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Abstract—Identification of molecular properties, like side effects, is one

of the most important and time-consuming steps in the process of molecule

synthesis. Failure to identify side effects before submission to regulatory

groups can cost millions of dollars and months of additional research to

the companies. Failure to identify side effects during the regulatory review

can also cost lives. The complexity and expense of this task have made it

a candidate for a machine learning-based solution. Prior approaches rely

on complex model designs and excessive parameter counts for side effect

predictions. Reliance on complex models only shifts the difficulty away from

chemists rather than alleviating the issue. Implementing large models is

also expensive without prior access to high-performance computers. We

propose a heuristic approach that allows for the utilization of simple neural

networks, specifically the GRU recurrent neural network, with a 98+%

reduction of required parameters compared to available large language

models while obtaining near identical results as top-performing models.

Index Terms—Molecular property prediction, drug evaluation, machine

learning.

I. INTRODUCTION

M
OLECULAR property prediction is one of the most fun-

damental tasks within the field of drug discovery [1], [2].

Applying in silico methods to molecular property prediction offers

the potential of releasing safer drugs to the market while reducing

test time and cost. Detecting molecular properties before development

enables researchers to develop more effective new materials faster and

with higher certainty. Detecting known causes of side effects in drugs

before release can prevent unnecessary injury and save thousands of

lives. Historically, these in silico approaches relied on complex feature

engineering methods to generate their molecule representations for

processing [3], [4]. The bias of the descriptors limits these approaches,

which means the generated features may not be reusable for different

tasks as some valuable identifiers may not be present. The feature

vectors also depend on current molecular comprehension; upon dis-

covery, the feature vectors could become redundant. Graph Neural

Networks (GNN) remove the dependence on complex and temporal

descriptors. GNNs became favorable due to the common practice of

drawing molecules using graph representations, which offer a generic

form for the input. The generic input format allows machine learning

models to build their interpretation of information rather than rely on

human capabilities. Through these advances GNNs perform well on
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multiple chem-informatic tasks, especially molecular property predic-

tion [5], [6]. Despite these improvements GNNs still have limitations.

Specifically, GNNs have difficulty understanding shared dependence

and have scalability issues. The size of the graphical input increases

exponentially with each additional molecule that is represented. With

this growth, the cost of communication between graphical nodes also

exponentially increases. Compared to other neural network types,

GNNs can perform worse at molecular property prediction, despite

their built-in generic representation [7]. With the recent success of

large language models, newer attempts aim to build transformer-based

approaches with promising signs of success [8]. While new large

language models offer comparable performance to GNNs, they require

up to 120 billion parameters.

Due to the rapid explosion of parameters caused by GNNs, feed-

forward neural networks, and transformers, we propose a heuristic ap-

proach using a recurrent neural network, specifically the gated recurrent

unit (GRU). Our approach can obtain close to state-of-the-art results

with 99+% fewer parameters than large graph-based models or large

language-based models, such as Galactica [8]. In the following sections,

we review the MoleculeNet benchmark [9] and compare the SMILES

and SELFIES formats and the basic concepts of a recurrent neural

network, and also discuss a few of the related works that are evaluated

using the MoleculeNet benchmark (Section II). We then discuss the

data pre-processing and model implementation details (Section III),

followed by model performances and a comparison to other state-of-

the-art options (Section IV). Finally, we conclude the paper by giving

a summary (Section V).

II. BACKGROUND & RELATED WORKS

A. MoleculeNet Benchmark

MoleculeNet is a benchmark set used to evaluate machine learning

techniques [9]. It curate’s quantum mechanics, physical chemistry,

biophysics, and physiology datasets. For each dataset, it establishes the

preferred metric for evaluation to enable consistent comparison across

models. We describe each dataset selected to evaluate our model.

1) Side Effect Resource (SIDER): The principal molecular prop-

erty of human consumption is the side effects associated with the

molecule. The Side Effect Resource (SIDER) dataset attempts to create

a single source of combined public records for known side effects [10].

The dataset consists of 28 columns; the first column is the SMILES

representation of a given molecule, and the 27 subsequent columns

are affected system organ classes where side effects are classified by

MedDRA .1 The side effects of each molecule are marked with a one

if it is known to have a side effect or a zero otherwise.

2) Bace: BACE is a collection of experimentally reported values

from various journals for the binding results for inhibitors of human

β-secretase 1 [11].

1https://www.meddra.org/
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3) Blood-Brain Barrier Penetration (BBBP): Here molecules

are classified by their ability to permeate through the blood-brain

barrier. A drug’s ability to permeate through the blood barrier is an

important feature for drugs specifically targeting the central nervous

system [12].

4) Clintox: MoleculeNet introduces ClinTox to evaluate drugs

previously approved by the FDA and drugs that have failed clinical

trials due to toxicity. [9]

5) Hiv: The HIV dataset is originally from the Drug Therapeu-

tics Program (DTP)2 consisting of molecules tested to inhibit HIV

replication. There are roughly 40 k samples within the dataset, where

MoleculeNet uses two labels, confirmed inactive and confirmed active.

6) Muv: The Maximum Unbiased Validation (MUV) dataset con-

tains 17 labeling tasks and 90 k molecules. The dataset originates from

PubChem [13].

B. Roc-Auc

The receiver operating characteristic curve (ROC curve) measures

the true positive rate against the false positive rate at multiple threshold

settings for a binary classifier. This measures the ability of a model to

distinguish correctly between two classes. ROC-AUC is commonly

preferred when evaluating models trained on imbalanced datasets,

making it an ideal statistic to evaluate the MoleculeNet datasets.

C. Simplified Molecular-Input Line Entry System (SMILES)

Simplified molecular-input line-entry system (SMILES) uses char-

acters to build a molecular representation [14]. Letters represent various

elements within a molecule, where the first letter of an element can be

uppercase, denoting that the element is non-aromatic, or lowercase,

denoting that the element is aromatic. Assuming an element requires

a second letter, it will be lowercase. Another possible representation

of aromaticity is the colon, which is the aromatic bond symbol. Other

potential bond symbols are a period (.), a hyphen (-), a forward slash

(/), a backslash (\), an equal sign (=), an octothorpe (#), and a dollar

sign ($). Periods represent a no bond, hyphens represent a single bond,

and the forward slash and backslash represent single bonds adjacent

to a double bond. However, the forward slash and backslash are only

necessary when rendering stereochemical molecules. The equal sign

represents a double bond, the octothorpe represents the triple bond,

and the dollar sign represents a quadruple bond. In cases where stereo-

chemical molecules are used, the asperand (@) can be used in a double

instance to represent clockwise or in a single occurrence to represent

counterclockwise. Numbers are used within a molecule to characterize

the opening and closing of a ring structure, or if an element is within

brackets, the number can represent the number of atoms associated

with an element. Numbers appearing within brackets before an element

represent an isotope. A parenthesis (()) denotes branches from the base

chain.

D. Self-Referencing Embedded Strings (SELFIES)

Self-referencing embedded Strings (SELFIES) improve the initial

idea of SMILES for usage in machine learning processes by creating a

robust molecular string representation [15]. SMILES offered a simple

and interpretable characterization of molecules that was able to encode

the elements of molecules and their spatial features. The spatial features

rely on an overly complex grammar where rings and branches are not

locally represented features. This complexity causes issues, especially

2https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+
Data

Fig. 1. Vanilla RNN architecture used for training; (Ht−1,Ht) represent
the hidden state, (Ot) represents the output state, and (Xt) represents the
input information. The σ represents the activation function that operates on
the combined input and hidden state.

in generative models, where machines frequently produce syntactically

invalid or physically invalid strings. To remove this non-locality, SELF-

IES uses a single ring or branch symbol, and the length of this spatial

feature is directly supplied; ensuring that any SELFIES string has a

valid physical representation.

E. Recurrent Neural Networks (RNN)

Elman networks, more commonly known as vanilla recurrent neural

networks (RNN), attempt to introduce the concept of a time-dependent

dynamic memory [16]. The idea is to make predictions about inputs

based on contextual information. Context-based predictions can be

done for four input-output schemes: one-to-one, one-to-many, many-

to-one, and many-to-many. One-to-one models are a variation of a

classic neural network, one-to-many models are best for image caption

generation, many-to-one models are best for sentiment analysis, and

many-to-many models are best for translation or video frame caption-

ing. Fig. 1 is an example of the basic structure of a vanilla RNN.

In Fig. 1, the Xt represents some input, Ht−1,Ht represents some

hidden state (which is representative of memory), Ot represents some

output, and σ represents some activation function. The current input

information combines with the previous hidden state, and the resulting

combined state is then fed to an activation function to insert some

non-linearity. This non-linearity produces the next hidden state, which

can be manipulated to create a desired output. The fundamental element

is the hidden state. The hidden state theoretically allows for consider-

ation of any historical input and its effects on the current input. For a

mathematical description of an RNN, we refer to (1) and (2).

Ht = σ(WHHHt−1 +WXHXt) (1)

Ot = WHOHt (2)

Unfortunately, Vanilla RNNs suffer from memory saturation issues,

so they are not always reliable. There have been many methods proposed

to overcome this issue, but one of the most popular is the Gated

Recurrent Unit (GRU) [17]. The basic structure of a GRU is in Fig. 2. We

can mathematically describe each of the components using (3), (4), (5),

and (6). Equation (5) represents the candidate hidden state function,

representing the potential updated state. Equation (6) performs the

actual update to the hidden state based on the previous hidden state and

the candidate hidden state. Both (3) and (4) allow the network to tune the

importance of the contribution of the previous hidden state to the new

hidden state. Because of the rt and zt parameters, the GRU can better

control its memory state offering a practical improved performance
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Fig. 2. GRU architecture used for training; (ht−1, ht) represent the hidden

state, (h̃t) represents the candidate hidden state state, and (rt) and (Zt) repre-
sents the parameters to tune the importance of the previous hidden state versus
the updated information. The σ represents the activation function that operates
on the combined input and hidden state.

over RNNs.

zt = σ(Wz · [ht−1, xt]) (3)

rt = σ(Wr · [ht−1, xt]) (4)

h̃t = tanh(W · [rt ∗ ht−1, xt]) (5)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (6)

F. Related Works

a) GROVER: The graph representation from the self-supervised

message passing transformer (GROVER) model takes two

forms, GROVERbase and GROVERlarge [18]. We only consider

GROVERlarge as it achieves the highest performance of the two.

GROVER bases its design on popular large language models such as,

BERT and GPT, where a large corpus of information pre-trains a model

and fine-tuning is applied for the completion of downstream tasks [19],

[20]. However, they stray from prior works that attempt training using

the SMILES string format [21] and instead use graphs, which they

state are more expressive. Previous graph pre-training approaches use

the available supervised labels to train their model [5], but GROVER

prefers a self-supervised approach to achieve higher performance,

so they suggest using contextual property prediction and graph-level

motif prediction. Contextual property prediction takes a given element

(node) within a molecular graph and predicts the connected elements

and the type of bond used for the connection. Graph-level motif

prediction takes a given molecule and attempts to predict the recurrent

sub-graphs, known as motifs, that may appear within the molecule.

To build the model, they designed a new architecture known as the

GTransformer, which creates an attention-based understanding of

molecular graphs. The pre-training process uses 10 million unlabeled

molecules for training and 1 million molecules for validation. The

molecules are taken from ZINC15 [22] and Chembl [23]. GROVER

is fine-tuned on 11 benchmark datasets from MoleculeNet [9] for

final evaluation. While this new architecture and self-supervised

training approach offer appealing results the model uses 100 M

parameters, uses 250 Nvidia V100 GPUs, and takes four days for

pre-training.

b) ChemRL-GEM: Geometry Enhanced Molecular representa-

tion learning method (GEM) for Chemical Representation Learning

(ChemRL) (ChemRL-GEM) draws inspiration from previous works

using a graph-based approach, especially GROVER [5], [18]. ChemRL-

GEM uses a large corpus of information to pre-train a model and,

like GROVER, finds the ambiguity of SMILES and lack of structural

information hard to build a successful model using a string-based ap-

proach [24]. ChemRL-GEM blames the low performance of prior graph

approaches on neglecting the available molecular 3D information and

improper pre-training tasks. ChemRL-GEM pre-training splits tasks

into geometry-level and graph-level tasks. The geometry level tasks are

again split into two types where bond length prediction, and bond angle

prediction are local spatial structure predictions, and atomic distance

matrices prediction is a global spatial prediction. The graph-level pre-

dictions are the Molecular ACCess System (MACCS) key prediction

and the extended-connectivity fingerprint (ECFP) prediction. To build

the model they designed an architecture called GeoGNN which trains

on the atom-bond graph and the bond-angle graph of molecules to

build a 3D structure-based understanding of the molecular graphs.

ChemRL-GEM achieves SOTA performance and is an early attempt at

a large 3D graph model pre-trained network. The pre-training approach

uses 18 million training samples from ZINC15 and 2 million for

evaluation [22]. They state that pre-training a small subset of the data

would take several hours using 1 Nvidia V100 GPU, and fine-tuning

would require 1-2 days on the same GPU. As a rough estimate of the

actual training process there was a follow-up work called LiteGEM

which removed the 3D input of the model but still uses 74 million

parameters and takes roughly ten days of training using 1 Nvidia V100

GPU [25].

c) Galactica: Galactica is inspired directly by previous large lan-

guage models and their utilization of large datasets to pre-train models

for downstream tasks [19], [20]. Differentiating from BERT, they

use a decoder-only setup from Vaswani et al. [26]. Unlike GROVER

or ChemRL, Galactica focuses on general scientific knowledge and

wishes to apply it to the entirety of the scientific domain [8]. The

Galactica model takes several forms, but the 120 billion parameter

model offers the best performance. Galactica trains over 60 million

individual scientific documents and 2 million SMILES strings. Galac-

tica is trained with samples from MoleculeNet, where the molecular

properties are converted to text prompts and responses. Galactica

acknowledges using SMILES they receive reduced performance gains

as their model size increases, but they state this could be overcome

with more samples. Galactica offers a competitive performance to

graph-based approaches while offering a simplified architecture de-

sign. Unfortunately, the model requires 120 billion parameters and

trains using 128 Nvidia A100 80 GB nodes. Despite the massive

model size, it is not SOTA for a single SMILES metric. Galac-

tica states they need additional samples/fine-tuning to obtain SOTA

results.

III. METHODS

A. Data Pre-Processing

The available MoleculeNet benchmark [9] uses SMILES for its

molecular representation. After reviewing some of the molecule strings,

not all are canonical. Including non-canonical SMILES is problematic

as SMILES grammar is already complex; the molecules are converted

to RDKit’s canonical form to reduce complexity. The next issue is

caused by RNNs, one of the many advantages of RNN is the allowance

of variable length inputs to account for a variable length of history.

This is only true theoretically; in practice, RNN memory has limits,

which is the focus of many newer works [27]. Despite this limitation,

it has been recently shown that RNNs can handle input lengths of

around 45–50 before the performance begins to degrade [28], [29].

Using this knowledge, we set a maximum SMILES length of 46 for

the molecules. The limitation keeps a minor majority of the molecules

while allowing us to ensure the RNN is performing well. After limiting

the SMILES molecular length, the SMILES are converted to SELFIES.

The intention of converting SMILES to SELFIES is to reduce the
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Fig. 3. Overview of the RNN process.

grammar complexity and simplify the learning process of the RNN.

SELFIES converts each element and structural component, such as

rings or branches, into their label. These labels are then encoded into a

numerical value based on their dictionary index.

B. RNN Implementation

Fig. 3 offers a visualization of the methodology used to train the

RNN. The molecules are first loaded in from a dataset from the Molecu-

leNet benchmark [9] and converted to SELFIES representation using

the method described in Section III-A. The converted SELFIES are

then processed through an embedding layer with a dimensional space

matching the size of the label dictionary. The dictionary consists of all

the unique SELFIES components within the dataset and the embedding

dimension equals the dictionary size to maintain as much information as

possible. The input, hidden, and output dimensions of the RNN are also

equal to the size of the dictionary. Maintaining the dimensional space

and not reducing it before output generation gives the RNN a chance of

learning the molecular context. Figs. 1 and 2 are visualizations of the

RNN architectures used to process the SELFIES. RNNs historically use

the Tanh activation function, but we use the LeakyReLU as it reduces

saturation possibilities and typically results in higher performance [30],

[31]. In addition to this, we also include a dropout layer on the output

of the RNN which helps prevent overfitting and reduce the error

rate of RNNs [32]. After processing the SELFIES through the RNN,

the final state should have all important prior information encoded

into it. This vector then passes through an additional LeakyReLU

and dropout layer before being fed to a fully connected layer. The

fully connected layer reduces the vector from the dictionary-sized

dimension down to the number of classes present in the molecular

property. Subsequently, a soft-max operation finds the most likely

class.

IV. RESULTS AND COMPARATIVE ANALYSIS

A. Results

Before training on the selected MoleculeNet datasets referenced in

Section II-A, we perform an additional reduction to the dataset by

setting the lower bound of 31 molecules to the SMILES string allowing

for the search space to remain sufficiently complex while reducing the

overall run time. The lower bound reduces the datasets before stratified

splitting the data using 80% for training and 20% for testing [33]. The

stratified splitting intends to maintain the known sample rate of a given

side effect to model real-world testing. However, during training, we

want to remove the sampling bias to ensure our model accurately learns

the causes of a side effect. The minority samples within the training

set are duplicated to have an even sample count between the side

effect present and the side effect not present to reduce the sampling

bias. After replicating training samples, the SMILES conversion to

SELFIES occurs. Typical natural language processing (NLP) methods

use a word, sub-word, or character tokenization to convert strings into

Fig. 4. Results of three tasks: (a) loss curves, (b) training accuracy,
(c) testing accuracy for neoplasms benign, malignant and unspecified (incl cysts
and polyps) disorders, (d), (e), (f) for blood and lymphatic system disorders.

numerical values, but we opt for a slightly different method, which

we explain by referring to (7). It shows the SELFIES representation

of benzene where each molecule and structural element are between

brackets. Using this representation, we decide to tokenize based on each

set of brackets that exist within the SELFIES converted dataset. This

results in a total of 47 unique values. After tokenizing the SELFIES,

the embedding dimension, input dimension of the RNN, and the hidden

dimension of the RNN are set to a size of 47 to match the dimensional

space of the tokens. To give the RNN model the best opportunity

to make accurate classifications, we use a single model to perform

a single side effect classification prediction. For SIDER, instead of

predicting all 27 potential side effect classifications, we opt to predict

20 side effect classifications due to extreme imbalances present in

the side effect data. The vanilla RNN architecture results in a model

with 11.5 K parameters and the GRU architecture results in a model

with 18.8 k parameters. Both train in under 2 minutes on an Nvidia

GeForce RTX 3090. To compare our performance with other works that

use MoleculeNet we evaluate using the suggested metric, the receiver

operating characteristic curve (ROC) [1], [34]. While ROC is helpful

for comparison, it is commonly misunderstood [35], [36] so we include

a small sample of 2 training/testing accuracy and loss curves in Fig. 4 as

a simple spot check of model performance. Examining Fig. 4, we note

that training and testing loss is decreasing across all three side effect

properties. There are spikes within each of the loss curves, but this is

known to have occurred since the inception of RNNs [16]. The training

loss for all three side effects saturate faster than the testing. There can be

some gap in performance in loss based on the difficulty of new samples,

but the gap here is likely accentuated as an unfortunate side effect of

the minority sample duplication process. The duplicate samples within

the training set help the model learn what molecular components help

detect a side effect, but during training, the repeated samples become

easier to predict for the model. In the case of accuracy, both training

and testing show an upward trending curve where improvement starts

to attenuate between the 20th–40th epoch. This attenuation roughly

matches the attenuation that occurs with the loss curves. Comparing

training and testing accuracy there appears to be a roughly 20+% gap

in performance at nearly every epoch, which we again attribute to the

duplicate samples within the training set.

[C][= C][C][= C][C][= C][Ring1][= Branch1] (7)
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TABLE I
TABLE OF ROC PERFORMANCE PER MOLECULAR PROPERTY PREDICTION ACROSS DATASETS

B. Comparisons

To understand the performance of the proposed approach, we com-

pare it across multiple datasets to two top-performing GNN models,

ChemRL-GEM [24] and GROVERlarge [18], and a top-performing

NLP model, Galactica [8]. In addition to the top-performing large

models, we include the random forest and GCN model from Molecu-

leNet [9], the DMPNN model [1], and the pre-trained GIN model [5].

For each heuristic model we evaluate we train using 20 different random

seeds and evaluate the model by taking the top 3 performing ROC

scores per metric. We include standard deviation as a way to account

for uncertainty in model performance. Overall results are shown in

Table I. Beginning with the SIDER test, the results in Table I show our

approach using the GRU achieves SOTA performance with a 17.8%

higher performance over the best model not using the proposed method

(RF [9]). While there are no direct statistics available for ChemRL-

GEM, we use roughly 99.7% fewer parameters than its follow-up work,

LiteGEM [24], [25]. It is worth noting that applying our proposed

approach to a CNN network offers a 17.3% higher performance over

RF [9]. For the BBBP test, the GRU outperforms ChemRL-GEM and

Galactica but performs 0.32% worse than GROVERlarge. While it may

be possible that GROVER achieves better performance due to their

usage of graph representation, it more likely stems from having 100 M

parameters, over 5,000x more parameters than our model [18]. For the

Clintox test, our performance was again the best of all the models.

This test is one of Galactica’s best performances, yet we can achieve a

17.05% higher performance with 6 Mx less parameters [8]. Comparing

the GRU approach to the best performing approach for Clintox and

BACE, GROVERlarge [18], it achieves a 3.74% better performance

for Clintox and a 5.01% better performance for BACE.

Further comparing the models we include the pre-train data require-

ment, the train time of the model and the GPU requirement to achieve

the listed runtime in Table I.

V. DISCUSSION & CONCLUSION

While large data models may offer coverage of larger molecular

lengths, we have shown that small models (specifically GRUs) are still

viable candidates for molecular property prediction. Smaller models

are cheaper, more practical, and more accessible solutions as they don’t

require multiple GPUs and several days of training prior to obtaining a

result. There are limitations with RNN based models, but when these

limitations are carefully considered and more descriptive languages,

such as SELFIES [15], are used RNNs offer SOTA/near SOTA results.

A. Clinical Insights

Property prediction models allow chemists to perform molecular

evaluations prior to physical experimentation. Effective property evalu-

ation can prevent months of wet lab research being spent on molecules

that will not be feasible. Reducing failures realized during synthesis

has the potential to greatly reduce the drug to market run time, enabling

clinical researchers to rapidly treat patients for their medical conditions.

B. Constraints

Despite the RNN’s learning capabilities and ability to process vari-

able length input with no additional parameters required, using such

an architecture does have drawbacks. RNN models can scale when

dealing with large datasets via batching or even model parallelization,

but they do not scale well when considering larger input sequences.

Theoretically, RNN models can process large sequences of information

with no problem, but in practice, RNNs can suffer from vanishing or

exploding gradients causing them to “forget” important information.

Even if we could implement the perfect memory model, the RNN

still suffers from long run times where each addition to the sequence

increases the run time due to the sequential nature of recurrence. One

possible method to mitigate the long run time would be chunking,

where the sequences are partitioned into smaller processable pieces.

Unfortunately, this is unreliable, as sometimes vital state information

may be separated from chunks causing inaccurate results.

C. Ethical Statement

While machine learning models can help identify potential molecular

properties, they are not without flaws. Even if machine learning models

can accurately identify all molecular properties of the datasets, they are

trained with are fully dependent on previous human discoveries. The

datasets are subject to flawed understandings of chemistry and even

political choices. For example, the NIH only classifies drugs as toxic to

the liver after successfully ruling out other potential causes.3 Therefore,

machine learning models should only be used for preliminary evaluation

of molecules and not as the only form of molecular evaluation.
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