged for potential data inaccuracies,
as zero values are clinically implausible and unlikely to
occur outside of data entry errors. In these cases, entries
with implausible zeros were removed to prevent skewing the
analysis.

Attributes such as serum potassium (K_BLOOD) and
sodium (NA_BLOOD) levels also displayed extreme outliers,
indicating cases of severe hypokalemia or hypernatremia, both
of which carry clinical significance in cardiac patients. Given
the relevance of electrolyte imbalances in heart function, these
outliers were retained if they fell within critical but realistic
ranges, as they could be indicative of the severity of the cardiac
event.

For additional clinical markers such as liver enzymes
(ALT_BLOOD and AST_BLOOD), creatine phosphoki-
nase (CPK or KFK_BLOOD), white blood cell counts
(L_BLOOD), and erythrocyte sedimentation rate (ESR or
ROE), outliers were also assessed against typical medical
reference values. Elevated levels in these markers are common
in cases of systemic inflammation or muscle damage, often
associated with acute MI. Consequently, these outliers were
retained in cases where they aligned with potential underlying
cardiac complications, ensuring the model could learn from
cases of heightened cardiac stress or inflammation.

Outliers not aligning with clinical plausibility or realistic
ranges were excluded or flagged for correction, balancing
data integrity with analytical accuracy. This selective approach
ensured that the dataset reflected realistic medical conditions
while preventing distortion from data errors.

c¢) Handling Missing Values: Median imputation was
applied to handle missing values across numerical variables
in the dataset, with a focus on variables prone to skewed
distributions or outliers. This imputation method was selected
to preserve the central tendency of the data without being
influenced by extreme values, as mean imputation could have
skewed results due to outliers. Variables such as systolic
and diastolic blood pressure (S_AD_KBRIG, D_AD_KBRIG,
S_AD_ORIT, D_AD_ORIT) and biochemical markers like
serum potassium (K_BLOOD) and sodium (NA_BLOOD)
were imputed with median values to ensure robustness against



the influence of outliers, which are prevalent in cardiac emer-
gency datasets.

The approach ensured that imputed values reflected typical
observations in the dataset while minimizing the effect of
extreme readings in critical variables. Additionally, attributes
like ALT (ALT_BLOOD), AST (AST_BLOOD), and CPK
(KFK_BLOQOD) were imputed using their respective medians
to retain data consistency, especially where missing values
occurred alongside variable measurements indicating cardiac
stress or liver function abnormalities. This approach preserved
data integrity, providing a stable baseline for analysis and
avoiding distortions from extreme values while ensuring that
medically relevant values remained consistent in their distri-
butions.

d) Categorical Variables: Missing values in categorical
attributes were managed by assigning them to separate cat-
egories, such as “unknown” or “not available,” which was
particularly useful for attributes with substantial missing pro-
portions, like heredity on coronary heart disease (IBS_NASL).
This imputation ensured that important categorical data with
missing entries could still contribute to the model without bias.

To make the categorical data suitable for analysis, one-
hot encoding was applied to nominal categorical variables,
converting each category into a distinct binary indicator. This
transformation was applied to variables such as gender (SEX)
and various medical history indicators, preserving the full
detail of categorical distinctions. For ordinal categorical vari-
ables, such as functional class of angina (FK_STENOK) and
hypertension stage (GB), integer encoding was used to retain
their ordered relationships. This ensured that the relational
structure of severity or progression remained intact, provid-
ing a model-ready dataset where the hierarchy of categories
was respected. This encoding strategy facilitated an accurate
integration of categorical data into the model, maintaining
interpretability and robustness in the machine learning process.

C. Machine Learning Models

To predict myocardial infarction-related outcomes such as
atrial fibrillation, and heart failure, several machine learning
models were applied, each selected for specific advantages
in handling the dataset’s blend of categorical and numerical
variables, as well as for interpretability and predictive perfor-
mance.

o Logistic Regression (LR): Logistic regression was chosen
as a baseline model for its simplicity, interpretability, and
suitability for binary classification tasks. It effectively
models the probability of outcomes like atrial fibrillation
or chronic heart failure based on predictors such as
age, blood pressure, and medical history. The coefficients
derived from logistic regression allow for straightforward
interpretation of feature importance, helping identify crit-
ical risk factors associated with myocardial infarction
MD).

e Decision Tree Model: The decision tree model was
utilized for its capability to create interpretable, rule-
based classifications. By partitioning the data based on

feature values, decision trees provide a clear structure to
understand how attributes like blood pressure or history
of arrhythmias contribute to MI outcomes. Additionally,
decision trees handle both categorical and numerical
features and are resilient to missing data.

o Random Forest Classifier: Random forest, an ensemble
method, was employed for its strong predictive power
and robustness against overfitting. It constructs multiple
decision trees, each trained on different data subsets, and
aggregates their results, improving stability and accu-
racy. This model is particularly valuable in identifying
important features through feature importance scores,
aiding in the assessment of significant Ml-related risk
factors. Additionally, random forest handles both outliers
and missing data effectively, making it well-suited for
complex clinical datasets.

o Gradient Boosting Classifier: Gradient boosting, partic-
ularly implementations like XGBoost and LightGBM,
was used for its ability to model complex, non-linear
relationships. By iteratively training an ensemble of weak
learners, gradient boosting minimizes errors and cap-
tures interactions between variables. This high-accuracy
model is advantageous in medical datasets where intricate
patterns often underlie patient outcomes. Its advanced
feature handling and ability to manage categorical and
numerical data interactions make it a robust choice for
predictive analysis in myocardial infarction datasets.

D. Feature Selection

In preparing the data for modeling, two target vari-
ables—presence of atrial fibrillation (FIBR_PREDS) and
chronic heart failure (ZSN)—were separated from the feature
set. These binary outcome variables indicate whether atrial fib-
rillation or chronic heart failure was observed, and they serve
as the primary targets for predicting myocardial infarction-
related complications.

For categorical feature transformation, one-hot encoding
was applied to nominal variables, converting each category
into distinct binary columns. This encoding preserved each
category’s unique information without introducing artificial
ordinal relationships that could mislead models. For example,
variables like gender (SEX) and various medication indicators
(e.g., LID_S_n for lidocaine use) were expanded into binary
columns for each possible category.

Ordinal variables, which represent ranked information (e.g.,
functional class of angina (FK_STENOK) and stages of hy-
pertension (GB)), were treated differently; they were numer-
ically encoded to maintain their inherent order and rank.
This approach retained meaningful relationships within these
categories, ensuring that ordinal data contributes effectively to
the modeling process without arbitrary rankings. The encoding
strategy enabled full utilization of categorical data in machine
learning algorithms while minimizing bias from unintended
category hierarchies.



E. Exploratory Data Analysis (EDA)

In the univariate analysis, histograms were generated for
each numerical feature to assess distributions, central tenden-
cies, and outliers. Key variables such as age, blood pressure,
and serum biochemical markers were visualized to better
understand the demographic and clinical characteristics of the
dataset. The histogram for age shows a concentration around
the mean of 62 years, with a range from 26 to 92 years as
shown in Figure 1. This indicates a focus on older patients,
typically at higher risk for cardiac conditions. Most ages are
clustered between 50 and 70, representing a high-risk age
group for myocardial infarction (MI). Figure 2 shows the
gender distribution in the dataset. There are 63% males and
37% females in the data which shows that more MI patients
belong to male as compared to females. Figures 3 and 4
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Fig. 1. Age distribution

shows the histograms of systolic (S_AD_KBRIG) and diastolic
(D_AD_KBRIG) blood pressure measured by the emergency
team reveal wide ranges with peaks in the hypertensive range
(e.g., 120-160 mmHg for systolic blood pressure). Values of
zero in systolic readings suggest potential inaccuracies, as
non-zero blood pressure is expected under clinical conditions.
Blood pressure levels recorded in the ICU (S_AD_ORIT
and D_AD_ORIT) also show elevated peaks, reflecting the
presence of cardiac stress in ICU-admitted patients.
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Figure 5 and 6 shows the histograms for the blood chemistry
for the target variable FIBR_PREDS and ZSN. The markers
such as potassium (K_BLOOD), sodium (NA_BLOOD), and
liver enzymes (ALT_BLOOD and AST_BLOOD) show wide
distributions with values outside typical ranges, signaling
possible electrolyte imbalances and systemic inflammation,
which are common in acute MI cases. Elevated levels in
creatine phosphokinase (KFK_BLOOD) and white blood cell
counts (L_BLOOD) suggest tissue damage and inflamma-
tion, commonly associated with myocardial infarction. While
most values fall within normal ranges, significant outliers are
present, highlighting cases of extreme physiological distress.
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Fig. 3. Histograms for Systolic and Diastolic Blood Pressure for the target
variable (FIBR_PREDS)
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Fig. 4. Histograms for Systolic and Diastolic Blood Pressure for the target
variable (ZSN)
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Scatter plots and Pearson correlation coefficients were used
to investigate relationships between numerical features, reveal-
ing underlying trends as shown in figures 7 to 10. Scatter plots
between age and systolic blood pressure (both in the ER and
ICU settings) show a dispersed pattern with no strong linear
relationship, though clustering around common blood pres-
sure values suggests general age-group trends. Scatter plots
between serum potassium and sodium levels against blood
pressure values show weak associations, indicating that these
markers vary widely within the population. However, their
outlier values contribute valuable insights into patient condi-
tions with abnormal electrolyte levels. The Pearson coefficients
indicate moderate correlations between systolic and diastolic
blood pressure across different treatment stages, particularly
between ER and ICU values, suggesting consistency in patient
profiles through stages of care. Age has low correlation values
with most other health indicators, emphasizing that while
age is critical in risk assessment, it is independent of other
physiological metrics in the dataset.

250

2
S

S _AD_KBRIG
&
(=]

3
(=1

30 40 50 60 70 80 90
AGE

Fig. 7. Scatter plot for the Age and Systolic Blood Pressure for the target
variable (FIBR_PREDS)
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IV. EXPERIMENTS AND RESULTS

The dataset comprises 1,700 entries with 124 features. Ini-
tial preprocessing involved substantial cleaning and separating
categorical features, followed by one-hot encoding to generate
158 dummy variables from the original categorical features. To
prevent multicollinearity, one category was removed from each
feature group to retain only K — 1 indicators per categorical
variable. For analysis, two target variables were considered:

« Fibrillation Prediction (FIBR_PREDS): This binary clas-
sification target indicates whether fibrillation was present
(0 or 1) in a patient.

o Heart Failure (ZSN): This target variable, also binary,
denotes the presence of heart failure complications post-
myocardial infarction.

The dataset was divided into an 80-20 split for training and

test sets, providing sufficient data for training and unbiased
evaluation. Numerical features, including age, blood pres-

sure readings, and biochemical markers, were standardized
using StandardScaler to ensure uniform feature scales and
prevent any single feature from disproportionately impacting
the model. Two primary models were chosen: Logistic Re-
gression and Random Forest, both suited for classification
tasks. Logistic Regression is valued for its interpretability,
while Random Forest provides robustness and higher accu-
racy in complex feature spaces. Hyperparameters were tuned
using GridSearchCV and RandomizedSearchCV: For Logistic
Regression, regularization parameters were optimized. For
Random Forest, parameters like the number of estimators
(trees) and maximum tree depth were adjusted. The models
were evaluated using metrics such as accuracy, mean absolute
error (MAE), mean squared error (MSE), and R? scores.
For additional clustering-based analysis, Silhouette Score was
applied where applicable.

A. Experimental results

Based on the two target variables, Fibrillation Prediction
(FIBR_PREDS) and Heart Failure (ZSN), the model evalua-
tion results presented in the research highlight the performance
of four predictive models on the myocardial infarction com-
plications dataset. The evaluation criteria include training and
testing accuracy to determine each model’s generalizability.
Tables 1 and 2 summarize the prediction results for atrial
fibrillation and heart failure for the dataset.

TABLE 1
ATRIAL FIBRILLATION PREDICTION RESULTS

Training Testing

ML Classifiers

Accuracy (%)

Accuracy (%)

Logistic Regression

92.9

83.8

Decision Tree 91.5 85.6
Random Forest 91 85.9
XGBoost 100 86.8
Multilayer Perceptron | 100 91

As shown in tables 1 and 2, the Logistic Regression model
showed consistent generalizability across both targets, with a
slight decrease in accuracy from training to testing, signaling
potential for further fine-tuning. The Decision Tree model
achieved moderate stability across both targets, maintaining
slightly better test accuracy than Logistic Regression. Random
Forest demonstrated robust performance and good generaliz-
ability across both targets, with competitive test accuracies.

TABLE II
HEART FAILURE PREDICTION RESULTS
. Trainin Testin;

ML Classifiers Accuracy %%) Accuracyg(%)
Logistic Regression 82.3 77.1

Decision Tree 83.5 79.1

Random Forest 81 78.4

XGBoost 92 83.5
Multilayer Perceptron | 100 84

Multilayer perception achieved the highest testing accu-
racy for trail fibrillation prediction however XGBoost out-
performs in the heart failure prediction. Further tuning



could help improve generalizability for Fibrillation Prediction
(FIBR_PREDS). Overall, the evaluation results suggest that
XGBoost and Multilayer perceptron provide the most accurate
predictions for myocardial infarction complications in this
dataset.

B. Feature Importance Plots

We have further examined the most important features in
the training dataset using the best performing machine learn-
ing algorithms. For both Atrial fibrillation and heart failure
prediction, we used feature importance plots to illustrate the
top 10 features in the training data.

Top 10 Feature Importance

B

D_AD_ORIT
NA_BLOOD
NOT_NA KB_1
@ ANT_CA_S_n_1
El
7
& K_BLOOD
LD KB 1
AST_BLOOD
L_BLOOD

AT_BLOGD

o
©
o
8
2
°
g
8
e
E

006
Importance

Fig. 11. Feature Importance plot for FIBR_PREDS

Figure 11 shows the feature importance plot using XGBoost
algorithm on atrial fibrillation prediction. As shown in Figure
11, blood based clinical features are the most critical in
predicting the atrial fibrillation with the most important feature
being ALT_BLOOD which is the serum ALT content in
blood. Furthermore, L_BLOOD and AST_BLOQD also plays
a critical role for atrial fibrillation.

Top 10 Features for Heart Failure Prediction
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Fig. 12. Feature Importance plot for Heart Failure

Figure 12 shows the feature importance plot using XGBoost
algorithm on heart failure prediction. As shown in Figure
12, S_AD_ORIT which represents the systolic blood pressure
measured in ICU unit is the most important feature respon-
sible for heart failure. Moeover, IM_PG_P representing the
presence/absence of a right ventricular myocardial infarction
and Age are also critical factors for heart failure.

C. Shapley Plots

Shapley values are widely used to explain the black-box
models to interpret the results. We have used Shapley to illus-
trate the multilayer perception model for both atrial fibrillation
and heart failure prediction.
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Fig. 13. Shapley plot for Atrial Fibrillation

Figure 13 shows the shapley plot using multilayer percep-
tron algorithm on atrial fibrillation prediction. As shown in
Figure 13, age and K_BLOOD (capturing serum potassium
content in blood) are most important features for the prediction
of atrial fibrillation.
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Fig. 14. Shapley plot for Heart Failure

Figure 14 shows the shapley plot using multilayer percep-
tron algorithm on heart failure prediction. As shown in Figure
14, age and S_AD_ORIT (capturing systolic blood pressure in
ICU) are most important features for the prediction of heart
failure.

Overall, these results aligns with the feature importance
plots and clinically relevant features of predicting the atrial
fibrillation and heart failure conditions for myocardial infrac-
tion patients.

V. CONCLUSION

This paper effectively demonstrates a predictive model
for assessing myocardial infarction complications, specifically
focusing on fibrillation and heart failure conditions. Through a
meticulous preprocessing pipeline—including handling miss-
ing values, encoding categorical data, and standardizing nu-
merical variables—the data was prepared for robust model



training. These results indicate that the models effectively
capture significant patterns within the dataset and perform well
in predicting complications. Atrial fibrillation and heart failure
prediction achieved strong performance across models, clus-
tering analysis further indicated potential patient subgrouping
based on silhouette scores. This suggests that clustering could
assist in identifying patient subgroups with specific risks,
aiding in tailored clinical interventions. Future research will
aim to overcome these limitations by integrating additional
clinical variables and longitudinal data to improve predictive
accuracy and robustness. Additionally, exploring ensemble
methods or deep learning models may better capture complex
data relationships. Expanding the model’s use to other cardio-
vascular conditions and incorporating more risk factors could
further increase its clinical utility, promoting comprehensive
and individualized patient care.
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