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Abstract
Quantum machine learning (QML) is a category of algorithms that
uses variational quantum circuits (VQCs) to solve machine learning
tasks. Recent works have shown that QML models can effectively
generalize from limited training data samples. This capability has
led to an increased interest in deploying these models to address
practical, real-world problems, resulting in the emergence of Quan-
tum Machine Learning as a Service (QMLaaS). QMLaaS represents
a hybrid model that utilizes both classical and quantum computing
resources. Classical computers play a crucial role in this setup, han-
dling initial pre-processing and subsequent post-processing of data
to compensate for the current limitations of quantum hardware.
Since this is a new area, very little work exists to paint the whole
picture of QMLaaS in the context of known security threats in the
domain of classical and quantum machine learning. This SoK paper
is aimed to bridge this gap by outlining the complete QMLaaS work-
flow, which includes both the training and inference phases and
highlighting security concerns involving untrusted classical and
quantum providers. QML models contain several sensitive assets,
such as the model architecture, training data, encoding techniques,
and trained parameters. Unauthorized access to these components
could compromise the model’s integrity and lead to intellectual
property (IP) theft. We pinpoint the critical security issues that must
be considered to pave the way for a secure QMLaaS deployment.
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1 Introduction
Quantum computing is rapidly progressing, with companies like
Atom Computing and IBM recently unveiling the largest quantum
processors ever developed, featuring 1,225 and 1,121 qubits, re-
spectively [14, 22]. The significant interest in quantum computing
among academic and research communities is due to its potential
to offer substantial computational speedups over classical com-
puters for certain problems. Researchers have already begun using
these noisy intermediate-scale quantum (NISQ) machines to demon-
strate practical utility in this pre-fault-tolerant era [33]. Within this
emergent field, quantum machine learning (QML) has also gained
considerable attention, merging the power of quantum computing
with classical machine learning algorithms. QML explores the po-
tential of improving learning algorithms by leveraging the unique
capabilities of quantum computers, opening new horizons in com-
putational speed and capability. Several QML models have been
explored, including quantum support vector machines (QSVMs)
[52], quantum generative adversarial networks (QGANs) [16], and
quantum convolutional neural networks (QCNNs) [15]. However,
quantum neural networks (QNNs) [1, 18, 26, 55, 58] stand out as the
most notable development, mirroring the structure and function of
classical neural networks within a quantum framework.

Training QML models effectively requires integration of both
quantum and classical computing resources. Currently, NISQ de-
vices are limited by factors such as qubit count, noise levels, fidelity,
and quantum volume. For instance, a quantum computer with 100
qubits is unlikely to reliably run a 100-qubit QML circuit due to
inherent noise limitations. To mitigate these limitations, classical
techniques are often employed beforehand to preprocess and re-
duce the size of input data (images or features). This preprocessing
ensures that the QML circuit can execute more reliably on the
quantum hardware to perform the necessary computations. Fur-
thermore, during the QML training process, although there are
quantum-native techniques available for calculating gradients of
the parameters, such as the parameter-shift rule [57] and simulta-
neous perturbation stochastic optimization (SPSA) [61, 74], the task
of final parameter optimization still relies on classical optimizers.
This reliance is primarily due to the challenges associated with im-
plementing optimization routines directly on quantum computers.
Additionally, once the quantum circuit has been executed on the
hardware, the measured outputs generally require further classical
processing. This may involve additional computational layers or
post-processing steps executed on classical computers to render
the quantum computation outputs useful and interpretable.

With the rise of quantum computing access mainly provided
through the cloud by various startups and companies, the transition
to hosting quantum circuits, including QML models, over the cloud,
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referred to as QMLaaS (Quantum Machine Learning as a Service) is
imminent. For QMLaaS to function effectively, it is crucial to ensure
secure communication between classical and quantum resources.
However, this interdependence exposes the QMLaaS framework
to increased risk of adversarial threats from both the classical and
quantum domains [24, 39, 73]. Untrusted classical cloud providers
can jeopardize various assets such as raw training/testing data and
the final outputs of QML models, potentially leading to adversarial
attacks like model inversion and inference attacks. Similarly, un-
trusted quantum cloud providers may threaten quantum-specific
assets, including the QML architecture and novel state prepara-
tion circuit. They could also reroute the QML model’s execution
to compromised or low-quality hardware, compromising the confi-
dentiality, integrity, and availability of these models. Consequently,
it is crucial to conduct thorough studies to assess these security
vulnerabilities and develop innovative techniques to ensure the
efficient and secure operation of future QMLaaS providers.

1.1 Why QML Models are at Risk?
Apart from the vulnerabilities of hybrid QMLaaS, QML models in
general face significant security risks due to the following reasons:

• High Training Cost: Currently, accessing quantum com-
puters is significantly more expensive than using classical
GPUs. For instance, IBM charges $1.60 per second to access
their superconducting QPUs [29], which is at least 2,300
times costlier than high-performance GPUs, priced at ap-
proximately $0.0007 per second [25]. AWS Quantum also
offers access to a variety of QPUs from providers like IonQ,
Rigetti, and IQM, where charges are based on both the num-
ber of tasks and the shots used [3]. QML models require
hundreds of training epochs, each involving thousands of
quantum circuit executions, depending on factors like the
size of the training dataset, gradient calculation methods,
etc. Each circuit execution involves thousands of trials to
obtain expectation values, making the training and even par-
tial training of QML models very expensive. While current
state-of-the-art machine learning models, such as Gemini
[53], require millions to billions of dollars for training, scal-
ing QML models could potentially cost orders of magnitude
more, thereby making them extremely valuable.

• High Training Time: Current state-of-the-art ML models,
such as GPT-4 [2] took ∼ 4+ months for training using thou-
sands of dedicated GPUs. In contrast, quantum resources are
both scarce and in high demand. This scarcity leads to long
wait times for both hardware access and simulators, whose
computation time scales exponentially with the number of
qubits. Even users with dedicated access, such as those in
Quantum Hubs with a limited number of participants, ex-
perience these delays. Consequently, training a large QML
model could take a significant amount of time—potentially
months to years—due to these extended queue times and the
need to execute hundreds of thousands of quantum circuits.

• Hosting QMLs on Cloud: Since QML providers may not
possess their own quantum hardware, they may rely on a
third-party quantum cloud for hosting the model. This will
lead to the rise of QMLaaS [34] providing access to clients
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Figure 1: Architecture of a 4-qubit hybrid QNN. Classical
features are encoded as angles of quantum rotation gates
(𝑅𝑍 ). PQC transforms encoded states to explore the search
space and entangle features. Measured expectation values
are then fed into a classical linear layer for final prediction.

only through input-output queries via external APIs. The
quantum cloud provider, having white-box access to both
the quantum circuit and the expensive training data, could
potentially expose these assets to various threats [6, 41, 48,
65].

• Miscellaneous intellectual property (IP): QML models
possess various forms of IP. The untrained IPs of a QML
model comprise its fundamental architecture, including as-
pects such as entanglement strategies, the number of pa-
rameters, the layer depth, and the measurement basis. Addi-
tionally, the training data is often incorporated directly into
the state preparation circuit. Trained QML IPs consist of the
optimized parameters, which have been fine-tuned through
training processes. These parameters, along with the input
data used during inference, are also embedded within the
state preparation circuit.

In this study, we first provide a comprehensive description of a
hybrid QMLaaS framework.We discuss in detail each stage involved
in the training and inference processes of a QML model within a
cloud-based environment. Following this, we explore the various
security vulnerabilities that could compromise the confidentiality,
integrity, and availability of the hybrid QMLaaS framework. Ad-
dressing these vulnerabilities is essential for ensuring the secure
and efficient operation of QMLaaS.

2 Background
2.1 Quantum Neural Network (QNN)
QNN mainly consists of three building blocks: (i) a classical to
quantum data encoding (or embedding) circuit, (ii) a parameterized
quantum circuit (PQC) whose parameters can be tuned (mostly by
an optimizer) to perform the desired task, and (iii) measurement
operations. There are a number of different encoding techniques
available (basis encoding, amplitude encoding, etc.) but for con-
tinuous variables, the most widely used encoding scheme is angle
encoding where a variable input classical feature is encoded as a
rotation of a qubit along the desired axis [1]. As the states pro-
duced by a qubit rotation along any axis will repeat in 2𝜋 intervals,
features are generally scaled within 0 to 2𝜋 (or -𝜋 to 𝜋 ) in a data
pre-processing step. In this study, we consider 𝑅𝑍 gates to encode
classical features into their quantum states.
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A PQC consists of a sequence of quantum gates whose param-
eters can be varied to solve a given problem. In QNN, the PQC is
the primary and only trainable block to recognize patterns in data.
The PQC is composed of entangling operations and parameterized
single-qubit rotations. The entanglement operations are a set of
multi-qubit operations (that may or may not be parameterized)
performed between all of the qubits to generate correlated states
and the parametric single-qubit operations are used to search the
solution space. Finally, the measurement operation causes the qubit
state to collapse to either ‘0’ or ‘1’. We used the expectation value of
Pauli-Z to determine the average state of the qubits. The measured
values are then fed into a classical neuron layer (the number of
neurons is equal to the number of classes in the dataset) in our
hybrid QNN architecture as shown in Fig. 1, which performs the
final classification task. Other QML architectures may directly ap-
ply a softmax function to the measured qubit values or pass them
through multiple classical layers for further processing.

2.2 Quantum Cloud Services
Recently, there has been a significant increase in the number of
companies offering cloud access to quantum hardware. IBM, which
employs superconducting transmon qubits for their quantum pro-
cessing units (QPUs), has recently removed their lower-qubit de-
vices from cloud access [29]. They now only offer hardware ranging
from 127-qubit to 156-qubit systems, with an error rate per layer
of gates as low as 0.6%. Rigetti, also using superconducting qubits
for their quantum processors, has recently started providing cloud
access to their 84-qubit Ankaa-2 quantum hardware [54]. This sys-
tem is known for its higher coherence times and fidelities. Oxford
Quantum Circuits (OQC) offers access to up to 32-qubit quantum
hardware, which operates on superconducting qubits within a coax-
mon architecture [47]. Their OQC Toshiko Gen 1 machine boasts
over 96% 2-qubit gate fidelity and is recognized as the world’s first
enterprise-ready platform. IQM provides access to their 20-qubit
IQM Radiance, which is expected to be upgradeable to 150-qubit
configurations in the near future [31]. QuEra’s Aquila was the first
and remains the only publicly accessible 256-qubit neutral atom
quantum computer [76]. It is based on programmable arrays of
neutral rubidium atoms, trapped in a vacuum by tightly focused
laser beams. Xanadu, known for developing the popular Penny-
Lane framework, offers cloud access to their X-Series devices [77].
These are the first photonic quantum computers deployed to the
cloud. IonQ provides cloud access to their trapped-ion quantum
computers, which achieve 2-qubit fidelity of up to 99.6% [30].

3 Training in QMLaaS
Fig. 2 presents a detailed workflow of QMLaaS. Training QML
models on cloud-based quantum hardware involves a multi-step
process, combining classical and quantum computing techniques.
The methodology consists of several key stages, integrating classi-
cal pre-processing and QNN processing, forming a hybrid system
optimized for machine learning tasks.

3.1 (Step-1) Data Pre-Processing
Due to the qubit limitations of current quantum hardware, raw
training data must first be pre-processed in a classical cloud to ef-
fectively train QML models on large datasets. Thus, upon receiving
the input data, the first stage of processing occurs in the classical
cloud, encompassing the following steps:

• Dimensionality Reduction: This involves reducing the input
data dimension to match the qubit capacity of the quantum
hardware. For image classification tasks, this reduction may
involve resizing or applying dimensionality reduction tech-
niques such as Principal Component Analysis (PCA) [69],
Linear Discriminant Analysis (LDA), etc. to extract essential
features for classification. Non-linear dimensionaltiy reduc-
tion techniques like the convolutional autoencoder (CAE)
can also be used which has been found to outperform PCA
especially for image classification tasks using hybrid QNNs.

• Normalization: Next, these extracted features must then be
normalized before training. Normalization is crucial because,
during the encoding step, features are often passed as ro-
tation angles of quantum gates, unnormalized values can
cause features of different classes to appear identical to the
QNN if their values differ by multiples of 2𝜋 . There exists
several normalization techniques which can be used but few
of the most widely used techniques are min-max scaling and
max absolute scaling.

The output is a reduced and normalized data matrix 𝑋 , where each
element represents a feature of the input data.

3.2 (Step-2) Design and Encode
The reduced and normalized data𝑋 is then encoded into a quantum-
compatible format using a data encoding circuit 𝐷 (𝑋 ). This circuit
transforms classical data into quantum states through various tech-
niques such as angle encoding, amplitude encoding, etc. Another
critical component of QML circuit involves designing an optimal
PQC, which is the primary trainable block of QML models. Ideally,
PQCs with a higher number of parametric gates should lead to
better performance due to their increased expressive power. How-
ever, in reality, increasing the number of gates, including both 1
and 2-qubit gates, often leads to a higher error rate. This is pri-
marily due to factors such as increased decoherence error, gate
errors, and the need for swap gate insertions. As a result, using a
brute force approach to select the correct QML circuit for specific
quantum hardware may not be effective. In order to address these
challenges, recent works have introduced efficient quantum circuit
search frameworks [4, 17, 27, 68]. These frameworks are designed to
identify the most performant circuit for a given quantum hardware
setup. The search techniques employed are noise-guided, topology-
aware, and data embedding-aware, which have collectively been
shown to enable superior performance over traditional circuit de-
sign methods. Once the optimal circuit design is identified, it is sent
to the cloud provider for execution.

3.3 (Step-3) Transpile and Map
Upon receiving the QML circuit, it undergoes transpilation and
logical to physical qubit mapping to match the basis gates and
topology of the cloud quantum hardware. This crucial step ensures
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Figure 2: QMLaaS Workflow: (1) Input data is pre-processed using dimensionality reduction (e.g., PCA, autoencoders) and
normalized for effective QML training. (2) The reduced features are encoded into a quantum circuit, and a suitable PQC is
selected. (3) The circuit is transpiled to match the quantum hardware’s topology and basis gates. (4) The circuit is sent to a
quantum cloud provider for execution. Training: Post-processing of measured outputs, loss calculation, and parameter updates
are performed using a classical optimizer. Inferencing: Outputs are post-processed to return the final vector/label to the user.

the circuit can be efficiently executed on the specific quantum
system in use. The transpilation process involves several detailed
steps to optimize the quantum circuit and ensure its compatibility
with the hardware. These steps include [28]:

• Virtual Circuit Optimization: Simplifying the circuit at a vir-
tual level before mapping it to physical qubits.

• Decomposition of 3+ Qubit Gates: Breaking down more com-
plex multi-qubit gates into simpler 1- and 2-qubit gates.

• Placement on Physical Qubits: Assigning logical qubits from
the virtual circuit to the physical qubits available on the
hardware.

• Routing on Restricted Topology: Adjusting the circuit to fit
the specific qubit connectivity of the hardware.

• Translation to Basis Gates: Converting the circuit’s gates into
the set of native gates supported by the quantum processor.

• Physical Circuit Optimization: Further refining the circuit to
minimize errors and enhance performance after placement
and routing.

It is important to note that all these processes are performed on
a classical computer. This transpilation can be either automated
and completed beforehand by the user or handled by the quantum
cloud provider. If done beforehand, the transpiled circuit is directly
sent for execution; otherwise, it is transpiled by the provider before
execution. This ensures that the quantum circuit can be efficiently
executed on the cloud quantum hardware.

3.4 (Step-4) Execute and Measure
Finally, the transpiled quantum circuit is sent to the quantum cloud
provider for execution on the chosen quantum hardware. Typically,
the circuit execution job is added to a queue for the public quan-
tum hardware, as a large number of users are using the machine.
Once the job reaches the front of the queue, it is executed on the
quantum hardware and the required qubits are measured. There

are a variety of measurement techniques used to measure qubits
like the basis measurement, Pauli measurement (X, Y, Z), quan-
tum state tomography etc. The raw measured values obtained are
then subjected to post-processing (classical), which is essential for
their practical usage. Depending on the architecture of the Hybrid
QML model, this post-processing might include operations like the
softmax function, which normalizes the output probabilities, or
even integration with classical layers, such as linear layers. This
step is crucial for calculating the loss needed for the training and
optimization process.

3.5 (Step-5) Gradient Calculation
To update the parameters of the QML circuit, the gradient of the
parameters needs to be calculated. Unlike classical neural networks,
backpropagation is not feasible on quantum computers due to the
No-Cloning Theorem [12, 75], which prohibits copying interme-
diate quantum states for use in a backward pass. As a result, al-
ternative techniques such as the parameter-shift rule [45, 57] and
finite differences are employed to calculate gradients on quantum
hardware. The parameter-shift rule, for instance, is quite resource-
intensive. To calculate the gradients of 𝑛 parameters, it requires
2𝑛 circuit executions. Due to the high computational demands of
these methods, researchers have begun exploring more efficient
approaches, such as Simultaneous Perturbation Stochastic Approx-
imation (SPSA) [62, 63]. SPSA is a zero-order gradient estimation
technique that significantly reduces computational overhead; it
requires only 2 circuit executions to estimate the gradients of all
parameters. However, while SPSA offers a dramatic reduction in
the number of required circuit executions, it comes with a trade-off:
the gradients it produces are noisier compared to those obtained
through methods like the parameter shift.
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3.6 (Step-6) Parameter Optimization
After calculating the gradients and determining the loss function,
a classical optimizer is employed to update the circuit parameters.
This optimization step aims to minimize the loss function, thereby
improving the model’s performance on the training data. Empiri-
cally, it has been found that optimizers like Adam and AMSGrad
work well with SPSA for optimizing quantum circuits executed in
a noisy environment [74]. Steps 1-5 are iteratively executed until
the QML model achieves the required accuracy or a predefined loss
threshold is met.

4 Inferencing in QMLaaS
4.1 Hosting QML in Quantum-Classical Cloud
In the QMLaaS framework, the deployment and inferencing pro-
cess leverages both classical and quantum computing resources to
efficiently process and analyze data. To host a trained QML model
on the cloud and provide access via an API, first, a suitable classical
cloud platform, such as AWS, Google Cloud, or Azure, and a quan-
tum cloud platform like IBM Quantum or OQC, should be selected,
such that they support both machine learning and quantum circuit
deployments. The trained dimensionality reduction model and the
QML circuit need to be packaged in a format compatible with the
chosen platforms. Next, a cloud instance should be set up, or a man-
aged service like AWS Lambda, Google Cloud Functions, or Azure
Functions can be used to deploy these models. Once deployed, an
API endpoint, created using frameworks like Flask or cloud-specific
services such as AWS API Gateway, will manage incoming requests.
The API processes the data through the dimensionality reduction
model, encodes the pre-processed data into the trained QML model,
and then performs transpilation to optimize the quantum circuit for
specific quantum hardware based on a pre-defined algorithm before
sending it to the quantum cloud provider for execution. Finally, the
circuit is executed on the designated quantum cloud hardware and
the measured values are post-processed to get the final output.

4.2 Inference Operation
The workflow initiates when a user submits a query accompanied
by input data, such as an image of a handwritten digit. Initially, the
data undergoes classical pre-processing in the cloud, which includes
dimensionality reduction using techniques like PCA or t-SNE, and
normalization to scale the data suitably for quantum processing.
The pre-processed data is then encoded into QML model using the
encoding technique used while training. Once encoded, the circuit
is transpiled and sent to the quantum cloud where the trained QML
model is executed on available quantum hardware, such as IBM
Quantum Experience or Rigetti Aspen.

Post-execution, the quantum results are sent back to the classical
cloud for post-processing. This includes transforming the raw quan-
tum outputs, often probability distributions or measurements, into
meaningful classical information through techniques like softmax
or linear transformations. The final processed results are then deliv-
ered to the user, providing relevant outputs such as classifications
or predictions based on the original query.

5 Security Concerns
5.1 Assets in QMLaaS
5.1.1 Training/Testing Data. Data used for training QMLmodels or
during inferencing are critical assets because they are often highly
sensitive, difficult to obtain, and expensive to acquire and process
[32]. In a hybrid QMLaaS framework, this data may be processed
locally or over the cloud for tasks like dimensionality reduction,
making it vulnerable to threats such as data theft attacks [44, 59].
Sensitive data, including personal health or financial records, must
be handled securely to prevent privacy breaches and legal com-
plications. Moreover, acquiring high-quality data is particularly
challenging in specialized domains, requiring significant effort,
time, and adherence to regulatory standards. The cost associated
with collecting, labeling, and preparing this data further adds to its
value, as it directly influences the performance and reliability of
machine learning models, making it a sensitive and valuable asset.

5.1.2 Data Encoding Circuit. The data encoding circuit in a QML
model is used for embedding classical data into its corresponding
quantum state, making it one of the crucial components of any QML
model. Selecting the optimal data encoding circuit is a challenging
task, as it directly influences the performance of QML models [7, 37,
38, 56]. This process often requires extensive evaluation of different
encoding strategies on noisy quantumhardware to identify themost
suitable circuit for a given system. Techniques such as Quantum
Circuit Search (QCS) [4] have also been employed to optimize the
choice of encoding circuits for QML models. The process is further
complicated when encoding sensitive or expensive private data,
which adds significant value to the data encoding component of the
QML model. As a result, if an adversary gains access to this circuit,
it could pose a serious threat to the confidentiality and integrity of
the QML model.

5.1.3 PQC Architecture. During training, the parameters of the
quantum gates within the PQC are iteratively optimized to mini-
mize a loss function, enabling the model to perform its designated
task. Designing an optimal PQC is also a complex and resource-
intensive process, as it requires careful consideration of factors
such as expressibility, entanglement capability, and the reachability
of the quantum states [8, 13, 60]. Additionally, the PQC must be
tailored to the specific quantum hardware, accounting for noise
levels, available basis gates, and the device’s topology [4, 68]. How-
ever, designing an effective PQC goes beyond these considerations,
especially given the problem of the barren plateau, which can hin-
der optimization when the PQC is too deep, highly entangled, or
overly expressive [36, 43, 49]. Interestingly, recent studies suggest
that reducing entanglement in PQCs can actually improve perfor-
mance, making the design of a robust PQC even more nuanced [10].
Furthermore, the intermediate parameter values during training
and final parameter values during inferencing can be considered as
assets since they take significant time and cost to obtain. Given the
considerable time, resources, and expertise required to develop a
well-functioning PQC, it is also considered a valuable asset in the
realm of QML.
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5.2 Adversary Motivation
Adversary will be motivated to steal the QNN and/or its assets to
avoid paying for (i) the time and resources needed to design a QNN
from scratch, (ii) the training/inferencing data and (iii) the time and
resources needed for training the model. Thus, even though QM-
LaaS provides easier access to wider variety of quantum hardwares
and architectures, it also opens up several security vulnerabilities.
In the following section we will discuss few of the major security
concerns (Fig. 3) which comes with QMLaaS and how it affects the
confidentiality, integrity and availability of the QML models.

5.3 Confidentiality
5.3.1 Threats from Classical Cloud. Similar to traditional Machine
Learning as a Service (MLaaS), there is a risk of raw data theft,
either during training or inferencing [59]. This risk pertains to
sensitive data sent for preprocessing on classical cloud systems by
untrusted providers especially during the training stage when both
data and labels are sent to train the feature extraction model. Even
during inference, although the classical cloud may only have access
to input data and not the labels, adversaries can employ techniques
such as clustering to reverse engineer the original labels or collude
with the cloud provider responsible for loss calculation to obtain
the labels. Stealing sensitive training data can provide adversaries
with confidential business insights and personally identifiable in-
formation, which can be exploited for financial gain or competitive
advantages.

5.3.2 Threats from Quantum Cloud. In QMLaaS, this threat ex-
tends to quantum-encoded data, which becomes vulnerable when
handled by untrusted quantum cloud providers. An adversary could
potentially extract the encoding circuit from QML models and use
it to either sell the circuit or train their own QML model, thereby
offering a similar service [72]. However, training their own QML
model would either require collusion with cloud provider responsi-
ble for loss calculation or further analysis like majority voting, to
extract the labels, as the adversary would not have direct access
to them. This dual threat underscores the unique security risks
associated with both the classical and quantum components of the
QMLaaS framework.

Furthermore, QML models that incorporate novel encoding tech-
niques and architectures are particularly vulnerable to threats from
potentially untrusted quantum cloud-based adversaries. Given that
these cloud providers would have white-box access to the QML
circuits, there is a risk of intellectual property (IP) theft. Such ac-
cess enables adversaries to steal these specialized architectures and
encoding techniques, which they could then potentially sell to com-
peting businesses. Similarly, trained QML models hosted on these
untrusted platforms are also at risk of being stolen, highlighting
the confidentiality and security challenges faced in the QMLaaS
framework. This situation underscores the critical need for robust
security measures to protect against the theft of both data and
intellectual assets [35, 40, 71].

QML circuits in a cloud-based quantum computing environment
are also threatened by physical attacks, especially as users lack
direct control over the hardware. As quantum computers increas-
ingly handle sensitive IP through complex algorithms, the risk of
these circuits being compromised grows. Malicious insiders in data
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Availability (A) in the QMLaaS Pipeline.

centers could execute power-based side-channel attacks to extract
information about the control pulses used in quantum operations
[79]. By analyzing these pulses, attackers can reverse-engineer the
gate-level description of the QML circuits, revealing the underlying
algorithms or sensitive data embedded within the circuits. Such
attacks can compromise the confidentiality of proprietary quantum
algorithms and data.

QML circuits are also at significant risk due to state leakage,
particularly arising from noisy and erroneous reset operations nec-
essary between circuit executions [80]. When these operations are
flawed, residual quantum information from previous executions can
persist and carry over to subsequent ones, leading to “horizontal"
leakage. This leakage allows attackers to infer sensitive quantum
states used in a victim’s QML circuits. Additionally, “vertical" leak-
age, occurring simultaneously between qubits due to issues like
crosstalk, further compromises confidentiality by allowing adver-
saries to extract information from multiple qubits within the same
execution.

Finally, even when trained QML models are hosted on trusted
cloud providers, they remain susceptible to external threats, such
as model stealing or model inversion attacks. Consider a scenario
where the cloud-hosted QML model operates as a black box—users
do not have access to information about the model’s architecture or
the dataset on which it was trained, only the input and output data
format. In this setup, an adversary could systematically query the
cloud-hosted model, gathering significant information that could be
used to replicate the model’s functionality or extract details about
the training data [20, 21, 34].

5.4 Integrity
5.4.1 Threats from Classical Cloud. The raw training/ testing data
sent to the classical cloud for dimensionality reduction is vulner-
able to threats such as data poisoning attacks [19, 23, 46, 70, 81].
Adversary could either tamper or introduce adversarial examples
to the original raw data. Such manipulations can corrupt the data
before it is even encoded into quantum format, compromising the
QML model’s reliability from the outset.

5.4.2 Threats from Quantum Cloud. The integrity of QML models
is particularly at risk in the hybrid cloud-based QMLaaS framework
due to a variety of factors that go beyond classical data integrity
issues. These include challenges specific to quantum data and quan-
tum circuits. Especially, once the data is encoded into quantum
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circuits, it faces additional threats. Adversarial obfuscation of the
quantum encoded circuit can severely degrade the model’s perfor-
mance. This issue is particularly critical for the primary trainable
block of the QML model, the PQC. Adversaries may attempt to
manipulate the circuit architecture or even tamper the parameters
or the measurement outputs, leading to significant performance
degradation [66, 67].

Furthermore, an adversary could exploit crosstalk between qubits
to launch a fault injection attack on a victim’s QML circuit execu-
tion in multi-tenant computing environment [5]. By continuously
operating their own qubits with quantum gates, such as CNOT,
the adversary can induce errors in the neighboring qubits used by
the victim. This interference degrades the accuracy and reliability
of the victim’s computational results due to crosstalk. Attackers
can also compromise the integrity of QML models by targeting
various components within the quantum computing system, in-
cluding the QPU, Quantum Computer Controller, and Classical
Co-processor [78]. By manipulating physical qubits and couplings
through voltage changes or electromagnetic radiation, attackers
can introduce faults that alter quantum operations. They can also
interfere with the analog control pulses, modifying their frequency,
phase, or envelope to induce errors in gate operations. Furthermore,
attacks on the digital specifications used to generate these pulses,
as well as classical registers that store critical data, can lead to in-
correct quantum operations and corrupted outputs. In the Classical
Co-processor, similar attacks on classical registers can distort the
computations and optimizations in QML, ultimately compromising
the model’s accuracy and reliability.

Another concern arises from the variety of available quantum
hardware. An adversary operating within the cloud infrastructure
might allocate lower-quality quantum hardware for executing QML
circuits [50]. This allocation strategy might be motivated by the
lower costs associated with running circuits on less capable hard-
ware. However, this not only compromises the integrity of the QML
models but also negatively affects their performance. Each of these
factors underscores the complex integrity challenges faced by QML
models in a cloud-based, hybrid quantum-classical environment,
necessitating robust strategies to ensure the security and reliability
of these systems.

5.5 Availability
5.5.1 Threats from Classical Cloud. When pre-/post-processing
data over classical cloud, several security concerns related to avail-
ability can rise as well. For instance, denial of service (DoS) attacks
could be targeted at the classical computing resources like CPUs
and GPUs, effectively disrupting training/inferencing process and
making computational resources inaccessible [9, 42]. Another crit-
ical concern is ransomware attacks where malicious adversaries
can encrypt sensitive pre-/post-processed data or computational
resources, demanding payment for access restoration. Such attacks
not only halt model training but could also result in loss of valuable
data [11, 64].

5.5.2 Threats fromQuantum Cloud. Adversaries based in the quan-
tum cloud could also launch DoS attacks, disrupting the availability
of quantum hardware, or they could withhold measured outputs

from quantum hardware, leading to ransomware attacks. Further-
more, as discussed earlier, the QMLaaS workflow involves using
both classical and quantum resources during the training and in-
ference stages. This dependency creates a latency issue, which can
be exploited by a cloud-based adversary to delay the training and
inference processes. For example, during the training phase, an ad-
versary can reroute quantum circuit executions to slower or more
congested quantum hardware. This intentional rerouting to cheaper
hardware with longer queue times can significantly delay the gradi-
ent calculation process, thereby increasing the overall training time.
A similar strategy can be applied during the inference stage, where
fast responses are often crucial. Thus, adversaries could introduce
latency to degrade the runtime performance of the QML models, af-
fecting the responsiveness of the service. Additionally, adversaries
can also introduce an artificial demand on specific quantum hard-
ware, creating a bottleneck. This can be achieved by submitting
a large number of low-priority tasks to certain quantum proces-
sors, causing important QML tasks to experience significant delays
[51]. These tactics can greatly affect the availability of QMLaaS,
compromising the efficiency and reliability of the service.

6 Conclusion
The rapid development of quantum computers and the growing
interest in harnessing their practical utility have sparked significant
exploration in various applications, with QML being one of the most
heavily researched areas. The implementation of QML models is
expected to lead to the emergence of QMLaaS, a hybrid framework
that leverages both classical and quantum resources to deliver QML
services. In this work, we provided a detailed description of each
component of the QMLaaS framework and highlighted the various
security concerns inherent in this hybrid approach. Addressing
these security issues will be crucial for achieving a secure and
reliable QMLaaS deployment in the future.
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