Check for
Updates

The Quantum Imitation Game: Reverse Engineering of Quantum
Machine Learning Models

Archisman Ghosh
apg6127@psu.edu
Pennsylvania State University
State College, PA, USA

Abstract

Quantum Machine Learning (QML) is an amalgamation of quan-
tum computing paradigms with machine learning models, provid-
ing significant prospects for solving complex problems. However,
with the expansion of numerous third-party vendors in the Noisy
Intermediate-Scale Quantum (NISQ) era of quantum computing,
the security of QML models is of prime importance, particularly
against reverse engineering, which could expose sensitive parame-
ters and proprietary algorithms embedded within the models. We
assume the untrusted third-party quantum cloud provider is an
adversary having white-box access to the transpiled version of the
user-designed trained QML model during inference. Although the
adversary can steal and use the model without any modification,
reverse engineering (RE) to extract the pre-transpiled copy of the
QML circuit will enable re-transpilation and usage of the model for
various hardware with completely different native gate sets and
even different qubit technology. The information about the param-
eters (e.g., number of parameters, their placements, and optimized
values) can allow further training of the QML model if the adver-
sary plans to alter the QML model to tamper with the watermark
and/or embed their own watermark or refine the model for other
purposes. In this first effort to investigate the RE of QML circuits,
we examine quantum classifiers by comparing the training accuracy
of original and reverse-engineered models across various sizes (i.e.,
number of qubits and number of parametric layers) of Quantum
Neural Networks (QNNs). We note that multi-qubit classifiers can
be reverse-engineered under specific conditions with a mean error
of order 1072 in a reasonable time. We also propose adding dummy
rotation gates in the QML model with fixed parameters to increase
the RE overhead for defense. For instance, an addition of 2 dummy
qubits and 2 layers increases the overhead by ~ 1.76 times for a
classifier with 2 qubits and 3 layers with a performance overhead
of less than 9%. We note that RE is a very powerful attack model
which warrants further efforts on defenses.

CCS Concepts

« Hardware — Quantum computation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASHES °24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1235-7/24/10

https://doi.org/10.1145/3689939.3695783

48

Swaroop Ghosh
szg212@psu.edu
Pennsylvania State University
State College, PA, USA

Keywords

Quantum Machine Learning, Reverse Engineering, Quantum Secu-
rity

ACM Reference Format:

Archisman Ghosh and Swaroop Ghosh. 2024. The Quantum Imitation Game:
Reverse Engineering of Quantum Machine Learning Models. In Proceedings
of the 2024 Workshop on Attacks and Solutions in Hardware Security (ASHES
"24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3689939.3695783

1 Introduction

Quantum Machine Learning (QML) merges the cutting-edge capa-
bilities of quantum computing with sophisticated machine learn-
ing techniques, offering the potential to solve complex problems
intractable for classical computers [10]. QML circuits involve quan-
tum properties like entanglement and superposition to explore the
Hilbert space more effectively and thus are able to process and
analyze vast amounts of data with enhanced speed and efficiency.
However, with the advancement in QML design and the increase
in the complexity of the models, there is an increased demand for
quantum hardware. To cater to this increasing demand, quantum
hardware providers have taken the initiative to provide QML hard-
ware as a service to aid the design and utilization of advanced
QML models. In the noisy intermediate-scale quantum (NISQ) era
of quantum computing [8], the number of third-party cloud-based
quantum hardware providers will only increase thus reducing the
cost of using quantum hardware. One pressing issue is the potential
incentive of some rogue adversary or an untrusted third-party cloud
provider to steal trained QML circuit designs, posing significant
threats to the privacy and integrity of these models [11].

1.1 Why OML Models are at Risk

QMLs face significant security risks due to the following reasons:
High training cost: Quantum computers are expensive e.g.,
$1.6 per second for IBM’s superconducting qubits and $0.01 per
shot for TonQ’s Trapped Ion (TI) qubits. This is at least 10°X costlier
than classical resources which is priced ~ $2.1 X 107° per second.
QML models require hundreds of training epochs each with thou-
sands of quantum circuit executions (depending on the size of the
training dataset). Each circuit is executed for thousands of trials to
get expectation values. This makes the trained and even partially
trained QML model very expensive. Compared to current state-
of-the-art ML models e.g., Gemini that take millions to billions of
dollars for training, QML models at scale may cost many orders of
magnitude higher making them extremely valuable. High training
time: Current state-of-the-art ML models e.g., ChatGPT3 took ~ 1
month for training using thousands of dedicated GPUs. Quantum

https://orcid.org/0000-0002-0264-6687
https://doi.org/10.1145/3689939.3695783
https://doi.org/10.1145/3689939.3695783
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689939.3695783&domain=pdf&date_stamp=2024-11-19

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

resources are scarce whereas their demand is extensive. As a re-
sult, both hardware, as well as simulators (whose computation time
scales exponentially with qubit size) hosted in the cloud, incur long
wait queues. This is true for even dedicated access to quantum
computers such as membership of a Quantum Hub with a small set
of users. Therefore, training a large QML model might take a signif-
icant amount of time (e.g., months to years). Hosting of QMLSs on
the quantum cloud: Since QML providers may not possess their
own quantum hardware, they may rely on a third-party quantum
cloud for hosting the model. This will lead to the rise of QMLaaS [5]
providing access to clients only through input-output queries via
external APIs. The quantum cloud provider may have white-box ac-
cess to the expensive model and training data. Miscellaneous IPs:
The untrained QML IPs include model architecture (i.e., entangle-
ment, number of parameters, number of layers, measurement basis)
and training data embedded in state preparation circuit. The trained
QML IPs include optimized parameters and input data embedded
in the state preparation circuit during inference.

1.2 Attack Model and Motivation

During inference operation, the input data is first appended as a
state preparation circuit within the trained QML model. Next, the
model is transpiled for target quantum hardware where logical
qubits are mapped to physical qubits, SWAP gates are added to
meet the hardware coupling constraints and complex gates, and
the trained parametric rotation gates are decomposed into native
gates. Finally, the transpiled QML circuit is sent to the quantum
cloud for execution. Access to the white-box architecture of the
trained QML circuit will allow the untrusted cloud providers to
potentially steal and use it. For example, the adversary can strip off
the state preparation circuit to extract the trained portion of the
QNN and attach their own input data for inference on the same
target hardware. They can also sell the trained portion of the QNN.
For such attacks, knowing the original QML model and optimized
parameter values is not important.

Nevertheless, knowing the original entanglement and optimized
parameters can provide adversaries with several additional advan-
tages such as: (i) enabling the transpilation and use of the model
on different hardware platforms with varying native gate sets and
qubit technologies. This flexibility might not be achievable with
the hardware-specific transpiled version; (ii) revealing the entan-
glement architecture of the QNN, which can be sold separately
or utilized to train a clone model with different datasets; (iii) pro-
viding detailed information about the parameters, including their
optimized values and placements, facilitating further training or
tampering with the QML model, such as watermark alteration or
embedding. This threat is comparable to the usage of reverse engi-
neering and decompilation techniques that are used by adversaries
in classical hardware system design to bypass watermarking mea-
sures and counterfeiting architecture [6].

1.3 RE and Associated Challenges

Reverse engineering is the idea of analyzing a model and trying
to recreate its design preserving its architectural nuances [12].

Archisman Ghosh & Swaroop Ghosh

k=
!
!

A\ Stolen Model |

Engineering

EEE ULl Reverse
® {é} g Untrusted

Vendor

Figure 1: The flow diagram describes reverse engineering
of QML parameters by untrusted third-party vendors acting
as adversaries. (1) shows the user training and transpiling
a QML model Q using non-proprietary quantum hardware
and sending the transpiled version of the trained model Q; to
the untrusted vendor for inferencing. (2) and (3) describe the
attack model involving the procedure of reverse engineering
performed by the untrusted vendor to extract the parameters
and steal the IP of the user-designed model.

From the quantum perspective, it involves reconstructing the orig-
inal hardware-agnostic quantum circuit from its optimized and
hardware-specific transpiled form (Fig. 1).

The reverse engineering of QML models presents unique chal-
lenges compared to classical machine learning (ML) models, par-
ticularly due to differences in model representation, transpilation,
and hardware dependency. Classical ML models are represented as
mathematical functions or neural networks, while QML models are
depicted as quantum circuits with quantum gates as parameters.
The transpilation procedure is necessary to convert the QML cir-
cuit design to fit the native gate set of the training and inferencing
hardware. While finding the entanglement architecture from the
transpiled circuit is relatively easy as the only task is to reverse log-
ical to physical mapping while identifying and accounting for the
SWAP gates, we note that recovering the original parameters from
decomposed and optimized single-qubit gates is non-trivial. The
reasons are multi-fold, (i) transpilation converts all single-qubit
gates to basis gates (RZ(6) in the case of IBM machines). This
makes identification of the original rotation gate type difficult, (ii)
transpilation of parameterized rotation gates results in a sequence
of single-qubit gates which gets optimized with rotation gates re-
sulting from other parameterized or non-parameterized rotation
gates from the QML model, (iii) the transpilation process often adds
global phase during optimization to maintain a correct relative
phase between the states of qubits which obfuscates the original
parameters, (iv) increasing the optimization level selected during
transpilation enforces stricter optimization rules adding another
level of obscurity. These are covered in Section 2.

To the best of our knowledge, this is the first attempt to reverse
engineer a quantum machine learning circuit. Note, that our primary
contribution is the extraction of trained parameters. The extraction
of entanglement architecture and training data is beyond the scope
of the paper. The major contributions are as follows:

The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models

RV Jei2 0] q1 0
n'[l/ﬁ —1/\/§]m‘[0 o5 -ﬂ'[o 4l

Figure 2: Matrix representation of basic quantum gates,
Hadamard, Rotation-Z, Pauli-Z, CNOT, Pauli-X, and SX (from

top left to right). An n-qubit gate is represented by a 2" x 2"
matrix.

= o oo
o= oo

1 . i
\n:‘; o e

(=R
oo RO

(1) We present a methodology for reverse engineering transpiled
QML circuits.

(2) We propose a procedure for extracting the original parame-
ters from transpiled QML circuits which can be used by the
adversary to obtain a duplicate of the model.

(3) We demonstrate the efficacy of the proposed idea by reverse
engineering multi-qubit classifiers.

(4) We perform an overhead analysis and discuss potential coun-
termeasures.

1.4 Paper Structure

Section II provides a background on quantum computing and the
compilation of quantum circuits. Section III presents the threat
model. Section IV presents the proposed reverse engineering proce-
dure and Section V comprises a detailed study of the experiments.
Section VI develops countermeasures and Section VII concludes
the paper.

2 Background
2.1 Quantum Computing

In quantum computing, the fundamental unit of computation is the
quantum bit, or qubit. Unlike classical bits, which can be in one of
two states (0 or 1), a qubit can exist in a superposition state, which is
a linear combination of both 0 and 1. In Dirac notation, the state of a
qubit is represented as |/) = a|0)+ f|1), where a and f§ are complex
coefficients that satisfy the normalization condition |a|? + |B|? = 1.
Here, |0) = [10]T and |1) = [0 1]7 are the computational basis
vectors. Therefore, n qubits can be used to represent a space of
n-qubit states with 2™ basis states, ranging from |0...0) to |1...1),
and an n-qubit state |/,) can be represented as |/) = zl?j(;l a;ili);
where Z?:O_l lai]? = 1.

Quantum logic gates that are analogous to classical logic gates
are used to exploit the quantum properties by allowing the inter-
action between qubits. They are the building blocks of quantum
circuits. Common quantum logic gates (Fig. 2) include the Pauli-X
(NOT) gate, which flips the state of a qubit, the CNOT gate, which
entangles pairs of qubits, Pauli-Z gate, which flips the phase of the
qubit, and rotation gates which operate using parameter values and
allow more precise control over the quantum states of the qubits.

2.2 Compilation of Quantum Circuits

Compilation of quantum circuits involves several steps to translate
the high-level quantum programs to a form compatible with the

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

l' Ao a \3‘;’/‘:40 Y
- q q
i M 1
D Qa9 4

1 | ; 92 2
i d3 ,3 i\\\f]g s

Figure 3: A diagrammatic representation of the SWAP opera-
tion during transpilation of a quantum circuit. (1) represents
the T-shaped coupling map of the quantum hardware where
the circuit is transpiled and sent for execution. (2) shows
the transpilation procedure where a SWAP gate is inserted
between ¢; and g2 to accommodate the physical layout of the
qubits on the quantum hardware.

particular constraints of quantum hardware. In IBM terminology,
this is referred to as transpilation [14]. Gate Translation: Quantum
programs are typically written using high-level gates, which are
abstract representations of quantum operations. However, current
quantum computers only support a limited set of native instruc-
tions known as basis gates. For example, IBM quantum machines
support the following basis gates: [id, x, sx, cnot, rz]. There-
fore, any high-level instructions in a quantum program must be
translated into these native instructions to be executable on the
hardware. This translation step is essential for aligning the abstract
quantum algorithm with the practical limitations of the quantum
hardware. Coupling Map Constraints: In addition to the instruc-
tion set alignment, quantum hardware architectures face another
significant challenge known as the coupling map constraint. This
constraint arises from the physical layout of the qubits on the hard-
ware. For instance, Fig. 3 (1) demonstrates a T-shaped coupling map
of quantum hardware of 4 qubits, where the nodes represent physi-
cal qubits. An edge between two nodes indicates that a two-qubit
operation (such as a CNOT gate) between those physical qubits is
directly allowed. Suppose we have a sample three-qubit quantum
program that we want to run on this quantum hardware. To execute
the program, each logical qubit in the program must be mapped
to a separate physical qubit on the hardware. However, the CNOT
gate between qubits q2 and g3 cannot be directly executed with
this mapping because there is no edge in the coupling map between
q2 and q3, as shown in Fig. 3. This is an example of a coupling
constraint. To resolve this constraint, qubits must be routed using
the SWAP operation so that logical qubits involved in two-qubit
operations become nearest neighbors. A SWAP gate between q1
and g2 swaps the state of the physical qubits q1 and g2 allowing
the CNOT gate to be applied between q2 and q3 via q1. During the
transpilation procedure, the SWAP gate in Fig. 3(2), gets converted
into a sequence of three CNOT gates with single-qubit rotation
gates in between. These rotation gates are not part of the original
QML model (see Fig. 5(2))

2.3 Quantum Neural Networks

Quantum Neural Networks (QNNs) represent the intersection of
quantum computing and machine learning [9]. Quantum circuits
when designed in such a way that they embed classical data as

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

State Embedding

%o JENEH-a— 1 -
oS-I feo B —E—- A
o NEHI— o) -—l-A
o g rie) Tl A

Parameterized Layers

juawainsesiy

Figure 4: A circuit representation of a PQC. In state embed-
ding, the RY(z;) gates are used for basis encoding to map
the data to the computational basis states. The parameter-
ized layers comprise a cascade of CRZ(0;) gates that provide
the entanglement as well as a finer-grained search into the
Hilbert Space. Measurement operators that follow, measure
the outcome of individual qubits to derive an output.

states of qubits, can perform tasks similar to classical neural net-
works like regression and classification. Quantum Data Encoding;:
This is the initial step in designing a QNN where quantum data
encoding embeds the classical data in the Hilbert space through the
quantum states of the qubits. Methods include amplitude encoding,
which normalizes and encodes data into the amplitudes of qubits,
angle encoding, which converts data into rotation angles applied
to qubits, and basis encoding, which maps binary data directly to
computational basis states. Parameterized Quantum Circuits
(PQCs): The core of a QNN is the Parameterized Quantum Circuit
(PQC) (Fig 4), consisting of adjustable quantum gates. PQCs include
quantum rotation gates like RX(6), RY(0), and RZ(0) with tun-
able parameters. The circuit architecture defines qubit interactions,
and entanglement between qubits enhances computational power.
PQCs allow QNN to perform complex transformations like convo-
lution, akin to layers in classical neural networks. Measurement:
Measurement extracts classical information from quantum states
after computation. Quantum states collapse upon measurement,
revealing the final qubit state. The probability of each basis state
is measured to derive outputs. Measurement results are processed
classically, aggregating outcomes or applying post-processing tech-
niques.

2.4 Related Work

Reverse engineering attacks on convolutional neural networks
(CNNSs) running on hardware accelerators have been explored be-
fore [3]. It is shown in the paper that side-channel attacks on mem-
ory can help adversaries infer network structure and even the
weights of the CNN in spite of data encryption. Dynamic zero-
pruning in CNN accelerators can leak weight values as well which
can be protected by hiding off-chip memory access patterns. Black-
box neural networks in the classical domains can also be attacked by
querying it and observing the outputs [7]. A metamodel is trained
on the observed set of outputs to predict the model architecture
and the queries and attack strategies can be optimized using game
theoretic solutions.

The above attacks are mostly concerned with stealing the exact
parameters and architecture of ML models via side channels and
query optimization. Reverse Engineering parameters of classical ML

51

Archisman Ghosh & Swaroop Ghosh

models during inferencing on untrusted third-party cloud providers
is generally not an issue as it is usually avoided by sandboxing
the model and providing client access through higher-level APIs.
However, such flexibility is not available in the quantum domain
as the QML model is a quantum circuit that needs to be executed
on the quantum hardware. Although recent literature [13] assumes
that adversaries sharing the untrusted cloud providers with users
can steal IP such as training data, we note that such attacks are
not straightforward as even recovering rotation of a single-qubit
rotation gate is non-trivial due to the transpilation process.

3 Threat Model and Analysis
3.1 Threat Model

We assume that the quantum cloud vendor or a malicious entity
within the vendor is untrustworthy or at the very least honest but
curious. They may not alter the QML circuit or its outcome but
may be interested in making a profit or just gaining deeper insight
into the model of the victim. This is true since trained QML models
are extremely expensive and valuable (as pointed out in Section
1). For profit-making, an adversary would have to offer their own
services using the stolen model. With access to the transpiled copy
of the QML circuit during inference, the adversary can strip off
the state preparation circuit and reuse the parametric part of the
QNN. Note, that we assume that the QML model is trained on
non-proprietary hardware which makes the design of the quan-
tum circuit and training parameters valuable. To gain profit from
the model, he will attach the transpiled version of the new state
preparation circuit corresponding to the new inference data and
execute it on the hardware that was used to transpile the original
QML model. However, this will restrict the benefit of the model
since it cannot be executed on other hardware. Furthermore, the
adversary will need to know the logical to physical qubit mapping
to attach the state preparation circuit correctly. Having access to
the pre-transpiled version of the model is attractive from several
perspectives. First, the adversary can transpile the model to any
quantum hardware and qubit technology increasing the sell-ability
of the stolen model. Second, the adversary can avoid legal issues by
identifying, removing, or tampering with any possible embedded
watermark in the original model or embedding their own water-
mark. Moreover, third, the adversary can refine the model for their
target application by training it further, if needed. RE of the whole
QML model is a multi-step process however, we focus on the re-
covery of the parametric rotation gates in this paper as the first
step with the quantum classifiers as a test case. The objective of the
attacker is to guess the original rotations such that the transpiled
copy of the reverse-engineered circuit closely matches the original
transpiled circuit.

3.2 Adversary Capabilities

We assume the untrusted third-party provider possesses: (i) access
to the white-box version of the transpiled version of the circuit of
the QML model. This will act as the golden model that will be used
to validate his guess about the rotation values of the parametrized
gates, (ii) the transpiler which can be used to transpile the RE
version of the model and validate their guess, (iii) substantial com-
putational resources at their disposal to accelerate the search for

The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models

parameters enabling quickly and reduce the error between original
and RE’ed models, (iv) historical data, logs, and usage patterns of
the QML model, which can be leveraged to gain additional insights
into the hyperparameters of the QML model.

4 Proposed Idea

We attempt to extract the original architecture of the QML model
of the user by identifying the two main components of the PQC-
the entanglement and the type of rotation gates and follow it up
by trying to determine the original parameters from the transpiled
circuit. For the following setup, we consider the basis gate set of
[id, x, sx, cnot, rz] thatis common to almost all the IBM
machines, which means that every logic gate of the circuit will be
expressed as a combination of the gates from the basis gate set in
the transpiled form of the user QML model.

4.1 Reversing Entanglement

Strong Entanglement in PQCs is realized primarily by introducing
cascading layers of CNOT, CY, and CZ gates. The configuration
of these 2-qubit gates comprise one component of the architecture
of the PQC. CNOT gates are straightforward to reverse as they
are included in the basis gate set. However, this is true only when
the coupling is linear or fully connected. In the case of a T-shaped
coupling map where the CNOT exists between qubits that are not
connected physically, there is a SWAP gate that is broken down as
in Fig. 5(2). To obtain the exact order of the CNOT, the transpiled
circuit is parsed and the connections are identified. CY gates are
transpiled as a combination of a CNOT gate sandwiched between an
RZ(-r/2) gate and an RZ (7 /2) gate (Fig. 5(2)). In a similar fashion,
the CZ is transpiled as a CNOT gate between two Hadamard (H)
gates (Fig. 5(2)).

The procedure to obtain the original architecture in terms of the
arrangement of these gates involves parsing the transpiled circuit
and obtaining the arrangement of the RZ(6) and the SX gates for
every qubit and then using the LUT to identify the type of 2-qubit
gate used (Algorithm 1).

4.2 Identifying Original Parametric Gates

The parameterized gates in a PQC provide finer-grained control
over the quantum state by allowing the exploration of a larger
portion of the Hilbert space using the rotation angles. Primarily,
rotations in the x, y, and z direction produce rotation gates RX(0),
RY(0), and RZ(0) respectively. Of these gates, we can find the
RZ(0) in the basis gate set of IBM machines. Therefore, the tran-
spilation procedure of the rotation gates involves the expression of
RX and RY as some combination of RZ and some other gate from
the basis gate set.

4.2.1 RX gates: RX gates can be represented as a combination of
RZ and Hadamard gates:

RX(0)=H-RZ(0)-H
=RZ(m/2)-SX -RZ(n+6)-SX -RZ(n/2)
The transpilation of the same can be observed from Fig 5(1). We

can identify potential RX gates from the pattern of gates (SX and
RZ) in the transpiled circuit. It is observed that when the RX gate

52

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

is transpiled, the starting and the ending parameters of the RZ
gate are /2. However, it is also observed that multiple RX gates
with the same or different parameters when stacked together pro-
duce the same order of gates with different parameter values after
transpilation:

RX(61)..RX(6,) =H-RZ(0) - H
=RZ(n/2) - SX - RZ(¢) - SX - RZ(r/2)

Therefore, while reversing, we consider a single RX gate since it
is easier to obtain the parameter for a single RX gate and it also
reduces the number of parameters in the reversed circuit.

4.2.2 RY gates: RY gates can be represented as a combination of
RX and PauliZ gates:

RY()=Z-RX(®)-Z

After adjusting the global phase and expressing PauliZ and RX gates
as a combination from the basis gate set, RY () can be represented
as

RY(0) = SX -RZ(0+) - SX - RZ(37)

The transpilation is observed in Fig. 5(1). However, we find the
same pattern again for multiple RY gates stacked together:

RY(0y)..RY(6;) = SX - RZ(0') - SX - RZ(37)

It can be observed that while transpiling the RY gate, we obtain a
pattern of SX and RZ gates which can be used to extract the gate
and the parameter values from the transpiled circuit.

4.2.3 RZ gates: RZ gates are a part of the basis set hence the
presence of a single or a sequence of RZ gates results in a single
RZ gate in the transpiled circuit.

4.2.4 Multiple Rotation Gates: In a case where multiple rotation
gates are stacked together, they get transpiled as a pattern RZ(61) -
SX - RZ(07) - SX - RZ(63), irrespective of the order and number of
the RX, RY, and RZ gates in the circuit. Therefore, on observing
a similar pattern, we can reverse it to a combination of single
occurrences of the three rotation gates:

RZ(01) - SX - RZ(63) - SX - RZ(03) =
RX(¢1) - RY (¢2) - RZ(¢3)

Again, in this fashion, the number of parameters is reduced while
reversing the circuit and obtaining a circuit that is architecturally
closer to the QML model of the user with the new parameters
functionally the same as the trained ones.

4.3 Extracting Parameters

While extracting the parameter values during the reverse engi-
neering procedure, we note that the total phase of the circuit is
always less than 27. Therefore, we start by reducing the search
space for the parameters of the rotation gates to [, 7]. Once,
the transpiled circuit is parsed and the pattern of rotation gates
is identified, a naive approach to determining the parameters is
to perform a brute force search in [, 7] with a certain step size.
The smaller the step size, the lesser the parameter estimate error.
As observed in Algorithm 1, we define two functions, parser, and
reverse. In the parser function, we define param as a list of all

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

Quantum Circuit

o~
o~
o . 2

Archisman Ghosh & Swaroop Ghosh

Transpiled Quantum Circuit

Figure 5: The adversary designs a Look-Up Table (LUT) based on basic circuit transpilations. The circuits shown here are
transpiled on a backend having a linear coupling map with a basis set of [id, x, sx, cnot, rz] at an optimization level set
to 1. In the diagram, (1) shows the transpilation of the Hadamard gate and the basic Rotation gates (RX(0), RY (0), RZ(6)); (2)
shows the transpilation of basic 2-qubit entanglements. Since CNOT is a part of the basis set, it remains as is and the other
gates (CY, CZ) get transpiled into a combination of the basis gates; (3) shows the transpilation of a combination of multiple
RX(0), multiple RY (6), and multiple RZ(0) gates. They can be reversed into a single parameter of the corresponding rotation
gate; and (4) shows the transpilation of a combination of RX(0), RY(6), and RZ(6).

values between — and 7 with a user-defined step size of N. We
parse the transpiled circuit with respect to every qubit and iso-
late the associated gates. We pass this list of gates to the reverse
function that refers to the LUT to identify which corresponding
combination of gates suits best for the qubit and transpile it for
every possible combination from param comparing the difference
between the parameters of the original transpiled circuit and the
reverse-engineered transpiled circuit. The closest set of parameters
in the reverse-engineered transpiled circuit is the one where the
difference between the parameters is minimal. The LUT is designed
to have the transpilation of basic one-qubit and two-qubit gates but
can be extended for more complex operations. Since the extraction

of parameters is done by transpiling the circuit for every parameter
till the closest set is obtained, the time complexity of the algorithm
turns out to be O(k?* IN); where k is the number of parameters in
the corresponding combination of gates from the LUT, and N is the
step size.

5 Results
5.1 Simulation Setup

Traning: We tested the idea of reverse engineering on multiple
QML models to extract their parameters. The QML models have
been implemented in Pennylane [1] to utilize the 1ightning.qubit

The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models

Algorithm 1 Reverse engineering of QML parameters

1: procedure PARSER(qc_transpiled, LUT)

2 param «— [—m, x]

3 temp «— []

4 for qubit in gc_transpiled do

5 for gate in qubit do

6 temp « gate

7 end for

8 qc_new «— REVERSE(temp, param, LUT)

9 end for

10: return gc_new

11: end procedure

12: procedure REVERSE(gate_list, param, LUT)

13: gate «— gate_list.split[CNOT]

14: temp2 « LUT(gate)

15: temp2_transpiled < temp2.transpile

16: dif f « A(temp?2_transpiled.param,
qc_transpiled.param)

17: fordindiff do

18: if d = min(dif f) then

19: return temp2, temp2_transpiled.param
20: end if

21: end for

22: end procedure

feature for performing linear algebra calculations faster. All QML
models have been trained using the Gradient Descent Optimizer
with a learning rate of 0.05, and a Mean Squared Error loss function
has been used to evaluate the performance. The transpilation of
the circuits for the QML models has been done using the transpiler
library of Qiskit [4] keeping a linear coupling map, and a basis gate
set of [id, x, sx, cnot, rz].The reverse engineering of the
transpiled circuits to extract the parameters has been done on the
same setup as the transpilation procedure, running on a machine
with 16GB RAM on an Intel Core i7-6700 CPU at a clock frequency
of 3.40 GHz. Dataset: We conduct our experiments on the MNIST
dataset [2] picking labels as per the capacity of the QML model as
a proof-of-concept of our approach.

5.2 Reversing QNNs

We elaborate on a few examples to validate our concerns about
the untrusted third-party vendor performing a reverse engineer-
ing operation of the transpiled circuits of the user to extract the
parameters and a QML model that performs as well as the user-
designed QML model. Example 1: We design a 1-qubit classifier
to train it on the 0 and 1 labels of the MNIST dataset to perform
binary classification on the data. To evaluate the efficacy of the
reverse engineering procedure on the 1-qubit classifier, we obtain
the transpiled circuit of the QML model as a QASM file. We can
strip off the state embedding and obtain the transpiled circuit as
observed in Fig. 6. We parse this circuit using Algorithm 1 and find
the order of basis gates to be RZ(01) - SX - RZ(6,) - SX - RZ(63)
which matches to (4) in Fig. 5. Further, we apply the corresponding
circuit to reverse engineer a set of parameters for the combination
RX(¢1) - RY(¢2) - RZ(¢3). On comparing the training details we

54

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

BB R,(0) g R/(6:) § R(6.) g R/(0:) glaal

lTranspilation

B R,(0) g SX g R(0,) y SX g R0, oV

lReverse Engineering

R{¢o) g R/(@)

Figure 6: Diagram representing a 1-qubit classifier. It gets
transpiled post-training and gets reverse-engineered to a
classifier having three parameters. Both the user-designed
and the reverse-engineered classifier show the same training
accuracy.

can see, that the original circuit has a training accuracy of ~70.29%,
and the training accuracy of the reverse-engineered QML model
after transpilation is almost the same with an error of the order
10716,

Example 2: In this scenario, we consider a 2-qubit classifier and
investigate the reverse engineering in two cases— when the circuit
has (i) one layer, and (ii) two layers (Fig. 7). We follow similar steps
as in Example 1 to reverse when the circuit has one layer. We obtain
the transpiled circuit of the QML model in the form of a QASM
file, parse it, match the order of gates qubit by qubit using the LUT,
and obtain the parameters. However, in the second case we find
that on repeating a layer, the transpilation procedure combines the
rotation gates between the CNOT gates thus modifying the original
architecture of the QML model designed by the user. To reverse
engineer this circuit and extract the parameters, we take a similar
route. However, this time we obtain a circuit that is not exactly
the same based on design but has an equal number of parameters.
Also, comparing the training accuracy of both we find that the
original model has a training accuracy of ~69.47% and the reverse-
engineered QML model has an accuracy of ~67.22% which is a loss
of 3.2% in accuracy and a mean error of 6.10 X 1072 in the reverse
engineered parameters.

Table 1: Error between the original and reverse-engineered
classifiers (i-qubit, j-layer)

Classifier || #Params M:;z:lrametesli) Acc.Error %
1Q 4 5.94e-02 8.55e-02 le-16
2Q; 1—layer 6 5.33e-02 2.50e-02 1.7
2Q; 2-layer 12 6.10e-02 4.43e-02 3.2
2Q; 3-layer 18 8.45e-02 8.99e-02 5.7
4Q; 1-layer 8 7.29e-02 7.73e-02 2.1
4Q; 2-layer 16 9.29e-02 9.91e-02 5.9
4Q; 3-layer 24 1.18e-01 9.79e-02 6.3
8Q; 1-layer 16 6.16e-02 3.84e-02 4.1
8Q; 2-layer 32 8.71e-02 3.69e-02 5.3
8Q; 3-layer 48 1.71e-01 2.81e-01 7.6

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

Archisman Ghosh & Swaroop Ghosh

Figure 7: Transpilation and reverse engineering of the 2-qubit classifier. (1) represents a single layer of the classifier. The
transpiled form gets reverse-engineered by the adversary using the LUT to obtain a circuit with a similar number of parameters
as the original circuit. (2) shows two layers of the same circuit design. Here the adversary performs the reverse-engineering
using a different case from the LUT to obtain a circuit with the same number of parameters. The reverse-engineered circuits
show a minimal drop in training accuracy compared to the original model.

W12
<
£ 1
==
%)
< 0.8
o 0.6
E
= 04
0.2
0 4
1q9 2q 4q 8q
Classifier

Figure 8: Plot demonstrating the time taken to reverse engi-
neer QML classifiers. The X-axis represents the number of
qubits in the classifier design. These classifiers have 3 layers.
It can be observed that the overhead for reverse engineering
QML classifiers is significantly high for a higher number of
qubits.

5.3 Error Analysis

We measure the efficacy of the reverse engineering procedure by
calculating the difference in the parameters of the transpiled cir-
cuit of the user-designed QML model and the reverse-engineered
circuit of the QML model. We report this as the error value for the
reverse-engineered circuit. A lesser error indicates that the reverse-
engineered circuit is architecturally and functionally closer to the
original circuit. Table 1 shows the mean and standard deviation
of the error values of the parameters. We also calculate an error
as the percentage decrease in the testing accuracy of the classifier
that is observed between the user-designed QML model and the
reverse-engineered QML model. We can observe a considerable in-
crease in the mean error while extracting the parameters by reverse
engineering as the circuit design involves more qubits while main-
taining a decently close training accuracy with the user-deigned
QML model. This increase is justified in the sense that the error
incurred while reverse engineering one parameter gets accumu-
lated over the entire design of the circuit, thus increasing with the
increase in complexity and number of parameters.

5.4 Overhead Analysis

We analyze the overhead incurred by the adversary while extract-
ing the parameters using reverse engineering. From Fig. 8, we can

Table 2: Effect of step size on error and reverse engineer time
for a 1-qubit classifier

Step size H Time (in s) H Mean error

le-01 51 5.94e-02
le-02 6.62e+02 3.66e-03
le-03 8.52e+05 5.01e-04

Table 3: Increase in time taken to RE a 4-qubit classifier on
increasing the layers

Layers H Time (in s)

1 1.51e+04
2 2.81e+04
4 7.75e+05
8 > le+06
16 > le+07

observe that although the time taken to reverse engineer a cir-
cuit representing QML classifiers increases considerably with the
increase in the number of qubits, it is quite possible to perform
successful reverse engineering to a certain degree keeping the mean
error of the extracted parameters low. We also analyze the time
taken to extract the parameters by reverse engineering the classifier
using a lower step size in the brute force approach thus increasing
the granularity of the search. We perform a set of experiments on
the 1 qubit classifier (Fig. 6) and present the results in Table 2. We
note that the time increases exponentially with reduced step size
even by a small amount (=0.1) and the corresponding decrease in the
mean error of the parameters observed post the reverse engineering
procedure is not comparable. Therefore, considering the low error
and difference in the accuracy of testing of the original and the
reverse-engineered circuit of the QML model, we conclude that
even a larger step size of 0.1 is sufficient to extract the parameters.

5.5 Considerations for Noise

The experiments have been performed on noiseless simulators.
Inherent noise in quantum hardware directly affects the parame-
terized rotation gates during the training phase of a QML model.
However, in the attack model, the adversary obtains the trained
model and performs RE on it to extract the trained parameters.

The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models

User Circuit:

Figure 9: Adding an extra layer of rotation gates with fixed
parameters to the existing QML model to resist RE attack.
The shaded portion in red represents the fixed parameters
which get transpiled as rotation gates forcing the adversary
to RE them. This approach increases the overall time for the
parameter extraction.

Therefore, the RE procedure is unaffected by noise in quantum
hardware and hence, the usage of noiseless simulations does not
alter the concept of RE and the overhead analysis.

6 Countermeasures

We develop countermeasures against potential RE attacks on QML
models based on two main observations: (i) The time taken to per-
form RE on a QML classifier increases with the number of layers
in the circuit (Table 3), and (ii) The time taken to RE and the mean
error in reverse-engineered parameters and the testing accuracy in-
creases with the number of parameters in the QML circuit (Table 1).
We perform experiments to develop countermeasures considering
a baseline 2-qubit QML classifier with three layers.

6.1 Increasing the number of layers

We propose to add dummy rotation gates with fixed parameters
to the user-designed QML model, alongside the trainable param-
eters. This approach aims to increase the RE effort without hurt-
ing training time significantly. On transpiling the modified circuit,
the trainable and fixed parameters get optimized together making
it impossible for an adversary to distinguish between them. The
adversary would try to reverse engineer all the parameters consid-
ering them to be trainable, thus increasing the overhead of the RE
significantly. In Fig. 9 example, the user circuit has six trainable pa-
rameters and the modified circuit has ten (six trainable, four fixed).
From Fig. 12(1), we can see the drastic increase in RE time with
an increase in the number of layers in the classifier. The user can
choose to repeat the layers of trainable parameters to increase the
granularity of the QML model and increase the layers of the fixed
parameters to make the model RE resistant.

6.2 Increasing the number of qubits

Another approach to resist RE without affecting training time sig-
nificantly is by adding dummy qubits with fixed parameters. The
rotation gates with fixed parameters get transpiled as normal rota-
tion gates making it indistinguishable from the trainable parameters.
In Fig. 10 example, the user adds an extra qubit, g, to the 2-qubit
classifier with three fixed parameters. From Fig. 12(2), we obtain a

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

User Circuit:

Figure 10: Adding extra qubits with fixed parameters to resist
RE attack. The three rotation gates with fixed parameters are
added to the existing QML model to increase the RE time.

User Circuit:

Figure 11: Addition of an extra qubit g, as well as an extra
layer of fixed parameters (shaded in red) for RE resistance.
The adversary needs to RE and extract 13 parameters instead
of the 6 trainable ones which increases the overhead signifi-
cantly.

3.41x increase in the overhead on adding 8 qubits with fixed param-
eters to the classifier. The user can increase the number of layers
with the trainable parameters to make the classifier better and si-
multaneously increase the number of qubits with fixed parameters
to resist RE attacks.

6.3 Combining dummy layers and qubits

To obtain a higher level of security against RE, the user may opt to
add dummy qubits as well as dummy layers to his classifier which
will increase the number of fixed parameters. This way the user
can keep the circuit design compact by making a conscious balance
between the number of qubits and layers instead of adding only
extra qubits or layers. In Fig. 11 example, the user adds a layer
of fixed parameters alongside an extra qubit, g, to the existing 2-
qubit classifier. The adversary in this case has to RE 13 parameters
instead of the 6 trainable ones. From Fig. 12(3), we observe an almost
exponential growth in RE time. Similar to the above-mentioned
approaches, the user can choose to increase the layers of fixed
parameters and the number of dummy qubits without affecting the
training overhead.

ASHES ’24, October 14-18, 2024, Salt Lake City, UT, USA

Table 4: Analysis of the performance overhead on a 2-Q, 3-
layer classifier on including the countermeasures

Modification type H %Difference in Acc.
Dummy Qubit 8.76
Extra Layer 7.01
Extra Layer and Dummy Qubit 3.53
0 0-12
<
L
- E 0.08 @
£
o 0.04
kS > - - .
=
0
1L 2L 4L 8L
Extra Layers
0.16
(2]
<
£0.12
> =
b
S T 0.08 (:)
(0]
& 004
IS . . - -
0
1q 2q 4q 8q
Extra Qubits
0.4
[%2]
<
S 0.3
> =
£ 02 ©
(O]
S 0.1
~
0 * &

1g9-1L 2q-2L 4q-4L 8qg-8L
Extra Qubits-Extra Layers

-— Modlified Circuit User Circuit

Figure 12: Plots representing the difference in time taken to
RE the QML circuit before and after adding the fixed param-
eters. The experiments are done on an existing user QML
model of 2 qubits and 3 layers. We can observe from the plots
that adding fixed parameters to extra qubits and layers to-
gether will increase the overhead more, thus providing better
security.

6.4 Overhead analysis

We analyze the impact of the proposed countermeasures on the
training performance of the original QML model. For a case study,
we consider a baseline QML model with two qubits and three layers
(Fig. 9) that has 18 trainable parameters. We consider all three cases,
adding a layer of 4 fixed parameters (Fig. 9), adding a dummy qubit
with 3 fixed parameters (Fig. 10), and adding a dummy qubit and
an extra layer with seven parameters (Fig. 11) and compare their
performance with the user circuit. As observed in Table 4, there
is a slight decrease in the performance of the modified circuits on
adding a dummy qubit or an extra layer.

57

Archisman Ghosh & Swaroop Ghosh

7 Conclusion

We explore reverse engineering (RE) of transpiled Quantum Ma-
chine Learning (QML) circuits as an attack model by untrusted
third-party cloud providers. We propose an approach to perform
RE on QML circuits and extract the parameters. We test the efficacy
of our approach by training the models and performing RE on them
and conclude from the results that reverse-engineered QML mod-
els can achieve training accuracies nearly identical to the original
models in a reasonable time, underscoring the severity of the threat.
We also include countermeasures like adding fixed, non-trainable
parameters to the QML circuit design that increase the overhead of
RE significantly for the adversary, which users can adapt to protect
the IP of their design.

Acknowledgments

The work is supported in parts by the National Science Foundation
(NSF) (CNS-2129675, CCF-2210963, and DGE-2113839) and gifts
from Intel.

References

[1] Ville Bergholm et al. 2022. PennyLane: Automatic differentiation of hybrid
quantum-classical computations. arXiv:1811.04968 [quant-ph] https://arxiv.org/
abs/1811.04968

Li Deng. 2012. The MNIST Database of Handwritten Digit Images for Machine

Learning Research [Best of the Web]. IEEE Signal Processing Magazine 29, 6

(2012), 141-142. https://doi.org/10.1109/MSP.2012.2211477

[3] Weizhe Hua et al. 2018. Reverse engineering convolutional neural networks
through side-channel information leaks. In Proceedings of the 55th Annual Design
Automation Conference (San Francisco, California) (DAC ’18). Association for
Computing Machinery, New York, NY, USA, Article 4, 6 pages. https://doi.org/
10.1145/3195970.3196105

[4] Javadi-Abhari et al. 2024. Quantum computing with Qiskit. https://doi.org/10.
48550/arXiv.2405.08810 arXiv:2405.08810 [quant-ph]

[5] Satwik Kundu et al. 2024. Evaluating Efficacy of Model Stealing Attacks and De-
fenses on Quantum Neural Networks. In Proceedings of the Great Lakes Symposium
on VLSI 2024 (Clearwater, FL, USA) (GLSVLSI ’24). Association for Computing Ma-
chinery, New York, NY, USA, 556-559. https://doi.org/10.1145/3649476.3658806

[6] Ian McLoughlin. 2008. Secure Embedded Systems: The Threat of Reverse Engi-
neering. In 2008 14th IEEE International Conference on Parallel and Distributed
Systems. 729-736. https://doi.org/10.1109/ICPADS.2008.126

[7] SeongJoon Ohetal.2019. Towards Reverse-Engineering Black-Box Neural Networks.
Springer International Publishing, Cham, 121-144. https://doi.org/10.1007/978-
3-030-28954-6_7

[8] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[9] Maria Schuld et al. 2014. The quest for a Quantum Neural Network. Quantum

Information Processing 13, 11 (November 2014), 2567-2586. https://doi.org/10.

1007/511128-014-0809-8

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2015. An introduction

to quantum machine learning. Contemporary Physics 56, 2 (2015), 172-185.

Suryansh Upadhyay and Swaroop Ghosh. 2023. Robust and Secure Hybrid

Quantum-Classical Computation on Untrusted Cloud-Based Quantum Hardware.

In Proceedings of the 11th International Workshop on Hardware and Architectural

Support for Security and Privacy (Chicago, IL, USA) (HASP °22). Association for

Computing Machinery, New York, NY, USA, 45-52. https://doi.org/10.1145/

3569562.3569569

Tamas Varady et al. 1997. Reverse engineering of geometric models—an introduc-

tion. Computer-Aided Design 29, 4 (1997), 255-268. https://doi.org/10.1016/S0010-

4485(96)00054-1 Reverse Engineering of Geometric Models.

Zhepeng Wang et al. 2024. PristiQ: A Co-Design Framework for Preserving

Data Security of Quantum Learning in the Cloud. arXiv:2404.13475 [quant-ph]

https://arxiv.org/abs/2404.13475

Ed Younis and Costin Iancu. 2022. Quantum Circuit Optimization and Tran-

spilation via Parameterized Circuit Instantiation. In 2022 IEEE International

Conference on Quantum Computing and Engineering (QCE). 465-475. https:

//doi.org/10.1109/QCE53715.2022.00068

[2

=
=2

—
_

[12

(13

[14]

https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/1811.04968
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1145/3195970.3196105
https://doi.org/10.1145/3195970.3196105
https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.48550/arXiv.2405.08810
https://arxiv.org/abs/2405.08810
https://doi.org/10.1145/3649476.3658806
https://doi.org/10.1109/ICPADS.2008.126
https://doi.org/10.1007/978-3-030-28954-6_7
https://doi.org/10.1007/978-3-030-28954-6_7
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1145/3569562.3569569
https://doi.org/10.1145/3569562.3569569
https://doi.org/10.1016/S0010-4485(96)00054-1
https://doi.org/10.1016/S0010-4485(96)00054-1
https://arxiv.org/abs/2404.13475
https://arxiv.org/abs/2404.13475
https://doi.org/10.1109/QCE53715.2022.00068
https://doi.org/10.1109/QCE53715.2022.00068

	Abstract
	1 Introduction
	1.1 Why QML Models are at Risk
	1.2 Attack Model and Motivation
	1.3 RE and Associated Challenges
	1.4 Paper Structure

	2 Background
	2.1 Quantum Computing
	2.2 Compilation of Quantum Circuits
	2.3 Quantum Neural Networks
	2.4 Related Work

	3 Threat Model and Analysis
	3.1 Threat Model
	3.2 Adversary Capabilities

	4 Proposed Idea
	4.1 Reversing Entanglement
	4.2 Identifying Original Parametric Gates
	4.3 Extracting Parameters

	5 Results
	5.1 Simulation Setup
	5.2 Reversing QNNs
	5.3 Error Analysis
	5.4 Overhead Analysis
	5.5 Considerations for Noise

	6 Countermeasures
	6.1 Increasing the number of layers
	6.2 Increasing the number of qubits
	6.3 Combining dummy layers and qubits
	6.4 Overhead analysis

	7 Conclusion
	Acknowledgments
	References

