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Abstract—Locality sensitive hashing (LSH) is a widely used
technique for approximate nearest neighbor search (ANNS). In
an LSH-based solution for ANNS, the computation of query-
to-data (Q2D) distances accounts for a considerable fraction of
the query time, but such distance information is thrown away
after nearest neighbors are identified. In this paper, we propose
CANDE (Candidate-based Distribution Estimation), a lightweight
add-on to LSH that reuses such information for a wide range
of analytics tasks including Q2D distance distribution estimation
(QDDE), kernel density estimation (KDE), and query-time recall
estimation (QTRE). This allows for significant savings in indexing
costs and query time for multiple tasks associated with the
original query.

The main technical hurdle that CANDE addresses is the
accurate estimation of some important statistics of the dataset via
importance sampling. We discover that the existing estimators
of these statistics are not accurate, because they approximate
the actual number of collisions (called collision rate) in the
LSH index using the theoretical collision probability (of the LSH
function family), and this approximation is crude. To address
this issue, we propose more accurate estimators based on a novel
scheme called inferred collision rate (ICR), which gives a much
better approximation to the actual collision rate. Furthermore,
we propose an efficient algorithm for computing ICR from the
nearest neighbor candidates returned by ANNS. Our evaluation
shows that CANDE outperforms existing solutions on multiple
analytics tasks while adding only about 8% to 19% query time
overhead to ANNS.

I. INTRODUCTION

Locality sensitive hashing (LSH) is a widely used technique
for approximate nearest neighbor search (ANNS), a.k.a. simi-
larity search, over high-dimensional datasets [1], [2], [3]. LSH
offers a small index size and low resource usage for index
construction, as well as reduced costs for data addition and
deletion, making it suitable for ANNS applications with lim-
ited computational power and constantly updating datasets [4].
In the past two decades, LSH has become a fruitful research
area with various schemes for different distance metrics such
as Lp [2], angular [5], and Jaccard [6], as well as variants
optimized for index size [3], query time [7], or I/O cost [8].

Central to an LSH scheme is the design of its family of
LSH functions, which ensures similar data items are much
more likely to collide in the same hash bucket compared with
dissimilar items. This feature expedites ANNS by narrowing
the search to a small subset of data items that hash-collide
with the query, known as nearest neighbor (NN) candidates.
For example, a typical LSH scheme [3] for ANNS only needs
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Fig. 1: As an add-on, CANDE augments LSH-based ANNS
for various analytics tasks.

to inspect about 5% to 10% of a million-item dataset to achieve
a recall of around 0.8, thereby providing significant speedups
compared to a naı̈ve linear scan.

In order to identify true nearest neighbors from NN candi-
dates, the LSH scheme needs to retrieve the original vector
of every NN candidate and compute its query-to-data (Q2D)
distance. This process accounts for a considerable fraction of
the query time. We observe that these Q2D distances, which
are typically discarded post-query, are actually a valuable
“sketch” of the neighborhood of the query.

In light of this observation, this paper presents CANDE,
a lightweight LSH add-on that reuses the NN candidates
and their Q2D distances for additional analytics tasks with
minimal added cost (Figure 1). The basic functionality of
CANDE is Q2D distance distribution estimation (QDDE),
which returns a histogram on the Q2D distances of all dataset
items. This histogram is useful for various analytics tasks, such
as kernel density estimation (KDE) [9], ANNS query-time
recall estimation (QTRE), distance-based outlier detection [10]
and cardinality estimation [11], [12], and fair near neighbor
sampling (FNNS) [13]. Compared with existing solutions,
which perform each task separately of others, CANDE is more
cost-effective in two aspects. First, CANDE uses the same
LSH index built for ANNS for multiple tasks, thereby saving
considerable indexing and storage overhead compared with
constructing a separate index for each task [9], [13], [14].
Second, CANDE amortizes the expensive Q2D distance com-
putation across multiple tasks on the same query, leading to
substantial savings in total query time. Indeed, our evaluations
show that CANDE can perform a suite of tasks (e.g., KDE and
ANNS) on large datasets with only 8% to 19% query time
overhead on top of executing a standalone ANNS query.

Probability vs. rate: To obtain accurate estimates based on
NN candidates, CANDE recognizes an important distinction



between the theoretical collision probability and the actual
collision rate in LSH. In our observations (in § III-C), the
actual collision rate almost always deviates significantly from
its expectation (computed from collision probability). Despite
this discrepancy, the mainstream approach has been using the
collision probability in place of the collision rate, because the
latter is challenging even to approximate at the query stage.
This has lead to limited estimation accuracy [15], [16] or high
resource usage [9] for all existing schemes so far.

As our second key contribution, we propose a novel frame-
work that overcomes this limitation based on a new concept of
inferred collision rate (ICR) derived statistically from the NN
candidates of ANNS. Unlike existing schemes, ICR accurately
approximates the actual collision rate without relying on any
data-dependent assumption. Furthermore, it allows our estima-
tors to offer superior estimation accuracy compared with those
in [9], [16], [14]. Finally, we have designed a highly efficient
algorithm for computing ICR, to be described in §IV-C.

In summary, we make three major contributions.
1) We discover that the NN candidates and their Q2D

distances obtained from LSH-based ANNS can be reused
to solve a number of analytics tasks efficiently and
accurately, including QDDE, KDE, and a novel research
problem of query-time recall estimation (QTRE).

2) We propose ICR, an accurate approximation to LSH
collision rate, which improves the estimation accuracy of
a class of importance sampling estimators that are based
on LSH. In addition, we introduce a novel algorithm that
computes ICR efficiently.

3) We evaluate the accuracy and efficiency of CANDE on
six real-world datasets. CANDE achieves higher accuracy
than existing solutions while being highly efficient, using
only 8% to 19% of the ANNS query time.

II. BACKGROUND AND OVERVIEW

We start this section with background on LSH-based ANNS
in §II-A. We provide an overview of three example analytics
tasks that CANDE supports in §II-B.

A. Background: Locality Sensitive Hashing

LSH-based ANNS: We first explain how to process an
approximate nearest neighbor search (ANNS) query using
LSH. An LSH index usually consists of multiple (say L) LSH
tables. Each LSH table stores the hash values h(x⃗) of all
data items x⃗ in a dataset D under a (typically compound,
see example at the end of §II-A) LSH function h(·). Usually,
these L compound LSH functions (one for each LSH table)
are i.i.d. random realizations from a family of functions H
that satisfy the distance preserving property (Definition 1).

Given a query q⃗, each LSH table generates a set of NN
candidates denoted by A, which likely contains some nearest
neighbors of q⃗. In most LSH schemes, A is defined as the
set of data items x⃗ such that h(x⃗) = h(q⃗) (x⃗ having a hash
collision with q⃗). We stick to this definition in this paper,
although all our results generalize to other definitions of A
such as that in multi-probe LSH [3].

Once we have the set of NN candidates Ai generated from
each LSH table i = 1, 2, . . . , L, the next step is to compute
their unionA ≜ ∪Li=1Ai and the query-to-data (Q2D) distance,
denoted by d(q⃗, x⃗), for each NN candidate x⃗ ∈ A. The ANNS
query result consists of the top-K data items in A with shortest
Q2D distances.

Collision Probability: Collision probability is a concept
central to LSH. It is defined as the probability that a fixed
data item x⃗ collides with the query q⃗ under a randomly seeded
(realized) hash function h(·) from the LSH family H (in a
single LSH table). We denote this value as the table-level
collision probability p(x⃗). We will drop the part “(x⃗)” from
p(x⃗) and other related values in the sequel when x⃗ is obvious
from context. The key technical idea of LSH is that its collision
probability satisfies the following distance preserving property.

Definition 1. A familyH of LSH functions is distance preserv-
ing if for any query q⃗ and two data items x⃗1 and x⃗2, we have
p(x⃗1) ≤ p(x⃗2) whenever d(q⃗, x⃗1) ≥ d(q⃗, x⃗2) and vice versa.
In other words, distance preserving means collision probability
p is a monotonically decreasing function of the Q2D distance.

We denote by P (x⃗) the index-level collision probability
that a fixed data item x⃗ collides with q⃗ in any of the L
LSH tables, or equivalently, appears in the union of NN
candidates A. As a convention, an upper case letter, such as
P , denotes an index-level value (collision probability or rate),
and the corresponding lower case letter, such as p, denotes its
table-level counterpart. Since each LSH table is independently
seeded, we have P = 1− (1− p)

L for any data item. As we
will show shortly, this index-level collision probability P is
central to importance sampling schemes that infer properties
of the dataset from A.

Example: E2LSH for L2: We now describe E2LSH [2], a
classic scheme for L2 distance1 that many of our examples are
based on. In E2LSH, h(·) for each LSH table is a compound
LSH function comprising many (say M ) constituents (“ele-
ment” LSH functions): h(x⃗) ≜

(
g1(x⃗), g2(x⃗), . . . , gM (x⃗)

)
.

Each constituent gi(·) (for i = 1, 2, . . . ,M ) takes the form
gi(x⃗) = ⌊(⟨θ⃗i, x⃗⟩ + βi)/w⌋. In this formula, θ⃗i is an i.i.d.
Gaussian random vector, and the inner product ⟨θ⃗i, x⃗⟩ is called
the raw hash value [17], denoted by fi(x⃗). The number w is
a fixed parameter called the bucket width, and βi is a random
variable uniformly distributed in [0, w). Seeding (realizing) an
LSH function h(·) from the family H involves generating and
fixing the random vectors (or variables) θ⃗i’s and βi’s for all
M constituent LSH functions, which determine the raw hash
values (given a certain x⃗) and bucket boundaries, respectively.

B. CanDE: Analytic Add-on for LSH Index

CANDE is a novel add-on framework that supplements
existing LSH-based ANNS indices (already built and tuned
for the given dataset) for a range of analytics tasks. Given an

1In this paper, we use L2 as the default distance metric d(·, ·). Indeed,
CANDE can work with any distance metric that has a distance-preserving
LSH for ANNS.



ANNS query q⃗, CANDE reuses all information gathered and
computed for processing the ANNS query (described in §II-A),
and return multiple analytics results while adding a negligible
overhead to its running time.

Such information is not utilized in existing solutions. For
example, for kernel density estimation, the state-of-the-art
estimators [9], [18] draws data samples using a separate,
specifically-built LSH index. The Q2D distances of their
samples (used in a similar estimator as (2)) are also computed
separately from those for ANNS. This not only leads to
overheads of building and storing a second index, but also
long query times due to the repeated computations of Q2D
distances.

CANDE can flexibly adapt to a wide range of analytics tasks
about counting the “data distribution” in the neighborhood
of the query. In this paper, we focus on the following three
aforementioned data analytics tasks that can provide important
insights into the dataset or ANNS performance. Any of these
tasks, either separately or in combination, can be performed,
using this framework, with only a small additional overhead
to the ANNS query time.

1. QDDE (query-to-data distance distribution estimation):
This task is to compute a histogram on the distribution of
Q2D distances of all data items. Specifically, a QDDE task
involves a query q⃗; and a list of bins B1, B2, . . . , BN given by
the user, each of which covers a range of Q2D distances. The
height of a bin B, say [b, b′) is defined as the number of NNs
whose Q2D distance falls into this range, i.e., U ≜ |D∩B| =
|{x⃗ ∈ D | b ≤ d(q⃗, x⃗) < b′}|. The result of QDDE is the
estimated heights of all given bins. QDDE provides a spatial
relational summary on the density of data on each annulus
(a specific Q2D distance range) centered around the query,
which serves as the foundation of other tasks such as KDE and
QTRE. Despite such significance, efficient and accurate QDDE
is challenging for high-dimensional datasets, because methods
based on standard collision probability barely achieves higher
accuracy than naı̈ve random sampling (see Figure 6).

2. KDE (kernel density estimation): KDE is a popular
non-parametric method for estimating the probability density
function of a random variable defined as a certain function of
the dataset D [9], [18]. It has been used, for a long time, in
various data analytics applications such as outlier detection,
regression, and clustering. In recent years, there has been a
growing research interest in improving the efficiency of KDE
on high-dimensional datasets [9], [18], [14]. The goal of KDE
is to estimate the kernel density Z, defined as the sum of kernel
weights of all data items: Z ≜

∑
x⃗∈D k(q⃗, x⃗), where k(·, ·) is

called the kernel weight function. In this paper, we focus on the
most commonly used kernel weight function [9], namely the
Gaussian kernel, defined as k(q⃗, x⃗) ≜ exp(−d2(q⃗, x⃗)/2σ2),
wherein σ is a hyperparameter called the bandwidth. Since
the Gaussian kernel decays exponentially, KDE focuses on
the accurate counting of data items near the query.

3. QTRE (query-time recall estimation): This task is to self-
report an estimated recall of the ANNS answers returned by
an LSH index for a specific query. Recall is one of the most
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Fig. 2: Histogram of actual recalls of 1000 top-100 queries on
SIFT dataset with the average recall tuned to 0.8. The actual
recalls are very different, some of which as low as 0.4.

important accuracy metrics for ANNS [4]. It is defined as
|K∩K∗|/K for a top-K ANNS query q⃗, wherein K is the set
of top-K approximate NNs returned by the ANNS algorithm,
and K∗ is the set of actual top-K NNs of q⃗.

The standard practice for LSH-based ANNS is to tune its
parameters to achieve a desired average recall on sampled
queries [2], [3]. To the best of our knowledge, no existing
work allows the self-reporting of the estimated recall of the
answers to a specific ANNS query. However, in practice, the
actual recalls of ANNS queries vary greatly from one to
another (from 0.4 to 1 as in Figure 2). Therefore, knowing the
actual recall is crucial for providing consistent ANNS query
accuracy. For example, if the recall of a specific query is very
low, a remedial action can be taken such as linearly scanning
the entire dataset, which takes 10 to 20 times the query time
of scanning only the NN candidates [4].

TABLE I: Summary of notations.

Notation Definition

D Dataset of points in Rd

d(q⃗, x⃗) Query-to-data (Q2D) distance

A Set of NN candidates

Ai Set of NN candidates from the i-th table

C Set of NN candidates in histogram bin B

(NN-B candidates)

Ci Set of NN-B candidates from the i-th table

P (x⃗) Index-level collision probability (CP) of a data point x⃗

p(x⃗) Table-level collision probability of a data point x⃗, see (3)

R(⃗h, {x⃗})
Index-level collision rate (CR) of a set of data items {x⃗}
under all LSH functions h⃗ in the index, see (6)

r(h, {x⃗}) Table-level collision rate of a set of data items {x⃗}
under a LSH function h(·), see (4)

R̂(C1...L)
Index-level inferred collision rate (ICR) computed from
NN-B candidates C1...L = {C1, C2, . . . , CL}, see (8)

r̂i(C1...L)
Table-level inferred collision rate for LSH table i

computed from NN-B candidates C1...L, see (7)

III. CANDE-CP ESTIMATORS AND LIMITATION

In this section, we introduce in § III-A CANDE-CP, the
commonsense estimators for QDDE, KDE, and QTRE that
are based on (the standard concept of) collision probability



(CP), with a brief description of their implementation. We find
that these estimators are not as accurate as expected due to a
long overlooked discrepancy between CP and collision rate
(CR) in LSH (§III-B). The cause and the implication of this
discrepancy is elaborated in §III-C.

A. CanDE-CP: CP-Based Estimators

CANDE-CP are importance sampling estimators that use
the collision probability P of the LSH index for estimating
QDDE, KDE, and recall. Importance sampling is a statistical
technique for estimating properties of a certain distribution
using samples generated from a separate sampling distribution.
In the context of CANDE, this technique is utilized to make
inference using the set A of NN candidates, which are samples
generated (for processing an ANNS query) via a distribution
determined by the LSH scheme.

CanDE-CP Estimators: All three estimators below can be
computed using only the Q2D distances of NN candidates,
since the collision probability P (x⃗) is a function of the Q2D
distance of x⃗ by Definition 1, and so is the kernel density
function k(q⃗, x⃗) as mentioned above.

• For QDDE, focusing on one target bin B, the estimator
for the bin height U = |D ∩B| is

Û =
∑

x⃗∈A∩B

1/P (x⃗). (1)

• For KDE, our estimator for the kernel density
Z ≜

∑
x⃗∈D k(q⃗, x⃗) is

Ẑ =
∑
x⃗∈A

k(q⃗, x⃗)/P (x⃗). (2)

• For QTRE, let x⃗1, x⃗2, . . . denote all NN candidates in
A in the increasing order of Q2D distance. We estimate
Y = |K ∩ K∗| (the number of true NNs found by LSH)
as the largest integer Ŷ such that

∑Ŷ
i=1 1/P (x⃗i) ≤ K.

The recall of this query is estimated as Ŷ /K.

Implementation: The values of all CANDE-CP estimators
above can be calculated simultaneously in one pass over A:
At the arrival of each NN candidate x⃗, we can directly update
Û and Ẑ according to (1) and (2) respectively; and update a
heap that stores top-Ŷ (Ŷ ≤ K) NN candidates for QTRE.
Such calculation would however require computing P (x⃗) for
each x⃗ ∈ A. Since each P (x⃗) is not “dirt cheap” to compute,
computing all collision probability values on-the-fly is not
practical especially on large datasets. Hence, we opt to use
precomputed values of P (x⃗), which are values of a function
on the Q2D distances of x⃗’s by Definition 1. In our experiment,
we store all collision probability values in a lookup table for
Q2D distances quantized up to 4 digits of precision, which
incurs a small memory overhead of around 80KB. This way,
CANDE-CP incurs a negligible additional computational cost
on top of ANNS.

Limitation: We were surprised that the relative errors of
CANDE-CP estimators are actually way higher than their
typical values of about O(1/

√
|A|), where |A| is the number

of NN candidates [19]. For example, on Deep and SIFT
datasets where |A| ≈ 105, we observe a 10% to 20% relative
error using the CANDE-CP estimator, which is 30 to 60
times larger than expected. We now know that this inaccuracy
results from the discrepancy between two closely related
values concerning LSH: collision probability and collision
rate. Unfortunately, this difference has been largely overlooked
in standard importance sampling estimators that are grounded
in collision probability [15], [16], [9]. The subsequent sections
delve into a detailed discussion of these two values, illustrating
the cause and practical implications of their differences.

B. Collision Probability vs. Rate

In this subsection, we define collision probability and col-
lision rate, and explain the relationship between these two
values. For ease of presentation, we focus the discussion on
the level of a single LSH table here and will extend to the
index level in §III-C.

Collision Probability: Collision probability measures the
expected chance of collision over all possible hash functions
in the given LSH family.

Definition 2. Given a query q⃗, a data item x⃗, and a family
H of LSH functions, the collision probability p(x⃗) is defined
as the probability of realizing (generating) a random function
h(·) from H such that x⃗ collides with q⃗ under h(·), i.e.,

p(x⃗) ≜ Pr
h∈H

(x⃗ collides with q⃗ under h(·)) . (3)

For most LSH schemes, the collision probability is a well-
studied value, which can be computed either from closed-form
expressions such as for E2LSH [2], or using Monte Carlo
simulation such as for multi-probe LSH [3].

Collision Rate: Collision rate measures the actual number
of collisions on a specific (realized) LSH table.

Definition 3. Given a query q⃗, a set of data items {x⃗} and
a fully realized LSH function h(·), the collision rate of these
data items under h(·), denoted by r(h, {x⃗}), is defined as the
ratio of the number of data items that collide with q⃗ to the
cardinality of {x⃗}. In other words,

r(h, {x⃗}) ≜ |{x⃗ | x⃗ collides with q⃗ under h(·)}|
|{x⃗}|

. (4)

We illustrate how collision rate is affected by the seeding of
LSH tables using an example of E2LSH. Suppose each LSH
table uses a compound E2LSH function h(·) that consists of
M = 2 constituents. As described in §II-A, the hash value
h(x⃗) of a data item x⃗ is determined by the raw hash values
fi(x⃗) = ⟨θ⃗i, x⃗⟩ and the “bucket boundaries” βi, for i = 1, 2,
all of which are fixed during the seeding process of h(·).

Figure 3 shows two LSH tables, each containing (the raw
hash values of) 20 data items {x⃗} (black dots) and a query
item q⃗ (the red plus sign). These two tables are seeded with
the same θ⃗1, θ⃗2, and β2, but different β1. As a result, the raw
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Fig. 3: Two example E2LSH tables with different seeds. The
collision rate differ greatly (0.7 versus 0.1) between these two
LSH tables, because bucket boundaries are realized differently.
Note that the raw hash values of data items are distributed
unevenly around f(q⃗), although the marginal distribution of
each of them centers at f(q⃗). This is because they are strongly
correlated by the seeding of f(·).

hash values f1 and f2 for all data and query items are the same
in the two subfigures, but the horizontal bucket boundaries are
different. By Definition 3, collision rate is the number of black
dots that fall into the same bucket as the query (the shaded
squares) divided by the total number of data items. Therefore,
the collision rate in Figure 3 (a) is 14/20 = 0.7, whereas that
in Figure 3 (b) is only 2/20 = 0.1. This example demonstrates
that even a slight difference in bucket boundaries caused by
the seeding of LSH can lead to vastly different collision rates.

Relationship Between These Two Values: Supposing all data
items in {x⃗} has the same collision probability p(x⃗) (or they
are equally far from the query), the expectation of collision
rate across all random seeds (that generates h(·) from H) is
exactly p(x⃗) [20], i.e.,

p(x⃗) = Eh∈H[r(h, {x⃗})]. (5)

According to (5), collision probability can be regarded as
the “expected collision rate”, which is a constant in all LSH
tables independent of the seeding. Just as the actual value of
a random variable is not necessarily close to its expectation,
the actual collision rate (in a realized LSH table) can be very
different from collision probability.

C. Gap Between Collision Probability and Rate

In this subsection, we highlight the significance of the
difference between collision probability and collision rate, as
well as its impact on the accuracy of CANDE-CP estimators.

Gap on One LSH Table: We first explain the difference
between collision probability p and the actual collision rate
r(h) (as a function of the seeding of h(·)) on a single
LSH table indexed using h(·). Except for a few works such
as [20], prior LSH studies often assume that these two values
are interchangeable. Here, we show experimental evidence
that because of the aforementioned “boundary effect”, the
variability of collision rate r(h) across different LSH tables is
too large to safely assume that p ≈ r(h).

We use two datasets in this experiment: a real-world dataset
Audio [21], which consists of 53,300 192-dimensional vectors
converted from audio data, and a synthetic dataset Uniform
that consists of 100,000 128-dimensional data items uniformly
distributed on the unit hypersphere. For each dataset, we build
10,000 LSH tables using independent realizations of E2LSH
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Fig. 4: The histogram of collision rates measured from 10,000
LSH tables. Notably, the collision rates of many tables signif-
icantly deviate from the mean.

functions h(·). Figure 4 shows the histogram of the collision
rates r(h) of each dataset across all LSH tables. It is clear that
the distributions of r(h) are far from their respective means
(vertical red lines) on both datasets, with many LSH tables
having collision rates either close to 0 or several times higher
than the mean.

Gap on a Multi-Table Index: Recall from § II-A that
the index-level collision probability P is the probability of
colliding in at least one LSH table and can be computed
from p as P = 1 − (1− p)

L. Similarly, we can define the
index-level collision rate R(⃗h, {x⃗}) for any set of data items
{x⃗} as the ratio of the data items in {x⃗} that appear in the
union of NN candidates A to the cardinality of {x⃗}, i.e.,
R(⃗h, {x⃗}) ≜ |{x⃗} ∩ A|/{x⃗}|. Here, we denote as “⃗h” the
concatenation of all L compound LSH functions (one for each
table) in the index. Also, for succinctness, we drop the part
“{x⃗}” from all notations such as R(⃗h, {x⃗}) in the sequel. By
the independence between LSH functions in different tables,
R(⃗h) can be approximated by

R(⃗h) ≈ 1−
L∏

i=1

(1− r(hi)). (6)

Since the formulas of P and R(⃗h) take similar forms, the
large deviations of r(h) from p on the table-level cause the
index-level collision rate R(⃗h) to also deviate from P . On real
datasets, P and R(⃗h) can differ by about 10% to 20%.

Impact on Estimator Accuracy: As we explain in the
following QDDE example, a key assumption in traditional
importance sampling estimators is that the collision rate R(⃗h)
is close to the collision probability P . For a fixed target bin
B, we let U = D ∩ B be the NN-B’s (data items whose
Q2D distances fall into B) and C = A ∩ B be the NN-B
candidates found by the LSH index. We know by definition
that |U | = |C|/R(⃗h). Hence, the estimator |C|/P is close to
|U | only when R(⃗h) ≈ P , which is not the case as just shown.

The challenge here is that R(⃗h) is too costly to compute.
It is a query-specific value (which varies from one query to
another) subject to complex “boundary effects” (as shown in
Figure 3). As we will show in §VI, even to approximate it
requires making data-dependent assumptions on the queries
and dataset. Our key contribution in this paper is a novel
data-independent scheme called ICR (inferred collision rate).
Instead of predicting the collision rate (as previous works did),
ICR statistically infers it from the NN candidates and their



Q2D distances (already calculated for ANNS). Powered by
ICR, we can greatly improve the accuracy of our estimators.

IV. CANDE-ICR ESTIMATORS

In this section, we describe the inferred collision rate (ICR),
a novel data-independent approximation to the actual collision
rate (§IV-A). Next, we introduce CANDE-ICR, our estimators
powered by ICR in § IV-B. We present an algorithm for
efficiently computing CANDE-ICR in §IV-C.

A. ICR: Data-Independent CR Approximation

In this subsection, we show how the collision rate R(⃗h)
(on a target histogram bin B) is approximated by our ICR
R̂(C1...L), which is computed from (as a function of) the
collection of NN-B candidates C1...L ≜ {C1, C2, . . . , CL}.
Here, each Ci is the set of NN-B’s that collide with the query
in LSH table i. Similar to (6), we calculate the index-level ICR
R̂(C1...L) as 1−

∏L
i=1(1−r̂i(C1...L)), wherein each r̂i(C1...L)

approximates the table-level collision rate r(hi) for LSH table
i. Hence, it suffices to derive the estimator r̂i(C1...L) for a
fixed i only, which we focus on in the sequel.

Statistical Inference Background: We first describe an urn
model and its MLE (maximum likelihood estimator) from
which r̂i(C1...L) is derived. Let an urn contain M balls of
two different colors: N of them are red, the other M − N
are black, and the values of M and N are not known. Our
statistical inference problem is to estimate N/M , the fraction
of red balls in the urn. Suppose m balls are drawn from this urn
uniformly at random without replacement, and independently
of colors, and suppose n out of these m balls are red. Given
the values of m and n as our observation, n/m is known
to be an unbiased MLE [19] for N/M , since n follows a
hypergeometric distribution parameterized by m, M , and N .

MLE of Collision Rate: Our task of approximating r(hi),
the collision rate on LSH table i, can be cast into the above
statistical inference problem, as follows. Since r(hi) is defined
as |Ci|/|D ∩ B| in (4), it can be faithfully modeled as the
fraction of red balls in the urn above wherein each ball
corresponds to an NN-B (M = |D ∩ B|), has red color if
it is in Ci (N = |Ci|), and has black color otherwise.

The question remains how to draw a uniform sample of
m balls from the urn independently of colors. One straight-
forward idea is to view the L LSH tables (functions) as the
drawing mechanism, and consider the union of all NN-B
candidates C ≜ ∪Lj=1Cj as the m balls drawn from the urn.
However, since all balls in Ci are red by definition (which
violates the color-independence), we must exclude LSH table
i from the drawing mechanism. Hence, we instead use the
union of NN-B candidates from the other LSH tables, that is,
Si ≜ ∪Lj=1,j ̸=iCj , since in this way the LSH functions used
to determine their selection (in LSH tables except the ith) are
independent of that used in LSH table i to determine the color
of balls. The choice of Si also ensures that the balls therein are
drawn (almost) uniformly: Given that bins are narrow, every
NN-B has a similar Q2D distance and therefore a similar
collision probability in each independent LSH table.

Therefore, we use m = |Si| and n = |Ci∩Si|, so the MLE
becomes r̂i(C1...L) ≜ n/m = |Ci ∩ Si|/|Si|. Furthermore,
for efficient implementation of ICR (in §IV-C), we can avoid
intersecting Ci with Si (which is costly) by using the following
alternative definition. Denote as Vi the set of NN-B candidates
exclusive to LSH table i, i.e., Vi ≜ Ci \ Si. Then we have
r̂i(C1...L) = |Ci ∩ Si|/|Si| = (|Ci| − |Vi|)/(|C| − |Vi|).

Bayesian Enhancement: An issue with the MLE above is
that it may produce very large errors if the sample size m
is very small (say less than 10). We overcome this issue
by using CP, which consistently has 10% to 20% error, as
informative prior knowledge to enhance the MLE estimator
using the following Bayesian technique.

In practice, we can approximate the distribution of the num-
ber of red balls in our sample n, which is hypergeometric in
principle, with the binomial distribution Binom(m, r(hi)) and
use the standard Bayesian estimator [22] (α+n)/(α+β+m)
for the success probablity r(hi) of the binomial distribution.
Here, α and β are two hyperparameters expressing the prior
knowledge. In ICR, to use the CP p as the informative prior,
we let α/(α + β) = p, which implies β = α(1 − p)/p. The
remaining hyperparameter α expresses the “strength” of our
prior knowledge: The larger α is, the more confident we are
about the collision probability p relative to our observations.
The appropriate value of α needs to be tuned in experiments.

Substituting β, n and m to values mentioned above, we
arrive at our final definition of ICR as follows.

Definition 4 (ICR estimator). The inferred collision rate
r̂i(C1...L) for LSH table i (i = 1, 2, . . . , L) is

r̂i(C1...L) ≜
α+ |Ci| − |Vi|
α/p+ |C| − |Vi|

≈ r(hi), (7)

wherein α is a Bayesian hyperparameter, p is the standard
collision probability, and Ci, C, and Vi are defined above.

The ICR for the LSH index (realized by h⃗) is calculated
from r̂i(C1...L), i = 1, 2, . . . , L, under the following formula

R̂(C1...L) ≜ 1−
L∏

i=1

(1− r̂i(C1...L)) ≈ R(⃗h). (8)

B. CanDE-ICR: ICR-Based Estimators

As mentioned above, ICR can approximate the actual
collision rate much better than collision probability (CP).
Hence, we can significantly improve the accuracy of the
three CANDE-CP estimators (for QDDE, KDE, and QTRE
respectively) described in §III-A, by replacing the collision
probability P (x⃗) therein with ICR R̂(B), for any target bin
B. We call the resulting estimators (with this replacement) the
ICR-based estimators. For example, the ICR-based estimator
for QDDE is û =

∑
x⃗∈A∩B 1/R̂(B).

Our ICR technique has wide applicability: Almost all CP-
based importance sampling estimators in the literature (such
as [16]) can be similarly changed to ICR-based ones to achieve
much better estimation accuracy. However, unlike CP, ICR
cannot be precomputed, and it is a nontrivial problem to



compute ICR and implement ICR-based estimators efficiently
on large datasets. We will address this problem in the next
subsection.

C. Efficient Computation of CanDE-ICR

With the understanding that the ICR R̂(B) on all bins
(B’s) can be computed simultaneously as we did in §III-A
for CANDE-CP estimators, we again focus on the ICR of
a target bin B. From (7) and (8), to compute R̂(C1...L) on
B, it suffices to know the cardinalities of the following sets
defined above: Ci (the set of NN-B candidates generated from
LSH table i), C (the union of Ci’s), and Vi (the set of NN-B
candidates unique to Ci), for i = 1, 2, . . . , L.

These cardinalities can be obtained via post-processing the
output from the LSH-based ANNS procedure as follows. The
post-processing takes a sequential scan of NN candidates from
all LSH tables, namely Ai’s for i = 1, 2, . . . , L. For each NN
candidate x⃗ ∈ Ai, we update counters for these cardinalities
if x⃗ falls into the current histogram bin B, which can be
determined only from the Q2D distance of x⃗. This procedure,
however, can be better implemented, since looking up the
Q2D distance for each x⃗ in the scan in effect duplicates the
memory access pattern for the computation of the union of
NN candidates A in ANNS. On large datasets, such random
memory access accounts for between 13% and 16% of the
ANNS query time.

Input: NN candidates Ai from LSH tables
i = 1, 2, . . . , L.

Output: The set K of K-ANNs of q⃗ and cardinalities
of C, Ci’s, and Vi’s (used to compute ICR).

1 Initialize K ← ∅ and all counters to 0;
2 for i = 1, 2, . . . , L do
3 for each data item x⃗ ∈ Ai do
4 Suppose this is the jth appearance of x⃗ for

this query;
5 if j = 1 then
6 Compute its Q2D distance;
7 Update K so that it contains top-K data

items of shortest Q2D distances;

8 if x⃗ does not belong to the target bin then
9 continue;

10 Increment |Ci| counter by 1;
11 if j = 1 then
12 Increment |C| and |Vi| counters by 1;
13 SRC[x⃗]← i;
14 else if j = 2 then
15 Decrement |VSRC[x⃗]| counter by 1;

16 return K and all counters;

Procedure 1: Efficient counting algorithm for ICR.
The two (if j = 1) conditions at Lines 5 and 11 are
not equivalent due to the continue statement at Line 9.

Proc. 1 shows our efficient counting algorithm for ICR
that avoids this duplicated random memory access. It carries
out the following three computational tasks together while
performing a single pass over A1, A2, . . . , AL: 1) computing
the union (implicitly in Line 5); 2) Q2D distance computation
for ANNS query processing (Lines 6 and 7); and 3) counting
cardinalities (Lines 10 through 15). Note that information such
as x⃗’s number of appearances j and the source LSH table
SRC[x⃗] at j = 1 can be stored in a hash table, so they all
can be retrieved in O(1) time. We have custom-made the hash
table using aggressive compression techniques similar to that
in [23] to make it compact enough to fit into the CPU cache
for large (ten million) datasets. Hence, the time complexity of
Proc. 1, excluding the computation of Q2D distances (which
should be charged for ANNS), is O(

∑L
i=1 |Ai|), or linear to

the total number of NN candidates.

V. EVALUATION

In this section, we evaluate the accuracy and efficiency of
CANDE on real-world datasets on the aforementioned KDE,
QDDE, and QTRE tasks. Overall, our experiments show that:

1) As expected, CANDE-ICR is more accurate than
CANDE-CP, and they both achieve higher estimation
accuracy than random sampling on KDE, provided that
the bandwidth σ is not too large (§ V-B) and QDDE,
provided that Q2D distances are not too long (§V-C).

2) On QTRE, CANDE-ICR is more accurate than
CANDE-CP, and its error does not increase with the
number of NNs (§V-D).

3) CANDE-ICR is a lightweight add-on. Its time overhead
is at most 18.6% on top of an ANNS query (§V-E).

4) Finally, in a fixed histogram bin, we show that ICR
accurately approximates the colllision rates for most
queries (§V-F).

A. Experimental Setup

Our evaluation uses the following six real-world datasets
widely used in the ANNS literature [4], [17]. These datasets
are different in dimension, size, and data distribution as show
in Table II. Each dataset is associated with 1000 ANNS
queries.

TABLE II: Summary of Datasets.

Dataset # Data Dim. Type

Small MNIST [24] 69.0K 784 Image
Trevi [25] 99.9K 4096 Image

Medium GIST [26] 1.0M 960 Image
GloVe [27] 1.2M 100 Text

Large Deep [28] 10.0M 96 Image
SIFT [26] 10.0M 128 Image

We implement CANDE on top of multi-probe E2LSH [3],
the state-of-the-art LSH-based ANNS solution for L2 distance.
For each dataset, we tune the parameters so that the query
time is near-optimal for top-100 ANNS queries at 0.8 average



recall. We set the Bayesian hyperparameter α to 25 on all
datasets, which consistently leads to high estimation accuracy.

We measure estimation accuracy of all three evaluated tasks
using the mean relative error (MRE) averaged across queries.
Lower MRE values indicates higher estimation accuracy. We
measure efficiency using the query time (in milliseconds). We
conduct all time measurements on C++ programs compiled by
g++-13.2 with “-O3” optimization option using a workstation
running Ubuntu 22.04 with Intel Core i9–10980XE 3.0GHz
CPU (24.75MB cache) and 256GB DRAM. All reported run
times are the average of 5 repeated measurements.
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Fig. 5: MRE values of KDE schemes on six datasets.
CANDE-ICR is significantly more accurate than RS, HBS,
as well as CANDE-CP, on a wide range of bandwidth values.

B. KDE Accuracy

KDE Setup: As we mentioned above, the goal of KDE
is to estimate the following Gaussian kernel density: Z =∑

x⃗∈D exp(−d2(q⃗, x⃗)/2σ2). The hyperparameter σ, known as
the bandwidth, determines the level of locality in KDE. In this
experiment, we choose a range of bandwidth values as follows.
The lower bound of the range is selected such that the ground
truth kernel density is at least 10−6 for at least 80% of the
queries2. The upper bound is 1.8 times the lower bound. This
leads to a wide range in which kernel density values vary by
at least six orders of magnitude. We filter out queries whose
kernel density is less than 10−6 on the smallest bandwidth,
so that the reported MRE values are not dominated by large
relative errors from a few queries. We standardize all datasets
in Table II so that the mean is 0 and variance is 1 on each
dimension, following prior practices [18].

We compare CANDE estimators with two baselines:
• RS (random sampling): We uniformly sample m data

items x⃗1, x⃗2, . . . , x⃗m from the dataset and use the es-
timator Ẑ = M/m ·

∑m
i=1 k(q⃗, x⃗i), where M is the size

of dataset, and k(·, ·) is the kernel weight function.
• HBS (hashing-based-sketch) [18]: HBS makes inference

from a set of weighted samples created from hashing and

2For reference, bandwidth suggested by Scott’s rule [29] leads to very small
kernel densities (less than 10−9) for our high-dimensional datasets.

non-uniform sampling, with the goal of better sampling
sparse regions of the dataset. Its estimator is a weighted
version of that of RS.

In all experiments, we use the average number of NN candi-
dates in ANNS as the sample size m for RS and HBS.

Evaluation Results: Figure 5 reports the MRE values of
KDE schemes on six datasets. Overall, we observe that HBS
performs similarly to RS and that both CANDE estimators
(especially CANDE-ICR) are more accurate than RS and
HBS on at least the lower 50% of the range shown, reducing
MRE by a factor of up to 18.6. Note that this comparison is
performed under the same sample size, and as we will show
in Table III, the query speed of CANDE is at least five times
as fast as RS and HBS.

As bandwidth increases, CANDE-CP and CANDE-ICR be-
come less accurate while RS and HBS become more accurate.
This is because CANDE relies on NN candidates, which are
typically close to the query, whereas RS and HBS use random
samples likely to be farther away. At lower bandwidths, kernel
density is mainly dictated by data items that are close to the
query, making CANDE more accurate than RS and HBS. In
contrast, when bandwidth increases, many data items other
than near neighbors start to contribute to the kernel density,
making RS and HBS more accurate.

Comparing the two CANDE estimators, CANDE-ICR is
much more accurate than CANDE-CP on most bandwidth
values, reducing MRE by a factor of up to 5.2 on all datasets.
This shows that our ICR, powered by Bayesian inference,
approximates the actual collision rate much more accurately
than the standard collision probability, especially on large
bandwidths (Q2D distances).

C. QDDE Accuracy

QDDE Setup: Recall that the objective of QDDE is to
estimate a distance histogram, wherein the height of each bin
represents the number of data items within a particular Q2D
distance range. Unlike KDE, we are not aware of existing
algorithms for QDDE, so we compare only with RS (random
sampling). RS makes estimation from m uniformly sampled
items from a dataset of size M . If n out of m samples fall
into the target bin, then the estimated bin height is Mn/m.
Similar to what we did in KDE, m is set to match the average
number of NN candidates from LSH.

As mentioned above, applications such as KDE need high
accuracy on close Q2D distances, so we mostly focus on this
range in evaluation. On the first four datasets, our histogram
covers the 10% nearest data items of the entire dataset on
average. On the two ten-million datasets (Deep and SIFT),
we cover the 1% nearest, which is still 100,000 data items
on average. We also exclude very short Q2D distances, since
the error of RS therein is too large compared with CANDE’s.
Each resulting histogram is divided into at least 10 bins.

Evaluation Results: Figure 6 shows the MRE values of each
histogram bin in six datasets. The x-axis of Figure 6 is shown
in log scale, since the bins to the right contain much more data
items and have much larger Q2D distance quantiles than those
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Fig. 6: MRE values of QDDE schemes on six datasets.
CANDE-ICR is more accurate than CANDE-CP on the entire
range and more accurate than RS on close Q2D distances.

to the left. All MRE values in Figure 6 are computed across
queries that have at least one data item in every bin. At least
70% of all queries satisfy the above criteria in all datasets.

Similar to the trend in the KDE experiment, as the Q2D
distance increases, the accuracy of CANDE decreases while
that of RS increases. This is expected result as we have
explained above. CANDE-ICR reduces MRE by a factor of
up to 9.3 compared with RS. The fact that CANDE is more
accurate at small Q2D distances (the left half of range in
Figure 6) makes it particularly well suited for applications
such as KDE, which focus heavily on nearby data points.
Also similarly to the KDE experiment, this comparison is
performed under the same sample size, and the running time
of CANDE-ICR is much faster than RS in practice.

Comparing both CANDE estimators, CANDE-ICR con-
sistently outperforms CANDE-CP (having smaller MRE by
a factor of up to 4.6). Furthermore, in all datasets except
MNIST, CANDE-ICR’s MRE remains at a small value (less
than 0.1) as Q2D distance increases, whereas CANDE-CP’s
MRE increases continuously with Q2D distance. This indicates
that ICR is much more robust and accurate than CP.

D. QTRE Accuracy

QTRE Setup: The goal of QTRE is to self-report the recall
of ANNS results returned by an LSH-based index for a specific
query. In our evaluation, we fix (the seeds and parameters of)
a multi-probed E2LSH index for each dataset as mentioned
above. This index is tuned to 0.8 average recall across all
queries, but as already shown in Figure 2, the actual recalls
of queries vary significantly, whose standard deviation ranges
between 0.16 and 0.35 across these datasets.

For each top-K ANNS query, the reference (ground truth)
recall is the ratio Y/K, wherein Y is the number of true NNs
in the query result. QTRE accuracy is measured by the MRE
of the estimated recalls over reference ones across queries. We
vary K from 50 to 1000, which are respectively typical and
large values in the literature [4]. Since we are not aware of
any existing QTRE solution, CANDE-ICR is compared only
with CANDE-CP, the straightforward solution based on the
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Fig. 7: MRE values of QTRE schemes on six datasets.
CANDE-ICR is more accurate than CANDE-CP, and its error
does not increase with K for K up to 1000.

standard collision probability (CP). Our results, again, show
the superior accuracy of ICR over CP.

Evaluation Results: Figure 7 shows the MRE values of
all queries associated with each dataset. It is clear that
CANDE-ICR is much more accurate than CANDE-CP on all
datasets. As K increases, the accuracy of CANDE-ICR either
improves or remains the same, whereas that of CANDE-CP
degrades steadily. For example, at K = 100, CANDE-ICR’s
MRE is 7.6% to 34.2% less than that of CANDE-CP and
are 43.1% to 93.0% less at K = 1000. In many cases,
CANDE-ICR’s MRE is only about 0.05, which is significantly
less than the standard deviation of actual recalls (0.20 to 0.44)
divided by their means (0.8).

The difference in the trends of MRE as K increases can
be attributed to the approximation errors having very different
natures (correlated or not) in these two schemes, as follows. In
QTRE, the number of true NNs Y in query results is related
to K under the formula

∑Y
i=1 1/R(x⃗i) = K. CANDE-ICR

and CANDE-CP approximate the CR R with ICR R̂ and CP
P , respectively. As K increases, the above formula contains
more terms. In the case of CANDE-CP, the estimation errors
1/R(x⃗i) − 1/P (x⃗i) for different terms are positively corre-
lated, since as mentioned above, the collision rates R(x⃗i)
are positively correlated. As a result, estimation error builds
up as K increases. In contrast, in the case of CANDE-ICR,
the errors 1/R(x⃗i) − 1/R̂(x⃗i) from different bins are almost
uncorrelated, since in every bin B, the ICR R̂ is calculated
from the NN-B candidates independently of those in other
bins. As a result, their errors cancel out, so estimation errors
do not increase with K.

E. Time Efficiency of CanDE

Table III shows the average query times of running KDE
using CANDE-CP and CANDE-ICR compared with those of
running an ANNS query. Running the other two tasks (QDDE
and QTRE) leads to similar results. The left half of the last two
columns show the total query times of answering ANNS and
running CANDE on top of it (reusing the NN candidates and
their respective Q2D distances). The percentage overhead of
CANDE (over answering ANNS alone) is shown on the right
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half of these columns. The results show that both CANDE-CP
and CANDE-ICR are lightweight, with overheads ranging
from 3.8% to 8.9%, and 8.4% to 18.6%, respectively.

TABLE III: Query times (ms) of KDE. Both CANDE-CP and
CANDE-ICR are lightweight, imposing no more than about
9% and 19% overhead to query time, respectively.

Dataset ANNS CANDE-CP CANDE-ICR

MNIST 9.78 10.65 (8.9%) 11.33 (15.8%)
Trevi 32.1 33.9 (5.6%) 34.8 (8.4%)
GIST 181.3 192.8 (6.3%) 212.6 (17.3%)
GloVe 66.3 71.1 (7.2%) 78.6 (18.6%)
Deep 151.2 160.9 (6.4%) 168.1 (11.2%)
SIFT 201.3 208.9 (3.8%) 221.3 (9.9%)

F. Accuracy of ICR in Approximating CR

To demonstrate the accuracy of the proposed ICR after
employing the distance information of NN candidates, we plot
the index-level CP, CR, and ICR values in two real datasets
(Deep and SIFT). These values are computed or measured for
a fixed QDDE bin close to the right boundary of Figure 6.
Figure 8 shows a strong correlation between ICR and CR,
where most dots except for a few outliers (as a result of
random noise) are distributed on the diagonal. In contrast,
CP, shown as horizontal lines in Figure 8, does not vary
with CR. This result clearly shows that ICR is a much better
approximation to CR than CP.

VI. RELATED WORK

In this section, we delve deeper into the historical devel-
opments of collision probability and collision rate in LSH-
based schemes. Collision probability is a central concept to
the theoretical foundation of LSH [2], [30], giving guarantees
on the average recall and query time under random LSH
functions. In fact, almost every proposal of new LSH scheme
has a dedicated section for calculating or analyzing collision
probability [2], [5], [8]. Collision probability has also been
applied to other settings. For example, some LSH schemes
such as multi-probe [3] select promising buckets (that are most
likely to contain NNs) based on collision probability. Many
emerging applications of LSH, such as sampling [31], [32]
and inference [9], [18], [16] also use collision probability as
an easy-to-compute alternative to the collision rate.

However, as we mentioned above, these works often have
large estimation errors due to the discrepancy between col-
lision probability and collision rate. This is a long-standing
issue without a widely-accepted solution. On one hand, some
schemes such as [15], [31], [32] have recognized such inaccu-
racy and focus on applications, such as outlier detection and
machine learning, that can tolerate such inaccuracy. On the
other hand, many workarounds have been proposed, but they
all have to pay significantly more indexing and storage costs
than what is needed by ANNS, to compensate for not knowing
the actual collision rate. For example, HBE-like algorithms [9],
[18] only use one NN candidate from each hash table to
estimate the KDE, so they need as many LSH tables as the
number of samples. Similarly, the algorithms in [14], [13]
assume that the LSH index can find all near neighbors of
the query with high probability, which is the case only when
many LSH tables are used.

At least two independent threads of works have attempted
to close the gap between collision probability and collision
rate, but all these attempts are data-dependent in that they
rely on assumptions on the queries or dataset distribution. The
work [33] proposed to select promising buckets in multi-probe
LSH according to a “collision rate” calibrated by Bayesian
knowledge conditioning on a specific realization of LSH func-
tion. However, such calibration requires training a model using
foretold queries. Another work [20] showed that the observed
recall of LSH-based ANNS can be better explained from the
distribution of collision rates rather than the expected collision
probability, and a follow-up work [34] attempted to calculate
such distribution under a strong assumption that data items are
uniformly distributed on the unit hypersphere. In comparison,
our proposed ICR accurately reveals the realization of this
distribution in a data-independent way.

VII. CONCLUSION

In this paper, we propose CANDE, a lightweight add-on
to LSH-based ANNS that reuses the NN candidates and their
Q2D distances for many analytics tasks. We formulate and
tackle QTRE, a novel research problem that is important to
consistent ANNS accuracy for all queries. We propose ICR,
a novel, accurate approximation to the actual collision rate
of the LSH index, which makes CANDE much more accurate
than existing importance sampling estimators. Furthermore, we
propose an efficient algorithm for computing ICR. Finally, we
show the high accuracy of CANDE-ICR on KDE, QDDE, and
QTRE by extensive experiments.

A limitation of our proposed ICR is that it relies on many
NN candidates to be accurate. As a result, this idea only works
with LSH but not with other indices such as HNSW [35].
It remains open as to how to design an index that achieves
competitive query times (so as not to slow down users who are
not interested in analytics tasks) and also facilitates importance
sampling on the dataset.
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