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Abstract—In the United States, heart disease is the leading
cause of death, killing about 695,000 people each year. Myocardial
infarction (MI) is a cardiac complication which occurs when
blood flow to a portion of the heart decreases or halts, leading to
damage in the heart muscle. Heart failure and Atrial fibrillation
(AF) are closely associated with MI. Heart failure is a common
complication of MI and a risk factor for AF. Machine learning
(ML) and deep learning techniques have shown potential in
predicting cardiovascular conditions. However, developing a sim-
plified predictive model, along with a thorough feature analysis,
is challenging due to various factors, including lifestyle, age,
family history, medical conditions, and clinical variables for
cardiac complications prediction. This paper aims to develop
simplified models with comprehensive feature analysis and data
preprocessing for predicting cardiac complications, such as heart
failure and atrial fibrillation linked with MI, using a publicly
available dataset of myocardial infarction patients. This will help
the students and health care professionals understand various
factors responsible for cardiac complications through a simplified
workflow. By prioritizing interpretability, this paper illustrates
how simpler models, like decision trees and logistic regression,
can provide transparent decision-making processes while still
maintaining a balance with accuracy. Additionally, this paper
examines how age-specific factors affect heart failure and atrial
fibrillation conditions. Overall this research focuses on making
machine learning accessible and interpretable. Its goal is to equip
students and non-experts with practical tools to understand how
ML can be applied in healthcare, particularly for the cardiac
complications prediction for patients having MI.

Index Terms—machine learning, heart, myocardial infarction,
health

I. INTRODUCTION

Cardiovascular diseases, including myocardial infarction

(MI), are among the leading causes of mortality worldwide.

MI occurs when the blood flow to a part of the heart is blocked

for an extended period, leading to damage or death of heart

tissue. Early prediction of MI is crucial for preventing fatal

outcomes, improving treatment, and reducing healthcare costs.

Heart failure and Atrial fibrillation (AF) are closely associated

with MI. Heart failure is a common complication of MI and

a risk factor for AF.

Machine learning (ML) has revolutionized healthcare, par-

ticularly in the prediction and diagnosis of diseases. Various

ML algorithms are well-suited for predicting outcomes based

on large and complex datasets. By developing predictive

models using machine learning, healthcare providers can make

data-driven decisions to assess the risk of heart failure and AF

and take preventive measures. This research explores the use

of machine learning techniques to build a predictive model

for predicting cardiac complications, such as heart failure

and atrial fibrillation, using a publicly available dataset of

myocardial infarction patients.

Cardiac complication prediction is challenging due to the

multifactorial nature of the disease with various factors in-

volved, including lifestyle, age, family history, medical con-

ditions, and clinical variables. Machine learning (ML) and

deep learning techniques have shown potential in predicting

cardiac conditions. Several studies [1]–[5] have explored the

use of ML models to predict cardiovascular conditions and

associated outcomes. Although these studies show promising

results however none of these studies have developed a simpli-

fied and interpretable framework to understand various factors

associated with cardiac complications.

This paper aims to develop simplified models with compre-

hensive feature analysis and data preprocessing for predicting

cardiac complications, such as heart failure and atrial fibrilla-

tion, using a publicly available dataset of myocardial infarction

patients. Our major contributions in this paper are as follows:

• We develop simplified and interpretable machine learning

models that predict heart failure and atrial fibrillation

complications closely linked with myocardial infarction,

utilizing clinical, physiological, and laboratory data.

• We performed a comprehensive feature analysis and data

preprocessing to understand various factors involved in

predicting cardiac complications.

• We extensively experiment on the given dataset and eval-

uate the performance using various metrics in predicting

cardiac complications.

The rest of the paper is organized as follows. Section

2 discusses related work. Section 3 describes the dataset

followed by the data description and proposed framework.

Section 4 describes the experiments and results and Section 5

concludes the paper.

II. RELATED WORK

Recent research on cardiac complications prediction asso-

ciated with MI includes machine learning and deep learning

methods. Jadhav et al. [1] demonstrated that decision trees



and random forests could be highly effective in predicting

cardiovascular diseases by identifying key risk factors such

as hypertension and cholesterol levels. Other research, such

as the work by Agham et al. [2], explored the use of neural

networks and deep learning to capture complex relationships

in the data, which traditional models might overlook. Khera

et al. [3], explored ML models to predict in-hospital mortality

after acute myocardial infarction (AMI), comparing them with

conventional logistic regression. Their findings suggested that

although models like XGBoost and meta-classifiers offered

improved risk resolution, the overall improvement in discrim-

ination was modest.

Similarly, Than et al. [4] developed the Myocardial Ischemic

Injury Index (MI3), which combined patient age, sex, and

serial troponin levels using a gradient boosting algorithm

to predict the likelihood of MI. Their model outperformed

conventional approaches, demonstrating excellent calibration

and area under the receiver operating characteristic curve

(AUC). Chen et al. [5] applied ML models to classify MI

presence and severity using clinical and paraclinical features.

Their study highlighted that troponin levels had the strongest

correlation with MI severity and that ML models, such as

random forest and gradient boosting, achieved high accuracy

in both classification and regression tasks.

III. METHODOLOGY

This section briefly describes our data description, data

preprocessing methods, exploratory data analysis, and machine

learning methods applied for the predictive models.

A. Data Collection

We utilized a publicly available dataset sourced from the

UCI Machine Learning Repository at [6]. This dataset con-

tains 1700 patient data and 124 features, including patient

demographics, clinical history, physiological measurements,

laboratory values (such as troponin levels), and outcomes

associated with myocardial infarction. The outcomes include

in-hospital mortality, MI severity, and other cardiac compli-

cations (i.e., atrial fibrillation, heart failure, Supraventricular

tachycardia, Ventricular tachycardia, Ventricular fibrillation,

Myocardial rupture, etc.).The dataset comprises both numeri-

cal and categorical variables, covering patient demographics,

medical history, cardiovascular conditions, diagnostic tests,

and interventions related to myocardial infarction (MI). These

attributes can be systematically categorized as follows:

a) Demographic Attributes: Age: Age is a critical risk

factor in cardiovascular diseases, including MI. Research has

demonstrated a positive correlation between advancing age and

MI prevalence due to cumulative vascular damage and reduced

cardiac resilience. Gender: Gender differences influence MI

risk, with men at higher risk overall, particularly under 60

years. Post-menopausal women, however, exhibit an increased

MI risk due to estrogen depletion.

b) Medical History Attributes: Previous Myocardial In-

farctions (INF ANAM) Patients with a history of MI are at

a heightened risk for subsequent infarctions, primarily due to

existing damage to the cardiac musculature and compromised

vascular function. Hypertension (GB): Hypertension is one of

the strongest predictors of MI, imposing chronic stress on the

heart and arteries, potentially leading to ischemia and MI.

Chronic Heart Failure (ZSN): Chronic heart failure indicates

existing cardiac insufficiency, a condition that complicates MI

management and exacerbates patient outcomes. Arrhythmias

and Atrial Fibrillation (e.g., nr11, nr03): Historical data on

arrhythmias and fibrillations highlight structural and electrical

anomalies within the heart, increasing susceptibility to MI and

complicating recovery.

c) Angina and Coronary Disease Attributes: Exertional

Angina (STENOK AN): Angina experienced during exertion

often reflects underlying ischemic episodes. Such episodes

can lead to MI as the heart’s demand for oxygen surpasses

its supply. Functional Class of Angina (FK STENOK): The

functional class of angina, specifically Classes III and IV,

indicates severe ischemia, correlating with increased MI risk.

Coronary Heart Disease (IBS POST): Recent diagnoses of

coronary heart disease, particularly those involving unstable

angina, serve as immediate precursors to MI, suggesting

increased vulnerability in the days or weeks leading up to

the event.

d) Cardiac and Blood Pressure Measurements:

Systolic and Diastolic Blood Pressure (S AD KBRIG,

D AD KBRIG): Both elevated and fluctuating blood pres-

sure readings are pivotal indicators of cardiovascular stress,

closely linked to MI risk. Heart Failure Severity and Duration

(DLIT AG): The chronicity and intensity of hypertension

correlate with increased MI likelihood, as prolonged pressure

on cardiac tissues causes progressive structural damage.

e) Laboratory Values and Electrolyte Levels: Serum

Potassium and Sodium Levels (K BLOOD, NA BLOOD):

Electrolyte imbalances significantly influence cardiac function;

hypokalemia and hypernatremia, in particular, are associated

with heightened MI risk. ALT, AST, and CPK Levels: Elevated

alanine aminotransferase (ALT) and aspartate aminotrans-

ferase (AST) indicate possible hepatic strain, while creatine

phosphokinase (CPK) is elevated in cases of muscle damage,

including the myocardium during MI.

f) Electrocardiogram (ECG) Findings: ECG Patterns

(e.g., ant im, lat im): Indicators such as QRS complex ab-

normalities in various leads suggest ischemia in specific heart

regions (anterior, lateral), each corresponding to different

MI locations. ECG Rhythm Variations (e.g., ritm ecg p 01,

MP TP POST): ECG rhythms, especially arrhythmias, are

monitored as they often accompany and exacerbate MI.

g) Medication and Intervention History: Medications

(e.g., Beta-blockers, Calcium Channel Blockers, Anticoagu-

lants): These medications are commonly administered post-

MI to stabilize cardiac function, reduce thrombotic risk, and

alleviate myocardial strain. Pain Management (Opioids and

NSAIDs): Use of pain management drugs indicates pain

severity during cardiac episodes, which is often correlated with

ischemic intensity and myocardial stress.



h) Complications and Outcomes: Pulmonary Edema,

Cardiogenic Shock, and Myocardial Rupture: Severe com-

plications are tracked as they have significant impacts on

patient survival and MI outcomes. Lethal Outcomes (LET IS):

This attribute categorizes mortality causes related to MI, such

as cardiogenic shock and myocardial rupture, contributing to

understanding fatal MI events.

These data attributes comprehensively capture critical fac-

tors associated with MI, offering insights into both risk pre-

diction and outcome assessment. By integrating demographic,

clinical, and diagnostic data, this dataset enables robust analy-

ses that can deepen understanding of MI risk profiles, improve

prognostic modeling, and inform targeted interventions.

B. Data Preprocessing

Data preprocessing is a crucial step in preparing the dataset

for analysis and model building, ensuring data quality, man-

aging missing values, and transforming variables into suitable

formats for machine learning algorithms. For this study, the

dataset of 124 attributes related to myocardial infarction (MI)

underwent the following preprocessing steps:

a) Identification and Extraction of Numerical Vari-

ables: Twelve variables in the dataset were identified

as numerical, including age (AGE), systolic and dias-

tolic blood pressure measurements taken at various treat-

ment stages (S AD KBRIG, D AD KBRIG, S AD ORIT,

D AD ORIT), and biochemical markers like serum potassium

(K BLOOD) and serum sodium (NA BLOOD). These vari-

ables were extracted into a separate DataFrame to streamline

the processing of numerical data.

The descriptive statistics of the data reveal notable patterns

related to the patient cohort and specific health indicators.

The mean age of 62 years suggests an older patient group,

although the range extends from 26 to 92 years, reflecting

diverse age profiles. Blood pressure values, including systolic

and diastolic measures recorded by both the emergency team

(S AD KBRIG and D AD KBRIG) and in intensive care

(S AD ORIT and D AD ORIT), show high means and maxi-

mums, indicating patients with significant cardiac stress; how-

ever, the minimum values of zero in systolic readings suggest

potential data entry errors. Biochemical markers like serum

potassium (K BLOOD) and sodium (NA BLOOD) indicate

instances of extreme electrolyte imbalances, with some values

outside the normal ranges, highlighting cases of hypokalemia

and hypernatremia that could complicate heart conditions. Fur-

thermore, ALT (ALT BLOOD), AST (AST BLOOD), CPK

(KFK BLOOD), white blood cell counts (L BLOOD), and

ESR (ROE) levels include variations, with several outliers

that suggest the presence of patients with active inflammation,

muscle damage, or compromised liver function, all of which

are relevant to myocardial infarction prognosis and severity.

These observations underscore the complexity of the patient

profiles and the presence of severe cardiovascular and systemic

conditions.

b) Outlier Detection and Treatment: : Outlier detec-

tion was performed on numerical variables to identify ex-

treme values that might distort model predictions. Attributes

such as systolic and diastolic blood pressure (S AD KBRIG,

D AD KBRIG) and serum potassium levels (K BLOOD)

were analyzed for extreme values using Z-score calculations,

where values exceeding three standard deviations from the

mean were flagged as potential outliers. Outliers were cross-

referenced against known medical ranges to determine whether

they should be excluded or retained, taking into account each

variable’s clinical relevance.

Several critical measurements, such as systolic and di-

astolic blood pressure recorded by both emergency and

ICU teams (S AD KBRIG, D AD KBRIG, S AD ORIT,

D AD ORIT), showed high mean and maximum values,

which were consistent with patients experiencing significant

cardiovascular strain typical in myocardial infarction (MI)

cases. However, the minimum values of zero in systolic blood

pressure readings were flagged for potential data inaccuracies,

as zero values are clinically implausible and unlikely to

occur outside of data entry errors. In these cases, entries

with implausible zeros were removed to prevent skewing the

analysis.

Attributes such as serum potassium (K BLOOD) and

sodium (NA BLOOD) levels also displayed extreme outliers,

indicating cases of severe hypokalemia or hypernatremia, both

of which carry clinical significance in cardiac patients. Given

the relevance of electrolyte imbalances in heart function, these

outliers were retained if they fell within critical but realistic

ranges, as they could be indicative of the severity of the cardiac

event.

For additional clinical markers such as liver enzymes

(ALT BLOOD and AST BLOOD), creatine phosphoki-

nase (CPK or KFK BLOOD), white blood cell counts

(L BLOOD), and erythrocyte sedimentation rate (ESR or

ROE), outliers were also assessed against typical medical

reference values. Elevated levels in these markers are common

in cases of systemic inflammation or muscle damage, often

associated with acute MI. Consequently, these outliers were

retained in cases where they aligned with potential underlying

cardiac complications, ensuring the model could learn from

cases of heightened cardiac stress or inflammation.

Outliers not aligning with clinical plausibility or realistic

ranges were excluded or flagged for correction, balancing

data integrity with analytical accuracy. This selective approach

ensured that the dataset reflected realistic medical conditions

while preventing distortion from data errors.

c) Handling Missing Values: Median imputation was

applied to handle missing values across numerical variables

in the dataset, with a focus on variables prone to skewed

distributions or outliers. This imputation method was selected

to preserve the central tendency of the data without being

influenced by extreme values, as mean imputation could have

skewed results due to outliers. Variables such as systolic

and diastolic blood pressure (S AD KBRIG, D AD KBRIG,

S AD ORIT, D AD ORIT) and biochemical markers like

serum potassium (K BLOOD) and sodium (NA BLOOD)

were imputed with median values to ensure robustness against



the influence of outliers, which are prevalent in cardiac emer-

gency datasets.

The approach ensured that imputed values reflected typical

observations in the dataset while minimizing the effect of

extreme readings in critical variables. Additionally, attributes

like ALT (ALT BLOOD), AST (AST BLOOD), and CPK

(KFK BLOOD) were imputed using their respective medians

to retain data consistency, especially where missing values

occurred alongside variable measurements indicating cardiac

stress or liver function abnormalities. This approach preserved

data integrity, providing a stable baseline for analysis and

avoiding distortions from extreme values while ensuring that

medically relevant values remained consistent in their distri-

butions.

d) Categorical Variables: Missing values in categorical

attributes were managed by assigning them to separate cat-

egories, such as ”unknown” or ”not available,” which was

particularly useful for attributes with substantial missing pro-

portions, like heredity on coronary heart disease (IBS NASL).

This imputation ensured that important categorical data with

missing entries could still contribute to the model without bias.

To make the categorical data suitable for analysis, one-

hot encoding was applied to nominal categorical variables,

converting each category into a distinct binary indicator. This

transformation was applied to variables such as gender (SEX)

and various medical history indicators, preserving the full

detail of categorical distinctions. For ordinal categorical vari-

ables, such as functional class of angina (FK STENOK) and

hypertension stage (GB), integer encoding was used to retain

their ordered relationships. This ensured that the relational

structure of severity or progression remained intact, provid-

ing a model-ready dataset where the hierarchy of categories

was respected. This encoding strategy facilitated an accurate

integration of categorical data into the model, maintaining

interpretability and robustness in the machine learning process.

C. Machine Learning Models

To predict myocardial infarction-related outcomes such as

atrial fibrillation, and heart failure, several machine learning

models were applied, each selected for specific advantages

in handling the dataset’s blend of categorical and numerical

variables, as well as for interpretability and predictive perfor-

mance.

• Logistic Regression (LR): Logistic regression was chosen

as a baseline model for its simplicity, interpretability, and

suitability for binary classification tasks. It effectively

models the probability of outcomes like atrial fibrillation

or chronic heart failure based on predictors such as

age, blood pressure, and medical history. The coefficients

derived from logistic regression allow for straightforward

interpretation of feature importance, helping identify crit-

ical risk factors associated with myocardial infarction

(MI).

• Decision Tree Model: The decision tree model was

utilized for its capability to create interpretable, rule-

based classifications. By partitioning the data based on

feature values, decision trees provide a clear structure to

understand how attributes like blood pressure or history

of arrhythmias contribute to MI outcomes. Additionally,

decision trees handle both categorical and numerical

features and are resilient to missing data.

• Random Forest Classifier: Random forest, an ensemble

method, was employed for its strong predictive power

and robustness against overfitting. It constructs multiple

decision trees, each trained on different data subsets, and

aggregates their results, improving stability and accu-

racy. This model is particularly valuable in identifying

important features through feature importance scores,

aiding in the assessment of significant MI-related risk

factors. Additionally, random forest handles both outliers

and missing data effectively, making it well-suited for

complex clinical datasets.

• Gradient Boosting Classifier: Gradient boosting, partic-

ularly implementations like XGBoost and LightGBM,

was used for its ability to model complex, non-linear

relationships. By iteratively training an ensemble of weak

learners, gradient boosting minimizes errors and cap-

tures interactions between variables. This high-accuracy

model is advantageous in medical datasets where intricate

patterns often underlie patient outcomes. Its advanced

feature handling and ability to manage categorical and

numerical data interactions make it a robust choice for

predictive analysis in myocardial infarction datasets.

D. Feature Selection

In preparing the data for modeling, two target vari-

ables—presence of atrial fibrillation (FIBR PREDS) and

chronic heart failure (ZSN)—were separated from the feature

set. These binary outcome variables indicate whether atrial fib-

rillation or chronic heart failure was observed, and they serve

as the primary targets for predicting myocardial infarction-

related complications.

For categorical feature transformation, one-hot encoding

was applied to nominal variables, converting each category

into distinct binary columns. This encoding preserved each

category’s unique information without introducing artificial

ordinal relationships that could mislead models. For example,

variables like gender (SEX) and various medication indicators

(e.g., LID S n for lidocaine use) were expanded into binary

columns for each possible category.

Ordinal variables, which represent ranked information (e.g.,

functional class of angina (FK STENOK) and stages of hy-

pertension (GB)), were treated differently; they were numer-

ically encoded to maintain their inherent order and rank.

This approach retained meaningful relationships within these

categories, ensuring that ordinal data contributes effectively to

the modeling process without arbitrary rankings. The encoding

strategy enabled full utilization of categorical data in machine

learning algorithms while minimizing bias from unintended

category hierarchies.



E. Exploratory Data Analysis (EDA)

In the univariate analysis, histograms were generated for

each numerical feature to assess distributions, central tenden-

cies, and outliers. Key variables such as age, blood pressure,

and serum biochemical markers were visualized to better

understand the demographic and clinical characteristics of the

dataset. The histogram for age shows a concentration around

the mean of 62 years, with a range from 26 to 92 years as

shown in Figure 1. This indicates a focus on older patients,

typically at higher risk for cardiac conditions. Most ages are

clustered between 50 and 70, representing a high-risk age

group for myocardial infarction (MI). Figure 2 shows the

gender distribution in the dataset. There are 63% males and

37% females in the data which shows that more MI patients

belong to male as compared to females. Figures 3 and 4

Fig. 1. Age distribution

shows the histograms of systolic (S AD KBRIG) and diastolic

(D AD KBRIG) blood pressure measured by the emergency

team reveal wide ranges with peaks in the hypertensive range

(e.g., 120–160 mmHg for systolic blood pressure). Values of

zero in systolic readings suggest potential inaccuracies, as

non-zero blood pressure is expected under clinical conditions.

Blood pressure levels recorded in the ICU (S AD ORIT

and D AD ORIT) also show elevated peaks, reflecting the

presence of cardiac stress in ICU-admitted patients.

Fig. 2. Gender distribution

Figure 5 and 6 shows the histograms for the blood chemistry

for the target variable FIBR PREDS and ZSN. The markers

such as potassium (K BLOOD), sodium (NA BLOOD), and

liver enzymes (ALT BLOOD and AST BLOOD) show wide

distributions with values outside typical ranges, signaling

possible electrolyte imbalances and systemic inflammation,

which are common in acute MI cases. Elevated levels in

creatine phosphokinase (KFK BLOOD) and white blood cell

counts (L BLOOD) suggest tissue damage and inflamma-

tion, commonly associated with myocardial infarction. While

most values fall within normal ranges, significant outliers are

present, highlighting cases of extreme physiological distress.

Fig. 3. Histograms for Systolic and Diastolic Blood Pressure for the target
variable (FIBR PREDS)

Fig. 4. Histograms for Systolic and Diastolic Blood Pressure for the target
variable (ZSN)



Fig. 5. Histograms for the Blood Chemistry for the target variable
(FIBR PREDS)

Fig. 6. Histograms for the Blood Chemistry for the target variable (ZSN)

Scatter plots and Pearson correlation coefficients were used

to investigate relationships between numerical features, reveal-

ing underlying trends as shown in figures 7 to 10. Scatter plots

between age and systolic blood pressure (both in the ER and

ICU settings) show a dispersed pattern with no strong linear

relationship, though clustering around common blood pres-

sure values suggests general age-group trends. Scatter plots

between serum potassium and sodium levels against blood

pressure values show weak associations, indicating that these

markers vary widely within the population. However, their

outlier values contribute valuable insights into patient condi-

tions with abnormal electrolyte levels. The Pearson coefficients

indicate moderate correlations between systolic and diastolic

blood pressure across different treatment stages, particularly

between ER and ICU values, suggesting consistency in patient

profiles through stages of care. Age has low correlation values

with most other health indicators, emphasizing that while

age is critical in risk assessment, it is independent of other

physiological metrics in the dataset.

Fig. 7. Scatter plot for the Age and Systolic Blood Pressure for the target
variable (FIBR PREDS)

Fig. 8. Scatter plot for the Age and Systolic Blood Pressure for the target
variable (ZSN)



Fig. 9. Pearson correlation coefficients between numerical variables for the
target variable (FIBR PREDS)

Fig. 10. Pearson correlation coefficients between numerical variables for the
target variable (ZSN)

IV. EXPERIMENTS AND RESULTS

The dataset comprises 1,700 entries with 124 features. Ini-

tial preprocessing involved substantial cleaning and separating

categorical features, followed by one-hot encoding to generate

158 dummy variables from the original categorical features. To

prevent multicollinearity, one category was removed from each

feature group to retain only K − 1 indicators per categorical

variable. For analysis, two target variables were considered:

• Fibrillation Prediction (FIBR PREDS): This binary clas-

sification target indicates whether fibrillation was present

(0 or 1) in a patient.

• Heart Failure (ZSN): This target variable, also binary,

denotes the presence of heart failure complications post-

myocardial infarction.

The dataset was divided into an 80-20 split for training and

test sets, providing sufficient data for training and unbiased

evaluation. Numerical features, including age, blood pres-

sure readings, and biochemical markers, were standardized

using StandardScaler to ensure uniform feature scales and

prevent any single feature from disproportionately impacting

the model. Two primary models were chosen: Logistic Re-

gression and Random Forest, both suited for classification

tasks. Logistic Regression is valued for its interpretability,

while Random Forest provides robustness and higher accu-

racy in complex feature spaces. Hyperparameters were tuned

using GridSearchCV and RandomizedSearchCV: For Logistic

Regression, regularization parameters were optimized. For

Random Forest, parameters like the number of estimators

(trees) and maximum tree depth were adjusted. The models

were evaluated using metrics such as accuracy, mean absolute

error (MAE), mean squared error (MSE), and R
2 scores.

For additional clustering-based analysis, Silhouette Score was

applied where applicable.

A. Experimental results

Based on the two target variables, Fibrillation Prediction

(FIBR PREDS) and Heart Failure (ZSN), the model evalua-

tion results presented in the research highlight the performance

of four predictive models on the myocardial infarction com-

plications dataset. The evaluation criteria include training and

testing accuracy to determine each model’s generalizability.

Tables 1 and 2 summarize the prediction results for atrial

fibrillation and heart failure for the dataset.

TABLE I
ATRIAL FIBRILLATION PREDICTION RESULTS

ML Classifiers
Training

Accuracy (%)

Testing

Accuracy (%)

Logistic Regression 92.9 83.8

Decision Tree 91.5 85.6

Random Forest 91 85.9

XGBoost 100 86.8

Multilayer Perceptron 100 91

As shown in tables 1 and 2, the Logistic Regression model

showed consistent generalizability across both targets, with a

slight decrease in accuracy from training to testing, signaling

potential for further fine-tuning. The Decision Tree model

achieved moderate stability across both targets, maintaining

slightly better test accuracy than Logistic Regression. Random

Forest demonstrated robust performance and good generaliz-

ability across both targets, with competitive test accuracies.

TABLE II
HEART FAILURE PREDICTION RESULTS

ML Classifiers
Training

Accuracy (%)

Testing

Accuracy (%)

Logistic Regression 82.3 77.1

Decision Tree 83.5 79.1

Random Forest 81 78.4

XGBoost 92 83.5

Multilayer Perceptron 100 84

Multilayer perception achieved the highest testing accu-

racy for trail fibrillation prediction however XGBoost out-

performs in the heart failure prediction. Further tuning



could help improve generalizability for Fibrillation Prediction

(FIBR PREDS). Overall, the evaluation results suggest that

XGBoost and Multilayer perceptron provide the most accurate

predictions for myocardial infarction complications in this

dataset.

B. Feature Importance Plots

We have further examined the most important features in

the training dataset using the best performing machine learn-

ing algorithms. For both Atrial fibrillation and heart failure

prediction, we used feature importance plots to illustrate the

top 10 features in the training data.

Fig. 11. Feature Importance plot for FIBR PREDS

Figure 11 shows the feature importance plot using XGBoost

algorithm on atrial fibrillation prediction. As shown in Figure

11, blood based clinical features are the most critical in

predicting the atrial fibrillation with the most important feature

being ALT BLOOD which is the serum ALT content in

blood. Furthermore, L BLOOD and AST BLOOD also plays

a critical role for atrial fibrillation.

Fig. 12. Feature Importance plot for Heart Failure

Figure 12 shows the feature importance plot using XGBoost

algorithm on heart failure prediction. As shown in Figure

12, S AD ORIT which represents the systolic blood pressure

measured in ICU unit is the most important feature respon-

sible for heart failure. Moeover, IM PG P representing the

presence/absence of a right ventricular myocardial infarction

and Age are also critical factors for heart failure.

C. Shapley Plots

Shapley values are widely used to explain the black-box

models to interpret the results. We have used Shapley to illus-

trate the multilayer perception model for both atrial fibrillation

and heart failure prediction.

Fig. 13. Shapley plot for Atrial Fibrillation

Figure 13 shows the shapley plot using multilayer percep-

tron algorithm on atrial fibrillation prediction. As shown in

Figure 13, age and K BLOOD (capturing serum potassium

content in blood) are most important features for the prediction

of atrial fibrillation.

Fig. 14. Shapley plot for Heart Failure

Figure 14 shows the shapley plot using multilayer percep-

tron algorithm on heart failure prediction. As shown in Figure

14, age and S AD ORIT (capturing systolic blood pressure in

ICU) are most important features for the prediction of heart

failure.

Overall, these results aligns with the feature importance

plots and clinically relevant features of predicting the atrial

fibrillation and heart failure conditions for myocardial infrac-

tion patients.

V. CONCLUSION

This paper effectively demonstrates a predictive model

for assessing myocardial infarction complications, specifically

focusing on fibrillation and heart failure conditions. Through a

meticulous preprocessing pipeline—including handling miss-

ing values, encoding categorical data, and standardizing nu-

merical variables—the data was prepared for robust model



training. These results indicate that the models effectively

capture significant patterns within the dataset and perform well

in predicting complications. Atrial fibrillation and heart failure

prediction achieved strong performance across models, clus-

tering analysis further indicated potential patient subgrouping

based on silhouette scores. This suggests that clustering could

assist in identifying patient subgroups with specific risks,

aiding in tailored clinical interventions. Future research will

aim to overcome these limitations by integrating additional

clinical variables and longitudinal data to improve predictive

accuracy and robustness. Additionally, exploring ensemble

methods or deep learning models may better capture complex

data relationships. Expanding the model’s use to other cardio-

vascular conditions and incorporating more risk factors could

further increase its clinical utility, promoting comprehensive

and individualized patient care.
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