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Abstract
Quantum Machine Learning (QML) is an amalgamation of quan-

tum computing paradigms with machine learning models, provid-

ing significant prospects for solving complex problems. However,

with the expansion of numerous third-party vendors in the Noisy

Intermediate-Scale Quantum (NISQ) era of quantum computing,

the security of QML models is of prime importance, particularly

against reverse engineering, which could expose sensitive parame-

ters and proprietary algorithms embedded within the models. We

assume the untrusted third-party quantum cloud provider is an

adversary having white-box access to the transpiled version of the

user-designed trained QML model during inference. Although the

adversary can steal and use the model without any modification,

reverse engineering (RE) to extract the pre-transpiled copy of the

QML circuit will enable re-transpilation and usage of the model for

various hardware with completely different native gate sets and

even different qubit technology. The information about the param-

eters (e.g., number of parameters, their placements, and optimized

values) can allow further training of the QML model if the adver-

sary plans to alter the QML model to tamper with the watermark

and/or embed their own watermark or refine the model for other

purposes. In this first effort to investigate the RE of QML circuits,

we examine quantum classifiers by comparing the training accuracy

of original and reverse-engineered models across various sizes (i.e.,

number of qubits and number of parametric layers) of Quantum

Neural Networks (QNNs). We note that multi-qubit classifiers can

be reverse-engineered under specific conditions with a mean error

of order 10
−2

in a reasonable time. We also propose adding dummy

rotation gates in the QML model with fixed parameters to increase

the RE overhead for defense. For instance, an addition of 2 dummy

qubits and 2 layers increases the overhead by ∼ 1.76 times for a

classifier with 2 qubits and 3 layers with a performance overhead

of less than 9%. We note that RE is a very powerful attack model

which warrants further efforts on defenses.
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1 Introduction
Quantum Machine Learning (QML) merges the cutting-edge capa-

bilities of quantum computing with sophisticated machine learn-

ing techniques, offering the potential to solve complex problems

intractable for classical computers [10]. QML circuits involve quan-

tum properties like entanglement and superposition to explore the

Hilbert space more effectively and thus are able to process and

analyze vast amounts of data with enhanced speed and efficiency.

However, with the advancement in QML design and the increase

in the complexity of the models, there is an increased demand for

quantum hardware. To cater to this increasing demand, quantum

hardware providers have taken the initiative to provide QML hard-

ware as a service to aid the design and utilization of advanced

QML models. In the noisy intermediate-scale quantum (NISQ) era

of quantum computing [8], the number of third-party cloud-based

quantum hardware providers will only increase thus reducing the

cost of using quantum hardware. One pressing issue is the potential

incentive of some rogue adversary or an untrusted third-party cloud

provider to steal trained QML circuit designs, posing significant

threats to the privacy and integrity of these models [11].

1.1 Why QML Models are at Risk
QMLs face significant security risks due to the following reasons:

High training cost: Quantum computers are expensive e.g.,

$1.6 per second for IBM’s superconducting qubits and $0.01 per

shot for IonQ’s Trapped Ion (TI) qubits. This is at least 10
5× costlier

than classical resources which is priced ∼ $2.1 × 10−6 per second.
QML models require hundreds of training epochs each with thou-

sands of quantum circuit executions (depending on the size of the

training dataset). Each circuit is executed for thousands of trials to

get expectation values. This makes the trained and even partially

trained QML model very expensive. Compared to current state-

of-the-art ML models e.g., Gemini that take millions to billions of

dollars for training, QML models at scale may cost many orders of

magnitude higher making them extremely valuable.High training
time: Current state-of-the-art ML models e.g., ChatGPT3 took ∼ 1

month for training using thousands of dedicated GPUs. Quantum
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resources are scarce whereas their demand is extensive. As a re-

sult, both hardware, as well as simulators (whose computation time

scales exponentially with qubit size) hosted in the cloud, incur long

wait queues. This is true for even dedicated access to quantum

computers such as membership of a Quantum Hub with a small set

of users. Therefore, training a large QML model might take a signif-

icant amount of time (e.g., months to years). Hosting of QMLs on
the quantum cloud: Since QML providers may not possess their

own quantum hardware, they may rely on a third-party quantum

cloud for hosting the model. This will lead to the rise of QMLaaS [5]

providing access to clients only through input-output queries via

external APIs. The quantum cloud provider may have white-box ac-

cess to the expensive model and training data. Miscellaneous IPs:
The untrained QML IPs include model architecture (i.e., entangle-

ment, number of parameters, number of layers, measurement basis)

and training data embedded in state preparation circuit. The trained

QML IPs include optimized parameters and input data embedded

in the state preparation circuit during inference.

1.2 Attack Model and Motivation
During inference operation, the input data is first appended as a

state preparation circuit within the trained QML model. Next, the

model is transpiled for target quantum hardware where logical

qubits are mapped to physical qubits, 𝑆𝑊𝐴𝑃 gates are added to

meet the hardware coupling constraints and complex gates, and

the trained parametric rotation gates are decomposed into native

gates. Finally, the transpiled QML circuit is sent to the quantum

cloud for execution. Access to the white-box architecture of the

trained QML circuit will allow the untrusted cloud providers to

potentially steal and use it. For example, the adversary can strip off

the state preparation circuit to extract the trained portion of the

QNN and attach their own input data for inference on the same

target hardware. They can also sell the trained portion of the QNN.

For such attacks, knowing the original QML model and optimized

parameter values is not important.

Nevertheless, knowing the original entanglement and optimized

parameters can provide adversaries with several additional advan-

tages such as: (i) enabling the transpilation and use of the model

on different hardware platforms with varying native gate sets and

qubit technologies. This flexibility might not be achievable with

the hardware-specific transpiled version; (ii) revealing the entan-

glement architecture of the QNN, which can be sold separately

or utilized to train a clone model with different datasets; (iii) pro-

viding detailed information about the parameters, including their

optimized values and placements, facilitating further training or

tampering with the QML model, such as watermark alteration or

embedding. This threat is comparable to the usage of reverse engi-

neering and decompilation techniques that are used by adversaries

in classical hardware system design to bypass watermarking mea-

sures and counterfeiting architecture [6].

1.3 RE and Associated Challenges
Reverse engineering is the idea of analyzing a model and trying

to recreate its design preserving its architectural nuances [12].
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Figure 1: The flow diagram describes reverse engineering
of QML parameters by untrusted third-party vendors acting
as adversaries. (1) shows the user training and transpiling
a QML model 𝑄 using non-proprietary quantum hardware
and sending the transpiled version of the trainedmodel𝑄𝑡 to
the untrusted vendor for inferencing. (2) and (3) describe the
attack model involving the procedure of reverse engineering
performed by the untrusted vendor to extract the parameters
and steal the IP of the user-designed model.

From the quantum perspective, it involves reconstructing the orig-

inal hardware-agnostic quantum circuit from its optimized and

hardware-specific transpiled form (Fig. 1).

The reverse engineering of QML models presents unique chal-

lenges compared to classical machine learning (ML) models, par-

ticularly due to differences in model representation, transpilation,

and hardware dependency. Classical ML models are represented as

mathematical functions or neural networks, while QML models are

depicted as quantum circuits with quantum gates as parameters.

The transpilation procedure is necessary to convert the QML cir-

cuit design to fit the native gate set of the training and inferencing

hardware. While finding the entanglement architecture from the

transpiled circuit is relatively easy as the only task is to reverse log-

ical to physical mapping while identifying and accounting for the

𝑆𝑊𝐴𝑃 gates, we note that recovering the original parameters from

decomposed and optimized single-qubit gates is non-trivial. The

reasons are multi-fold, (i) transpilation converts all single-qubit

gates to basis gates (𝑅𝑍 (𝜃 ) in the case of IBM machines). This

makes identification of the original rotation gate type difficult, (ii)

transpilation of parameterized rotation gates results in a sequence

of single-qubit gates which gets optimized with rotation gates re-

sulting from other parameterized or non-parameterized rotation

gates from the QML model, (iii) the transpilation process often adds

global phase during optimization to maintain a correct relative

phase between the states of qubits which obfuscates the original

parameters, (iv) increasing the optimization level selected during

transpilation enforces stricter optimization rules adding another

level of obscurity. These are covered in Section 2.

To the best of our knowledge, this is the first attempt to reverse
engineer a quantum machine learning circuit. Note, that our primary

contribution is the extraction of trained parameters. The extraction

of entanglement architecture and training data is beyond the scope

of the paper. The major contributions are as follows:
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Figure 2: Matrix representation of basic quantum gates,
Hadamard, Rotation-Z, Pauli-Z,𝐶𝑁𝑂𝑇 , Pauli-X, and SX (from
top left to right). An 𝑛-qubit gate is represented by a 2

𝑛 × 2𝑛
matrix.

(1) We present a methodology for reverse engineering transpiled

QML circuits.

(2) We propose a procedure for extracting the original parame-

ters from transpiled QML circuits which can be used by the

adversary to obtain a duplicate of the model.

(3) We demonstrate the efficacy of the proposed idea by reverse

engineering multi-qubit classifiers.

(4) We perform an overhead analysis and discuss potential coun-

termeasures.

1.4 Paper Structure
Section II provides a background on quantum computing and the

compilation of quantum circuits. Section III presents the threat

model. Section IV presents the proposed reverse engineering proce-

dure and Section V comprises a detailed study of the experiments.

Section VI develops countermeasures and Section VII concludes

the paper.

2 Background
2.1 Quantum Computing
In quantum computing, the fundamental unit of computation is the

quantum bit, or qubit. Unlike classical bits, which can be in one of

two states (0 or 1), a qubit can exist in a superposition state, which is

a linear combination of both 0 and 1. In Dirac notation, the state of a

qubit is represented as |𝜓 ⟩ = 𝛼 |0⟩+𝛽 |1⟩, where 𝛼 and 𝛽 are complex

coefficients that satisfy the normalization condition |𝛼 |2 + |𝛽 |2 = 1.

Here, |0⟩ = [1 0]𝑇 and |1⟩ = [0 1]𝑇 are the computational basis

vectors. Therefore, 𝑛 qubits can be used to represent a space of

𝑛-qubit states with 2
𝑛
basis states, ranging from |0...0⟩ to |1...1⟩,

and an 𝑛-qubit state |𝜓𝑛⟩ can be represented as |𝜓𝑛⟩ =
∑
2
𝑛−1
𝑖=0 𝑎𝑖 |𝑖⟩;

where

∑
2
𝑛−1
𝑖=0 |𝑎𝑖 |2 = 1.

Quantum logic gates that are analogous to classical logic gates

are used to exploit the quantum properties by allowing the inter-

action between qubits. They are the building blocks of quantum

circuits. Common quantum logic gates (Fig. 2) include the Pauli-X

(NOT) gate, which flips the state of a qubit, the CNOT gate, which

entangles pairs of qubits, Pauli-Z gate, which flips the phase of the

qubit, and rotation gates which operate using parameter values and

allow more precise control over the quantum states of the qubits.

2.2 Compilation of Quantum Circuits
Compilation of quantum circuits involves several steps to translate

the high-level quantum programs to a form compatible with the

q0
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q3

q2

q0

q1

q2

q3

q0

q1

q2

q3

Figure 3: A diagrammatic representation of the 𝑆𝑊𝐴𝑃 opera-
tion during transpilation of a quantum circuit. (1) represents
the T-shaped coupling map of the quantum hardware where
the circuit is transpiled and sent for execution. (2) shows
the transpilation procedure where a 𝑆𝑊𝐴𝑃 gate is inserted
between 𝑞1 and 𝑞2 to accommodate the physical layout of the
qubits on the quantum hardware.

particular constraints of quantum hardware. In IBM terminology,

this is referred to as transpilation [14].Gate Translation:Quantum
programs are typically written using high-level gates, which are

abstract representations of quantum operations. However, current

quantum computers only support a limited set of native instruc-

tions known as basis gates. For example, IBM quantum machines

support the following basis gates: [id, x, sx, cnot, rz]. There-
fore, any high-level instructions in a quantum program must be

translated into these native instructions to be executable on the

hardware. This translation step is essential for aligning the abstract

quantum algorithm with the practical limitations of the quantum

hardware. Coupling Map Constraints: In addition to the instruc-

tion set alignment, quantum hardware architectures face another

significant challenge known as the coupling map constraint. This

constraint arises from the physical layout of the qubits on the hard-

ware. For instance, Fig. 3 (1) demonstrates a T-shaped coupling map

of quantum hardware of 4 qubits, where the nodes represent physi-

cal qubits. An edge between two nodes indicates that a two-qubit

operation (such as a 𝐶𝑁𝑂𝑇 gate) between those physical qubits is

directly allowed. Suppose we have a sample three-qubit quantum

program that we want to run on this quantum hardware. To execute

the program, each logical qubit in the program must be mapped

to a separate physical qubit on the hardware. However, the 𝐶𝑁𝑂𝑇

gate between qubits q2 and q3 cannot be directly executed with

this mapping because there is no edge in the coupling map between

q2 and q3, as shown in Fig. 3. This is an example of a coupling

constraint. To resolve this constraint, qubits must be routed using

the SWAP operation so that logical qubits involved in two-qubit

operations become nearest neighbors. A SWAP gate between q1

and q2 swaps the state of the physical qubits q1 and q2 allowing

the𝐶𝑁𝑂𝑇 gate to be applied between q2 and q3 via q1. During the

transpilation procedure, the 𝑆𝑊𝐴𝑃 gate in Fig. 3(2), gets converted

into a sequence of three 𝐶𝑁𝑂𝑇 gates with single-qubit rotation

gates in between. These rotation gates are not part of the original

QML model (see Fig. 5(2))

2.3 Quantum Neural Networks
Quantum Neural Networks (QNNs) represent the intersection of

quantum computing and machine learning [9]. Quantum circuits

when designed in such a way that they embed classical data as
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Figure 4: A circuit representation of a PQC. In state embed-
ding, the 𝑅𝑌 (𝑧𝑖 ) gates are used for basis encoding to map
the data to the computational basis states. The parameter-
ized layers comprise a cascade of 𝐶𝑅𝑍 (𝜃𝑖 ) gates that provide
the entanglement as well as a finer-grained search into the
Hilbert Space. Measurement operators that follow, measure
the outcome of individual qubits to derive an output.

states of qubits, can perform tasks similar to classical neural net-

works like regression and classification.QuantumData Encoding:
This is the initial step in designing a QNN where quantum data

encoding embeds the classical data in the Hilbert space through the

quantum states of the qubits. Methods include amplitude encoding,

which normalizes and encodes data into the amplitudes of qubits,

angle encoding, which converts data into rotation angles applied

to qubits, and basis encoding, which maps binary data directly to

computational basis states. Parameterized Quantum Circuits
(PQCs): The core of a QNN is the Parameterized Quantum Circuit

(PQC) (Fig 4), consisting of adjustable quantum gates. PQCs include

quantum rotation gates like 𝑅𝑋 (𝜃 ), 𝑅𝑌 (𝜃 ), and 𝑅𝑍 (𝜃 ) with tun-

able parameters. The circuit architecture defines qubit interactions,

and entanglement between qubits enhances computational power.

PQCs allow QNNs to perform complex transformations like convo-

lution, akin to layers in classical neural networks. Measurement:
Measurement extracts classical information from quantum states

after computation. Quantum states collapse upon measurement,

revealing the final qubit state. The probability of each basis state

is measured to derive outputs. Measurement results are processed

classically, aggregating outcomes or applying post-processing tech-

niques.

2.4 Related Work
Reverse engineering attacks on convolutional neural networks

(CNNs) running on hardware accelerators have been explored be-

fore [3]. It is shown in the paper that side-channel attacks on mem-

ory can help adversaries infer network structure and even the

weights of the CNN in spite of data encryption. Dynamic zero-

pruning in CNN accelerators can leak weight values as well which

can be protected by hiding off-chip memory access patterns. Black-

box neural networks in the classical domains can also be attacked by

querying it and observing the outputs [7]. A metamodel is trained

on the observed set of outputs to predict the model architecture

and the queries and attack strategies can be optimized using game

theoretic solutions.

The above attacks are mostly concerned with stealing the exact

parameters and architecture of ML models via side channels and

query optimization. Reverse Engineering parameters of classical ML

models during inferencing on untrusted third-party cloud providers

is generally not an issue as it is usually avoided by sandboxing

the model and providing client access through higher-level APIs.

However, such flexibility is not available in the quantum domain

as the QML model is a quantum circuit that needs to be executed

on the quantum hardware. Although recent literature [13] assumes

that adversaries sharing the untrusted cloud providers with users

can steal IP such as training data, we note that such attacks are

not straightforward as even recovering rotation of a single-qubit

rotation gate is non-trivial due to the transpilation process.

3 Threat Model and Analysis
3.1 Threat Model
We assume that the quantum cloud vendor or a malicious entity

within the vendor is untrustworthy or at the very least honest but

curious. They may not alter the QML circuit or its outcome but

may be interested in making a profit or just gaining deeper insight

into the model of the victim. This is true since trained QML models

are extremely expensive and valuable (as pointed out in Section

1). For profit-making, an adversary would have to offer their own

services using the stolen model. With access to the transpiled copy

of the QML circuit during inference, the adversary can strip off

the state preparation circuit and reuse the parametric part of the

QNN. Note, that we assume that the QML model is trained on

non-proprietary hardware which makes the design of the quan-

tum circuit and training parameters valuable. To gain profit from

the model, he will attach the transpiled version of the new state

preparation circuit corresponding to the new inference data and

execute it on the hardware that was used to transpile the original

QML model. However, this will restrict the benefit of the model

since it cannot be executed on other hardware. Furthermore, the

adversary will need to know the logical to physical qubit mapping

to attach the state preparation circuit correctly. Having access to

the pre-transpiled version of the model is attractive from several

perspectives. First, the adversary can transpile the model to any

quantum hardware and qubit technology increasing the sell-ability

of the stolen model. Second, the adversary can avoid legal issues by

identifying, removing, or tampering with any possible embedded

watermark in the original model or embedding their own water-

mark. Moreover, third, the adversary can refine the model for their

target application by training it further, if needed. RE of the whole

QML model is a multi-step process however, we focus on the re-

covery of the parametric rotation gates in this paper as the first

step with the quantum classifiers as a test case. The objective of the

attacker is to guess the original rotations such that the transpiled

copy of the reverse-engineered circuit closely matches the original

transpiled circuit.

3.2 Adversary Capabilities
We assume the untrusted third-party provider possesses: (i) access

to the white-box version of the transpiled version of the circuit of

the QML model. This will act as the golden model that will be used

to validate his guess about the rotation values of the parametrized

gates, (ii) the transpiler which can be used to transpile the RE

version of the model and validate their guess, (iii) substantial com-

putational resources at their disposal to accelerate the search for
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parameters enabling quickly and reduce the error between original

and RE’ed models, (iv) historical data, logs, and usage patterns of

the QML model, which can be leveraged to gain additional insights

into the hyperparameters of the QML model.

4 Proposed Idea
We attempt to extract the original architecture of the QML model

of the user by identifying the two main components of the PQC-

the entanglement and the type of rotation gates and follow it up

by trying to determine the original parameters from the transpiled

circuit. For the following setup, we consider the basis gate set of

[id, x, sx, cnot, rz] that is common to almost all the IBM

machines, which means that every logic gate of the circuit will be

expressed as a combination of the gates from the basis gate set in

the transpiled form of the user QML model.

4.1 Reversing Entanglement
Strong Entanglement in PQCs is realized primarily by introducing

cascading layers of 𝐶𝑁𝑂𝑇 , 𝐶𝑌 , and 𝐶𝑍 gates. The configuration

of these 2-qubit gates comprise one component of the architecture

of the PQC. CNOT gates are straightforward to reverse as they

are included in the basis gate set. However, this is true only when

the coupling is linear or fully connected. In the case of a T-shaped

coupling map where the 𝐶𝑁𝑂𝑇 exists between qubits that are not

connected physically, there is a 𝑆𝑊𝐴𝑃 gate that is broken down as

in Fig. 5(2). To obtain the exact order of the CNOT, the transpiled

circuit is parsed and the connections are identified. CY gates are

transpiled as a combination of a𝐶𝑁𝑂𝑇 gate sandwiched between an

𝑅𝑍 (−𝜋/2) gate and an 𝑅𝑍 (𝜋/2) gate (Fig. 5(2)). In a similar fashion,

the CZ is transpiled as a 𝐶𝑁𝑂𝑇 gate between two Hadamard (𝐻 )

gates (Fig. 5(2)).

The procedure to obtain the original architecture in terms of the

arrangement of these gates involves parsing the transpiled circuit

and obtaining the arrangement of the 𝑅𝑍 (𝜃 ) and the 𝑆𝑋 gates for

every qubit and then using the LUT to identify the type of 2-qubit

gate used (Algorithm 1).

4.2 Identifying Original Parametric Gates
The parameterized gates in a PQC provide finer-grained control

over the quantum state by allowing the exploration of a larger

portion of the Hilbert space using the rotation angles. Primarily,

rotations in the 𝑥 , 𝑦, and 𝑧 direction produce rotation gates 𝑅𝑋 (𝜃 ),
𝑅𝑌 (𝜃 ), and 𝑅𝑍 (𝜃 ) respectively. Of these gates, we can find the

𝑅𝑍 (𝜃 ) in the basis gate set of IBM machines. Therefore, the tran-

spilation procedure of the rotation gates involves the expression of

𝑅𝑋 and 𝑅𝑌 as some combination of 𝑅𝑍 and some other gate from

the basis gate set.

4.2.1 RX gates: 𝑅𝑋 gates can be represented as a combination of

𝑅𝑍 and Hadamard gates:

𝑅𝑋 (𝜃 ) = 𝐻 · 𝑅𝑍 (𝜃 ) · 𝐻
= 𝑅𝑍 (𝜋/2) · 𝑆𝑋 · 𝑅𝑍 (𝜋 + 𝜃 ) · 𝑆𝑋 · 𝑅𝑍 (𝜋/2)

The transpilation of the same can be observed from Fig 5(1). We

can identify potential 𝑅𝑋 gates from the pattern of gates (𝑆𝑋 and

𝑅𝑍 ) in the transpiled circuit. It is observed that when the 𝑅𝑋 gate

is transpiled, the starting and the ending parameters of the 𝑅𝑍

gate are 𝜋/2. However, it is also observed that multiple 𝑅𝑋 gates

with the same or different parameters when stacked together pro-

duce the same order of gates with different parameter values after

transpilation:

𝑅𝑋 (𝜃1) ...𝑅𝑋 (𝜃𝑛) = 𝐻 · 𝑅𝑍 (𝜃 ′) · 𝐻
= 𝑅𝑍 (𝜋/2) · 𝑆𝑋 · 𝑅𝑍 (𝜙) · 𝑆𝑋 · 𝑅𝑍 (𝜋/2)

Therefore, while reversing, we consider a single 𝑅𝑋 gate since it

is easier to obtain the parameter for a single 𝑅𝑋 gate and it also

reduces the number of parameters in the reversed circuit.

4.2.2 RY gates: 𝑅𝑌 gates can be represented as a combination of

𝑅𝑋 and PauliZ gates:

𝑅𝑌 (𝜃 ) = 𝑍 · 𝑅𝑋 (𝜃 ′) · 𝑍

After adjusting the global phase and expressing PauliZ and𝑅𝑋 gates

as a combination from the basis gate set, 𝑅𝑌 (𝜃 ) can be represented

as

𝑅𝑌 (𝜃 ) = 𝑆𝑋 · 𝑅𝑍 (𝜃 + 𝜋) · 𝑆𝑋 · 𝑅𝑍 (3𝜋)

The transpilation is observed in Fig. 5(1). However, we find the

same pattern again for multiple 𝑅𝑌 gates stacked together:

𝑅𝑌 (𝜃1)...𝑅𝑌 (𝜃2) = 𝑆𝑋 · 𝑅𝑍 (𝜃 ′) · 𝑆𝑋 · 𝑅𝑍 (3𝜋)

It can be observed that while transpiling the 𝑅𝑌 gate, we obtain a

pattern of 𝑆𝑋 and 𝑅𝑍 gates which can be used to extract the gate

and the parameter values from the transpiled circuit.

4.2.3 RZ gates: 𝑅𝑍 gates are a part of the basis set hence the

presence of a single or a sequence of 𝑅𝑍 gates results in a single

𝑅𝑍 gate in the transpiled circuit.

4.2.4 Multiple Rotation Gates: In a case where multiple rotation

gates are stacked together, they get transpiled as a pattern 𝑅𝑍 (𝜃1) ·
𝑆𝑋 · 𝑅𝑍 (𝜃2) · 𝑆𝑋 · 𝑅𝑍 (𝜃3), irrespective of the order and number of

the 𝑅𝑋 , 𝑅𝑌 , and 𝑅𝑍 gates in the circuit. Therefore, on observing

a similar pattern, we can reverse it to a combination of single

occurrences of the three rotation gates:

𝑅𝑍 (𝜃1) · 𝑆𝑋 · 𝑅𝑍 (𝜃2) · 𝑆𝑋 · 𝑅𝑍 (𝜃3) =
𝑅𝑋 (𝜙1) · 𝑅𝑌 (𝜙2) · 𝑅𝑍 (𝜙3)

Again, in this fashion, the number of parameters is reduced while

reversing the circuit and obtaining a circuit that is architecturally

closer to the QML model of the user with the new parameters

functionally the same as the trained ones.

4.3 Extracting Parameters
While extracting the parameter values during the reverse engi-

neering procedure, we note that the total phase of the circuit is

always less than 2𝜋 . Therefore, we start by reducing the search

space for the parameters of the rotation gates to [−𝜋, 𝜋]. Once,
the transpiled circuit is parsed and the pattern of rotation gates

is identified, a naive approach to determining the parameters is

to perform a brute force search in [−𝜋, 𝜋] with a certain step size.

The smaller the step size, the lesser the parameter estimate error.

As observed in Algorithm 1, we define two functions, 𝑝𝑎𝑟𝑠𝑒𝑟 , and

𝑟𝑒𝑣𝑒𝑟𝑠𝑒 . In the 𝑝𝑎𝑟𝑠𝑒𝑟 function, we define 𝑝𝑎𝑟𝑎𝑚 as a list of all
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Figure 5: The adversary designs a Look-Up Table (LUT) based on basic circuit transpilations. The circuits shown here are
transpiled on a backend having a linear coupling map with a basis set of [id, x, sx, cnot, rz] at an optimization level set
to 1. In the diagram, (1) shows the transpilation of the Hadamard gate and the basic Rotation gates (𝑅𝑋 (𝜃 ), 𝑅𝑌 (𝜃 ), 𝑅𝑍 (𝜃 )); (2)
shows the transpilation of basic 2-qubit entanglements. Since 𝐶𝑁𝑂𝑇 is a part of the basis set, it remains as is and the other
gates (𝐶𝑌 , 𝐶𝑍 ) get transpiled into a combination of the basis gates; (3) shows the transpilation of a combination of multiple
𝑅𝑋 (𝜃 ), multiple 𝑅𝑌 (𝜃 ), and multiple 𝑅𝑍 (𝜃 ) gates. They can be reversed into a single parameter of the corresponding rotation
gate; and (4) shows the transpilation of a combination of 𝑅𝑋 (𝜃 ), 𝑅𝑌 (𝜃 ), and 𝑅𝑍 (𝜃 ).

values between −𝜋 and 𝜋 with a user-defined step size of 𝑁 . We

parse the transpiled circuit with respect to every qubit and iso-

late the associated gates. We pass this list of gates to the 𝑟𝑒𝑣𝑒𝑟𝑠𝑒

function that refers to the LUT to identify which corresponding

combination of gates suits best for the qubit and transpile it for

every possible combination from 𝑝𝑎𝑟𝑎𝑚 comparing the difference

between the parameters of the original transpiled circuit and the

reverse-engineered transpiled circuit. The closest set of parameters

in the reverse-engineered transpiled circuit is the one where the

difference between the parameters is minimal. The LUT is designed

to have the transpilation of basic one-qubit and two-qubit gates but

can be extended for more complex operations. Since the extraction

of parameters is done by transpiling the circuit for every parameter

till the closest set is obtained, the time complexity of the algorithm

turns out to be 𝑂 (𝑘2𝜋/𝑁 ); where 𝑘 is the number of parameters in

the corresponding combination of gates from the LUT, and 𝑁 is the

step size.

5 Results
5.1 Simulation Setup
Traning: We tested the idea of reverse engineering on multiple

QML models to extract their parameters. The QML models have

been implemented in Pennylane [1] to utilize the lightning.qubit
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Algorithm 1 Reverse engineering of QML parameters

1: procedure parser(𝑞𝑐_𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑙𝑒𝑑 , 𝐿𝑈𝑇 )
2: 𝑝𝑎𝑟𝑎𝑚 ← [−𝜋, 𝜋]
3: 𝑡𝑒𝑚𝑝 ← []
4: for 𝑞𝑢𝑏𝑖𝑡 in 𝑞𝑐_𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑙𝑒𝑑 do
5: for 𝑔𝑎𝑡𝑒 in 𝑞𝑢𝑏𝑖𝑡 do
6: 𝑡𝑒𝑚𝑝 ← 𝑔𝑎𝑡𝑒

7: end for
8: 𝑞𝑐_𝑛𝑒𝑤 ← REVERSE(𝑡𝑒𝑚𝑝, 𝑝𝑎𝑟𝑎𝑚, 𝐿𝑈𝑇 )
9: end for
10: return 𝑞𝑐_𝑛𝑒𝑤

11: end procedure
12: procedure reverse(𝑔𝑎𝑡𝑒_𝑙𝑖𝑠𝑡 , 𝑝𝑎𝑟𝑎𝑚, 𝐿𝑈𝑇 )

13: 𝑔𝑎𝑡𝑒 ← 𝑔𝑎𝑡𝑒_𝑙𝑖𝑠𝑡 .𝑠𝑝𝑙𝑖𝑡 [CNOT]
14: 𝑡𝑒𝑚𝑝2← 𝐿𝑈𝑇 (𝑔𝑎𝑡𝑒)
15: 𝑡𝑒𝑚𝑝2_𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑙𝑒𝑑 ← 𝑡𝑒𝑚𝑝2.𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑙𝑒

16: 𝑑𝑖 𝑓 𝑓 ← Δ(𝑡𝑒𝑚𝑝2_𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑙𝑒𝑑.𝑝𝑎𝑟𝑎𝑚,

𝑞𝑐_𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑙𝑒𝑑.𝑝𝑎𝑟𝑎𝑚)
17: for 𝑑 in 𝑑𝑖 𝑓 𝑓 do
18: if 𝑑 = min(𝑑𝑖 𝑓 𝑓 ) then
19: return 𝑡𝑒𝑚𝑝2, 𝑡𝑒𝑚𝑝2_𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑙𝑒𝑑.𝑝𝑎𝑟𝑎𝑚

20: end if
21: end for
22: end procedure

feature for performing linear algebra calculations faster. All QML

models have been trained using the Gradient Descent Optimizer

with a learning rate of 0.05, and a Mean Squared Error loss function

has been used to evaluate the performance. The transpilation of

the circuits for the QML models has been done using the transpiler

library of Qiskit [4] keeping a linear coupling map, and a basis gate

set of [id, x, sx, cnot, rz]. The reverse engineering of the

transpiled circuits to extract the parameters has been done on the

same setup as the transpilation procedure, running on a machine

with 16GB RAM on an Intel Core i7-6700 CPU at a clock frequency

of 3.40 GHz. Dataset: We conduct our experiments on the MNIST

dataset [2] picking labels as per the capacity of the QML model as

a proof-of-concept of our approach.

5.2 Reversing QNNs
We elaborate on a few examples to validate our concerns about

the untrusted third-party vendor performing a reverse engineer-

ing operation of the transpiled circuits of the user to extract the

parameters and a QML model that performs as well as the user-

designed QML model. Example 1:We design a 1-qubit classifier

to train it on the 0 and 1 labels of the MNIST dataset to perform

binary classification on the data. To evaluate the efficacy of the

reverse engineering procedure on the 1-qubit classifier, we obtain

the transpiled circuit of the QML model as a QASM file. We can

strip off the state embedding and obtain the transpiled circuit as

observed in Fig. 6. We parse this circuit using Algorithm 1 and find

the order of basis gates to be 𝑅𝑍 (𝜃1) · 𝑆𝑋 · 𝑅𝑍 (𝜃2) · 𝑆𝑋 · 𝑅𝑍 (𝜃3)
which matches to (4) in Fig. 5. Further, we apply the corresponding

circuit to reverse engineer a set of parameters for the combination

𝑅𝑋 (𝜙1) · 𝑅𝑌 (𝜙2) · 𝑅𝑍 (𝜙3). On comparing the training details we

Rx(𝜃0)q0 Ry(𝜃1) Rx(𝜃2) Ry(𝜃3)

q0 Rz(Θ0) Rz(Θ1)SX Rz(Θ2)SX

Rx(𝜙0)q0 Ry(𝜙1) Rz(𝜙2)

Transpilation

Reverse Engineering

Figure 6: Diagram representing a 1-qubit classifier. It gets
transpiled post-training and gets reverse-engineered to a
classifier having three parameters. Both the user-designed
and the reverse-engineered classifier show the same training
accuracy.

can see, that the original circuit has a training accuracy of ∼70.29%,
and the training accuracy of the reverse-engineered QML model

after transpilation is almost the same with an error of the order

10
−16

.

Example 2: In this scenario, we consider a 2-qubit classifier and

investigate the reverse engineering in two cases– when the circuit

has (i) one layer, and (ii) two layers (Fig. 7). We follow similar steps

as in Example 1 to reverse when the circuit has one layer. We obtain

the transpiled circuit of the QML model in the form of a QASM

file, parse it, match the order of gates qubit by qubit using the 𝐿𝑈𝑇 ,

and obtain the parameters. However, in the second case we find

that on repeating a layer, the transpilation procedure combines the

rotation gates between the𝐶𝑁𝑂𝑇 gates thus modifying the original

architecture of the QML model designed by the user. To reverse

engineer this circuit and extract the parameters, we take a similar

route. However, this time we obtain a circuit that is not exactly

the same based on design but has an equal number of parameters.

Also, comparing the training accuracy of both we find that the

original model has a training accuracy of ∼69.47% and the reverse-

engineered QML model has an accuracy of ∼67.22% which is a loss

of 3.2% in accuracy and a mean error of 6.10 × 10−2 in the reverse

engineered parameters.

Table 1: Error between the original and reverse-engineered
classifiers (𝑖-qubit, 𝑗-layer)

Classifier #Params Parameter Acc.Error %Mean SD
1Q 4 5.94e-02 8.55e-02 1e-16

2Q; 1-layer 6 5.33e-02 2.50e-02 1.7

2Q; 2-layer 12 6.10e-02 4.43e-02 3.2

2Q; 3-layer 18 8.45e-02 8.99e-02 5.7

4Q; 1-layer 8 7.29e-02 7.73e-02 2.1

4Q; 2-layer 16 9.29e-02 9.91e-02 5.9

4Q; 3-layer 24 1.18e-01 9.79e-02 6.3

8Q; 1-layer 16 6.16e-02 3.84e-02 4.1

8Q; 2-layer 32 8.71e-02 3.69e-02 5.3

8Q; 3-layer 48 1.71e-01 2.81e-01 7.6
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Figure 7: Transpilation and reverse engineering of the 2-qubit classifier. (1) represents a single layer of the classifier. The
transpiled form gets reverse-engineered by the adversary using the LUT to obtain a circuit with a similar number of parameters
as the original circuit. (2) shows two layers of the same circuit design. Here the adversary performs the reverse-engineering
using a different case from the LUT to obtain a circuit with the same number of parameters. The reverse-engineered circuits
show a minimal drop in training accuracy compared to the original model.
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Figure 8: Plot demonstrating the time taken to reverse engi-
neer QML classifiers. The X-axis represents the number of
qubits in the classifier design. These classifiers have 3 layers.
It can be observed that the overhead for reverse engineering
QML classifiers is significantly high for a higher number of
qubits.

5.3 Error Analysis
We measure the efficacy of the reverse engineering procedure by

calculating the difference in the parameters of the transpiled cir-

cuit of the user-designed QML model and the reverse-engineered

circuit of the QML model. We report this as the error value for the

reverse-engineered circuit. A lesser error indicates that the reverse-

engineered circuit is architecturally and functionally closer to the

original circuit. Table 1 shows the mean and standard deviation

of the error values of the parameters. We also calculate an error

as the percentage decrease in the testing accuracy of the classifier

that is observed between the user-designed QML model and the

reverse-engineered QML model. We can observe a considerable in-

crease in the mean error while extracting the parameters by reverse

engineering as the circuit design involves more qubits while main-

taining a decently close training accuracy with the user-deigned

QML model. This increase is justified in the sense that the error

incurred while reverse engineering one parameter gets accumu-

lated over the entire design of the circuit, thus increasing with the

increase in complexity and number of parameters.

5.4 Overhead Analysis
We analyze the overhead incurred by the adversary while extract-

ing the parameters using reverse engineering. From Fig. 8, we can

Table 2: Effect of step size on error and reverse engineer time
for a 1-qubit classifier

Step size Time (in s) Mean error
1e-01 51 5.94e-02

1e-02 6.62e+02 3.66e-03

1e-03 8.52e+05 5.01e-04

Table 3: Increase in time taken to RE a 4-qubit classifier on
increasing the layers

# Layers Time (in s)
1 1.51e+04

2 2.81e+04

4 7.75e+05

8 > 1e+06

16 > 1e+07

observe that although the time taken to reverse engineer a cir-

cuit representing QML classifiers increases considerably with the

increase in the number of qubits, it is quite possible to perform

successful reverse engineering to a certain degree keeping the mean

error of the extracted parameters low. We also analyze the time

taken to extract the parameters by reverse engineering the classifier

using a lower step size in the brute force approach thus increasing

the granularity of the search. We perform a set of experiments on

the 1 qubit classifier (Fig. 6) and present the results in Table 2. We

note that the time increases exponentially with reduced step size

even by a small amount (=0.1) and the corresponding decrease in the

mean error of the parameters observed post the reverse engineering

procedure is not comparable. Therefore, considering the low error

and difference in the accuracy of testing of the original and the

reverse-engineered circuit of the QML model, we conclude that

even a larger step size of 0.1 is sufficient to extract the parameters.

5.5 Considerations for Noise
The experiments have been performed on noiseless simulators.

Inherent noise in quantum hardware directly affects the parame-

terized rotation gates during the training phase of a QML model.

However, in the attack model, the adversary obtains the trained

model and performs RE on it to extract the trained parameters.
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Figure 9: Adding an extra layer of rotation gates with fixed
parameters to the existing QML model to resist RE attack.
The shaded portion in red represents the fixed parameters
which get transpiled as rotation gates forcing the adversary
to RE them. This approach increases the overall time for the
parameter extraction.

Therefore, the RE procedure is unaffected by noise in quantum

hardware and hence, the usage of noiseless simulations does not

alter the concept of RE and the overhead analysis.

6 Countermeasures
We develop countermeasures against potential RE attacks on QML

models based on two main observations: (i) The time taken to per-

form RE on a QML classifier increases with the number of layers

in the circuit (Table 3), and (ii) The time taken to RE and the mean

error in reverse-engineered parameters and the testing accuracy in-

creases with the number of parameters in the QML circuit (Table 1).

We perform experiments to develop countermeasures considering

a baseline 2-qubit QML classifier with three layers.

6.1 Increasing the number of layers
We propose to add dummy rotation gates with fixed parameters

to the user-designed QML model, alongside the trainable param-

eters. This approach aims to increase the RE effort without hurt-

ing training time significantly. On transpiling the modified circuit,

the trainable and fixed parameters get optimized together making

it impossible for an adversary to distinguish between them. The

adversary would try to reverse engineer all the parameters consid-

ering them to be trainable, thus increasing the overhead of the RE

significantly. In Fig. 9 example, the user circuit has six trainable pa-

rameters and the modified circuit has ten (six trainable, four fixed).

From Fig. 12(1), we can see the drastic increase in RE time with

an increase in the number of layers in the classifier. The user can

choose to repeat the layers of trainable parameters to increase the

granularity of the QML model and increase the layers of the fixed

parameters to make the model RE resistant.

6.2 Increasing the number of qubits
Another approach to resist RE without affecting training time sig-

nificantly is by adding dummy qubits with fixed parameters. The

rotation gates with fixed parameters get transpiled as normal rota-

tion gatesmaking it indistinguishable from the trainable parameters.

In Fig. 10 example, the user adds an extra qubit, 𝑞𝑝 to the 2-qubit

classifier with three fixed parameters. From Fig. 12(2), we obtain a
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Figure 10: Adding extra qubits with fixed parameters to resist
RE attack. The three rotation gates with fixed parameters are
added to the existing QML model to increase the RE time.
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Figure 11: Addition of an extra qubit 𝑞𝑝 as well as an extra
layer of fixed parameters (shaded in red) for RE resistance.
The adversary needs to RE and extract 13 parameters instead
of the 6 trainable ones which increases the overhead signifi-
cantly.

3.41× increase in the overhead on adding 8 qubits with fixed param-

eters to the classifier. The user can increase the number of layers

with the trainable parameters to make the classifier better and si-

multaneously increase the number of qubits with fixed parameters

to resist RE attacks.

6.3 Combining dummy layers and qubits
To obtain a higher level of security against RE, the user may opt to

add dummy qubits as well as dummy layers to his classifier which

will increase the number of fixed parameters. This way the user

can keep the circuit design compact by making a conscious balance

between the number of qubits and layers instead of adding only

extra qubits or layers. In Fig. 11 example, the user adds a layer

of fixed parameters alongside an extra qubit, 𝑞𝑝 to the existing 2-

qubit classifier. The adversary in this case has to RE 13 parameters

instead of the 6 trainable ones. From Fig. 12(3), we observe an almost

exponential growth in RE time. Similar to the above-mentioned

approaches, the user can choose to increase the layers of fixed

parameters and the number of dummy qubits without affecting the

training overhead.
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Table 4: Analysis of the performance overhead on a 2-Q, 3-
layer classifier on including the countermeasures

Modification type %Difference in Acc.
Dummy Qubit 8.76

Extra Layer 7.01

Extra Layer and Dummy Qubit 3.53
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Figure 12: Plots representing the difference in time taken to
RE the QML circuit before and after adding the fixed param-
eters. The experiments are done on an existing user QML
model of 2 qubits and 3 layers. We can observe from the plots
that adding fixed parameters to extra qubits and layers to-
gether will increase the overheadmore, thus providing better
security.

6.4 Overhead analysis
We analyze the impact of the proposed countermeasures on the

training performance of the original QML model. For a case study,

we consider a baseline QML model with two qubits and three layers

(Fig. 9) that has 18 trainable parameters. We consider all three cases,

adding a layer of 4 fixed parameters (Fig. 9), adding a dummy qubit

with 3 fixed parameters (Fig. 10), and adding a dummy qubit and

an extra layer with seven parameters (Fig. 11) and compare their

performance with the user circuit. As observed in Table 4, there

is a slight decrease in the performance of the modified circuits on

adding a dummy qubit or an extra layer.

7 Conclusion
We explore reverse engineering (RE) of transpiled Quantum Ma-

chine Learning (QML) circuits as an attack model by untrusted

third-party cloud providers. We propose an approach to perform

RE on QML circuits and extract the parameters. We test the efficacy

of our approach by training the models and performing RE on them

and conclude from the results that reverse-engineered QML mod-

els can achieve training accuracies nearly identical to the original

models in a reasonable time, underscoring the severity of the threat.

We also include countermeasures like adding fixed, non-trainable

parameters to the QML circuit design that increase the overhead of

RE significantly for the adversary, which users can adapt to protect

the IP of their design.
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