
Efficient Point-to-Subspace ANNS in Manhattan
and Lp Space by LSH Pruning

Jingfan Meng Huayi Wang Jun Xu
Georgia Institute of Technology, Atlanta, GA, USA

jfmeng@gatech.edu huayiwang@gatech.edu jx@cc.gatech.edu

Abstract—Point-to-subspace approximate nearest neighbor
search in Lp metric (Lp-P2S-ANNS) is a challenging research
problem: Its only existing solution, called LDL1, is barely
faster than the naı̈ve linear scan, because its pruning (for
promising ANNS candidates) metric is P2S distance in Lp,
whose computation involves linear or convex programming that
is computationally intensive. In this paper, we propose a novel
scheme whose pruning metric is P2S distance in L2 instead, which
is computationally cheaper by four orders of magnitude, yet is
almost as effective for pruning as LDL1’s empirically. We also
propose a new framework named LSH pruning, which subsumes
and improves all existing dimension reduction schemes, and
propose a performance model well-grounded in statistics theory.
Our experiments show that these contributions in combination
reduce the query time by a factor of 4.8 to 54.

I. INTRODUCTION

Approximate nearest neighbor search (ANNS), a.k.a. sim-
ilarity search, is a fundamental algorithmic problem arising
in many areas of computer science, such as active machine
learning [1], [2], computer vision [3], and information re-
trieval [4]. In these applications, data items are typically
represented by vectors (points) in a massive high-dimensional
(say in thousands) dataset D; given a query vector q⃗, the
ANNS problem is to find in D the nearest neighbors (NNs) of
q⃗ according to a certain distance metric. In order to identify
the NNs, an ANNS solution usually spends a considerable
amount of time calculating query-to-data distances. Hence,
for faster query processing, an ANNS solution often needs to
reduce the number of such calculations (say using a selective
index) and/or the cost of each calculation (say using distance
approximation techniques such as dimension reduction [5]).

A. Lp-P2S-ANNS: Application and Challenges

In this paper, we study point-to-subspace (P2S)-ANNS,
which extends traditional point-to-point (P2P)-ANNS prob-
lems as follows: The dataset now contains many high-
dimensional linear subspaces, and the goal is to find the
nearest subspaces to the query vector q⃗. P2S-ANNS arises
in many research areas such as computer vision [3], [6] and
neuroscience [7], wherein a class of similar data items (which
can be either raw features vector such as images or embedded
feature vectors such as transformer outputs in [8]), after being
processed by dimension reduction techniques such as PCA
(principal component analysis), are represented by a linear
subspace. P2S-ANNS efficiently identifies similar classes (NN

subspaces) to a given query point q⃗, which can speed up the
classification [3] and clustering [9] of high-dimensional data.

P2S-ANNS is a harder computation problem than traditional
P2P-ANNS for two reasons. The first reason is quite obvious:
The P2S distances in the former problem is inherently more
general than P2P distances in the latter (since points are
degenerated subspaces) and hence are usually much harder
to compute. For example, the time complexity of computing
P2P distances (in Lp for 0 < p ≤ 2) is O(d), whereas
that of computing P2S distances is O(d2) in L2 and Ω(d3.5)
in Lp for 1 ≤ p < 2 [10]. The second reason is subtle
but intuitive: It is even harder to build a selective index for
a distance that is already hard to compute, since indexing
is more challenging than distance computation; and as a
result, P2S-ANNS indices [3], [6], [1], [11] are less selective
than P2P-ANNS indices, which means query-to-data distance
computations are needed for more data items.

Since P2S-ANNS is a hard problem, it has been studied
mostly for the easiest case of P2S-ANNS in L2 (called L2-
P2S-ANNS), and these solutions are restricted to this case. In
this work, we study and solve the much harder case of P2S-
ANNS in the general Lp metric (for 1 ≤ p < 2), or Lp-P2S-
ANNS in short; such hardness is due to the high complexity
of computing Lp-P2S distances, which, as mentioned above,
is Ω(d3.5) whereas that of L2-P2S is O(d2). In practice, the
former computation takes roughly four orders of magnitude
longer (800ms vs. about 30 µs, as we show in Figure 1 for
d = 4096). However, as a research problem, Lp-P2S-ANNS is
at least as worthy as L2-P2S-ANNS, because NN subspaces
identified under the L1-P2S distance lead to more robust image
classification than those under L2-P2S distance in the presence
of errors such as occlusions, shadows, and peculiarities [10].

B. Existing Dimension Reduction Technique

So far, only a single solution has been proposed for Lp-
P2S-ANNS. It is called LDL1 (low-dimensional L1) [10] in
the case of p = 1 and is based on the following dimension re-
duction technique (from one L1 space to another) [12]. LDL1
first applies a dimension-reducing random Cauchy projection
W (corresponding to a Cauchy random matrix with much
fewer rows than columns) to each data item (subspace) S in
D and the query vector q⃗; it then selects those S in D whose
projected (data-to-query L1-P2S) distance D1(Wq⃗,WS) (the
exact definition of D1 will be given in (1)) are among the

smallest, as the NN (nearest neighbor) candidates and prunes
the rest of the dataset. Thanks to the dimension reduction,
it is cheaper to compute D1(Wq⃗,WS) than to compute
D1(q⃗,S); and if this pruning (by D1(Wq⃗,WS)) is effective in
reducing the number of NN candidates (to be “painstakingly”
checked out by computing their D1(q⃗,S) with high time
complexity), the pruning cost (of computing D1(Wq⃗,WS)
for every S ∈ D) can be well compensated for.

We now explain the rationale behind LDL1’s pruning-by-
D1(Wq⃗,WS) technique. It was established in the celebrated
E2LSH result [13] that the random projection by W is
stochastically order-preserving in the following sense: For any
two vectors x⃗ and y⃗, if x⃗ is closer to the query q⃗ than y⃗ in
L1 distance, then Wx⃗ “tends to be” (by a notion that was
made precise in [13]) closer to Wq⃗ than Wy⃗ in L1. Authors
of LDL1 conjectured that this order-preserving property in the
P2P case could extend to the P2S case, so that D1(Wq⃗,WS)
can be used to test an S ∈ D for whether S should be pruned;
and showed that this extension worked empirically on some
high-dimensional datasets, although the power of each test (to
be made precise later in § IV-B) is much weaker than that in
the P2P case.

While the rationale of LDL1 is sensible, its empirical
efficacy is limited if the dataset (ambient) dimension is not
so high (about 100 to 1000): It is barely faster than the linear
scan (see Table II). The main reason is that its pruning process
is not cost-efficient: On the cost side, reducing the dimension
by say 50 times translates into far less than 503.5× reduction
in (P2S distance) computation time than its Ω(d3.5) asymptotic
complexity would suggest (due likely to a “sticky” algorithm
set-up overhead that does not shrink much with problem size).
On the efficiency side, however, a 50× reduction in dimension
degrades the power of each test (explained in the previous
paragraph) by so much that the pruning process is virtually
useless for reducing the number of NN candidates.

C. New Feature and Framework

In this work, we propose a novel heuristic solution to Lp-
P2S-ANNS that significantly outperforms LDL1 empirically.
The proposed solution improves over LDL1 in two aspects.
First, it also employs a Cauchy projection (matrix) W , but
no dimensionality reduction is involved in the sense that W
contains as many rows as columns. Second, whereas LDL1
uses the L1-P2S distance, i.e., D1(Wq⃗,WS), to test (prune)
each subspace S ∈ D, our scheme instead uses the L2-P2S
distance, denoted by D2(Wq⃗,WS). Using L2-P2S distance
as a novel feature for the pruning tests is the first major
contribution of this work.

The pruning process in our solution is much more cost-
efficient than that in LDL1. On the cost side, each test is much
cheaper in our solution: Each L2-P2S distance D2(Wq⃗,WS)
(instance) is roughly four orders of magnitude faster to
compute (as mentioned earlier) than each L1-P2S distance,
despite that the former does not involve dimension reduction
whereas the latter does. On the efficiency side, the power of
each test in our solution is stronger (thanks to no dimension

reduction being involved) than that in LDL1, as we will show
in § IV-D. Therefore, our solution can afford to perform many
more independent tests for each S ∈ D than LDL1, which
have much stronger power overall and significantly reduce the
number of NN candidates to be “painstakingly” checked out.

The “scientific foundation” of our new feature (L2-P2S) is
just as solid as LDL1’s, in the following sense. It has a similar
rationale in the P2P case: It was first stated in [14] (and later
verified by us) that Wx⃗ “tends to be” (by the same notion
as above) closer to Wq⃗ than Wy⃗ also in L2 distance, if x⃗ is
closer to the query q⃗ than y⃗ in L1 distance. Also like in LDL1,
our solution is to simply extend this approach to the P2S case,
without worrying about a rigorous theoretical justification for
the extension.

The second major contribution of this work is to propose a
novel, principled framework (in § IV), called LSH pruning,
that subsumes and improves nearly all existing dimension-
reduction-based solutions for ANNS. Our LSH pruning frame-
work is well-grounded in statistics theory and has a precise
model for query performance (in terms of recall and query
time). This model allows us to parameterize our aforemen-
tioned pruning process (e.g., the number of independent tests
performed on each S ∈ D) for near-optimal query perfor-
mance. With our new feature and this optimization framework,
our proposed scheme achieves up to 54 times shorter query
time than LDL1.

II. BACKGROUND

In this section, we formulate the Lp-P2S-ANNS problem
in § II-A and explain how the hardness (time complexity) of
computing Lp-P2S distances varies with the value of p. Then
in § II-B, we describe LDL1 [10], the dimension reduction
scheme for L1-P2S-ANNS.

A. P2S-ANNS in Lp Metric Space

In P2S-ANNS, we are given a dataset D consisting of linear
subspaces S1,S2, . . . ,Sn in a d-dimensional ambient space
Rd. For ease of presentation, we assume each subspace has the
same rank τ , which is usually much less than d. Our solutions
in this paper can be easily generalized to the case wherein each
subspace is an affine subspace (not containing the origin), or
wherein subspaces have different ranks.

Given a query point q⃗ ∈ Rd, the goal of P2S-ANNS is to
find the nearest neighbor (NN) subspaces in D at a given recall
(say 90%) in as little query time as possible. In the sequel
(except evaluation), we adopt the so-called (r, cr) definition
for NN, by assuming that the Lp-P2S distance from all NN
subspaces (NNs in short) to the query is at most r, whereas
from all other subspaces (non-NNs) is at least cr (for some
constant c > 1).

The aforementioned Lp-P2S distance Dp(q⃗,S) is defined as
the minimum Lp distance between q⃗ and any point z⃗ on S as
follows (S is a basis matrix of S , i.e., S = {Sx⃗ | x⃗ ∈ Rτ})

Dp(q⃗,S) ≜ min
z⃗∈S

∥q⃗ − z⃗∥p = min
x⃗∈Rτ

∥q⃗ − Sx⃗∥p, (1)

wherein the Lp norm ∥v⃗∥p of any vector v⃗ = (v1, v2, . . . , vd)

is defined as (|v1|p + |v2|p + · · ·+ |vd|p)1/p.
As mentioned above, the hardness of calculating Lp-P2S

distances is fundamentally different by the value of p:
• The L2-P2S distance can be computed efficiently in
O(d2) (or about 10 µs in Figure 1) by the following
closed-form least squares linear regression formula [15].

D2(q⃗,S) = ∥q⃗ − S(STS)
−1

ST q⃗∥2. (2)

• The L1-P2S distance is usually solved by linear pro-
gramming (LP) with Ω(d3.5) time complexity [10]. By
our measurements on GUROBI [16], a commercial LP
solver, the calculation time starts from about 10ms and
skyrockets to more than 800ms in high dimensions, as
shown in Figure 1.

• The Lp-P2S distance (1 < p < 2) can be calculated by
convex optimization solvers such as Adam [17], which
are a few times faster than LP solvers on high dimension.

• The Lp-P2S distance (0 < p < 1) is NP-hard [18] and
intractable to compute (so in this work, we only consider
the case of 1 ≤ p < 2).

102 103

Ambient dimension d

10−1

101

103

T
im
e
(m

s)

L1-P2S

L2-P2S

Fig. 1. Average computation times of each L1-P2S and L2-P2S instance
on our workstation described in § V-A (both axes in log scale). L2-P2S
computation is faster than L1-P2S computation by two to four orders of
magnitude and is more scalable to high ambient dimensions.

B. Low Dimensional L1 (LDL1)
The LDL1 [10] scheme can be described as follows. In

the indexing phase, it repeats the following procedure for M
times. In each repetition, it generates and fixes a µ× d (µ ≪
d) dimension-reducing random Cauchy projection matrix W .
Then, it projects every subspace S ∈ D (in the d-dimensional
original space) into WS ≜ {Wz⃗ | z⃗ ∈ S} in a µ-dimensional
projected space.

As explained earlier, given a query vector q⃗, LDL1 finds
its NNs in two stages. In the pruning stage, for the Cauchy
random projection W in each repetition, it projects q⃗ to Wq⃗
and calculates the L1-P2S distance in the projected space,
namely D1(Wq⃗,WS) (which we refer to as the projected
distance in the sequel), for every subspace S in the dataset.
The subspaces with the shortest projected distances in each
repetition of W are selected as the NN candidates. In the
verification stage, LDL1 calculates the L1-P2S distance in
the original high-dimensional space, namely D1(q⃗,S), (which
we refer to as original distance) for every NN candidate and
returns true NNs whose original distances are at most r.

III. NEW FEATURE AND ALGORITHM

In this section, we describe our solution to L1-P2S-ANNS,
which prunes data items using a new feature (L2-P2S distance)
that is “dirt cheap” to compute. After describing our algorithm
in § III-A, we intuitively explain the rationale behind our new
feature in § III-B, show a worst-case scenario in § III-C,
and discuss some extensions of our solution (e.g., from L1

to general Lp) in § III-D.

A. Our New Algorithm for L1-P2S-ANNS

As mentioned earlier, the most distinctive difference be-
tween our algorithm and LDL1 is the feature used in prun-
ing tests: While LDL1 prunes data items (and selects NN
candidates) by the L1-P2S distances D1(·, ·) in the projected
space, our algorithm uses the L2-P2S distances D2(·, ·) for
this purpose. In fact, our algorithm (shown in Algorithm 1)
differs from LDL1 also in the following aspects.

1 Indexing Phase: Given database D,
2 for i = 1 to M do
3 Generate a d× d Cauchy random matrix W i;
4 foreach subspace S ∈ D do
5 Compute an orthogonal basis of W iS;

6 Query Phase: Given query q⃗,
7 NN candidates C = ∅;
8 foreach subspace S ∈ D do
9 for i = 1 to M do

10 Ri(S) = D2(W iq⃗,W iS);
11 R(T)(S) = the T th smallest in

{Ri(S) | 1 ≤ i ≤ M};
12 Add S to C if R(T)(S) < Θ;

13 Verify each S ∈ C and return NNs with
D1(q⃗,S) ≤ r;

Algorithm 1: Proposed Algorithm.

In the indexing phase, our random Cauchy projections (by
d × d matrices Wi’s) do not involve dimension reductions
as mentioned earlier, whereas LDL1’s reduces the ambient
dimension from d to µ ≪ d. The rationale of our design is
that reducing the ambient dimension has little impact on the
computing time of L2-P2S distance, yet it negatively impacts
the accuracy (the locality sensitivity below) of pruning. Fur-
thermore, in our extension in § III-D, for a different purpose of
reducing the memory usage, we can further apply a dimension-
reducing L2-to-L2 mapping (called Johnson-Lindenstrauss
transform, or JLT in short) to the projected (L2) space, which
is known [12] to be much more accurate (in preserving the
power of each pruning test) than random Cauchy projections.

In addition, in order to speed up the computation of L2-P2S
projected distances in the query phase, we can preprocess the
projected subspaces to orthogonalize their basis matrices B
(say by QR factorization [19]) so that BTB = I . In this way,
we avoid computing the inverse term (STS)

−1 in (2) and

reduce the time complexity of P2S distance calculation from
O(τ3+ τd) to O(τd), where τ is the subspace rank, or by up
to one order of magnitude in practice.

In the query phase, for each subspace S , our algorithm
summarizes its projected distances Ri(S) in all repetitions
i = 1, 2, . . . ,M into the T th order statistic R(T)(S) (the
T th smallest value in order) and use R(T)(S) in our decision
rule for selecting NN candidates (Line 12). In contrast, in
LDL1, each repetition separately selects some subspaces with
the shortest projected distances, and the final NN candidate set
is their union. As we will show in our LSH pruning framework
(§ IV-C), our new decision rule subsumes LDL1’s rule and
improves its power of reducing the number of NN candidates.

B. Why Pruning by L2-P2S Distances Works

As mentioned earlier, a clear advantage of our feature (L2-
P2S distance) over LDL1’s is its “dirt cheap” computation
cost: Compared to LDL1, using our feature reduces the total
time of the pruning stage by two to four orders of magnitude.
This reduction alone, however, is not sufficient for “proving”
that our feature is more cost-efficient: Our feature (when used
for the aforementioned tests) also needs to be accurate in
discriminating NNs from non-NNs, in the sense few true NNs
are missing from the NN candidate set (thus high recall), and
few non-NNs are included (thus small NN candidate set size).

Our feature has good discriminating power, because the
random Cauchy projection is a locality sensitive mapping in
Definition 1 (similar to locality sensitive hashing [13]) from
L1-P2S distance to L2-P2S distance in most cases, as is
supported by empirical evidence to be presented shortly. As a
result, NNs (the first bullet in Definition 1) are more likely to
have shorter projected distances than non-NNs (second bullet),
and the effectiveness can be measured by the gap between p1
and p2 (to be formalized in § IV-C).

Definition 1. A random projection W is a locality sensitive
mapping from distance metric D to D′ if there exists a
threshold Θ and probability values p1 > p2 such that for
any query vector q⃗ and subspace S , we have

• if D(q,S) ≤ r, then PrW [D′(Wq⃗,WS) < Θ] ≥ p1,
• if D(q,S) > cr, then PrW [D′(Wq⃗,WS) < Θ] ≤ p2.

As our empirical evidence, we make two observations from
Figure 2 (the methodology for generating this figure is given
in its caption). First, for every projected distance value Θ (x-
coordinate), the corresponding CDF (cumulative distribution
function) value (y-coordinate) is higher for NNs (subfigure
(a)) than for non-NNs (subfigure (b)), so for every Θ value,
Definition 1 is satisfied for some p1 > p2 for both our feature
and LDL1’s. Second, no matter whether measured in L1-P2S
or L2-P2S, the empirical distributions of projected distances
have almost the same shape, which implies that our feature
and LDL1’s are roughly equally accurate in discriminating
NNs from non-NNs.

However, we observe a worst-case pair of NN and non-
NN for which neither our feature nor LDL1’s works. This,
unfortunately, implies that the effectiveness of our new feature

0 1 2 3
Projected Distance

0.0

0.5

1.0

C
D

F

(a) NN.

0 2 4
Projected Distance

(b) non-NN.

LDL1 (L1-P2S) Proposed (L2-P2S)

Fig. 2. We use a sampled query from the SIFT dataset (in Table I), and
select a non-NN that is c = 1.5 times as far as the NN in the original L1-
P2S distance. For both our algorithm and LDL1 (µ = 25), we measure the
CDF of projected distances under 10,000 random Cauchy projections. For
better comparison, we normalize the projection distances in both schemes
(and in Figure 3 also) so that their medians are both 1 for the NN.

can only be established by empirical evaluations rather than
theorems. It will be clear, however, that this worst case is so
counter-intuitive and contrived that no real-world dataset (that
is not generated by an adversarial party) can be anywhere close
to such a worst-case scenario.

C. Worst-Case Scenario

In this scenario, we let the ambient dimension d = 128, and
the query vector be q⃗ = (1, 0.05, . . . , 0.05︸ ︷︷ ︸

2nd to 10th

, 0, . . . , 0︸ ︷︷ ︸
11th to 128th

)
T . We

construct two subspaces with rank τ = 9: one NN and one
non-NN. The NN subspace is spanned by e⃗2, . . . , e⃗10 (each
e⃗i, i = 1, . . . , 10, is a standard basis vector with only the ith

coordinate being 1 and remaining coordinates being 0), and the
non-NN subspace is spanned by e⃗2− e⃗1, . . . , e⃗10− e⃗1. It is not
hard to verify that the original distance to the NN is r = 1, and
to the non-NN is cr = 1.45. Figure 3 shows that p2 (red dashed
line) is always greater than p1 (blue solid line) regardless of
the threshold Θ (x-coordinate). Hence, Definition 1 is violated
at least by this pair of NN and non-NN.

0 1 2 3
Projected Distance

0.0

0.5

1.0

C
D

F

(a) LDL1 (L1-P2S).

0 1 2 3
Projected Distance

(b) Proposed (L2-P2S).

NN non-NN

Fig. 3. A worst-case scenario in which Definition 1 is violated for both
LDL1 and our algorithm.

D. Extensions

1) JLT Dimension Reduction: Our index stores the basis
matrices of all projected subspaces computed in the indexing
phase, whose size is O(ndτM), where n is the dataset size.
In practice, however, this index size can be very large for
high dimensional datasets, since d is large, and we use many
repetitions M for the pruning (to achieve a small NN candidate
set size) as mentioned earlier. To reduce the index size, we can
reduce the projection dimension from d to µ by the aforemen-
tioned JLT technique [5] as follows. For each repetition of the
random (d × d) Cauchy projection (matrix) W i, we generate
(and fix) a µ × d Gaussian random matrix Gi that further
projects the d-dimensional projected (by Cauchy) space into a
µ-dimensional space. In other words, we replace each W i in
Algorithm 1 with GiW i. According to our experiments, the
JLT dimension reduction results in a 90% smaller index size
while impacting the effectiveness of pruning only slightly.

2) General Lp-P2S Distance: Our algorithm can solve the
Lp-P2S-ANNS problem for any 1 < p < 2 in general with
just one modification: Replace each Cauchy (1-stable) random
projection Wi with a p-stable one as in [13] (wherein the
elements are i.i.d. p-stable random variables). The resulting p-
stable projection has a similar locality sensitive property in Lp

as the Cauchy projection in L1, which allows it to effectively
prune subspaces for promising NN candidates.

IV. LSH PRUNING FRAMEWORK

In this section, we describe our aforementioned second
contribution: an LSH pruning framework and performance
model. After describing our model in § IV-A, we elaborate
the hypothesis testing theory behind our framework in § IV-B,
which reveals a fundamental trade-off between the cost and
the effectiveness of pruning. Based on this theory, we get an
effective decision rule for selecting NN candidates in § IV-C,
and show that our new feature is empirically at least as
effective as LDL1 in § IV-D using the discriminating power
metric derived from the theory above.

A. Performance Model for LSH Pruning

In this section, we propose the following general LSH
(locality sensitive hashing) pruning framework that subsumes
many ANNS schemes such as LDL1, our proposed algorithm
in § III, and Bayesian LSH [20]. An LSH pruning process
consists of the following two stages.
Pruning: In this stage, the feature distance D′(h(q⃗), h(S))

between hash values is computed for each data item S
in the dataset D, possibly repetitively using independent
LSH functions h(·)’s; and a specific decision rule (to be
given shortly) is used to select NN candidates C with
short feature distances.

Verification: In this stage, the original distance D(q,S) is
computed for each S ∈ C, and verified NNs with
D(q,S) < r are returned.

For example, in our solution the LSH function is the random
Cauchy projection h(S) = WS (and h(q⃗) = Wq⃗), and the
feature distance is L2-P2S. As mentioned earlier, for an LSH

pruning scheme to be cost-efficient, it must use a cost-efficient
feature distance D′ that has the following two properties.

1) The computation cost of D′ itself should be low.
2) D′ can effectively discriminate NNs from non-NNs. In

other words, it only selects a small set of NN candidates
that need to be verified at a high computation cost.

As we will show shortly, there is a fundamental tradeoff
between the cost and the effectiveness, with the former corre-
sponding to the time complexity of the pruning stage and the
latter corresponding to that of the verification stage.

As the first step of modeling the performance of LSH prun-
ing, we identify two metrics for the cost and the effectiveness
respectively, and how they determine the overall query time,
as follows. The overall speedup ratio η of an LSH pruning
algorithm (Alg) over the linear scan (LS) is equal to

η ≜
TLS

TAlg
=

TLS

Tprune + Tverify
=

1

M/γ + β(M)
. (3)

This is because the total pruning time Tprune = M/γ · TLS ,
where M , as a tunable parameter, is the number of repetitions
(LSH functions) used, and γ, called the LSH speedup, is the
ratio between the calculation time of the original distance D
and the feature distance D′. Also, the total verification time
Tverify = β(M) · TLS , where β(M) ≜ |C|/n, called the
selectivity, is the fraction of the dataset (say of size n) that
are selected into the NN candidate set C.

In LSH pruning schemes, usually the LSH speedup γ is
determined by the feature distance metric D′, and hence is
a fixed value (when parameters are given). As a result, the
aforementioned trade-off between cost and effectiveness, or
pruning and verification times, is controlled only by M : Using
a larger M leads to a better discriminating power and a lower
selectivity β, but inflates the pruning time proportionally.

Finally, we note that our performance model is different
from all existing ones for hash-table-based LSH schemes for
ANNS such as QALSH [21]. In these schemes, NN candidates
are selected by collisions in hash tables, which does not
involve the calculation of feature distances (and their costs).
Hence, in these models, the overall query time is almost
equivalent to the verification time, which is very different from
our trade-off here.

B. Pruning is Hypothesis Test

Now we answer a key question in our performance model:

How is the selectivity β determined by M?
The answer lies in the theory of hypothesis testing, because
as we will show shortly, the procedure in the pruning stage is
essentially performing the following test between two hypothe-
ses on each data item S (which we have already mentioned,
without providing a precise definition, in the introduction):
Null hypothesis: S is an NN of q⃗ with the original distance

D(q⃗,S) < r, so it should be selected as an NN candidate.
Alternative hypothesis: S is a non-NN with D(q⃗,S) > cr,

so it should be pruned.

This test, on whether D(q⃗,S) is greater than cr or less than
r, belongs to the one-sided subtype of hypothesis tests [22].
Hence, we focus on this subtype in the sequel.

In the context of hypothesis testing, if a data item is selected
as an NN candidate, we say the null hypothesis is accepted by
the pruning scheme; otherwise, the null hypothesis is rejected,
and the alternative hypothesis is accepted instead. Such sta-
tistical inference, however, may be erroneous sometimes. A
type-I error occurs when the null hypothesis is erroneously
rejected (on a true NN), and a type-II error occurs when it is
erroneously accepted (on a non-NN). In the statistics literature,
usually the type-I error rate is denoted by α (1− α is called
the confidence level), and the type-II error rate is denoted by
β (1− β is called the power of the test).

Relating to our question above, the selectivity β of pruning
is almost equal to the type-II error rate of the corresponding
hypothesis test. (Hence, we can denote both values by the same
letter β.) This is because the number of non-NNs in the dataset
is much larger than that of NNs, so the number of NN candi-
dates is roughly the number of non-NNs that are erroneously
accepted. Therefore, the aforementioned function β(M) is in
fact given by the result of the following optimization problem:
Given M instances of feature distances, design a hypothesis
testing scheme so that the type-II error rate β is minimized
(this minimum value is the aforementioned β(M)) given that
the confidence level 1 − α (the percentage of true NNs that
are found by the algorithm) is always above the desired recall
level. As we will show shortly, this optimization is a classical
problem that has been answered by Neyman and Pearson [22],
resulting in the following decision rule and parameters.

C. Efficient Decision Rule and Parameters

The aforementioned hypothesis testing scheme [22] decides
which hypothesis to accept based on the likelihood of the
null hypothesis, or the probability of the observed feature
distances (of a data item) conditioning on that this data item
is actually an NN: The null hypothesis is accepted if this
likelihood is greater than 1 − α and is rejected otherwise.
Hence, the specific decision rule is a function of the observed
feature distances. Since the distribution of feature (projected)
distances, as we have plotted in Figure 3, is complicated, the
likelihood function and the resulting decision rule can be hard
to describe and analyze. To overcome this issue, following the
common practice in statistical inference, we summarize the
observed feature distances into a single (scalar value) statistic
and use a simple decision rule: The null hypothesis is accepted
if and only if this statistic is greater than some critical value.

A simple and natural choice for such a statistic is the number
V of repetitions in which the feature distance D′(h(q), h(S))
is shorter than a fixed threshold Θ. By Definition 1, the locality
sensitivity of h(·) implies that D′(h(q), h(S)) < Θ in each
repetition with probability p ≥ p1 if a data item is an NN,
and with probability p ≤ p2 if it is a non-NN. The likelihood
function in this decision rule is 1−B(T ;M,p1), where B(·) is
the CDF of the binomial distribution with M trials and success
rate p1. Hence, the null hypothesis is accepted if V > T , for

a parameter (critical value) T that we specify shortly, and the
corresponding type-II error rate is β = B(T ;M,p2).

With this formulation, under a fixed set of parameters M ,
α, and Θ (and correspondingly p1 and p2), we can solve
the aforementioned optimization problem for an approximate
formula of β(M) as follows.

Theorem 2 ([22] p249). For fixed M , α, and Θ, the optimal
T is the greatest integer such that B(T ;M,p1) < α. With M
large enough so that M > 5

p2(1−p2)
, this value is approxi-

mately T ∗ ≈ p1M −Φ−1(1− α)
√

p1(1− p1)M , where Φ(·)
is the CDF of the standard normal distribution and Φ−1(·) is
its inverse.

In this case, the optimal β (denoted by β∗), as a function
of M , is approximately

β∗(M) ≈ 1− Φ
(√

ξM + λΦ−1(α)
)
, (4)

wherein ξ = (p1−p2)
2

p2(1−p2)
and λ =

√
p1(1−p1)
p2(1−p2)

.

Moreover, (4) leads to a metric for comparing the effective-
ness (discriminating power) per repetition of feature distance
calculation. Since in most scenarios, p1 and p2 are on the same
order and as a result the value of λ is roughly a constant,
the optimal test power 1− β∗ is roughly determined by ξM .
Therefore, the value ξ, determined by p1 and p2 above, can be
considered as the unit discriminating power per repetition: A
larger ξ implies that the LSH pruning scheme is more effective
in the sense it has a smaller β at a fixed recall level 1− α.

The formula (4) also guides the parameter tuning of our
LSH pruning framework as follows. First, we find the best
Θ such that each repetition is most effective, i.e., having the
largest unit discriminating power ξ. This can be done by trying
different values of Θ across a small interval. Then, with Θ
fixed and β(M) replaced by β∗(M) in (4), the rightmost
side of (3) becomes a well-defined function of M . Hence,
the optimal number M of repetitions can be easily found, say
via binary search, and the last parameter T can be dynamically
adjusted by the algorithm to achieve a target recall level.

Our actual Algorithm 1 uses a different but equivalent
decision rule, for the following reason: Dynamically adjusting
T is less flexible than adjusting Θ, since T can only be
integers, but Θ is a real number. In fact, our top-K (ANNS)
procedure in § V-A makes full use of this flexibility. In order
to dynamically adjust Θ, our alternative decision rule hinges
on a different statistic than the one we already mentioned,
which is the number V out of the M feature distances Ri’s
(for i = 1, 2, . . . ,M) in all M repetitions that satisfy Ri < Θ.
The new statistic, denoted by R(T), is the T th order statistic,
or the T th smallest value, among Ri’s for i = 1, 2, . . . ,M .
Hence, the null hypothesis is accepted if R(T) < Θ, and is
rejected instead. It is not hard to verify that these two decision
rules are equivalent: R(T) < Θ if and only if V > T .

D. Empirical Effectiveness Comparison with LDL1

In this subsection, we show empirically that our new L2-P2S
feature has higher unit discriminating power ξ than LDL1’s, so

by Theorem 2, each test in our algorithm is at least as effective
as that in LDL1 for pruning. Recall that ξ is a function of
p1 and p2, whose values depend on both the threshold Θ
and the relative position of the NN and the non-NN with the
query. Since the worst-case scenario in § III-C has ruled out
any theoretical guarantee of ξ if the NN and non-NN can
be arbitrary (adversarial) subspaces, our comparison has to be
performed in an empirical scenario by Monte Carlo simulation,
in which the NN and non-NN are drawn (separately) from two
collections of subspaces that we construct as follows.

In our empirical scenario, the query q⃗0 is fixed, and we
create two collections of subspaces, one for NNs and the other
for non-NNs. Each collection consists of 10,000 subspaces
that have a fixed P2S distance to q⃗0: D1(q⃗0,S ′) = r for all
subspaces S ′ in the NN collection, and is equal to cr for all
subspaces in the non-NN collection. In this way, we factor out
the impact of varying P2S distances on our results.

To generate these two collections, we randomly sample 100
subspaces S with rank τ = 9 and 100 queries q⃗ from the SIFT
dataset (d = 128, see Table I), which are combined into 10,000
(q⃗,S) pairs. Each (q⃗,S) pair is then normalized to (q⃗0,S ′)
as follows. First, (q⃗,S) is linearly translated to (q⃗0,S ′′) with
S ′′ = S + q⃗0 − q⃗. This step centers all pairs to the fixed
query q⃗0 without changing the projected distances between the
pair. Then, (q⃗0,S ′′) is linearly scaled (while centered at q⃗0) to
(q⃗0,S ′) so that D1(q⃗0,S ′) is the aforementioned constant (r
in the NN collection, and cr in the non-NN collection). This
scaling step changes the projected distances proportionally:
Suppose the scaling factor, for a (q⃗0,S ′′) pair, is z, then the
projected distance Dp(Wq⃗0,WS ′) = zDp(Wq⃗0,WS ′′) for
both p = 1 (LDL1) and p = 2 (our algorithm). This is because
the random Cauchy projection W is a linear mapping.

For each subspace S ′ in the NN collection, we tune
the threshold Θ and find the maximum unit discriminating
power ξ = (p1−p2)

2

p2(1−p2)
. Here, p1 is calculated by simulating

Pr(D′(Wq⃗0,WS ′) < Θ) using 10,000 random Cauchy pro-
jections W as we did for Figure 2 (D′ being L2-P2S for us and
L1-P2S for LDL1), and p2 is the empirical average of the prob-
ability Pr(D′(Wq⃗0,WSnon−NN) < Θ) wherein Snon−NN is
uniformly sampled from the non-NN collection. The result is
10,000 different ξ values, one for each subspace S ′ in the
NN collection, which by themselves form a distribution of ξ.
Figure 4 plots the CDF of these values, measured under r = 1
and two different values of c (1.5 and 2).

Both subfigures of Figure 4 show that each test in our
approach (with no dimension reduction as explained in § III-A)
has better unit discriminating power than LDL1 (with di-
mension reduced to µ = 25) in both cases of c = 1.5 and
c = 2, and by a slightly larger margin in the latter case. This
supports our previous claim that our algorithm is at least as
effective as LDL1, and that is because we avoid the loss of
locality sensitivity caused by aggressive dimension reduction
in LDL1. Also, our algorithm achieves a positive ξ (which
implies p1 > p2) on almost all NN instances, which shows
that our new L2-P2S feature distance is almost always locality

sensitive in practice (despite the worst case shown in Figure 3).

0 5 10
Unit Power ξ

0.0

0.5

1.0

C
D

F

(a) c = 1.5.

0 50 100
Unit Power ξ

(b) c = 2.

LDL1 (L1-P2S) Proposed (L2-P2S)

Fig. 4. The CDFs of maximum unit discriminating powers ξ from our
simulation. Our algorithm has larger (better) ξ at all CDF quantiles (fixed
y-coordinates) in both subfigures.

V. EVALUATION

In this section, we conduct extensive study on Lp-P2S-
ANNS using large scale datasets containing hundreds of
thousands of subspaces. Our results show conclusively that
our proposed scheme is faster than LDL1 by a factor of 4.8 to
54 on datasets with different ambient dimensions and subspace
ranks, and under different Lp metrics.

A. Evaluation Setup
We use six datasets, shown in Table I, that are commonly

used in ANNS literature [23]. Their sizes n′ are up to one
million and their ambient dimensions d range from 96 to 4096.
Each such dataset D′ is converted to a subspace dataset D
containing n = ⌊n′/τ⌋ linear subspaces, each of which has
rank τ and is spanned by τ consecutive vectors (data points)
in D′. For each such D, the P2S-ANNS query set contains
100 points sampled uniformly at random from the set of query
points associated with the corresponding D′.

TABLE I
SUMMARY OF DATASETS.

Dataset n′ d Type

Deep [24] 1.0M 96 Image
SIFT [25] 1.0M 128 Image
MNIST [26] 69.2K 784 Image
GIST [25] 1.0M 960 Image
Enron [27] 94.2K 1369 Text
Trevi [28] 99.1K 4096 Image

In this evaluation, we compare our proposed solution
(“Ours”) with LDL1 (the only existing scheme) in the fol-
lowing three aspects.

a) Memory usage: The memory usage includes two
parts: the original dataset D (used in the verification stage)
and the index (used in the pruning stage) that consists of the
M repetitions of random Cauchy projections of each subspace
in D as described earlier. The memory usage is equal to
4(nτµM +nτd) bytes when all vectors are encoded in 32-bit
floating point format.

b) Top-K Query Recall: We measure the query accuracy
by the top-K query recall defined as follows. Denote by K∗

the top-K NNs with shortest Lp-P2S distances to the query q⃗
and by K the K approximate NNs in the result. The top-K
query recall is equal to |K∗ ∩ K|/K. In this experiment, we
set K to a small number 10 (since this problem is hard for
large K) and report the average recall over all queries.

c) Query Time: We measure query times on a worksta-
tion running Ubuntu 18.04 with Intel Core i7–9800X CPU
@ 3.80GHz and 128GB RAM. The computations of P2S
distances are programmed in Python language (version 3.9.12),
with all L1-P2S distance calculations calling the GUROBI [16]
optimizer (version 9.5.2). In addition to the measured times,
we also show the overall speedup ratio η over the linear scan.

Parameter Setup: In all experiments, we tune parameters
(M , T) of both our algorithm and LDL1 to achieve near-
optimal query time at 0.9 average recall (at K = 10), using
the technique described in § IV-C. We apply the JLT extension
in § III-D to our algorithm in the MNIST, GIST, Enron,
and Trevi datasets to reduce the memory usage. The final
projection dimension µ is reported below for all experiments.

A last parameter, namely the threshold (critical value) Θ in
our decision rule, needs to be specifically adapted to our set-
ting of top-K queries. Recall from the last paragraph of § IV-D
that Θ can be dynamically adjusted for the target recall. To
this end, Θ needs to be proportional (by a constant slope, say,
θ) to the radius r of NNs, which is a constant given by the
ANNS problem, since the distribution of projected distances
divided by r remains the same when r varies (as explained
using italicized text in the third paragraph in § IV-D). As we
only take top-K NNs for each query, the radius of the Kth

nearest neighbor, denoted by rK , varies from query to query.
As a result, in principle, Θ should also vary with the query
by the form of θrK , yet the exact value of rK is unknown to
us (since it comes from the ground truth answer of ANNS).

To overcome this issue, we dynamically adjust Θ for each
query by the following scheme similar to the SRS algo-
rithm [14] for L2-ANNS. We let Θ be θr̂K , where r̂K is
a dynamic and conservative (always guaranteeing r̂K ≥ rK)
estimate of rK initialized to a large enough number. The NN
candidates are verified in the increasing order of their (T th

order statistic of) projected distances, starting from the most
promising ones. We use a heap to track the top-K NNs (the
set of result candidates) with the shortest original distances
that have been calculated so far, and r̂K is always the largest
original distance in this heap. In this design, the projected
distance to be pruned always increases, and the threshold
always decreases, so we can safely end the verification stage
(and return the result candidates) once our decision rule fails
for some subspace.

Unfortunately, the constant slope θ in the above scheme can
only be tuned assuming the knowledge of ground-truth NNs
of all 100 queries. To make sure (the performance of) our
scheme does not benefit from such knowledge at all, once this
θ is tuned for each experiment, it is fixed for all queries in it;
and we furthermore measure the recall and query time under

a fresh (generated with new seeds) set of random Cauchy
projections obliviously of the ground-truth knowledge (except
the parameter θ).

B. Evaluation on Ambient Dimension

In this experiment, we fix the subspace rank at τ = 9
like in the LDL1 paper [10] and evaluate on six datasets
with increasing ambient dimensions. Table II shows that the
overall speedup ratios η of our solutions are larger than those
of LDL1, by a factor of 4.8 (on Enron) to 47 (on Trevi).

On Deep and SIFT, the two datasets with the lowest ambient
dimensions, LDL1 can only afford one repetition of random
Cauchy projection since its LSH speedup γ is barely larger
than 1. As a result, its selectivity β is very large, resulting
in η < 1 (slower than linear scan), on both datasets. In
contrast, our solution achieves 24.3× (on Deep) 21.8× (on
SIFT) speedups thanks to its much larger γ and much smaller
β (by using 12 repetitions). On datasets with higher ambient
dimensions, both LDL1 and our solution have larger γ, yet
our solution has 500 times larger γ than LDL1. This allows
our solution to use more repetitions (up to 93), and hence to
have much lower β than LDL1, by a factor of 4.8 (on Enron)
to 40 (on Trevi). Our memory usage is higher than LDL1, by
a factor of 4.7 (on MNIST) to 10.9 (on SIFT), because we
have tuned our parameter for the shortest query time instead
of the minimum memory usage. Our algorithm, however, can
be configured, say by using fewer repetitions M or a lower
projection dimension µ, for less memory usage, whereas LDL1
cannot be configured to run faster than the times reported in
Table II.

C. Evaluation on Subspace Rank

In this experiment, we vary subspace rank τ from 4 to 64 (in
powers of 2) on SIFT (low ambient dimension) and from 4 to
128 on Trevi (high ambient dimension), with the case τ = 8
replaced by τ = 9 in the last experiment. Table III shows
our solution outperforms LDL1, in terms of query time, by a
factor of 16.5 to 54.5 on SIFT and 12.4 to 47.2 on Trevi. On
both datasets, γ always increases with τ , whereas β decreases
with τ on SIFT and increases with τ on Trevi.

D. Evaluation for L1.2-P2S-ANNS

In this experiment, we explore the general Lp-P2S-ANNS
problem with p = 1.2. We set τ = 9 and use the two datasets
(SIFT and Trevi) as in our last experiment. We apply the
aforementioned p-stable extension to both algorithms and use
libstable [29] for the generation of 1.2-stable random variables
and compute L1.2-P2S distances using the Adam [17] convex
optimizer implemented in Python.

Table IV shows that our solution is faster than LDL1,
by a factor of 33.9 on SIFT and 20.3 on Trevi. Compared
with L1-P2S distances, L1.2-P2S distances are slightly slower
to compute under low d but are much faster under high d.
As a result, the γ value (and the overall speedup η) in this
experiment is larger than that in L1-P2S-ANNS on SIFT, but
is the other way around on Trevi.

TABLE II
EVALUATION RESULTS UNDER DIFFERENT DATASETS. NUMBERS IN BOLDFACE ARE THE BEST IN EACH GROUP.

Dataset τ Algorithm µ Recall Memory (B) T/M LSH Speedup γ Selectivity β Query Time (s) Overall Speedup η

Deep 9 LDL1 25 0.900 484M 1/1 1.55 37.2% 1.46K 0.98
Ours 96 0.909 4.99G 3/12 759 2.5% 58.7 24.3

SIFT 9 LDL1 25 0.905 612M 1/1 1.84 57.7% 1.91K 0.89
Ours 128 0.903 6.66G 3/12 900 3.3% 78.2 21.8

MNIST 9 LDL1 64 0.905 231M 1/1 4.46 35.9% 214 1.72
Ours 128 0.908 1.09G 2/25 2.77K 6.3% 26.5 13.9

GIST 9 LDL1 64 0.902 4.10G 1/1 9.14 63.9% 7.84K 1.34
Ours 128 0.914 32.5G 10/56 5.29K 2.8% 399 26.2

Enron 9 LDL1 64 0.900 540M 1/1 7.35 52.0% 549 1.52
Ours 128 0.906 4.23G 8/77 4.48K 12.0% 114 7.31

Trevi 9 LDL1 32 0.907 1.78G 1/12 90.8 24.0% 3.32K 2.69
Ours 256 0.915 10.9G 15/91 43.2K 0.6% 70.1 127

TABLE III
EVALUATION RESULTS UNDER DIFFERENT SUBSPACE RANKS.

Dataset τ Algorithm µ Recall Memory (B) T/M LSH Speedup γ Selectivity β Query Time (s) Overall Speedup η

SIFT

4 LDL1 25 0.901 612M 1/1 1.75 51.6% 3.76K 0.92
Ours 128 0.906 6.66G 3/12 815 5.1% 229 15.2

9 LDL1 25 0.905 612M 1/1 1.84 57.7% 1.91K 0.89
Ours 128 0.903 6.66G 3/12 900 3.3% 78.2 21.8

16 LDL1 25 0.901 612M 1/1 1.93 59.9% 1.19K 0.90
Ours 128 0.906 5.63G 2/10 966 3.4% 48.0 22.3

32 LDL1 48 0.903 612M 1/1 1.78 44.7% 683 0.99
Ours 128 0.904 7.68G 3/14 1.17K 1.3% 16.6 40.7

64 LDL1 80 0.905 612M 1/1 1.41 32.4% 476 0.97
Ours 128 0.904 6.14G 4/11 1.42K 1.1% 8.72 52.9

Trevi

4 LDL1 64 0.905 1.73G 1/4 59.3 21.5% 4.23K 3.54
Ours 256 0.918 10.1G 16/83 33.7K 0.5% 112 133

9 LDL1 32 0.907 1.78G 1/12 90.8 24.0% 3.32K 2.69
Ours 256 0.915 10.9G 15/91 43.2K 0.6% 70.1 127

16 LDL1 64 0.902 1.85G 1/9 89.9 25.7% 2.32K 2.80
Ours 256 0.918 10.1G 10/83 51.7K 1.4% 103 63.1

32 LDL1 64 0.909 1.80G 1/7 122 37.0% 2.31K 2.34
Ours 256 0.918 10.0G 15/83 75.7K 1.7% 97.6 55.2

64 LDL1 64 0.909 2.27G 1/17 150 38.5% 2.90K 2.01
Ours 256 0.920 10.7G 10/90 129K 2.4% 142 41.1

128 LDL1 64 0.910 2.54G 1/12 122 35.8% 3.67K 2.19
Ours 256 0.912 10.4G 23/86 340K 3.7% 296 27.2

TABLE IV
EVALUATION RESULTS FOR L1.2-P2S-ANNS.

Dataset τ Algorithm µ Recall Memory (B) T/M LSH Speedup γ Selectivity β Query Time (s) Overall Speedup η

SIFT 9 LDL1 25 0.901 612M 1/1 1.48 40.0% 2.57K 0.93
Ours 128 0.908 5.63G 3/10 1.26K 2.4% 75.9 31.5

Trevi 9 LDL1 64 0.906 1.67G 1/2 12.6 20.3% 781 2.77
Ours 256 0.915 5.89G 8/42 10.4K 1.4% 38.5 56.3

VI. RELATED WORK

In this section, we elaborate on how our LSH pruning
framework generalizes and improves existing algorithms in
the literature. Many ANNS solutions use a pruning stage to
reduce the number of costly calculations of original distances.

For example, Bayesian LSH [20] for Jaccard-ANNS uses the
number of MinHash collisions as the statistic in its decision
rule: A data item is selected if it has more hash collisions
with the query than a threshold. The decision rule therein is
a special case of ours: their input is binary (hash collision or

not), whereas our input is real-valued projected distances. To
this end, our framework introduces and tunes a new parameter,
namely the threshold Θ, in our decision rule.

The LDL1 scheme [10] in § II-B, which selects NN candi-
dates separately in each repetition of random Cauchy projec-
tion, is another special case of our decision rule with T = 1.
Our decision rule, which uses multiple repetitions collectively,
has better query performance, since by Theorem 2, the optimal
setting of T is greater than 1.

Moreover, the statistical reasoning on hypothesis testing
is also a contribution of our framework. So far, only one
paper [30] has applied the hypothesis testing theory to ANNS,
but its formulation is much more complex than ours; and
none of the existing works had analyzed the query time of
LSH pruning as thoroughly as ours using formula (3) and
Theorem 2. Hence, we are the first to point out that the
decision rule in LSH pruning can be based on any statistics
with high discriminating power, not just estimates of the
original distances as commonly believed before [20].

VII. CONCLUSION

In this paper, we propose a new solution approach to
P2S-ANNS, in the general Lp-P2S distance, that achieves
significant query speedup over LDL1. Our solution prunes
subspaces effectively and efficiently by the L2-P2S distances
that can be computed faster than the L1-P2S distances in LDL1
by two to four orders of magnitude. Moreover, we develop a
general LSH pruning framework that is grounded in statistics
theory for the first time. Finally, by extensive experiments, we
show that our proposed scheme has shorter query times than
LDL1 by a factor of 4.8 to 54 on various datasets, subspace
ranks, and Lp metrics.
Acknowledgment. This work was supported in part by the
National Science Foundation under Grant No. CNS-2007006.

REFERENCES

[1] Q. Huang, Y. Lei, and A. K. H. Tung, “Point-to-hyperplane nearest
neighbor search beyond the unit hypersphere,” in Int. Conf. on Manage.
of Data, ser. SIGMOD ’21. New York: ACM, 2021, pp. 777–789.

[2] S. Vijayanarasimhan, P. Jain, and K. Grauman, “Hashing hyperplane
queries to near points with applications to large-scale active learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 276–288,
2014.

[3] R. Basri, T. Hassner, and L. Zelnik-Manor, “Approximate nearest
subspace search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2,
pp. 266–278, 2011.

[4] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen, “Deep learning of
binary hash codes for fast image retrieval,” in Conf. on Comput. Vis.
and Pattern Recognit. Workshops (CVPRW). Boston, USA: IEEE, June
2015, pp. 27–35.

[5] N. Ailon and B. Chazelle, “The fast Johnson–Lindenstrauss transform
and approximate nearest neighbors,” SIAM J. on Comput., vol. 39, no. 1,
pp. 302–322, 2009.

[6] J. Meng, H. Wang, J. Xu, and M. Ogihara, “One index for all kernels
(oniak): A zero re-indexing lsh solution to anns-alt (after linear trans-
formation),” Proc. VLDB Endow., vol. 15, no. 13, pp. 3937–3949, sep
2022.

[7] J. D. Semedo, A. Zandvakili, C. K. Machens, B. M. Yu, and A. Kohn,
“Cortical areas interact through a communication subspace,” Neuron,
vol. 102, no. 1, pp. 249–259.e4, 2019.

[8] W.-C. Chang, F. X. Yu, Y.-W. Chang, Y. Yang, and S. Kumar, “Pre-
training tasks for embedding-based large-scale retrieval,” in Interna-
tional Conference on Learning Representations, 2020.

[9] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 11, pp. 2765–2781, 2013.

[10] J. Sun, Y. Zhang, and J. Wright, “Efficient point-to-subspace query in
l1 with application to robust object instance recognition,” SIAM J. on
Imaging Sci., vol. 7, no. 4, pp. 2105–2138, 2014.

[11] K. Lu, Y. Ishikawa, and C. Xiao, “Mqh: Locality sensitive hashing on
multi-level quantization errors for point-to-hyperplane distances,” Proc.
VLDB Endow., vol. 16, no. 4, pp. 864–876, dec 2022.

[12] C. Sohler and D. P. Woodruff, “Subspace embeddings for the l1-norm
with applications,” in Symp. on Theory of Comput., ser. STOC ’11. New
York, NY, USA: ACM, 2011, pp. 755–764.

[13] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Symp. on Comput.
Geometry, ser. SoCG ’04. New York: ACM, 2004, pp. 253–262.

[14] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, “Srs: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index,” Proc. VLDB Endow., vol. 8, no. 1, pp. 1–12,
sep 2014.

[15] T. Hastie, R. Tibshirani, and J. Friedman, Linear Methods for Regression.
New York, NY: Springer New York, 2009, p. 56.

[16] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023, product access under an academic license. [Online]. Available:
https://www.gurobi.com

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[18] D. Ge, X. Jiang, and Y. Ye, “A note on the complexity of l p minimiza-
tion,” Mathematical programming, vol. 129, pp. 285–299, 2011.

[19] R. T. David Cherney, Tom Denton and A. Waldron, Linear Algebra.
Davis, CA, USA: UC Davis, 2013.

[20] V. Satuluri and S. Parthasarathy, “Bayesian Locality Sensitive Hashing
for Fast Similarity Search,” Proc. VLDB Endow., vol. 5, no. 5, p.
430–441, jan 2012.

[21] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, “Query-aware
locality-sensitive hashing for approximate nearest neighbor search,”
Proc. VLDB Endow., vol. 9, no. 1, pp. 1–12, sep 2015.

[22] B. Rosner, Fundamentals of Biostatistics, 7th ed. Boston, MA, USA:
Cengage Learning, 2010.

[23] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin,
“Approximate nearest neighbor search on high dimensional data –
experiments, analyses, and improvement,” IEEE Trans. Knowl. Data
Eng., vol. 32, no. 8, pp. 1475–1488, 2020.

[24] A. Babenko and V. Lempitsky, “Deep: Datasets of deep descriptors,”
http://sites.skoltech.ru/compvision/noimi/, 2016.

[25] L. Amsaleg and H. Jégou, “Datasets for ANN neighbor search,” http:
//corpus-texmex.irisa.fr/, 2010.

[26] L. Yann, C. Corinna, and J. B. Christopher, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/, 1994.

[27] W. W. Cohen, “Enron email dataset,” http://www.cs.cmu.edu/∼enron/,
2015.

[28] S. Winder, M. Brown, N. Snavely, S. Seitz, and R. Szeliski, “Trevi: Lo-
cal Image Descriptors Data,” http://phototour.cs.washington.edu/patches/
default.htm, 2007.

[29] J. R. del Val and F. S. Wattenberg, “Libstable: Fast, Parallel and
High-Precision Computation of alpha-Stable Distributions in C and
MATLAB,” 2015. [Online]. Available: https://github.com/o-90/libstable

[30] A. Chakrabarti and S. Parthasarathy, “Sequential hypothesis tests for
adaptive locality sensitive hashing,” in Int. Conf. on World Wide Web,
ser. WWW ’15. Florence, Italy: WWW Conf., 2015, pp. 162–172.

https://www.gurobi.com
http://sites.skoltech.ru/compvision/noimi/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
http://yann.lecun.com/exdb/mnist/
http://www.cs.cmu.edu/~enron/
http://phototour.cs.washington.edu/patches/default.htm
http://phototour.cs.washington.edu/patches/default.htm
https://github.com/o-90/libstable

	Introduction
	Lp-P2S-ANNS: Application and Challenges
	Existing Dimension Reduction Technique
	New Feature and Framework

	Background
	P2S-ANNS in Dp Metric Space
	Low Dimensional L1 (LDL1)

	New Feature and Algorithm
	Our New Algorithm for L1-P2S-ANNS
	Why Pruning by L2-P2S Distances Works
	Worst-Case Scenario
	Extensions
	JLT Dimension Reduction
	General Lp-P2S Distance

	LSH Pruning Framework
	Performance Model for LSH Pruning
	Pruning is Hypothesis Test
	Efficient Decision Rule and Parameters
	Empirical Effectiveness Comparison with LDL1

	Evaluation
	Evaluation Setup
	Evaluation on Ambient Dimension
	Evaluation on Subspace Rank
	Evaluation for L1.2-P2S-ANNS

	Related Work
	Conclusion
	References

