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Abstract—This paper studies edge persistence and memory in time-varying (dynamic) networks, and their effect on community
detection. In particular, we focus on two models representing network memory, using which we study the asymptotic behavior of
community detection in dynamic networks of large size, manifested through their phase transition threshold. In the first part, we adopt a
Markovian stochastic block model (SBM) in which the edge probabilities in each network snapshot depend not only on the respective
node attributes but also on the previous network snapshot. Under this model, semi-definite relaxation achieves the optimal phase
transition bound for exact recovery, as observed in other community detection problems. The adverse effect of edge persistence on
perfect recovery is analyzed and highlighted. In the second part, we study networks where underlying communities change slowly
compared with network measurements. We model this scenario via a time series of SBM wherein the node attributes are fixed within a
window of a certain size and vary independently across windows. The phase transitions are calculated via semidefinite programming
which, once again, is asymptotically optimal. Numerical simulations conducted on finite-size networks interpret the asymptotic results.

Index Terms—Community detection, stochastic block model, dynamic network, maximum likelihood detection, semidefinite
programming, edge persistence, clustering.

✦

1 INTRODUCTION

COMMUNITY detection is the discovery of underlying
communities among individuals in a network by an-

alyzing their connections. It is a core problem in network
analysis, and it has many applications in real-world net-
works including social networks [1], [2], [3], identification of
protein complexes in biology [4], [5], [6], and transportation
networks [7], among others.

Most studies in community detection utilize a network
model involving a single, static instance of a graph. How-
ever, many real-world networks are temporal networks,
where communities and the connections among individuals
undergo variations over time. For example, the transfer
season in the national football league can cause substantial
changes in the communities and connections within the
friendship graph of football players. The connections be-
tween players in different teams can experience significant
change or remain relatively stable. Similar behaviors are
commonly observed in many other networks that cannot
adequately be captured within a static framework.

In dynamic community detection, research has focused
primarily on developing computationally effective algo-
rithms to recover communities under different evolving
settings in temporal networks [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18]. Compared with static networks,
there has been little work on the fundamental limits (also
known as phase transitions) of community detection in
dynamic networks [19], [20], [21], [22]. Furthermore, there
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are no studies that provide rigorous bounds on the impact
of edge evolution on the fundamental limits of dynamic
community detection under the exact recovery criterion,
where the community detection algorithm aims to recover
labels with a probability that converges to one.

1.1 Contribution

This paper focuses on exact recovery in temporal graphs.
We study the exact recovery phase transition under two
link evolution models. The first involves edge persistence,
and the second involves node label dynamics that are much
slower than the frequency of graph observations.

Under the edge persistence model, some node pairs
maintain the status of their interactions (edges) across time,
beyond what is predicted by the underlying communities.
For example, high-school classmates often maintain their
friendship over an extended period, despite subsequent
differences in political perspectives, religion, social class, or
fandom of sports teams. To model graphs with edge per-
sistence, we consider a stochastic block model (SBM) with
Markovian edges such that current observations depend
on prior snapshot observations as well as current hidden
labels. We calculate the phase transition and propose a
semi-definite programming (SDP) relaxation algorithm that
achieves this phase transition.

The second model applies to scenarios in which varia-
tions in underlying communities are slow compared with
the frequency of graph observations (snapshots). For exam-
ple, in social networks, node attributes such as political af-
filiation or education level remain stationary on the scale of
months or years, while the interactions of nodes (edges) can
change within that time scale due to finding new friends,
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new activities, or new preferences. Inspired by the utility of
block models in a variety of settings, we employ a model in
which time is divided into blocks or windows; the labels for
each node remain constant within each window, and vary
independently from one window to the next. We extend the
idea of SBM to account for the sequence of edge observa-
tions between the consecutive snapshots occurring in each
time window. We then determine the phase transition and
detect communities using SDP relaxation. We show that SDP
produces the same phase transition as the optimal estimator
for the two models studied in this paper.

1.2 Related Works
Finding the exact recovery limits is a fundamental problem
in statistical learning and information theory. To compute
these thresholds, a stochastic framework is required that
models observations based on the underlying affiliations in
the network. The stochastic block model a widely known
and utilized framework that offer such a probabilistic con-
figuration. An SBM(n, p, q) is a generative model that as-
signs probabilities (p, q) to observations (intra-community
and inter-community edges) based on node labels [23],
where n is the number of nodes in the graph. Studies on
SBM have shown exact recovery is possible when these
probabilities are in dense regimes, i.e. p = aa log(n)

n , q =
b log(n)

n . In this regime, exact recovery is possible for static
networks if and only if

√
a −

√
b >

√
k where k is the

number of communities [24]. In addition, computationally
effective algorithms have been developed that can achieve
the exact recovery threshold [25], [26], [27], [28], [29], [30],
[31], [32], [33].

Different dynamic models such as preferential attach-
ment graph [34], growing model [35], and graph convo-
lutional networks [36] have been proposed in the litera-
ture to study dynamic community detection. However, an
SBM equipped with some evolutionary parameters is the
most prevailing one to study the statistical behavior and
information-theoretic limits of dynamic community detec-
tion in networks. In [37], [38], [39], [40], [41], dynamic be-
havior is captured by modeling the evolution of connectivity
parameters of an SBM as the system states, and an extended
Kalman filter is employed for state prediction and updating
to recover communities. These studies did not explicitly
mention phase transition. Static models can also be adapted
for evolving graphs by introducing a Markov Switching
Model for each of the node labels across time [19], [22],
[37], [42], [43], [44]. Ghasemian et al. [19] utilized temporal
label dependencies for the improvement of detectability,
but no formal analysis or bounds were offered. In [22], the
exact recovery fundamental limits under label dependency
for a CBM was established, showing that semi-definite
programming can achieve phase transition. Other studies
have modeled the appearance and disappearance of edges
in temporal snapshots using either random rates [45], or
a Markov dependency [20], [21]. In [20] and [21], both
edge and node persistence were incorporated in the SBM
via Markov dependencies between consecutive snapshots in
evolving graphs, wherein it was conjectured that temporal
link persistence diminishes the detectability, while temporal
node persistence enhances it similarly to [19]. Previous work

on edge persistence graphs has not formally addressed
phase transition, in particular in the exact recovery regimes.

2 EDGE EVOLVING MODELS

At each time instance t = 1, 2, . . ., a graph with n nodes is
assumed, whose node labels are characterized by the n × 1
vector g(t) and the edges by the corresponding n×n matrix
A(t). (See Fig. 1). We consider two variations of this model.
In the first model, the nodes and edges of the graph vary
on the same timescale, while in the second model, the node
labels vary more slowly than the graph edges.

time

1

2

t-1

t

Fig. 1. Label and edge changes among nodes in temporal snapshots of
an evolving network with binary communities

2.1 Markov SBM Graphs

We explore a situation where nodes are expected to maintain
some of their connections across the sequence of graph
observations, even as the underlying groups change. This
implies the existence of persistent edges within sequential
graph snapshots. The model is represented by probabilities
of current values of the network edges, conditioned on
the earlier instances of the network edges, and the net-
work node labels in the current instance of the network.
Under a balanced binary community detection setting, let
Z(t) ≜ g(t)[g(t)]⊤ and:

P
(
Aij(k) | Aij(k − 1), Zij(k)

)
= (1− η)δAij(k),Aij(k−1)+

ηpAij(k)
1+Zij(k)

2 (1− p)(1−Aij(k))
1+Zij(k)

2 qAij(k)
1−Zij(k)

2

× (1− q)(1−Aij(k))
1−Zij(k)

2 (1)

where Zij(k) = gi(k)gj(k), p = a ln(n)
n , q = b ln(n)

n , a ≥
b > 0, and ln(n) = loge (n). In (1), η ∈ [0, 1] is the edge
persistence parameter Shown in Fig. 2.

The model reduces to a common SBM model at each
snapshot for η = 1, while η = 0 means a fixed network
at all snapshots. We now utilize the common asymptotic
model for network probabilities that reveals the phase tran-
sition phenomenon, i.e., the network has edge probabilities
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Fig. 2. Edge and node evolution in Markov SBM graphs with edge
persistence parameter η

proportional to ln(n)
n and operates in the so-called dense

regime.1 Let:

P(eij(t− 1) = 1 | Zij(t) = 1) = p̃ =
ã ln(n)

n
(2)

P(eij(t− 1) = 1 | Zij(t) = −1) = q̃ =
b̃ ln(n)

n
(3)

where ã and b̃ are non-negative constants. Considering
binary node labels:

P(eij(t) = 1) =
1

2

(
(1− η + ηp)p̃+ ηp(1− p̃)

)
+

1

2

(
(1− η + ηq)q̃ + ηq(1− q̃)

)
=

1

2

(
(1− η)(p̃+ q̃) + η(p+ q)

)
Since P(eij(t) = 1) = P(eij(t− 1) = 1, we have:

p̃+ q̃ = p+ q (4)

Without loss of generality, we assume ã = a− ϵ ≥ b̃ = b+ ϵ
and ϵ ∈ [0, a−b

2 ].

2.2 Multi-observation Models

We now consider the case where the graph observations
are frequent, or the node labels vary slowly relative to the
sampling of the graph observations. To model such graphs,
we use time-window block models that allow us to capture
the persistent features of the network while providing a
flexible framework to adapt to evolving interactions. Such
scenarios are modeled in this paper as follows: we model
the slowness of the variation of the node labels according to
a piecewise constant model, i.e., the label for each node gi(t)
is constant for a block of τ+1 time units, and is independent
from block to block2 as shown in Fig. 3. Therefore, the values
of g(t) for t = kτ carry all the information contained in
the random process. We now characterize the model via the
distribution P(A(t), A(t−1), . . . , A(t− τ)|Z(t)). For ease of

1. The closest characterization in the literature compared to this
model is arguably [20], with two main differences. First, our model
focuses on edge memory and isolates its effect. Second, our SBM graph
parameters do not vary with time.

2. This structure has been used for modeling and analysis of other
time-varying stochastic phenomena, for example, the block fading
model for wireless channels [46]

exposition, let s be a variable representing the state of the
edge between nodes i, j over the block of length τ , namely,

[Aij(t), Aij(t− 1), . . . , Aij(t− τ)]

For a non-weighted graph model, graph edges take binary
values, therefore without loss of generality, one may assume
s to be an integer taking values in [0, 2τ+1 − 1]. Then, graph
observations depend on the node labels according to the
following SBM:

P(s | Zij(t)) =
∏
ℓ

[
p

(1+Zij(t))

2

ℓ q
(1−Zij(t))

2

ℓ

]1{s=ℓ} (5)

where 1{s=ℓ} is the indicator function of set {s = ℓ},
and pℓ is the probability that the edges in the block
[Aij(t), Aij(t−1), . . . , Aij(t−τ)] taking the outcome config-
uration ℓ, conditioned on nodes i, j belonging to the same
community. This means Zij = 1. Obviously, pℓ ≥ 0 and∑

ℓ pℓ = 1. qℓ is the probability of edges between nodes
i, j taking configuration ℓ, subject to nodes i, j belonging
to different communities, in our case this means Zij = −1.
Once again,

∑
ℓ qℓ = 1. We assume graphs are in the so-

called dense regime, i.e., pℓ = aℓ lnn
n and qℓ = bℓ lnn

n for all
ℓ ̸= 0. The model in (5) does not capture any dynamics
within the block, therefore we call this simply a multi-
observation model.

It is obvious that the parameter space grows exponen-
tially with the size of the block τ . To control the parameter
space, we also focus on the special case where the depen-
dence of the node labels with the edges s can be described
through the temporal frequency of the appearance of the
edge.

s′ =
τ∑

i=0

Aij(t− i)

This will allow the parameter space to collapse so that
it grows only linearly with the block size, and the rep-
resentative state variable s′ for the probabilities can take
values between 0 and τ , such that. In either case, since
g(t) is constant over blocks of length τ , we utilize τ graph
observations for estimating the value of g(t).

3 COMMUNITY DETECTION VIA SDP
To find the optimal estimator under each of the model set-
tings in Section 2, we need first to formulate the maximum
a-posteriori problem.

3.1 Markov SBM Graphs
Under binary, balanced communities, Eq. (1) shows that the
maximum a-posteriori estimator and maximum likelihood
estimator are equivalent. The maximum likelihood estima-
tor can be formulated as follows:

Ẑ(t) = argmax
Z(t)

P
(
A(t),A(t− 1) | Z(t)

)
(6a)

s.t. Zii(t) = 1 i ∈ [n] (6b)
⟨Z(t),J⟩F = 0. (6c)

where ⟨·, ·⟩F indicates the Frobenius inner product of two
matrices, [n] ≜ {1, 2, · · · , n}, and J denotes a matrix where
all entries are one. Optimization problem (6) is nonconvex
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Fig. 3. Edge and node evolution of evolving binary network under Multi-observation configuration with two snapshots in each block

due to rank-one constraint on Z(t), therefore it is not directly
tractable. Relaxing this constraint to Z(t) ⪰ 0, we have:

Ž(t) = argmax
Z(t)

〈
B(t, t− 1),Z(t)

〉
F

(7a)

s.t. Z(t) ⪰ 0 (7b)
Zii(t) = 1, i ∈ [n] (7c)
⟨Z(t),J⟩F = 0. (7d)

where:

B(t, t− 1) = ln
(a
b

)(
A(t)−A(t) ◦A(t− 1)

)
+

ln
(a− ϵ

b+ ϵ

)
A(t− 1) (8)

where ◦ is the Hadamard product.

Theorem 1 (Necessary Condition). For a sequence of estima-
tors Ẑ(t) defined via (6), if

η
(√

a−
√
b
)2

+
(√

a− ϵ−
√
b+ ϵ

)2
< 2

where η ∈ (0, 1], ϵ ∈ [0, a−b
2 ], then,

lim
n→∞

P
(
Ẑ(t) = Z∗(t)

)
= 0

for every t, where Z∗(t) is the ground truth.

Proof. See Appendix A.

Theorem 2 (Sufficient Condition). The semidefinite program-
ming estimator of (7) is asymptotically optimal for sufficiently
large n, i.e., limn→∞ P

(
Ž(t) = Z∗(t)

)
= 1, if

η
(√

a−
√
b
)2

+
(√

a− ϵ−
√
b+ ϵ

)2 ≥ 2

where η ∈ (0, 1] and ϵ ∈ [0, a−b
2 ].

Proof. See Appendix B.

Remark 1. The assortativity, α = a
b , of the SBM parameters

is a key parameter in determining the exact recovery detection
threshold. The higher the assortativity, the better the threshold.
Fig. 4 shows under Markov SBM graphs recoverable regions are
larger when α = 9 (left panel) compared with α = 4.5 (right
panel).

Remark 2. Higher edge persistence, characterized by smaller η,
shrinks the perfect recovery region. With sufficiently high edge
persistence, exact community detection will become infeasible, as
illustrated in Fig. 4.

Remark 3. A weak bond between current labels and past obser-
vations may lead to unrecoverability of labels. See Fig. 4, where
smaller values of ϵ are more favorable for perfect recovery.

3.2 Multi-observation Model

Recall that in this model, graph observations over a window
of length τ are used. For convenience, we represent τ binary
graphs {A(t), . . . ,A(t−τ)} (having the same nodes) equiv-
alently with a compact multi-valued graph A whose every
edge has a binary vector value [Aij(t), . . . , Aij(t − τ)].3 A
binary vector edge weight is equivalent to a positive integer
s ∈ [0, 2τ − 1]. We then consider 2τ − 1 binary graphs
M(s), s = 1, . . . , 2τ − 1 defined as:

M ij(s) =

{
1 Aij = s

0 otherwise

The maximum a-posteriori estimator and maximum like-
lihood estimator are equivalent due to the uniform distri-
bution of binary balanced-size communities. Therefore, the
optimal estimator of (5) is the solution of the following
optimization:

Ẑ(t) = argmax
Z(t)

〈∑
s̸=0

ln
(as
bs

)
M(s),Z(t)

〉
F

(9a)

s.t. Zii(t) = 1, i ∈ [n] (9b)
⟨J,Z(t)⟩F = 0. (9c)

where Z(t) = g(t)[g(t)]⊤. Since Z(t) is a rank-one matrix,
(9) is nonconvex optimization. Therefore, we relax this con-
straint, and the estimator will be as follows:

Ž(t) = argmax
Z(t)

〈∑
s̸=0

ln
(as
bs

)
M(s),Z(t)

〉
F

(10a)

s.t. Z(t) ⪰ 0 (10b)
Zii(t) = 1, i ∈ [n] (10c)
⟨J,Z(t)⟩F = 0. (10d)

Theorem 3. For any sequence of estimators Ẑ(t) in (9), if∑
s̸=0

(√
as −

√
bs
)2

< 2,

then
lim
n→∞

P
(
Ẑ(t) = Z∗(t)

)
= 0

for every t, where Z∗(t) is the ground truth.

Proof. See Appendix C.

3. In effect, τ binary graphs have been stacked into one multi-valued
graph.
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Fig. 4. Edge persistence impact on exact recovery threshold. The gray regions show where exact recovery is impossible

Theorem 4. The semidefinite programming estimator of
(10) is asymptotically optimal for sufficiently large n, i.e.,
limn→∞ P

(
Ž(t) = Z∗(t)

)
= 1, when∑

s̸=0

(√
as −

√
bs
)2 ≥ 2

where Z∗(t) is the ground truth

Proof. See Appendix D.

4 NUMERICAL RESULTS

This section conducts numerical simulations that provide
insight into the range of situations where the earlier asymp-
totic findings in the paper are valid. These simulations were
done utilizing Python and an academic-licensed edition of
MOSEK for the execution of the SDP tasks.

4.1 Markov SBM Graphs
Graph community detection was performed on a graph with
n = 1000 nodes, featuring two equally sized communities.
The SDP algorithm was executed for a variety of parameter
settings. For each setting 25 graphs were simulated and
community value detected for all nodes. Using the 25,000
node samples thus simulated, we estimate the probability of
error (by averaging) and also its variance. Using a Gaussian
approximation, we calculated the 95% confidence intervals.
Fig. 5 shows pictorially results for these simulations under
a variety of graph parameters. In Fig. 5, the red circles
represent graph parameters for which the zero node error
probability is outside the 95% confidence interval for the
calculated average error. These are parameter values under
which, with high confidence, the graph is not fully informa-
tive with respect to the underlying communities. For certain

TABLE 1
Probability of error and lower bound of 95% confidence under Markov

SBM graphs

α η ϵ P(Error) (95% CI)/2
4.5 0.1 0.5 1.88× 10−2 3.86× 10−4

4.5 0.1 1 2.79× 10−1 3.46× 10−4

4.5 0.1 1.5 4.53× 10−1 3.46× 10−4

5 0.1 1.5 3.19× 10−1 3.46× 10−4

7 0.1 1.5 9.44× 10−3 1.67× 10−3

7 0.2 1.5 2.52× 10−3 7.84× 10−4

7 0.3 1.5 1.12× 10−3 4.74× 10−4

9 0.3 2.25 2.4× 10−4 1.67× 10−4

9 0.4 2.25 4× 10−5 7.68× 10−5

parameter sets, the entire simulation did not result in any
node errors, these values are represented with green. Other
outcomes are shown in white.

It can be observed in Fig. 5 that the green circles (zero
node error) align with the theoretical results in asymptotic
regimes that are established in Theorems 1 and 2 and
depicted in Fig. 4. Fig. 5 obviously indicates that the higher
the assortativity, the bigger the green region and the smaller
the red region. Results associated with some parameter
configurations are also reported in Table 1. These simulation
outcomes concur with the theoretical conclusions, indicating
that larger values of η and smaller values of ϵ are associated
with smaller misclassification errors for all scenarios.

4.2 Multi-observation Model

We considered τ = 1 and five parameter sets, as outlined
in Table 2. In two snapshots of a binary graph, the edge
between nodes i, j can have four distinct outcomes (states).
Without loss of generality, we assume a start time t = 0 for
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Fig. 5. Parameter configuration of the Markov SBM where exact recovery is achieved (green), not achieved with 95% probability (red), and
inconclusive (white)

TABLE 2
Probability of error and lower bound of 95% confidence interval under

multi-observation model

a1 a2 a3 P(Error) (95% CI)/2
1.5 1.25 1.25 4.6808× 10−1 8.7784× 10−3

2 1.5 1.5 2.6168× 10−1 3.2267× 10−2

3 2 2 8.92× 10−3 4.2709× 10−3

4 2.5 2.5 2× 10−4 1.9203× 10−4

4.5 3 3 8× 10−5 1.0634× 10−4

our simulation, therefore our observations consist of graphs
A(0), A(1). For the edge between each pair of nodes i, j our
states our defined as:

s =


0 Aij(1) = Aij(2) = 0

1 Aij(1) = Aij(2) = 1

2 Aij(1) = 0, Aij(2) = 1

3 Aij(1) = 1, Aij(2) = 0

Consider as denotes parameters associated with inter-
community edges, while bs represents parameters related
to intra-community edges. Without loss of generality, we
assume as ≥ bs for each s ̸= 0, b1 = b2 = b3 = 1,
and a1 ≥ a2 = a3 ≥ 0 in all experiments. Note that,
a0 = 1−

∑
s̸=0 as and b0 = 1−

∑
s̸=0 bs. Similar to Markov

SBM graphs, 25 graphs were simulated and community
value was detected for all nodes under each setting. Sim-
ulation results reveal that the probability of error decreases
with an increasing value of αs = as

bs
for s = 1, 2, 3. This re-

duction in error is particularly significant when the system’s
parameters satisfy the conditions outlined in Theorems 3
and 4, as demonstrated by the last set of parameters in
Table 2.

5 CONCLUSION

This paper explores the influence of edge evolution on
dynamic community detection under two dynamical graph
models. We considered an SBM with Markovian edge de-
pendency for temporal snapshots, in which our approach
employed semi-definite relaxation of the maximum likeli-
hood problem. We showed that the achievability and the
converse for this problem are asymptotically tight. A second
set of problems are also considered, where graph edges
evolve faster than labels. Inspired by the well-known block
fading model from wireless communication, our modeling
of this problem approximates the evolution of the graph
with node labels that remain stationary (constant) within a
time interval, and change independently across these inter-
vals. Throughout, the graph edges obey an SBM model at
each time instance. Our analysis of this problem is enabled
by the construction of an equivalent weighted adjacency
matrix in each block. We introduce a semidefinite program-
ming algorithm and show that its operation with different
graph parameters is consistent with the phase transition for
the optimal estimator. In both problems, we demonstrate
that greater relative assortativity leads to a bigger recovery
region. Numerical results verify the asymptotic theoretical
predictions in the first part of the paper and illustrate the
impact of different parameter settings in the second part of
the paper.

APPENDIX A
PROOF OF THEOREM 1
Lemma 1. Recall B(t, t − 1) from (8) and let g∗(t) be
the ground truth, A = {i ∈ [n] : g∗i (t) = 1}, and B =
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{j ∈ [n] : g∗j (t) = −1}. Define:

F ≜ {Ẑ(t) ̸= Z∗(t)}

FA ≜
{
∃i ∈ A : −[g∗(t)]⊤Bi(t, t− 1) ≥ ln

(a
b

)}
FB ≜

{
∃j ∈ B : [g∗(t)]⊤Bj(t, t− 1) ≥ ln

(a
b

)}
where Bi(t, t − 1) is the ith column of B(t, t − 1). Then,
FA ∩ FB → F , where F is the event that maximum likelihood
estimator fails.

Proof. Define ḡ(t) as a label vector that disagrees with the
ground truth only in nodes, i, j, i.e.,

ḡℓ(t) =
{ −g∗ℓ (t) if ℓ = i, j

g∗ℓ (t) otherwise

We explore conditions in which ḡ(t) would have a better
likelihood metric than g∗(t).[
ḡ(t)− g∗(t)

]⊤
B(t, t− 1)

[
ḡ(t)− g∗(t)

]
= −8Bij(t, t− 1)

+ 4g∗⊤(t)
(
Bj(t, t− 1)−Bi(t, t− 1)

)
(11)

Since maxBij(t, t− 1) = ln
(
a
b

)
, the following is then the

sufficient condition for the failure of maximum likelihood:

g∗⊤(t)
(
Bj(t, t− 1)−Bi(t, t− 1)

)
≥ 2 ln

(a
b

)
Equivalently, when simultaneously:{

−[g∗(t)]⊤Bi(t, t− 1) ≥ ln
(
a
b

)
,

[g∗(t)]⊤Bj(t, t− 1) ≥ ln
(
a
b

)
then F occurs. This completes the proof.

Definition 1. Let H ∪ H̄ = {i : g∗i (t) = 1} provided that
H ∩ H̄ = ϕ. Also, define f(n) ≜ ln

(
a
b

)
+ ln(n)

ln(ln(n)) . For each
node i ∈ {i : g∗i (t) = 1} define the following events:

∆H
i ≜

{ ∑
k∈H

Bik(t, t− 1) ≤ ln(n)

ln(ln(n))

}
FH
i ≜

{ ∑
k/∈H∪H̄

Bik(t, t− 1)−
∑
k∈H̄

Bik(t, t− 1) ≤ f(n)

}

Fi ≜

{ ∑
k/∈H∪H̄

Bik(t, t− 1)−
∑

k∈H∪H̄

Bik(t, t− 1) ≤ f(n)

}
where superscript H indicates i ∈ H ⊂ {i : g∗i (t) = 1}. In
addition, define ∆H = ∩i∈H∆H

i and FH = ∪i∈HFH
i .

Lemma 2. If P(FH) = 1− δ and P(∆H) = 1− δ for δ < 0.25,
then there exists a positive δ′ such that P(F) ≥ δ′.

Proof. We know ∆H ∩ FH = FA. Therefore,

P(FA) ≥ P(FH) + P(∆H)− 1 ≥ 1− 2δ

Similarly, we have P(FB) ≥ 1 − 2δ. Due to Lemma 1, max-
imum likelihood fails if FA and FB occur simultaneously,
i.e. FA ∩ FB → F . Hence, the probability of error will be
bounded away from zero for δ < 0.25 since:

P(F) ≥ P(FA) + P(FB)− 1 ≥ 1− 4δ

The following Lemma states under what conditions ∆
happens with high probability asymptotically.

Lemma 3. Let |H| = n
ln2(n)

then limn→∞ P(∆) = 1.

Proof. If ∆̄H
i be the complement of ∆H

i , then:

P(∆̄H
i ) = P

(∑
k∈H
k ̸=i

Bik(t, t− 1) ≥ ln(n)

ln(ln(n))

)

≤ P
(∑

k∈H
Bik(t, t− 1) ≥ ln(n)

ln(ln(n))

)
≤ e−

ln(n)
ln(ln(n)) (1−o(1))

where the last inequality holds due to applying the Chernoff
bound and using this fact that {∀x ∈ R : ex > 1+x}. The
union bound results in:

P(∆H) = 1− P(∆̄H)

≥ 1− n

ln2(n)
e− ln(n)+ln(ln(n))

= 1− eln(ln(n))−ln(ln2(n)) (12)

The following Lemma provides conditions under which
P(FH

i ) ≥ 1− δ asymptotically.

Lemma 4. For any δ ∈ (0, 1), if P(FH
i ) ≥ ln2(n)

n ln( 1δ ), then

lim
n→∞

P(FH) ≥ 1− δ

Proof. Since FH
i are i.i.d.:

P(FH) = P(∪i∈HFH
i ) = 1− P(∩i∈H(FH

i )c)

= 1−
[(
1− P(FH

i )
) 1

P(FH
i

)
](nP(FH

i )

ln2(n)

)
≥ 1−

[(
1− P(FH

i )
) 1

P(FH
i

)
]− ln δ

(13)

The result follows because for all P(FH
i ) < 1, we have δ >(

1− P(FH
i )
) − ln δ

P(FH
i

) .

Based on Defintion 1, P(FH
i ) ≥ P(Fi). Let:

Γ(u) =
1

2

(
ã
( ã
b̃

)−u
+ b̃
( ã
b̃

)u
+ ηa

(a
b

)−u
+ ηb

(a
b

)u)−
1

2
(ã+ b̃+ η(a+ b))

=
1

2

(
ã
( ã
b̃

)−u
+ b̃
( ã
b̃

)u
+ ηa

(a
b

)−u
+ ηb

(a
b

)u)−
1 + η

2
(a+ b) (14)

where the last term derived from ã+ b̃ = a+ b. Then:

P(Fi)≤ inf
u>0

e− ln(n)
(

uf(n)
ln(n) − 1

2Γ(u)
)

(15)

where the inequality holds due to applying the Chernoff
bound on i.i.d. random variables, and because ex > 1 +
x. Finding infimum of (15) is equivalent to minimizing
Γ̄(u, n) = 1

2Γ(u)−
uf(n)
ln(n) , where Γ(u) is convex with respect

to u. If uf(n)
ln(n) = o(1), then for sufficiently large n, u∗ = 1

2 ,
and this leads to:

P(Fi)≤ e−
ln(n)

2 µ+o(1) (16)
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where:

µ = η
(√

a−
√
b
)2

+ a+ b− 2
√
ãb̃

= η
(√

a−
√
b
)2

+
(√

a− ϵ−
√
b+ ϵ

)2
Finally, the proof of Theorem 1 follows by combining (16)
and Lemmas 1, 2, 3, and 4.

APPENDIX B
PROOF OF THEOREM 2
Lemma 5. Consider the scalar σ∗, the diagonal matrix D∗ and :

R∗ = D∗ + σ∗J−B(t, t− 1) (17)

If R∗ ⪰ 0, λ2(R
∗) ≥ 0 and R∗g∗(t) = 0, then (σ∗,D∗,R∗)

is the dual optimal solution of (7), whose unique primal solution
is Ž(t) = g∗(t)[g∗(t)]⊤.

Proof. The Lagrangian of Eq. (7) is :

L(Z(t),R,D, σ) =⟨B(t, t− 1),Z(t)
〉
F
+ ⟨R,Z(t)⟩F−

⟨D,Z(t)− I⟩F − σ⟨J,Z(t)⟩F ,

where R ⪰ 0, D = diag(di) and σ are Lagrange multipliers.
For Z(t) that satisfies the constraints in (7):

⟨B(t, t− 1),Z(t)
〉
F
≤ L(Z(t),R∗,D∗, σ∗) (18a)

=
〈
D∗, I

〉
F

(18b)

= ⟨D∗,Z∗(t)⟩F (18c)
= ⟨B(t, t− 1),Z∗(t)⟩F

+ ⟨R∗ − σ∗J,Z∗(t)⟩F (18d)
= ⟨B(t, t− 1),Z∗(t)⟩F (18e)

where (18a) holds since
〈
R∗,Z(t)

〉
≥ 0, (18b) because

of (17) and optimization constraint ⟨J,Z(t)⟩F = 0 in (7),
(18c) due to Z∗

ii(t) = 1 for all i ∈ [n], (18d) owing to
replacing D∗ from (17), and (18e) because ⟨J,Z∗(t)⟩F = 0,
⟨R∗,Z∗(t)⟩F = [g∗(t)]⊤R∗g∗(t), and R∗g∗(t) = 0 based
on Lemma 5.

Now, we need to show the uniqueness of the optimal
solution to (7). Assume the contrary, i.e., that Z̃(t) =
[g̃(t)]⊤g̃(t) is another optimal solution to (7), thus Z̃(t) ⪰ 0
and: 〈

B(t, t− 1),Z∗(t)
〉
F
=
〈
B(t, t− 1), Z̃(t)

〉
F
,〈

J,Z∗(t)
〉
F
=
〈
J, Z̃(t)

〉
F
,

Z∗
ii(t) = Z̃ii(t) = 1 ∀i ∈ [n].

This results in:〈
R∗, Z̃(t)

〉
F
=
〈
D∗ + σ∗J−B(t, t− 1), Z̃(t)

〉
F

(19a)

=
〈
D∗ + σ∗J−B(t, t− 1),Z∗(t)

〉
F

(19b)

=
〈
R∗,Z∗(t)

〉
F

(19c)

= 0 (19d)

where (19d) holds because R∗g∗(t) = 0. Therefore, we
have [g̃(t)]⊤R∗g̃(t) = 0. Since g̃(t) is a nonzero vector
whose elements are −1 and 1, and because of balanced sized
communities, there are two possible scenarios for R∗g̃(t) as
follows:

• R∗g̃(t) = 1. This contradicts with optimality of Z̃(t).

• R∗g̃(t) = 0 =⇒ R∗(g∗(t) − g̃(t)
)
= 0. Because

R∗ ⪰ 0, and its second smallest eigenvalue λ2(R
∗) is

positive, g̃(t) is a multiple of g∗(t). This means Z̃(t)
is a multiple of Z∗(t), accordingly Z̃(t) = Z∗(t) due
to Z∗

ii(t) = Z̃ii(t) = 1 for all i ∈ [n].

We now proceed to show the conditions of Lemma 5 can
be satisfied. Let:

D∗
ii =

n∑
j=1

Bij(t, t− 1)g∗j (t) g
∗
i (t) (20)

It follows that D∗g∗(t) = 0 and R∗g∗(t) = 0. It remains to
show that R∗ ⪰ 0 and λ2(R

∗) > 0 with high probability.
This means:

P
(

inf
v⊥g∗(t),∥v∥=1

v⊤R∗v > 0
)
≥ 1− o(1), (21)

where v ∈ Rn. Define T ≜ ln
(
a
b

)
, Tϵ ≜ ln

(
a−ϵ
b+ϵ

)
. Under the

conditions v ⊥ g∗(t) and ∥v∥ = 1 we have:

v⊤R∗v = ⟨vv⊤,D∗ + σ∗J−B(t, t− 1)⟩F
= ⟨vv⊤,D∗ + σ∗J− E[B(t, t− 1)]⟩F−

⟨vv⊤,B(t, t− 1)− E[B(t, t− 1)]⟩F
≥ min

i∈[n]
d∗i − T∥B(t, t− 1)− E[B(t, t− 1)]∥−

⟨vv⊤,E[B(t, t− 1)]− σ∗J⟩F (22)

where the last inequality holds due to:

⟨vv⊤,D∗⟩F ≥ min
i∈[n]

D∗
ii,

⟨vv⊤,W(t, t− 1)⟩F ≤ ∥W(t, t− 1)∥ (23)

where W(t, t − 1) = B(t, t − 1) − E[B(t, t − 1)]. We also
have:

n

ln(n)
⟨vv⊤,E[B(t, t− 1)]⟩F =

(a+ b)(ηT + Tϵ)

2
⟨vv⊤,J⟩F

+
(ηT + Tϵ)(a− b)− 2ϵTϵ

2
⟨vv⊤,Z(t)⟩F

−
(
a(ηT + Tϵ)− ϵTϵ

)
I (24)

Lemma 6. [27, Theorem 9] For any c > 0 , there exist c′ > 0,
c′′ > 0 and c′′′ > 0 such that for any n ≥ 1:

P
(
∥A(t)− E[A(t)]∥2 ≤ c′

√
np
)
≥ 1− n−c,

P
(
∥A(t− 1)− E[A(t− 1)]∥2 ≤ c′′

√
np
)
≥ 1− n−c,

P
(
∥Ā(t, t− 1)− E[Ā(t, t− 1)]∥2 ≤ c′′′

√
np
)
≥ 1− n−c

where Ā(t, t− 1) = A(t) ◦A(t− 1).

Lemma 7. For sufficiently large n,

P
(
⟨vv⊤,Z(t)⟩F ≤

√
ln(n)

)
≤ 1− o(1)

Proof. This follows from applying the Chernoff bound.

For convenience define:

σ∗ ≜
(a+ b)(T + ηTϵ)

2
T̄η,ϵ ≜ a(ηT + Tϵ) + 2ϵTϵ
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Then, applying Lemmas 6 and 7 on (22) results in:

v⊤R∗v ≥ min
i∈[n]

D∗
ii−(T (c′+c′′)+Tϵc

′′′)
√
ln(n)+ T̄η,ϵ (25)

with a probability converging to one. Now, we need to show
the right hand of (25) is positive. This is accomplished by
bounding mini∈[n] D

∗
ii.

H =
n∑

j=1

Bij(t, t− 1)g∗i (t)

Then (14) and 1−x ≤ ex for all x ≥ 0 gives E(e−uH)≤ eΓ(u).
Since Γ(u) is convex w.r.t u, then for sufficiently large n

define δ ≜ ln(n)
ln(ln(n)) . Therefore:

P(D∗
ii ≤ δ) = P

(
H ≤ δ

)
≤ e−

ln(n)
2 µ+o(1) (26)

where

µ = η
(√

a−
√
b
)2

+ a+ b− 2
√
(a− ϵ)(b+ ϵ)

If µ ≥ 2, then P
(
H ≥ δ

)
= 1 − o(1). This completes the

proof of Theorem 2.

APPENDIX C
PROOF OF THEOREM 3
Lemma 8. Consider (9) and let g∗(t) be the ground truth, A =
{i ∈ [n] : g∗i (t) = 1}, and B = {j ∈ [n] : g∗j (t) = −1}. Define:

F ≜ {Ẑ(t) ̸= Z∗(t)}

FA ≜
{
∃i ∈ A : −[g∗(t)]⊤

∑
s̸=0

ln
(as
bs

)
M i(s) ≥ T̃

}
FB ≜

{
∃j ∈ B : [g∗(t)]⊤

∑
s̸=0

ln
(as
bs

)
M j(s) ≥ T̃

}
where T̃ = maxs

{
ln
(
as

bs

)}
and M i(s) is the ith column of

M(s). Then, FA ∩ FB → F .

Proof. Similar to Lemma 1

Definition 2. Let Q ∪ Q̄ = {i : g∗i (t) = 1} provided that
Q∩Q̄ = ϕ. In addition, let f(n) = T̃ + ln(n)

ln(ln(n)) , Ts = ln
(
as

bs

)
,

and define the following events for each node j ∈ Q :

∆Q
j ≜

{∑
k∈Q

∑
s̸=0

TsMik(s) ≤
ln(n)

ln(ln(n))

}
FQ
j ≜

{∑
s̸=0

Ts

[ ∑
k/∈Q∪Q̄

Mik(s)−
∑
k∈Q̄

Mik(s)
]
≥ f(n)

}
In addition, define ∆Q ≜ ∩j∈Q∆

Q
j and FQ ≜ ∪j∈QF

Q
j .

Lemma 9. If P(FQ) = 1− δ and P(∆Q) = 1− δ for δ < 0.25,
then there exists a positive δ′ such that P(F) ≥ δ′.

Proof. Similar to Lemma 2.

Lemma 10. Let |Q| = n
ln2(n)

then limn→∞ P(∆Q) = 1.

Proof. Similar to Lemma 3.

Lemma 11. For any δ ∈ (0, 1), if P(FQ
j ) ≥ ln2(n)

n ln( 1δ ), then

lim
n→∞

P(FQ) ≥ 1− δ

Proof. Similar to Lemma 4, omitted for brevity.

Define:

M̄i(s) ≜
∑

k/∈Q∪Q̄

Mik(s)−
∑

k∈Q∪Q̄

Mik(s)

To calculate P(FQ
j ), we have:

P(FQ
j ) ≥ P

(∑
s̸=0

TsM̄i(s) ≥ f(n)

)
(27)

Define:

Γ(u) ≜
ln(n)

2

∑
s̸=0

[
as
(as
bs

)−u
+ bs

(as
bs

)u − as − bs

]
(28)

Then:

P
(∑

s̸=0

ln
(as
bs

)
M̄i(s) ≥ f(n)

)
≤ inf

u>0
e− ln(n)

(
uf(n)
ln(n) − 1

2Γ(u)
)

(29)

due to applying the Chernoff bound on i.i.d. random vari-
ables, and ex > 1+ x. Finding infimum of (29) is equivalent
to minimizing Γ̄(u, n) = 1

2Γ(u)−
uf(n)
ln(n) where Γ(u) is convex

with respect to u. If uf(n)
ln(n) = o(1), then for sufficiently large

n, u∗ = 1
2 , and this leads to:

P
(∑

s̸=0

ln
(as
bs

)
M̄i(s) ≥ f(n)

)
≤ e−

ln(n)
2 ν+o(1) (30)

where:

ν =
∑
s̸=0

(√
as −

√
bs
)2

This completes the proof of Theorem 3.

APPENDIX D
PROOF OF THEOREM 4
Lemma 12. Assume the scalar σ∗, the diagonal matrix D∗ and:

R∗ = D∗ + σ∗I−
∑
s̸=0

ln
(as
bs

)
M(s)

such that R∗ ⪰ 0, λ2(R
∗) ≥ 0 and R∗g∗(t) = 0. Then

(σ∗,D∗,R∗) is the dual optimal solution of (10), whose unique
primal solution is Ž(t) = g∗(t)[g∗(t)]⊤.

Proof. The Lagrangian is :

L(Z(t),R,D, σ) =⟨
∑
s̸=0

ln
(as
bs

)
M(s),Z(t)⟩F + ⟨R,Z(t)⟩F

− ⟨D,Z(t)− I⟩F − σ⟨J,Z(t)⟩F ,

where R ⪰ 0, D = diag(di) and σ are Lagrange multipliers.
For Z(t) that satisfies optimization in (10):〈∑

s̸=0

ln
(as
bs

)
M(s),Z(t)

〉
F
≤ L(Z(t),R∗,D∗, σ∗)

=
〈∑

s̸=0

ln
(as
bs

)
M(s),Z∗(t)

〉
F

where the last equality holds due to definitions and con-
straints in Lemma 12. Similar to the proof of Lemma 5,

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3520130

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 08,2025 at 21:35:59 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. , NO. , 10

we can show that if Z̃(t) is an optimal solution, then
Z̃(t) = Z∗(t), thus the solution is unique.

We now have to prove that R∗ in Lemma 12 satisfies the
other constraints with high probability, 1 − o(1). To do so,
let:

D∗
ii =

n∑
j=1

[∑
s̸=0

ln
(as
bs

)
Mij(s)

]
g∗j (t) g

∗
i (t) (31)

Therefore D∗g∗(t) = 0 and matirx R∗ satisfies the condition
R∗g∗(t) = 0. To complete the proof, we need to show R∗ ⪰
0 and λ2(R

∗) > 0 with high probability. Let Ts = ln
(
as

bs

)
.

This results in:

v⊤R∗v = v⊤
(
D∗ + σ∗ −

∑
s̸=0

ln
(as
bs

)
M(s)

)
v

≥ min
i∈[n]

D∗
ii −

∑
s̸=0

(
∥M(s)− E[M(s)]∥ − Tsas

)
(32)

where (32) holds due to σ∗ =
∑

s̸=0 Ts(as+bs)

2 and (23). Then,
applying Lemma 12 on (32) gives:

P(D∗
ii ≤ δ) ≤ e−

ln(n)
2 ν+o(1) (33)

where ν =
∑
s̸=0

(√
as −

√
bs
)2

. If ν ≥ 2, then P
(
D∗

ii ≥ δ
)
=

1− o(1), and this completes the proof.
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