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Abstract

Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the ma-
terial behavior by acting as sites for void nucleation. These distributions are often extremely complex and
processing can induce high levels of anisotropy. The particle length-scale precludes high-fidelity microstruc-
ture modeling in macroscale simulations, so computational homogenization methods are often employed.
These, however, involve simplifying assumptions to make the problem tractable and many rely on peri-
odic microstructures. Here we propose a methodology to bridge the gap between realistic microstructures
composed of anisotropic, spatially varying second-phase void morphologies and an idealized periodic mi-
crostructure with roughly equivalent mechanical response. We create a high-throughput, parametric study
to investigate 96 unique bridging methods. We apply our proposed solution to rolled AZ31B magnesium
alloy, for which we have a rich dataset of microstructure morphology and mechanical behavior. Our method-
ology converts a p-CT scan of the realistic microstructure to idealized periodic unit cell microstructures that
are specific to the loading orientation. We recreate the unit cells for each parameter set in a commercial finite
element software, subject them to macroscopic uniaxial loading conditions, and compare our results to the
datasets for the various loading orientations. We find that certain combinations of our parameters capture
the overall stress-strain response, including anisotropy effects with some degree of success. The effect of
different parameter options are explored in detail and we find that excluding certain particle populations
from the analysis can give improved results.

Keywords: second-phase particles, high-throughput multiscale modeling, magnesium alloy, realistic
microstructures, material anisotropy

1. Introduction and Background

Predictive models that capture the damage mechanics of metals largely fail to capture the heterogeneous
effects due to fluctuations of the microstructure distributions [1]. Such fluctuations play a key role in
material behavior as realistic microstructures are often random and damage is an inherently local process
[2]. Many of the models developed in the past 50 years involved simplifying assumptions to make the problem
tractable, e.g., assumptions of periodicity, particle/void shape simplifications, etc. [3, 4]. Bridging the gap
between realistic microstructures and these simplified damage models with periodic microstructures is quite
challenging. In this paper, we assume the existence of a periodic microstructure that provides an equivalent
response to a realistic microstructure and propose a methodology that creates a statistically-informed bridge
between these two microstructures.

1.1. Computational Homogenization

We can achieve meaningful advances in material performance through a two-step process: (i) acquiring
a thorough knowledge of the complex physics underlying material behavior and (ii) coupling this knowledge
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with advanced material processing techniques to produce engineered materials [5-7]. The first step of this
process requires a robust modeling approach as the mechanics that govern material behavior are myriad,
intricately coupled, and operate on various time- and length-scales, i.e., the atomistic scale, mesoscale, and
macroscale [8-11]. Several of these underlying physical damage mechanisms include the initial distribution
and evolution of crystallographic defects, grain sizes/orientations, precipitates/inclusions, voids, etc. [12, 13].
These features affect the damage initiation, propagation, and eventual fracture [14, 15]. Since individual de-
fects cannot be feasibly resolved in large-scale simulations, we instead rely on computational homogenization
methods to represent the evolution of the physics in a continuum formulation, i.e., hierarchical multiscale
modeling [7-9, 16, 17].

Computational homogenization schemes often use averaging theorems to capture the microstructure
evolution and rely on the separation of scales principle [7, 9]. Generally, the microstructure is explicitly
resolved on a single length-scale in a statistically-representative domain referred to as a representative
volume element (RVE) [9, 11]. A bridging method is then employed to extract the pertinent features and
resolve them in an averaged sense at a larger length-scale. This process is conducted in either a coupled
or decoupled procedure [11, 18]. In a coupled method, the RVE is solved at each timestep for the given
boundary conditions of the macroscale problem and the response is taken as the constitutive response of
the material. In a decoupled method, the RVE is solved a priori and the constitutive response is stored in
the material description for the macroscale problem. Although this recursive solution for coupled problems
can lead to higher accuracy, it also requires much larger computational resources than are necessary for
decoupled methods.

Decoupled, hierarchical modeling methods are therefore desirable when seeking to minimize computa-
tional resources. These continuum models are limited, however, as they generally rely on idealized, periodic
microstructures with defects represented as simple shapes, e.g., spheres or ellipsoids [3, 19-21]. Since most
real-world materials are infinitely more complex than these idealized representations, the modeler’s quest
is to construct a methodology that bridges the gap between the realistic defects and the idealized damage
model microstructure [4, 8]. We focus this paper on creating a bridge between the microscale (O(10~5m) and
macroscale (O(m)). We use a decoupled approach that utilizes microstructural simulation data from Lloyd
et al. for a magnesium alloy, AZ31B. That said, we believe that this methodology could be easily adapted to
other microstructural features (e.g., voids, structural porosity, inclusions in metal matrix composites, etc.)
with similar success. [22].

1.2. Second-Phase Particles

Several industries (e.g., space, defense, transportation) widely use alloys comprised of a metallic matrix
with intermetallic particles (often referred to as second-phase particles, inclusions, or precipitates) [5, 14].
Second-phase particles usually occur as a by-product of the alloying process and are generally harder and
more brittle than the matrix phase in which they are embedded [23]. This hardens the bulk material as the
particles impede dislocation movement, which is an important component of plastic flow [24]. Additionally,
second-phase particles are often non-uniformly distributed and consist of various sizes, orientations, and
shapes [19, 22]. Processing methods, i.e., cold-rolling and extrusion processes, also introduce anisotropy into
the distribution by flattening, elongating, and/or reorienting the second-phase particles [19, 22, 25].

The deleterious effects of second-phase particles on alloy behavior is a well-known and widely studied
phenomenon [26]. The particles play a crucial role in ductile damage wherein the material fails through a
process of void nucleation, growth, and coalescence [13, 21, 27-29]. Voids often nucleate at the second-phase
particles, either through debonding of the particle-matrix interface and/or particle cracking [13, 25, 28, 30].
Additionally, in disordered second-phase particle distributions, clustering can have pronounced effects on
void nucleation and coalescence [19]. However, attempts to incorporate this knowledge into predictive failure
models is obfuscated by the convolution of rapid void growth/coalescence regions with local stress-strain
states [13].

Historically, characterization of realistic second-phase particle distributions presented a non-trivial prob-
lem. Material properties are difficult to measure and characterization methods such as serial sectioning
result in the destruction of the sample. Micro-computed tomography (p-CT) has emerged in recent years
as an attractive tool to non-destructively quantify the second-phase particle morphology, often with a high
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degree of fidelity [13, 31]. This scanning technology allows us to digitally reconstruct the microstructure
and incorporate the particle geometry into small-scale simulations (O(pm)). We can then compare these
to experiments with miniaturized specimens or use them in RVE studies [22, 32]. In the next section, we
provide a brief overview of relevant literature that grapples with realistic characterizations of non-uniform
particle morphology.

1.8. Multiscale Modeling of Realistic Second-Phase Particle Morphologies

The past several decades have seen an increase in numerical solutions to heterogeneous materials enabled
by increases in computational capabilities [12]. In the 1990s, Ghosh et al. developed a coupled multiscale
method known as the Voronoi Cell Finite Element Method (VCFEM) to represent non-periodic microstruc-
tures [33]. This methodology uses Dirichlet tessellation (i.e., Voronoi polygons) to form polygonal elements
that each contain a single heterogeneity. A coupled finite element (FE) scheme is then used to resolve the
microscale and macroscale material response. These elements were cumulatively modified over the next
decade to include elasticity [33], plasticity [34], and void nucleation (due to particle cracking) [35]. Although
more robust than homogenized solutions, the application of this method to large-scale problems was limited
by the mesh size, the smallest element of which is determined by the scale of inter-particle distances. To
mitigate this, Ghosh et al. proposed an adaptive meshing algorithm which transitions from the macroscale
to the inclusion scale in regions of high stress or strain gradients. Despite this reduction in computational
cost, the VCFEM methodology is still a fairly complex approach and is not readily available in commercial
FE solvers.

Other studies have attempted to quantify the anisotropy of second-phase particle distributions and model
microstructural phenomena. Hannard et al. studied the anisotropy induced by the second-phase particle
morphology on the ductility of rolled Al 6000-series alloys in 2018 [1]. They found that tensile tests of
Al 6065 in the rolled direction and the transverse direction exhibited different fracture strains which were
explained through particle clustering effects. They also emphasized the need for anistropic and clustering
effects in current damage models and proposed the Pair Correlation Function (PCF) as an effective method
of quantifying the degree of particle distribution anisotropy. Abedini et al. investigated the effects of
particle clustering by creating a periodic microstructure that consisted of multi-particle clustered unit cells
with spherical particles [36]. Their analysis, however, did not investigate the effect of this clustering on the
damage behavior. A 2019 study by Pinz et al. focused on creating statistically equivalent RVEs (SERVEs)
from realistic particle morphologies in a nickel-based superalloy [37]. They approximated p-CT scans of
nano-scale particles as a distribution of generalized super ellipsoids and used various methods to generate
statistical descriptors of the spacing between particles to find the smallest possible SERVE. Sarmah and Jain
recently investigated interfacial debonding between second-phase particles and the matrix by conducting 2D
FE simulations of a realistic Al alloy microstructure [38]. They used cohesive zones at the particle-matrix
interface with properties informed by molecular dynamics (MD) simulations and modeled both realistic
and idealized second-phase particle morphology (particles were represented as circles in the idealized case).
Although they reported the effects of particle morphology on local decohesion behavior and the local stress
fields, they did not report observations on the effective stress-strain behavior.

Several homogenized damage models with corresponding homogenization procedures have been proposed.
In 1999, Wilkinson et al. proposed an approach to model non-uniform distributions of second-phase particles
using a plastic extension of the self-consistent method [39]. They partition the continuum response into
phases, each of which has a particle volume fraction and associated constitutive response (which includes a
damage parameter based on the particle size distribution). Gammage et al. further developed this model in
2004 to statistically account for void coalescence effects which helps the model better capture the ductility
[40]. Both of these models, however, only account for local variation in particle volume fraction, do not
account for particle shapes, and only include realistic particle spacings as statistical probabilities. Ghosh
et al. developed a homogenization-based continuum plasticity-damage (HCPD) model in 2009 which was
based on based on the well-known Gurson-Tvergaard-Needleman (GTN) model and used the aforementioned
VCFEM for the micromechanical analysis [14]. They modified the void nucleation criterion to account for
observed inclusion distributions and included sufficient degrees-of-freedom to capture anisotropy in inclusion
cracking. The developed HCPD, however, still requires micromechanical analyses of RVEs. Tekoglu and
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Pardoen sought to bypass this expensive RVE analysis by coupling a Mori-Tanka mean field homogenization
method with a Gologanu-Leblond-Devaux (GLD) damage model [41]. They validated the model with a
distribution of silicon particles in an aluminum alloy. This model assumes that the particles are all ellipsoids
and only accounts for non-uniform distributions by adjusting the GLD void spacing aspect ratio. Ismail et
al. also proposed a modeling strategy that precludes explicit resolution of the microstructure by dividing
the material into “pseudo-grains” that each have a dominant second-phase particle orientation [42]. Each
pseudo-grain is then modeled as a periodic distribution of aligned ellipsoids. This study, however, only
accounts for damage predictions by probing the intensity of the stress at particle-matrix interfaces in the
unit cells. In 2020, Olinger et al. fit a GTN model to data from direct numerical simulations (DNS)
that explicitly resolved the anisotropic second-phase particle morphology of an AZ31B alloy [5]. However,
the GTN model parameters were phenomenologically derived from the DNS stress-strain data and do not
incorporate more detailed aspects of the second-phase particle morphology. A recent study by Xie et al.
modeled realistic second-phase particle distributions in an Al alloy and used a GTN model in the matrix-
phase of their RVEs to capture the damage phenomena [43]. They compared the realistic RVEs with
various simplified microstructures to quantify how particle size, distribution, and shape affect the material
properties.

1.4. Study Motviation and Overview

Despite these advances, we are unaware of any effort that seeks to investigate the existence of a simple,
periodic microstructure that is “equivalent” to a realistic microstructure’. Many homogenized models, such
as Gurson-type models, rely on analytic solutions to spheroidal or cylindrical-shaped voids in an elastoplastic
medium. If an equivalent idealized, periodic microstructure exists, then linking the realistic microstructure
to the Gurson-type microstructure has tangible benefits that would enable a simple, efficient bridge between
a microstructural dataset and a homogenized damage model.

To further motivate our approach, imagine an entity such as a company or government laboratory that
wishes to run microstructure-based FE simulations using p-CT data they acquired. They have access to
commercial FE software, e.g., Abaqus, ANSYS, etc., but do not have a robust set of custom user material
subroutines (UMATS) and sophisticated scripts. Firstly, they would have to spend weeks converting the
p-CT data into a CAD model that they can import into the FE solver. This is labor intensive without
expensive additional software. Once the geometry is created, the modeler must decide whether to model the
particles and matrix as a single, multi-phase part or as separate parts and must define a material model for
each region. This is a non-trivial step that involves choosing and fitting a material model for both the matrix
and particles that must include damage in at least one of the phases. An additional technique is needed to
model the interactions between the two phases, assuming they are not modeled as a single part. Perhaps
cohesive elements are used which introduces an extra geometry and mesh generation challenge. The choices
made in the construction of this FE model have implications for the accuracy of the modeler’s RVE solution.
Secondly, the modeler must choose how many loading paths (proportional and/or non-proportional) they
believe are necessary to characterize the second-phase particle anisotropy. This can quickly reach hundreds
of simulations to fully characterize the homogenized response. The modeler does not possess infinite time
so they now have to grapple with the minimum amount of material necessary for representativity and might
have to ignore a large portion of their 1-CT data. Finally, they face the problem of creating a constitutive
model from their high-throughput suite of RVE studies. They have presumably generated a large amount of
anisotropic, tabulated tensorial data. Commercial FE solvers do not possess the infrastructure to directly
use this data, so the modeler must now write a UMAT or lose a high amount of fidelity by fitting their RVE
data to a readily available homogenized damage model (see Figure 1).

Conversely, finding a conversion process between a realistic microstructure and a Gurson-type microstruc-
ture would preclude the months of work required for the above study. Once the process is established, a

1For the sake of simplicity, we define “equivalency” in this paper as a microstructure that exhibits roughly similar uniaxial
stress-strain behavior. However, an ideal “equivalent” periodic microstructure would capture the general stress tensor-strain
tensor response for a broad range of proportional and non-proportional loadings. Such multiaxial loading is beyond the scope
of this paper.
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Figure 1: Comparison of the costs between pure computational homogenization techniques and our proposed method to create
a homogenized damage model from a second-phase particle morphology.

modeler could quickly analyze a large n1-CT dataset without the need for CAD modeling. They could con-
duct a high-throughput suite of FE simulations that they could run at very little cost by using the simplicity
of a unit cell coupled with periodic boundary conditions. If they wish to use Gurson-type models that are
built-in to commercial FE software then they could fit those parameters to the unit cell data. Better yet,
if they have access to anisotropic extensions of the Gurson model (such as the Gologanu-Leblond-Devaux
model), then they can input the geometric parameters from the unit cell without ever running an FE unit
cell study. The modeler has now arrived at a homogenized damage model that they can immediately use to
simulate structural level deformation and localization with an approximate cost savings of months as shown
in Figure 1.

In this paper, we propose a method to convert a realistic second-phase particle morphology to an idealized,
periodic microstructure consisting of a unit cell with a single void. We take p-CT scans of rolled AZ31B and
quantify the volumes of matrix and second-phase particle material. Since damage nucleates at second-phase
particles via particle cracking and/or interfacial decohesion, we approximate the particles as voids with no
stress-carrying capacity [29, 44]. We then use a MATLAB algorithm to fit ellipsoids to the particle shapes
and extract the spatial and size distributions. Finally, we create a periodic microstructure consisting of a
single-void unit cell using the average size and spacing values. Assuming a hexagonal repeating unit cell
allows us to use axisymmetry in FE calculations and reduces the averaged parameters to four dimensions,
L.,L.,R,, and R, [21]. We repeat this process for varying loading orientations in the plane formed by the
normal- and rolled-directions (ND-RD plane) and compare to the data generated from [22]. Additionally, we
consider various means of creating ellipsoids from particle shapes, measuring the spacing between particles,
and generating statistical averages. This results in a parametric, high-throughput study that allows us to
compare the effectiveness of such choices.

2. Methodology

2.1. Ezperimental and Numerical Data

Our work uses the experimental and numerical data published by Lloyd et al. [22]. Their study in-
vestigated the effects of the realistic particle morphology on the uniaxial tensile behavior of rolled AZ31B



/Qj;% 3 A Rolled Axis
i 7 .

S A S il

"’;‘} &4 J 3 o ’

' 4 ;',/ f}&{‘ . ) y// ;
CIRIAS 7
S - ~ /\/\9: @ Normal A)st

. 200pm

(@) (b)

Figure 2: (a) Particle morphology of rolled AZ31B. “Stringer” particles are clearly seen oriented along the RD. (b) Definition
of the loading vector defined by the cutting angle, 6, with § = 0° corresponding to the tensile direction along the ND and
6 = 90° corresponding to the tensile direction along the RD.

magnesium. The cold-rolling processing of the material leads to particle morphology anisotropy with long
“stringer” particles preferentially aligned along the rolled direction (Figure 2a). These particles range in
size, with the smallest particles presumably being Mg7Al;s and the largest presumably being AlgMns,
c.f. [45]. Mg alloys also possess high levels of anisotropy due to their hexagonal close packed (HCP) crys-
tal structure and twinning deformation behavior which manifests as tension-compression asymmetry [5].
Therefore, the anisotropy observed in the experimental data generally stems from a complex interplay of
physical mechanisms including the crystal structure, twinning deformation, grain texture, and second-phase
particles.

Lloyd et al. studied this anisotropy by cutting miniature dog-bone tensile specimens from an AZ31B sheet
at various orientations in the plane formed by the normal- and rolled-directions (ND and RD, respectively).
The orientations were denoted by the angle # measured from the ND as shown in Figure 2b. They obtained
seven specimens by varying the loading vector, e, in 15° increments from 0° (e, aligned along the ND) to
90° (e, aligned along the RD). The specimens were cut from a 6in. x 6in. plate and milled down to dogbone
specimens with gauge dimensions 1.0mm x 0.5mm x 0.2mm. Tensile tests were conducted on the specimens
using a desktop miniaturized Kolsky bar setup. Three tests were run for each orientation and the engineering
stress-strain response was measured by analyzing the strain gauges on the incident and transmitted bars.
Representative stress-strain responses are shown in Figure 3a. They characterized the particle morphology
in the gauge sections using p-CT scans of the dog-bone specimens with a spatial resolution of 1 pm. We
refer the reader to [22] for a complete description of the experimental setup and procedure.

In the second portion of the study, they conducted a set of direct numerical simulations (DNS), i.e.,
high-fidelity FE simulations, using the p-CT scans of the gauge sections. The DNS differ from an RVE since
the dimensions of the resolved microstructure match the dimensions of the gauge sections in the miniaturized
Kolsky bar tests. However, the DNS and experiments may not be representative of bulk AZ31B behavior due
to the small sample size. The particle morphology was recreated for seven simulations, each corresponding
to a distinct loading orientation, e,. They assumed elastic-plastic material properties for the matrix and
particles and formulated a critical-stress failure criterion, o4, for the particle regions (no failure criterion
existed for the matrix phase). The FE simulations used an arbitrary Lagrangian-Eularian formulation to
handle the void nucleation, and growth process while conserving mass. This portion of the study used four
simulation sets to investigate various features of AZ31B:

1. A uniform distribution of spherical particles embedded in a matrix. Both the particles and the matrix
were modeled with an identical, isotropic elastic-plastic material model.(Results not shown.)

2. Experimentally measured particles embedded in a matrix. Both the particles and the matrix were
modeled with an identical, isotropic elastic-plastic material model. (Results shown in Figure 3c.)
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Figure 4: Fracture surfaces as predicted by direct numerical simulations (DNS) with the realistic second-phase particle mor-
phology. The particle and matrix material are modeled as elastic-plastic with isotropic hardening. This isolates the effects of
the second-phase particles on the damage behavior. Reproduced from [22].

3. A uniform distribution of spherical particles embedded in a matrix. The particles were modeled with
an isotropic elastic-plastic material model and the matrix was modeled with an anisotropic crystal
plasticity model. (Results not shown.)

4. Experimentally measured particles embedded in a matrix. The particles were modeled with an isotropic
elastic-plastic material model and the matrix was modeled with an anisotropic crystal plasticity model.
(Results shown in Figure 3c.)

The details of the crystal plasticity model used in the second two simulation sets are given in [22]. The
crystal plasticity uniaxial stress-strain responses for each loading orientation are reproduced in Figure 3b.
The other two simulation sets make use of J plasticity with a Voce-type isotropic hardening law, i.e.

1—exp (ilo’osépl>] (1)

Here, o, is the flow stress, o¢ s is the initial yield strength, o3° is a parameter that controls the saturation
strength, hi s is a hardening modulus, and éP! is the equivalent von Mises plastic strain. This results in
a hardening curve that asymptotes to a flow stress equal to og s + 05°. One should note that, in reality,
the material properties for the Mg matrix phase, the Mg;7Al 5 particles, and the AlgMnj5 particles are not
equivalent [23].

The conditions in the third simulation type (Figure 3d) illuminate the anisotropy stemming from the
particle morphology quite nicely. The fracture surfaces for this case are shown in Figure 4. We choose
to validate our methodology against this numerical data as these particular simulations isolate the role of
second-phase particles on the damage response. We also extend our approach using an approximation of
the crystal plasticity data in Figure 3b and compare to the experimental data in Figure 3a.

_ oo
Oy =005+ 0,

2.2. Statistical Analysis of u-CT Data

For our study, we digitally reconstruct the AZ31B microstructure used in [22] as a 3D array from p-CT
scans. Prior to our procurement, the data was converted to a binary array where a value of 0 corresponds
to matrix material and a value of 1 corresponds to particle material. Plotting the 3D array yields a digital
approximation of the microstructure which is shown in Figure 5. The resolution of the resultant image
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Figure 5: 3D reconstruction of rolled AZ31B microstructure from p-CT scans showing second-phase particles. A non-uniform
distribution can be seen with regions of various particle volume fractions. The digital reconstruction also clearly shows the
particle anisotropy induced by the rolling process.
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Figure 6: Voxel connectivity conditions for voxels that correspond to particle material. The particle voxels are only considered
connected if they share a face.

is limited by the p-CT resolution of 1 pm. Therefore, each element (or voxel) of the 3D binary array
corresponds to 1 pm? of material. Our sample size is 701pm x 350pm x 139pm.

Once the microstructure is reconstructed from the p-CT data, we extract the particle morphology. We
first define a connectivity condition that determines the set of voxels that belong to each particle. Three
possibilities exist for defining connectivity, with connected voxels defined as voxels i) sharing a face, ii)
sharing an edge, or iii) sharing a vertex. For this project, we define connectivity using the first criterion as
shown in Figure 6. We use the MATLAB function bwconncomp with the selected connectivity condition
to determine the number, size, and position of the second-phase particles [46]. For our sample, the analysis
resulted in a particle count of 479, with 134 of those particles comprised of a single voxel, i.e., V, =1 nm3,
where V), is the particle volume. The particle volumes are shown in Figure 7a and range from 1 pm? to
~ 2.86 x 10* pm3.

Many of the particles have highly complex shapes. The rolling process flattens many particles, as
expected. Additionally, there are several “stringer” type particles that are highly elongated and generally
oriented along the RD. The smaller particles are generally ellipsoidal or flat, with varying levels of irregular
features. Additionally, several of the larger particles consist of a collection of “finger-like” protrusions that
splay out in various directions and are joined at a central hub. The variety of shapes, sizes, and spacings
in this complex, realistic microstructure presents several unique challenges when trying to convert to an
idealized, periodic representation. We therefore conduct a parametric study where we define various options
for several pertinent parameters, i.e., number of particles accounted for, ellipsoidal approximation method of
the particles, spacing measurement, and ellipsoidal/spacing averages. We place these parameters with their
associated values into a test matrix (Table 1) and use all possible combinations to provide ~100 unique
unit cell constructions. Although we provide a comprehensive assessment of these parameters, we also
acknowledge the existence of hundreds of hypothetical schemes that could be used to weight various aspects
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Figure 7: Histograms showing the distributions of particle volumes, V}, and spacings, d, measured from the p-CT data for (a)
all particles, (b) all except single-voxel particles, and (c) only the ten largest particles.

of the full p-CT statistical data. We leave these unexplored as they are outside the scope of this paper. Our
study parameters and associated options are detailed below.

2.2.1. Parameter 1: Particle Inclusion

The first challenge in homogenization is deciding which particles observed in the p-CT data most affect
the damage process. For instance, studies show that larger particles tend to fail first in the absence of
small-particle clustering [47] while small particles, i.e., < 3 pm, tend to nucleate a population of smaller
voids that accelerate void coalescence [44]. Although we can include all of our available data in our analysis,
selecting a subset of “important” particles might yield more accurate responses. One obvious choice is
to forgo such a decision and include all measured particles in the analysis. However, due to resolution
effects and image manipulation, there are questions regarding the validity of counting single-voxel particles.
Additionally, assuming that all measured single-voxel particles are valid, they might be better categorized
as a secondary population of particles that should be modeled on a separate length-scale, similar to [48].
Therefore, one might reasonably exclude all the single-voxel particles from the analysis. Finally, although
we have high-fidelity microstructural data, the damage might depend almost entirely on the largest particles
and the smaller, more dispersed particles might not significantly affect the results. An accurate model might
achieve better results by only including some subset of the largest particles and ignoring the hundreds of
smaller particles. In our analysis we account for all three of these choices by 1) including all particles in
our analysis, 2) excluding all single-voxel particles in our analysis (which reduces the number of particles
from 479 to 345), and 3) including only the ten largest particles (by volume). The V), distributions for these
particle populations are given in Figure 7. We place these choices into the first rows of our test matrix in
Table 1, where they are each assigned a numeric value.

2.2.2. Parameter 2: Ellipsoid Construction

Our second challenge is to approximate each particle as a simple geometrical shape. Since we wish to
avoid more costly 3D simulations and want the periodic microstructure to work well with homogenized
damage models, we choose an ellipsoid of revolution i.e., a spheroid. This allows us to introduce void shape
anisotropy into our unit cells and allows us to utilize axisymmetry in our FE simulations. Fitting a spheroid

10



Numeric

Variable Option Code

All Particles
Number of Particles (NP) Exclude Single-Voxel Particles
10 Largest Particles
Double-Centroid Method
Projected Area Method
Combined Method
Combined Method (Match Volume)
Centroid-to-Centroid Nearest Neighbor Distance
Spacing Construction (SC) Centroid-to-Centroid Nearest Neighbor Distance
with Ellipsoid Projections Subtracted
Simple Average
Volume-Weighted Average
Simple Average
Spacing Averaging Scheme (SA) Volume-Weighted Average (Using Volume
of Ellipsoid Pair for Each Spacing)

—_

Ellipsoid Construction (EC)

Ellipsoid Averaging Scheme (EA)

N =N | N R WN W N

Table 1: Parameter test matrix. Each parameter is given a set of numerical values that correspond to an option for that
parameter. The numerical identifiers are used to create a five-number unique I.D. for each unit cell set.

Figure 8: Axisymmetric unit cell geometry. The spacing between void centroids in the z- and r-directions are given by L, and
L, respectively. The void radii are given by a., and a,.

to each particle gives us two tunable parameters, a, and a,, where a, is the semi-axis length of revolution
and a, is the semi-axis length along the axis of revolution. A representative spheroid is shown in our unit
cell geometry in Figure 8.

Fitting an ellipsoid to a given particle is a non-straightforward process. The easiest method is to construct
an error ellipsoid using the second central moments of the particle voxel distribution. The error ellipsoid
dimensions are set by defining the chi-squared value corresponding to a desired probability value. The
resultant ellipsoid is oriented with its axes aligned along the directions defined by the eigenvectors of the
covariance matrix. Although this generally gives the best fit for a particle, the resulting ellipsoid distributions
have varying orientations which inhibits finding an average ellipsoid size and shape such that it is oriented
along the z— and r—directions of our unit cell. Additionally, since we want to generate a unit cell for
each loading direction, we require a distribution of ellipsoids with their a, semi-axes aligned along the
loading vector, e,. This precludes using the error ellipsoid method and forces us to formulate other ellipsoid
generation methods.

We identify three main aspects of the particle geometry that we believe should be captured by any
simple-shape fit:
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i. the length of the particle along the loading direction e,
ii. the projected area, A, of the particle on a plane with normal e,
iii. the particle volume, V.

It is generally impossible to simultaneously fit all three of these metrics, except for nicely-shaped particles,
and therefore we create four ellipsoid generation methods that weight each of these aspects differently.
The first method places the most weight on aspects (i) and (iii). To construct an ellipsoid, a particle
is first sliced by a cutting plane formed by the particle centroid, G, and the loading vector, e,. We then
compute the centroid of the upper half and lower half, denoted as G} and Gé, respectively. We do this
to mitigate any particular geometry quirks such as a u-shaped particle where counting voxels along a load
vector that passes through G, would not give an accurate representation of the particle length along that
vector. Once we compute G, and G]lo, the vector length between the two, lg, is calculated. The analytic
formula for the location of the centroid of a half-ellipsoid is h = 2a,. Substituting % (lg - e,) for h, we can

8
solve for a,, i.e., a, = 2 (lg - e2). We then calculate a, by setting the volume of the ellipsoid, V¢, equal to

V, and solving for a, i.%., Vo =Ve = %wazar. This method results in ellipsoids that capture some “effective
length” along e, and also capture V,,. However, the method does not capture A,, except by coincidence.

The second method places the most weight on aspects (ii) and (iii). Here, the voxels of a given particle
are projected onto the plane formed by G, and e,. An error ellipse is then fit to the resultant 2-D projected-
voxel distribution using the 2D version of the second central moments technique described above. We chose
a chi-squared value of 6.251 which gives a probability value (p-value) between 0.95 and 0.975, i.e., the ellipse
encompasses 95% — 97.5% of the in-plane points. The projected area must be a circle for a spheroid, so the
resultant error ellipse is converted to a circle by setting the area of the ellipse, A, equal to the area of a
circle, A.. The circle radius, a,, is then found by the following expression, a, = \/aiaz, where a; and a; are
the semi-axes of the ellipse. We then solve for a, by setting V. equal to V}, similarly to the first method.
The resulting ellipsoids from this method approximately capture the projected area, A,, and accurately
capture V,,. They do not capture the particle dimensions along e, except by coincidence.

The third method places the most weight on aspects (i) and (ii). First, we generate a, using the strategy
from the first method. Then we generate a, using the strategy from the second method. V,, is ignored, and
therefore only captured incidentally. The fourth and final method attempts to account for all three aspects
by constructing an ellipsoid by way of the third method, and then scaling the resultant ellipsoid to match
Vp, while keeping the aspect ratio a, : a, constant. We accomplish this by introducing a scaling factor, 3,
into the expression for V. and solving for 3 by setting V, equal to V,, i.e., V, =V, = %B?’ﬂazaf. We then
multiply a, and a, by S to obtain the new spheroid semi-axis lengths.

These methods provide four different ways to approximate a particle with a spheroid, taking into account
three metrics of particle geometry. Each method provides a unique ellipsoid distribution for a given e, and
it is not immediately clear which method will yield better results. Our project therefore incorporates all
four methods into our test matrix in Table 1 and assigns each method a numeric value, similarly to the
particle size inclusion parameters. The effect of each method on the shape of the ellipsoid for a randomly
chosen particle is given in Figure 9.

2.2.3. Parameter 3: Particle Spacing

Second-phase particles exist as discrete entities interspersed in a matrix phase. Therefore, a measure of
the spacing between particles is necessary for conversion to a periodic unit cell. The nearest-neighbor distance
provides a simple inter-particle spacing metric which measures the vector distance between a given particle
centroid and the centroid of its nearest neighboring particle. Although this provides a rough estimate of the
spatial distribution of particles, it is less useful in describing the amount of matrix material in between two
particles as it does not account for particle volume. Measuring the amount of matrix-phase material between
a particle and all its neighbors, however, is computationally prohibitive. To provide an approximation of this
length, which is an arguably more influential aspect of the particle morphology than the centroid-to-centroid
distance, we implement a second method that uses the fitted ellipsoid geometries of the particles to define
an estimate of matrix phase material between a particle and its nearest neighbor.
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EC1 EC2 EC3 EC4

Figure 9: Effect of ellipsoid generation method on the resulting shape of the ellipsoid. A single particle is reconstructed and
shown from two directions: the loading direction along the z-axis (top row) and perpendicular to the loading direction (bottom
row). The ellipsoid that results from each of the four options is shown for the particle, where the numeric identifier corresponds
to the options as listed in Table 1.

The first method employs the nearest-neighbor algorithm to find the vector distance between a given
particle’s centroid and the centroids of all other particles. For a particle, ¢, the magnitude of the distances
between its centroid and the centroids of all other particles are calculated and the minimum distance is
stored as d, such that

d’ = min \/(Gg = G%)Q + (G - Gg'v)2 + (Gi - 05)2 2)

where {Gr,Gn,Gr} are the centroid coordinates of a given particle in the material coordinate system
(rolled-, normal-, and transverse-directions, respectively), i is the particle of interest, and j is an index that
loops over every other particle. Once d is found for each particle, that distance is stored in vector form and
the absolute value is taken of all the components such that, for the i*" particle,

G?V _ G?\}mln qu—‘ _ G‘;_’,mln

) 9

L' = (L, L. Ly} = {|Gh - G5™

} (3)

This process is repeated for every particle and results in an associated nearest-neighbor distance, L, for each
particle. A 2D representation of this centroid-to-centroid distance, L, is shown in Figure 10 for two particles
that have been approximated by ellipsoids. The resulting distribution of the Euclidean norm of spacings, d
is shown in Figure 7 for all three particle populations considered.

The second method indirectly measures the amount of matrix-phase material between the two nearest
particles instead of L. As previously mentioned, it is not computationally tractable to measure the true
smallest distance of matrix material between two particles. Our solution is to use fitted ellipsoids to create
an artificial “ligament length” between a given particle and its nearest neighbor. We do this by first taking
the distance L (as defined above) between the particle of interest and its nearest neighbor. We then take the
ellipsoids that correspond to each particle, project them onto the vector L, and subtract off the projected
lengths to determine the ligament length, L’, as seen in Figure 10. The ellipsoid projection onto the vector
L is as follows [49].

Assume a matrix, A, of the form

A =Ux?UT (4)

where 32 is the matrix of eigenvalues of an ellipsoid and U is the matrix whose columns are the corresponding
eigenvectors. Let C be the Cholesky factorization of A such that
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Figure 10: Two methods for generating spacings between neighboring ellipsoids, ¢ and j with centroids G* and G7. The first
method gives a centroid-to-centroid length L and the second method gives an approximation of the ligament length between
the ellipsoids L’.

A =cc” (5)
Then the projection, w, of the ellipsoid from Equation 4 onto a vector, v, is obtained through

C o
vTv

(6)

By substituting L for v, the projections (w? and w?) of an ellipsoid pair (with i and j corresponding to the
particle pair) are made onto L. The magnitude of L’ is then calculated by ||L’|| = || L| — ||w®|| — |[w?|| and
is in the same direction as L.

Both of these spatial metrics, L and L’ are calculated in material coordinates. Since our loading direc-
tion varies, so does our {z,y,z} loading coordinate system. For each rotation, 6, about the T D-axis, we
use a rotation transformation to convert L and L’ from the material coordinates into the correct loading
coordinates.

2.2.4. Parameters 4 € 5: Averaging Schemes

We now have to convert the information from the ellipsoid and spacing distributions into a periodic unit
cell. Our constraints on the ellipsoid generation, i.e., ellipsoids forced to align along e, enables us to simply
average the ellipsoid axes. Averaging the spacing vectors is also straightforward. For both distributions we
calculate either an arithmetic average or a volume-weighted average. The volume-weighted average gives
more influence to the larger particles and associated spacings in the unit cell construction. To weight the
spacing distribution by volume, the combined volumes of the two particles associated with that spacing
vector are used as the weight. This provides two extra parameters in our parametric study - the average of
the ellipsoids and the average of the spacing vectors. Each of these parameters has two options and we give
each a numeric value and add them to the test matrix in Table 1.

2.2.5. Unit Cell Construction

Combining all of the parameters from Table 1 gives a total of 96 unique permutations. A given combi-
nation of the parameters results in a unit cell that consists of an average ellipsoid of revolution embedded in
a rectangular prism with dimensions L, Ew and L,. To convert the rectangular prism to a cylinder (which
enables axisymmetry), the radial dimension, L, is defined as the average of the L, and Ey dimensions, e.g.
L, = % (Ew + Ey). The geometry of the periodic unit cell is shown in Figure 8.

To capture the effect of the loading orientation, e, is varied between # = 0° and 8 = 90° in 15° increments.
The conversion from a particle and spacing distribution to a periodic unit cell is repeated for each orientation

14



6, = 15° 6, = 30° 6, = 45° 6,=60° 0,=75  0,=90°
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Figure 11: A representative set of unit cells for a given combination of parameters. The unit cell geometry varies for each
loading orientation even though the parameter options used to construct it were held constant. The loading vector is aligned
along the z-direction for the FE simulations. Axisymmetry and half-symmetry are utilized to reduce the computational load.

for a total of seven unit cells for each test matrix permutation. This results in 96 sets of periodic unit cells,
where each set contains seven unit cells - one for each orientation. The various options shown in Table
1 are given alphanumeric identifiers, where the two-letter acronym defines the parameter and the number
corresponds to the value of that parameter. Each set of unit cells is identified by a set of five numbers that
correspond to the parameters’ numeric value for that set. The I.D. number is translated as follows. For I.D.
ijklm, i denotes the value for the number of particles included in the analysis (NP), j denotes the value for
the ellipsoid construction method (EC), k denotes the value for the spacing construction method (SC), and
I and m denote the values for the ellipsoid averaging method (EA) and the spacing averaging method (SA),
respectively.

A representative set of unit cell geometries are shown in Figure 11. Note that the geometry is different
for each unit cell even though the same parameter set generates all seven unit cells. Half-symmetry and
axisymmetry are both appropriate assumptions for our boundary conditions and reduce the computational
load. We generate the models using Abaqus 2018 and mesh the unit cells with linear axisymmetric stress
quadrilateral elements (CAX4 elements). A linear elastic-plastic model is used for the material with an
isotropically hardening Jo yield surface. The Young’s modulus and Poisson’s Ratio are £ = 45 GPa and
v = 0.35 respectively. The power-hardening law is the same as that used by Lloyd et al. in Equation 1 with
the following values: oy s = 40 MPa, 02° = 180 MPa, and h; s = 2500 MPa. The particle is represented as a
void, which essentially assumes that void nucleation due to either particle cracking or interfacial debonding
has already occurred at the beginning of loading. We model the particle as a void for three reasons. First,
we do not have data for the material properties of the particles. Second, for most structural metals and
most loading conditions, second-phase particle fracture and/or particle-matrix decohesion occurs early in
the deformation process prior to the accumulation of damage. Often, void growth is the limiting process
requiring the greater stress. For this reason, there is relatively little difference between modeling the finite
stiffness and strength of second-phase particles in comparison to the zero stiffness and strength case, i.e.
a pore. Finally, as previously stated, we want to provide a direct link to a porous microstructure that we
could fit Gurson-type parameters to. If we assume a spheroidal void, then the Gologanu-Leblond-Devaux
(GLD) model correlates directly with our proposed microstructure.

Periodic boundary conditions are applied for all unit cells at » = L,., such that the outer edge remains
perpendicular [21, 29]. The top face of the model is displaced in the z-direction to a distance twice the initial
height (e.g., €eng = 2.0). The boundary conditions are applied by using a primary node connected to a set
of secondary nodes on the boundary using tie constraints as shown in Figure 12. Appropriate symmetry

15



PRIMARY

P
SECONDARY 35 = 8 -
— gP
= 5T
SECONDARY

NODES

AXI-SYMMETRY

HALF-SYMMETRY

Figure 12: Boundary conditions for the FE simulations. Periodic boundary conditions are applied on the lateral surface, while
a displacement is applied to the top edge in the z-direction. The boundary conditions are applied to a primary node and
imposed on the unit cell using a tie constraint. The D.O.F. in the z-direction for the nodes at z = L are constrained to the
primary node and the D.O.F. in the r-direction for the nodes at » = L, are constrained to the primary node. Roller boundary
conditions are applied to the line of axisymmetry and the half-symmetry plane.

boundary conditions are used on the half-symmetry plane such that the displacement in the z-direction is
zero with no constraints on the displacement in the r-direction. This loading imposes a stress triaxiality
of T'=1/3 and the simulations are conducted using Abaqus/Standard which uses the implicit formulation.
Since the imposed boundary conditions cause large displacements/strains, we include the effects of nonlinear
geometry, i.e., the finite-strain formulation.

The resulting force-displacement data is extracted from the output database files for the primary node.
We then calculate the engineering stress and strain and plot the stress-strain data. Since the FE simulations
are rate-independent, we correct our data to match the DNS (which were high strain-rate simulations) by
multiplying our resulting stress values by a rate correction factor of (¢,/9)"" where &, = 10*, &y = 1, and
m = 0.02.

The resultant stress-strain responses are compared to the DNS from Figure 3d. To quantitatively measure
the performance of each parametric response, we choose three metrics for comparison: i) the ultimate tensile
strength, oyrg, ii) the failure strain, €7, and iii) the order in which the failure strains occur. A given
parameter set should ideally minimize the error of all three metrics. We easily calculate the oyrg error by
comparing the maximum observed engineering stress from the unit cells to the maximum observed stress
in the DNS. The other two metrics are less straightforward to measure and we therefore define criteria to
provide quantitative comparisons. We define the failure strain (ef) for our unit cell FE models as follows.
Our matrix material consists of a linear elastic-plastic response with a true stress o4 that asymptotes
to 0g,s + 02° = 220 MPa (using Equation 1 with the specified values). Assuming plastic incompressibility,
the slope of the true stress-strain curve will never be < 0. We define a failure strain as the strain at which
the slope of the macroscopic true stress of the unit cell begins to decrease (thereby breaking the plastic
incompressibility assumption). Since we are measuring our response in terms of engineering stress and
strain, we use Equation 7 to calculate an upper-bound criteria in terms of engineering stress and strain.

99ens i —Jtrue ) — 220 MPa (7)
ageng (1 -+ seng)
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We define —220 MPa as our limit for the slope by setting .,y = 0 and setting oypye to its maximum
theoretical value of 220 MPa. Since oy reaches its maximum at €.,4 > 0, the engineering stress-strain
slope will be > —220 MPa before significant strain localization and geometric softening. Defining the failure
strain, €, as the point where 00epng/0ccng < —220 MPa provides a quantitative, objective measure of
performance between the unit cells and the DNS.

Determining how well the unit cells reproduce the order of failure strains is a more nebulous problem. In
the absence of a clear solution, we propose a 23-point rating system where a high numeric value corresponds
to little or no agreement between the unit cell and the DNS and a low numeric value corresponds to good
agreement. Visual inspection of Figure 3d along with the recorded failure strains in Table A.2 show that
the 0°-30° orientations fail within +2% engineering strain of each other. The 45° and 60° orientations then
fail sequentially, and finally the 75° and 90° orientations fail within 1% engineering strain of each other.
Therefore, we develop a rating system and express it as the following function:

7 n—1
efmr =23 — H (min (g5 (0)) — 5 (61) +0.02) = Y > H(ef (6n) — £ (0n) + tol) (8)
n=2m=1
where H (z) indicates the Heaviside step function such that it returns a value of 1 for > 0 and 0 for z < 0.
€7 () is the failure strain for each orientation defined by the angle §. The 6 values are stored in a vector
and sorted in the order of the DNS €4 magnitudes, i.e., § = [15°, 0°, 30°, 45°, 60°, 75°, 90°]. A tolerance, tol,
of +£2% engineering strain is applied to each inequality in the equation as defined below
0.02 if 47 (0,,) > e (0,
R Bpyets Ml SV ®
—0.02 if €4 (6,) < €5 (Om)

where €97 are the DNS failure strains. The Heaviside functions total the number of points that are sub-

tracted off the starting “error” of 23. We then take the final count of remaining points as an error metric
with a lowest possible value of 1. This results in an objective, quantitative metric that measures how well
each set of unit cells reproduces the €7 order. The absolute € error and absolute oyrg error are both
recorded for all seven unit cells belonging to a single set and then averaged across the set to provide a single
ey error and single oyrg error for each set of parameters.

The plastic behavior of Mg alloys is anisotropic, as previously noted, and therefore our methodology
(which seeks to isolate the second-phase particle anisotropy by ignoring other anisotropy contributors) is
not suited to capture real-world AZ31B behavior. However, after validating our approach against the
isotropic DNS (Figure 3d) we attempt to validate our methodology against experiments (Figure 3a). We
accomplish this by roughly incorporating plastic anisotropy into the matrix phase of our unit cells by fitting
isotropic hardening curves to the data from Figure 3b. Each hardening curve is then imported into the unit
cell with the corresponding load angle for a subset of our unit cells. This subset of unit cells is chosen based
on which ones best approximate the isotropic DNS solution. Ideally, one would implement either crystal
plasticity or Hill’s plasticity to capture the plastic anisotropy but this is outside the scope of the current
work. These unit cells are compared to the experimental data from Figure 3a instead of the isotropic DNS
data.

3. Results

3.1. Viability

Each parameter set of the test matrix gives a unique set of four dimensions that fully define a unit cell
for each loading orientation. Some parameter sets, however, yield ellipsoidal voids that are larger than the
cylindrical domain (either in the z-direction, r-direction, or both), which results in a non-viable unit cell. We
only include in this study the parameter sets that produce seven viable unit cells, i.e., seven unit cells with
voids fully enclosed within a cylindrical domain. If one or more of the unit cells generated by a parameter
set did not meet that criterion, then the entire set was classified as “non-viable” and excluded from our
analysis. For our specific microstructure, approximately 40% of the combinations are not able to construct
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Figure 13: Effect of each parameter on the viability of the unit cell sets.

a unit cell of the desired geometry, i.e. a spheroidal void enclosed in a cylinder. We observed some trends
in the effect of the individual parameters on the viability and these are shown in Figure 13.

Figure 13a shows that, when choosing the number of particles to include in the analysis, including all
the particles or excluding the single-voxel particles does not affect the viability. Only including the largest
particles, however, results in slightly fewer viable sets. The method of ellipsoid construction does not
meaningfully affect the viability, as all four methods show similar ratios of viable to non-viable unit cells in
Figure 13b. The choice of spacing construction, shown in Figure 13c, demonstrates a marked influence on the
unit cell viability. When only accounting for the centroid-to-centroid nearest-neighbor distance, the ellipsoid
is often not contained in the cylindrical domain. Conversely, approximating the ligament length results in
100% viability. This is due to the method of creating the unit cell geometry. The first spacing method gives
the dimensions L, and L, which correspond to the length and diameter of the cylinder, respectively. The
second spacing method yields L’ and L! which are added to the ellipsoid dimensions @, and a,, such that
L, = f/z +a, and L, = I_/;, + a,. This additive method of constructing the unit cell ensures that a, and a,
can never be greater than L, and L, respectively. Finally, Figs. 13d and 13e show a slight dependence on
the averaging method chosen, with a volume-weighted ellipsoid average resulting in slightly less viable sets
and a volume-weighted spacing average resulting in slightly more viable sets.

3.2. Comparison to Numerical Data

We are left with 58 viable unit cell sets for our analysis (out of a possible 96) after removing the methods
that yielded non-viable unit cells. We calculate € for the DNS in Figure 3d using the definition developed
in Equation 7. Many of the unit cells fail to reproduce failure strains for deformations up to €ecng = 2.0.
Additionally, of the 58 viable unit cell sets, only 31 sets generate 5+ failure strains. The remaining 17
sets either capture none of the failure strains or between 1 and 4 failure strains. We observe an interesting
phenomenon wherein a parameter set tends to yield either a high number of failure strains (i.e., 6-7) or a low
number (i.e., 0-1). Rarely does a set of unit cells have comparable numbers of failure strains and non-failure.
This observation is illustrated in Figure 14 which shows the number of failure strains recorded for all viable
unit cell sets. A complete tabulation of e for all unit cells is included in the appendix along with a rating
scale that categorizes the performance of each set.
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Figure 15: Stress-strain responses for unit cell sets that minimized all three error metrics. The numeric identifiers are shown
below each chart and correspond to the combination of parameter options. The oyrg, failure strain magnitude, and the order
of the failure strains are all well-captured, with the exception of the 0° case.

Two parametric sets emerge as “best performers” when comparing our results to the DNS according to
the three error metrics (oyrs, €5 magnitude, and €5 order). The stress-strain responses for these two sets
are given in Figure 15. Not only is the order of the failure strains generally reproduced (with the exception
of the 0° orientation which exhibits unusual behavior, most likely due to its extreme oblate geometry), but
the magnitudes of the failure strains are largely on the same order of magnitude of the DNS (again with
the exception of the 0° case and, in Figure 15b, the 90° case). Many of the cases that exhibited no failure
contain smaller voids that have a negligible impact on the macroscopic response of the unit cell. Others
contain an extremely high void volume fraction and exhibit failure far before the peak stress of ~220 MPa
is reached.

The average values for all three error metrics are shown in Figure 16. Parameter sets that minimize
all three errors result in green-colored data points in the bottom-left quadrant of Figure 16a. Some of the
unit cell sets match the oyrg fairly well, but fail to capture the failure trends. Alternatively, some schemes
capture the failure trends fairly well but have very high opyrg errors. Additionally, some of the unit cell
sets fail to capture any of the pertinent behavior. Comparing the €; error with the eg-order error shows
that the e p-order error generally correlates with low € errors. Additionally, high errors in the oyrg tend to
occur only at low ¢ errors as evidenced by the color legend in Figure 16a. Figure 16b shows this trend in
more detail. The error measures displayed in these charts are absolute error measures, i.e., the oyrg error is
given in MPa and the ey error is unitless. One should note that increasing oyrgs error actually means that
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Figure 17: Effect of porosity, f, on (a) €5, (b) oyrs, and (c) ef-order errors. The number of €5 for each set of unit cells is
shown with a colormap.

we are increasingly under-predicting the oyrg of the DNS. Introducing a geometrical void into the domain
ensures that the structural response is always softer than the continuum response.

3.8. Effect of Porosity

In the following sections we parse through various parameters and features of our unit cells to elucidate
the effect of each one on the overall error of our simulations. We first focus on the void volume fraction
or porosity, f, which has a significant effect on the behavior of the unit cells. Each error metric is plotted
against porosity in Figure 17. The color bar corresponds to the number of failure strains reproduced in each
set. As seen in Figure 17a, higher porosity generally corresponds to lower € errors while low porosities often
correspond with high e errors. When looking at the correlation between porosity and oyrgs error in Figure
17b, the oyrs error generally increases with increasing porosity in a near-linear relationship. There does
not seem to be any clear trend between f and the €; order error in Figure 17c, but there is some correlation
between increasing porosity and higher ; order errors. One should not that Figs. 17b and 17c contain
data points from all 58 simulation sets, including the sets with zero failure strains. Figure 17a only includes
the sets with at least one € as the error of a set with no failure strains is undefined. These observations
indicate that i) lower porosity correlates strongly with higher ey error and lower oyrg error (an intuitive
conclusion) and ii) the porosity does not seem to be the determining factor on the e ¢-order response.

3.4. Effect of Aspect Ratios

The unit cells contain four distinct aspect ratios: L, : L, @y : @5, @ : L, and @, : L,. We do not
expect any trends to be observed between the error and the first three aspect ratios, and this is borne out
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Figure 18: Effect of radial aspect ratio, @, : L., on (a) ef, (b) ours, and (c) eg-order errors. The number of €5 for each set
of unit cells is shown with a colormap.

in the data. We do observe trends, however, between the error and the @, : L, aspect ratio which are
shown in Figure 18. First, no average aspect ratios < 0.2 occur in our data and aspect ratios lower than 0.5
tend to perform poorly by all metrics. An extremely strong, monotonic correlation is observed between the
oyrs error and the average a, : L, aspect ratio. Additionally, the e ¢ error significantly decreases for aspect
ratios above 0.5. These trends show a clear correlation between the unit cell dimension ratios in the radial
direction and the average performance of a unit cell set.

3.5. Effect of the Number of Particles (NP)

Here, we investigate trends in the data when sorted by the number of particles (NP) parameter. Figure
19a shows the error metrics with various symbols representing the parameter value. Note that this is the
same graph from Figure 16a with the scatter points sorted into categories. Figure 19b shows the £; mean
error plotted against f, again with various symbols representing the parameter value. The data plotted here
is the same as Figure 17a.

Figure 19a shows that only including the largest particles seems to place a tighter bound on all three
error metrics than either of the more inclusive particle methods. The data shows no meaningful variation
between including or excluding the single-voxel particles. Additionally, the schemes that only include the
largest particles corresponds to a lower f, as none of the porosities for this choice are higher than 0.3. This
may be due less to the number of particles included, and more a facet of the spacing measure. Essentially,
when only the largest particles are included, the centroid-to-centroid spacing distance does not yield viable
unit cells. Therefore, the second spacing method must be used which depresses the void size relative to
the cylinder size. Further work is needed to determine if these observations are artifacts of the AZ31B
morphology or if they hold true across various microstructures.

3.6. Effect of Ellipsoid Construction Method (EC)

Here, we represent the same data in the previous section, but sort it instead by the value of ellipsoid
construction parameter (EC). The modified data is plotted in Figure 20 (again this is the same data as plotted
in Figures 19 and 17b). We observe several interesting trends when viewing the data through this paradigm.
First, there are only four data points for the first ellipsoid construction method (which prioritizes length
along the loading direction, e,). Therefore, most of the parameter sets that use that method generated
less than two failure strains (since 2+ failure strains is the requirement for representation in this chart).
Secondly, an interesting trend is observed between the second method (which prioritizes the projected area
and volume) and the ¢; mean error. As seen in Figure 20a, parameter sets using this method result in
an average €5 error of ~ 0.2. However, this is only true for data points generated with this method that
produce 5+ failure strains. Figure 20b, which contains cases that only have 1-2 failure strains shows a more
scattered distribution of €4 for the same method. The second method also results in a seemingly non-linear
correlation between the oyrg error and f that deviates significantly from the linear relationship exhibited
by the three other choices (as shown in Figure 20c). Thirdly, the method that prioritizes both length and
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area gives the widest range of errors and porosities, as shown in Figure 20a and 20b. This is due to the
non-volume-preserving nature of the ellipsoid construction scheme that can result in ellipsoids that have
much higher or much smaller volumes than the corresponding particles. Finally, the fourth method, which
scales method three to match the volume, follows the same trends as method three, but shrinks the upper
bounds of the oyrg and €5 error. The € ¢-order error, however, remains fairly similar between methods three
and four.

Both the second and third methods (EC 2 and EC 3) minimize all three errors and generally result in
unit cell sets with failure strains for this study. Either of these are therefore reasonable choices for this
microstructure. EC 1 and EC 4 are both ill-suited as EC 1 generally does not result in unit cells with failure
strains and EC 4 does not minimize the error well.

3.7. Comparison to Experimental Data

After quantifying the performance of the various unit cell sets in the preceding sections, we identify four
“best performers” and implement the orientation-dependent hardening curves from the crystal plasticity
model. The parameter sets chosen for this section are given in the appendix, along with their failure strains.
The results are compared to the experimental results from Figure 3a instead of the isotropic DNS from
Figure 3d. The errors are plotted in Figure 21a and the stress strain results from the best performer in
Figure 21b. We find that using a different material model for each simulation leads to fairly low ef errors
but does not accurately capture the oyrg or ep-order error. When compared against the error exhibited
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Figure 21: Comparison of the error between unit cell results with the orientation-associated hardening curves and experiments.
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this study, x = Crystal plasticity DNS from [22]. (b) Stress-strain results for the unit cell results that minimize all three error
metrics (left-bottom-most point from the plot in (a)). The parameter I.D. for the plot in (b) is 11222.

by the anisotropic crystal plasticity DNS (from Figure 3c), our unit cells have errors on the same order
of magnitude. Therefore, it is not surprising that our rudimentary “anisotropic” plasticity coupled with
our simple geometry was not able to out-perform the expensive high-fidelity simulations. This inability
to capture the experimentally observed behavior is most likely due to the simplicity of the model that
does not account for dominant mechanisms (such as twinning behavior) that drive the deformation of Mg
alloys. Effectively modeling such a complex material remains an open research question, as even coupling
a crystal-plasticity model with a realistic particle morphology as performed in [22] struggles to capture the
behavior.

4. Summary & Conclusions

Homogenization of a microstructure inherently involves a loss of fidelity in the macroscale simulations.
Fitting a damage model to RVE studies of realistic microstructural data remains a cost- and time-intensive
process. Here, we attempt to create a method that precludes multiple time-consuming steps by constructing
an idealized equivalent microstructure directly from the statistical data of the realistic microstructural. Due
to the parametric nature of the study, our 672 unit cell sets exhibit a wide range of responses (including
non-viability). We discovered that several of our 96 proposed methodologies were able to generate equiv-
alent idealized unit cells that roughly capture the effective response predicted by the full direct numerical
simulation (DNS) study. Further refinement is needed to tune our process for even better agreement. This
could include fine-tuning the parameters to get better agreement in uniaxial tension and comparing unit
cell responses to DNS under more general loading paths.

We also investigated the effects of several parameters on our methodology and summarize our findings
as follows:

e Number of particles included (NP): Only including the largest particles in our method shrinks the
error bounds between our unit cells and the isotropic DNS.

o Method of ellipsoid construction (EC): The ellipsoid construction methods exhibit unclear trends that
warrant further investigation. A forthcoming paper studies these methods in greater detail.

e Methods of spacing construction (SC), ellipsoid averaging (EA), and spacing averaging (SA): All other
parameters do not exhibit strong correlations or trends in regard to the error between the unit cells
and the isotropic DNS.

In a final validation step, we implemented anisotropic hardening curves and compared the response of
select unit cell sets to AZ31B experimental data. As expected, we found that we were largely unable to
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capture the real-world behavior of AZ31B. However, our unit cell method performed comparably to a high-
fidelity DNS with a crystal-plasticity model. This indicates a highly-complex interplay of phenomena in
A7Z31B that warrant future efforts to resolve, both in our methodology and in high-fidelity DNS modeling.

Further work should be conducted on best practices for fitting simple shapes to individual particles, e.g.,
which aspect(s) of the particle are most important to capture? Using morphological erosion and dilation
operations to separate particles that are weakly connected might also yield improved results. Additionally,
this methodology should be extended to other microstructures. The conclusions of this effort are limited as
the particular microstructural effects are not easily distinguishable from methodology effects. Applying this
procedure to other data and/or alloys can elucidate such distinctions. Once our methodology is sufficiently
validated and refined, the unit cell geometry can be directly implemented into an ellipsoidal-based Gurson-
type model, e.g., the GLD model, and an assessment of the performance can take place. Despite these
limitations, this study is an important first-step in creating a standardized process that can convert any
complex microstructure to an equivalent periodic unit cell and expand the state-of-the-art in multi-scale
modeling of heterogeneous materials.

5. Acknowledgments

We would like to thank Angela Olinger, Jeff Lloyd, Dan Magagnosc, and Benat Gurrutxaga-Lerma
for helpful discussions and mentorship. Caleb Foster was supported by the Department of Defense (DoD)
through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program. This material
is also partially based upon work supported by the National Science Foundation under Grant No. 2239678
and by the Army Research Laboratory under Cooperative Agreement Nos. W911NF-12-2-0022, W911NF-
22-2-0105, and W911NF-22-2-0106. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Army Research Laboratory, the National Science Foundation, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation herein. Portions of this research were conducted with high performance research
computing resources provided by Texas A&M University (https://hprc.tamu.edu).

Appendix A. Failure Strain Data

The € for each unit cell is recorded in Table A.2 for the main suite of unit cell calculations along with the
failure strains from the DNS. Table A.3 presents the failure strains for the experimental data along with the
four sets of unit cells that incorporated anisotropic plasticity. The performance of each parameter set in both
tables is generally classified as poor, fair, or good performance (denoted by red squares, yellow diamonds,
and green circles, respectively). Good performance is defined as a score of < 10 in the es-order score from
Equation 8. Fair performance is defined as reproducing most or all of the failure strains, but failing to
capture the order of the failure strains by orientation (score of 10+ from Equation 8). Poor performance is
defined as reproducing less than half the failure strains. The degree to which the ey magnitudes and oyrs
match between the unit cell calculations and DNS/Experiments is not captured in this rating scheme. One
should note that the experiments and DNS do not predict the same failure strains. Therefore, the unit cell
ey is compared to the DNS in Table A.2 and to the experiments in Table A.3.
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Simulation I.D. [ 0° 15° 30° 45° 60° 75° 90° [ Rating
DNS 0.19 0.18 0.20 0.29 0.38 0.45 0.46
11112 [ ]
11211 |
11212 |
11221 0.14 0.11 0.11 0.12 0.13 0.14 0.18
11222 0.34 024 025 0.25 0.24 032 0.58
12112 0.57 0.26 0.14 0.09 0.06 0.14 0.61
12211 1.24 1.00  0.99 1.24 ]
12212 |
12221 0.29 ]
12222 0.51 0.41 0.39 0.44 ||
13112 0.62 0.21 0.11 0.08 0.06 0.12 0.68
13211 1.44 093 0.68 0.66 0.84 1.49
13212 |
13221 0.07 0.07 0.06 0.05 0.04 0.04 0.05
13222 0.10 0.09 0.07 0.06 0.05 0.06 0.07
14111 0.43 0.14 0.10 0.08 0.09 0.12 0.36
14112 1.62  0.98 1.75 ]
14211 |
14212 |
14221 0.19 0.15 0.11 0.09 0.09 0.09 0.11
14222 0.51 0.34 0.22 0.16 0.13 0.14 0.21
21112 |
21211 |
21212 |
21221 0.24 0.17 0.19 0.21 0.23 0.28 041 [ )
21222 0.56 0.42 0.59 0.77 0.95 1.20 1.85 [ ]
22112 0.32 0.22 0.21 0.23 0.27 0.43 1.15 [ )
22211 1.50 1.29 1.35 1.66 ]
22212 |
22221 0.44 042 041 u
22222 |
23112 0.29 0.17 0.16 0.18 0.22 045 1.85 [ )
23211 1.65 1.16 0.94 0.95 1.18
23212 |
23221 0.09 0.08 0.07 0.06 0.05 0.06 0.07
23222 0.12  0.11 0.09 0.08 0.08 0.08 0.09
24111 0.70 0.25 0.20 0.18 0.20 0.29 0.94
24112
24211
24212
24221 0.35 0.24 0.17 0.14 0.13 0.13 0.17
24222 0.69 053 045 0.38 0.34 035 0.51
31211 0.82 1.73 ]
31212 1.67 0.44 1.17 |
31221 1.97 0.58 1.22 ||
31222 1.43 0.32 0.83 |
32211 0.66 0.38 0.37 0.42 0.51 0.74 [ )
32212 0.43 023 0.26 0.38 0.58 0.99 [ ]
32221 0.64 0.38 0.36 042 0.50 0.70 [ )
32222 0.42 0.23 0.26 0.37 0.55 0.90 [ ]
33211 0.18 0.11 0.10 0.10 0.11 0.14 0.31
33212 0.14 0.08 0.08 0.11 0.14 0.20 0.51 [ ]
33221 0.13 0.10 0.09 0.09 0.10 0.12 0.20
33222 0.11 0.07 0.07 0.09 0.11 0.15 0.30 [ ]
34211 0.98 047 0.60 0.90 1.32 [ )
34212 0.72 0.29 0.43 1.00 u
34221 0.80 0.36 045 0.65 0.92 1.53 [ ]
34222 0.58 0.23 0.32 0.71 1.42 [ ]

Table A.2: Failure strains of plastically isotropic AZ31B for all parameter sets studied. The numeric identifier corresponds
with the parameter values from Table 1 ordered as described in Section 2.2.5. Blank cells represent no failure strain detected.
The unit cell performance are sorted into three categories: good, fair, and poor, represented by a @, , and M respectively. The
criteria are as follows: @ = generally correct order of failure strains by orientation,

strains reproduced, M = missing failure strains, order not reproduced.
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Simulation I.D. [ 0° 15° 30° 45° 60° 75° 90° [ Rating

Experiments 0.38 0.38 0.33 0.41 0.30 0.25 0.26
11222 0.43 037 040 040 0.35 0.35 0.54
21221 034 031 035 035 035 031 0.37
22112 0.39 032 032 031 032 0.44 1.14
32222 0.48 032 0.34 042 057 0.90
Crystal Plasticity DNS | 0.39 0.35 0.41 047 040 0.34 0.25

Table A.3: Failure strains of plastically anisotropic AZ31B for the four “best performer” unit cell construction methodologies.
The numeric identifier corresponds with the parameter values from Table 1 ordered as described in Section 2.2.5. Blank cells
represent no failure strain detected. The unit cell performance are sorted into three categories: good, fair, and poor, represented
by a @, , and M respectively. The criteria are as follows: @ = generally correct order of failure strains by orientation, = =
incorrect order, but most or all failure strains reproduced, M = missing failure strains, order not reproduced.

References

(1]
2]
(3]

(4]

5

6

(8]
(9]

(10]
(11]
(12]
(13]

(14]

(15]
(16]

(17)

(18]
(19]

20]

F. Hannard, A. Simar, E. Maire, T. Pardoen, Quantitative assessment of the impact of second phase particle arrangement
on damage and fracture anisotropy, Acta materialia 148 (2018) 456-466.

T. S. Cao, Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review, International
Journal of Material Forming 10 (2) (2017) 139-171.

A. L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria
and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology 99 (1) (1977) 2-15.
arXiv:https://asmedigitalcollection.asme.org/materialstechnology /article-pdf/99/1/2/5788715/2_1.pdf.

K. Terada, M. Hori, T. Kyoya, N. Kikuchi, Simulation of the multi-scale convergence in computational homogenization
approaches, International Journal of Solids and Structures 37 (16) (2000) 2285-2311. doi:10.1016/S0020-7683(98)00341-2.
URL https://www.sciencedirect.com/science/article/pii/S0020768398003412

A. Olinger, C. Foster, J. Wilkerson, Homogenized Modeling of Anisotropic Impact Damage in Rolled AZ31B with Aligned
Second-Phase Particles, Journal of Dynamic Behavior of Materials 6 (4) (2020) 445-458. doi:10.1007/s40870-020-00267-3.
D. L. McDowell, A perspective on trends in multiscale plasticity, International Journal of Plasticity 26 (9) (2010) 1280—
1309. doi:10.1016/j.ijplas.2010.02.008.

E. v. d. Giessen, P. A. Schultz, N. Bertin, V. V. Bulatov, W. Cai, G. Csdnyi, S. M. Foiles, M. G. D. Geers, C. Gonzélez,
M. Hiitter, W. K. Kim, D. M. Kochmann, J. LLorca, A. E. Mattsson, J. Rottler, A. Shluger, R. B. Sills, I. Steinbach,
A. Strachan, E. B. Tadmor, Roadmap on multiscale materials modeling, Modelling and Simulation in Materials Science
and Engineering 28 (4) (2020) 043001, publisher: IOP Publishing. doi:10.1088/1361-651X/ab7150.

M. F. Horstemeyer, Multiscale modeling: A review, in: J. Leszczynski, M. K. Shukla (Eds.), Practical Aspects of Com-
putational Chemistry: Methods, Concepts and Applications, Springer Netherlands, Dordrecht, 2010, pp. 87-135.

M. G. D. Geers, V. G. Kouznetsova, K. Matous, J. Yvonnet, Homogenization Methods and Multiscale Modeling: Nonlinear
Problems, in: Encyclopedia of Computational Mechanics Second Edition, John Wiley & Sons, Ltd, 2017, pp. 1-34.
doi:10.1002/9781119176817.ecm2107.

Y. L. Bai, H. Y. Wang, M. F. Xia, F. J. Ke, Statistical Mesomechanics of Solid, Linking Coupled Multiple Space and
Time Scales, Applied Mechanics Reviews 58 (6) (2005) 372-388. doi:10.1115/1.2048654.

K. Matous, M. G. D. Geers, V. G. Kouznetsova, A. Gillman, A review of predictive nonlinear theories for multiscale
modeling of heterogeneous materials, Journal of Computational Physics 330 (2017) 192-220. doi:10.1016/j.jcp.2016.10.070.
M. F. Horstemeyer, Integrated computational materials engineering (ICME) for metals: using multiscale modeling to
invigorate engineering design with science, WILEY [u.a.], Hoboken, NJ, 2012.

A. Pineau, A. A. Benzerga, T. Pardoen, Failure of metals I: Brittle and ductile fracture, Acta Materialia 107 (2016)
424-483. doi:10.1016/j.actamat.2015.12.034.

S. Ghosh, J. Bai, D. Paquet, Homogenization-based continuum plasticity-damage model for ductile failure of
materials containing heterogeneities, Journal of the Mechanics and Physics of Solids 57 (7) (2009) 1017-1044.
doi:10.1016/j.jmps.2009.04.002.

J. Caulkins, C. Fauver, S. Adibi, J. Wilkerson, Effect of Grain Boundary Misorientation on Spall Strength in Ta via
Shock-Free Simulations with Relatively Few Atoms, Metals 12 (10) (2022) 1586. doi:10.3390/met12101586.

T. 1. Zohdi, Homogenization methods and multiscale modeling, Encyclopedia of computational mechanics. Solids and
structures 2 (2004) 357-383.

M. Jebahi, F. Dau, J.-L. Charles, I. Iordanoff, Multiscale Modeling of Complex Dynamic Problems: An Overview and
Recent Developments, Archives of Computational Methods in Engineering 23 (1) (2016) 101-138. doi:10.1007/s11831-
014-9136-6.

M. G. D. Geers, J. Yvonnet, Multiscale modeling of microstructure—property relations, MRS Bulletin 41 (8) (2016) 610—
616, publisher: Cambridge University Press. doi:10.1557/mrs.2016.165.

Z. Chen, C. Butcher, Micromechanics Modelling of Ductile Fracture, Vol. 195 of Solid Mechanics and Its Applications,
Springer Netherlands, Dordrecht, 2013. doi:10.1007/978-94-007-6098-1.

P. Suquet (Ed.), Continuum micromechanics, no. 377 in Courses and lectures / International Centre for Mechanical
Sciences, Springer, Wien, 1997.

26



21]

(22]

23]

[24]

[25]

[26]

27)

(28]
29]
(30]
(31]
(32]

(33]

34]
(35]
(36]
37)
(38]

(39]

[40]

[41]

[42]
[43]
44]
[45]
[46]

(47)

(48]

A. A. Benzerga, J.-B. Leblond, Ductile fracture by void growth to coalescence, in: H. Aref, E. van der Giessen (Eds.),
Advances in Applied Mechanics, Vol. 44 of Advances in Applied Mechanics, Elsevier, 2010, pp. 169-305.

J. Lloyd, A. Matejunas, R. Becker, T. Walter, M. Priddy, J. Kimberley, Dynamic tensile failure of rolled magnesium:
Simulations and experiments quantifying the role of texture and second-phase particles, International Journal of Plasticity
114 (2019) 174-195.

R. Sarvesha, W. Alam, A. Gokhale, T. Guruprasad, S. Bhagavath, S. Karagadde, J. Jain, S. Singh, Quantitative assessment
of second phase particles characteristics and its role on the deformation response of a mg-8al-0.5 zn alloy, Materials Science
and Engineering: A 759 (2019) 368-379.

A. Sarmah, M. K. Jain, S. Asqardoust, P. Mohammadpour, Multiscale modeling of particle-induced damage in aa7075
aluminum sheet at large plastic strains, International Journal of Plasticity 169 (2023) 103741.

D. Magagnosc, P. Jannotti, J. Ligda, J. Lloyd, Pre-twinned magnesium for improved ballistic performance, Mechanics of
Materials 161 (2021) 104005. doi:https://doi.org/10.1016/j.mechmat.2021.104005.

URL https://www.sciencedirect.com/science/article/pii/S0167663621002350

P. J. Noell, R. B. Sills, A. A. Benzerga, B. L. Boyce, Void nucleation during ductile rupture of metals: A review, Progress
in Materials Science (2023) 101085.

B. Kondori, A. A. Benzerga, On the notch ductility of a magnesium-rare earth alloy, Materials Science and Engineering:
A 647 (2015) 74-83. doi:10.1016/j.msea.2015.08.077.

URL https://www.sciencedirect.com/science/article/pii/S0921509315303257

A. A. Benzerga, J.-B. Leblond, A. Needleman, V. Tvergaard, Ductile failure modeling, International Journal of Fracture
201 (1) (2016) 29-80. doi:10.1007/510704-016-0142-6.

J. Besson, Continuum models of ductile fracture: A review, International Journal of Damage Mechanics 19 (1) (2010)
3-52. arXiv:https://doi.org/10.1177/1056789509103482.

T. S. Srivatsan, S. Vasudevan, M. Petraroli, The tensile deformation and fracture behavior of a magnesium alloy, Journal
of alloys and compounds 461 (1-2) (2008) 154-159.

Z. Shang, T. Li, S. Yang, J. Yan, H. Guo, Three-dimensional characterization of typical inclusions in steel by x-ray micro-ct,
Journal of Materials Research and Technology 9 (3) (2020) 3686—3698. doi:https://doi.org/10.1016/j.jmrt.2020.01.106.
S. Bargmann, B. Klusemann, J. Markmann, J. E. Schnabel, K. Schneider, C. Soyarslan, J. Wilmers, Generation of 3d
representative volume elements for heterogeneous materials: A review, Progress in Materials Science 96 (2018) 322-384.
S. Ghosh, K. Lee, S. Moorthy, Multiple scale analysis of heterogeneous elastic structures using homogenization the-
ory and voronoi cell finite element method, International Journal of Solids and Structures 32 (1) (1995) 27-62.
doi:https://doi.org/10.1016,/0020-7683(94)00097-G.

URL https://www.sciencedirect.com/science/article/pii/002076839400097G

S. Ghosh, K. Lee, S. Moorthy, Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization
and voronoi cell finite element model, Computer methods in applied mechanics and engineering 132 (1-2) (1996) 63-116.
S. Ghosh, K. Lee, P. Raghavan, A multi-level computational model for multi-scale damage analysis in composite and
porous materials, International journal of solids and structures 38 (14) (2001) 2335-2385.

A. Abedini, C. Butcher, Z. Chen, Numerical simulation of the influence of particle clustering on tensile behavior of
particle-reinforced composites, Computational materials science 73 (2013) 15-23.

M. Pinz, G. Weber, S. Ghosh, Generating 3d virtual microstructures and statistically equivalent rves for subgranular
gamma-gamma’microstructures of nickel-based superalloys, Computational Materials Science 167 (2019) 198-214.

A. Sarmah, M. K. Jain, Multi-scale modeling of decohesion characteristics of second phase particles from the matrix in
uniaxial tension in a high strength aluminum alloy, Engineering Fracture Mechanics 301 (2024) 110013.

D. Wilkinson, E. Maire, R. Fougeres, A model for damage in a clustered particulate composite, Materials Science and
Engineering: A 262 (1) (1999) 264-270. doi:https://doi.org/10.1016/S0921-5093(98)01011-9.

URL https://www.sciencedirect.com/science/article/pii/S0921509398010119

J. Gammage, D. Wilkinson, Y. Brechet, D. Embury, A model for damage coalescence in heterogeneous multi-phase
materials, Acta Materialia 52 (18) (2004) 5255-5263. doi:https://doi.org/10.1016/j.actamat.2004.07.009.

URL https://www.sciencedirect.com/science/article/pii/S1359645404004185

C. Tekoglu, T. Pardoen, A micromechanics based damage model for composite materials, International Journal of Plasticity
26 (4) (2010) 549-569. doi:https://doi.org/10.1016/j.ijplas.2009.09.002.

URL https://www.sciencedirect.com/science/article/pii/S0749641909001107

K. Ismail, A. Perlade, P. J. Jacques, T. Pardoen, L. Brassart, Impact of second phase morphology and orientation on the
plastic behavior of dual-phase steels, International Journal of Plasticity 118 (2019) 130-146.

D. Xie, C. Liu, Y. Wang, Q. Ouyang, Y. Gao, W. Xu, Effect of coarse second-phase particles on mechanical properties of
large-scale 2219 al alloy rings, Engineering Fracture Mechanics 301 (2024) 110030.

D. Fabregue, T. Pardoen, A constitutive model for elastoplastic solids containing primary and secondary voids, Journal
of the Mechanics and Physics of Solids 56 (3) (2008) 719-741.

B. Kondori, A. A. Benzerga, Effect of stress triaxiality on the flow and fracture of mg alloy az31, Metallurgical and
Materials Transactions A 45 (2014) 3292-3307.

T. M. Inc., Bwconncomp (2020b).

URL https://www.mathworks.com

M. Horstemeyer, S. Ramaswamy, M. Negrete, Using a micromechanical finite element parametric study to motivate
a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase, Mechanics of
Materials 35 (7) (2003) 675-687.

Y. Liu, X. Zheng, S. Osovski, A. Srivastava, On the micromechanism of inclusion driven ductile fracture and its implications

27



on fracture toughness, Journal of the Mechanics and Physics of Solids 130 (2019) 21-34.
[49] S. B. Pope, Algorithms for Ellipsoids, Cornell University, Ithaca, NY, 2008.

28



