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Abstract—Reconfigurable Intelligent Surfaces (RIS) have chan-
nel models with many parameters, motivating the study and use
of statistical channel state information (CSI) in this context. This
paper investigates the question of separability of RIS/transmitter
beamforming under spatially correlated Rician fading with statis-
tical channel state information. Subject to any spatial correlation,
as long as the transmitter-RIS channel is Rayleigh, we show that
the beamforming optimization decomposes into two independent
optimizations involving the RIS correlation matrix, and the
transmitter array correlation matrix. The tools and techniques
of this paper also lead to novel and useful optimizations for
beamforming optimization when the transmitter-RIS channel is
Rician with non-zero mean, even though in this case separability
is not established. Numerical results support our findings and
provide insights into the proposed algorithm.

Index Terms—Reconfigurable intelligent surface (RIS), statis-
tical CSI, spatially-correlated Rician and Rayleigh fading,

I. INTRODUCTION

In reconfigurable intelligent surface (RIS) aided chan-
nels [1]–[3], beamforming algorithms often require instanta-
neous channel state information (CSI), which imposes a large
overhead [4]. The amount of training overhead required can
limit the useful size of RIS arrays [5]. To take advantage
of larger RIS arrays, one suggested approach is to rely on
statistical (rather than instantaneous) CSI [6]. Joint design
of transmitter and RIS beamforming under statistical CSI is
considered in [6]–[9], where iterative algorithms have been
used to optimize beamforming. The case of statistical CSI for
the RIS but instantaneous CSI for the transmitter is studied
in [10]–[12].

This paper studies the question of the separability of beam-
forming in RIS/transmitter under spatially correlated channels
with statistical CSI. We show that when the channel from the
transmitter to RIS is Rayleigh distributed (and the other links
are either Rayleigh or Rician), the best joint optimization of
beamforming is achieved via cost functions that are local to the
transmitter and to RIS, respectively. The tools and techniques
developed in this paper also yield new and useful results for
beamforming when the transmitter-RIS link is Rician with a
non-zero mean, even though in that case separability is not
established.

This work was supported in part by the grants 1956213 and 2148211 from
the National Science Foundation.

The question of separability was considered in [9] in
the asymptotic regime of infinite RIS elements with finite
per-element reflection power, using signal-to-interference-and
noise ratio (SINR) expressions to calculate multi-user down-
link sum-rates. However, under the model employed in [9]
with infinite-size RIS, single-user achievable rates would be
infinite, therefore time-sharing multi-user rates are infinite too.
As a result, the interference-as-noise multi-user lower bound
utilized in [9] is infinitely loose, and the results are unuseful.1

Our separability result is revealed via a careful decom-
position of the signal-to-noise ratio (SNR) under the Kro-
necker model for correlated Rician and Rayleigh fading. Under
Rayleigh fading for the transmitter-RIS link, the decomposi-
tion naturally leads to a locality/separability result that has not
been evident in previous works. To be specific, in this case,
RIS beamforming uses only the RIS correlation matrix, and
transmit beamforming only uses the correlation matrix of the
transmitter array. When the transmitter-RIS link is Rician with
a non-zero mean, we do not establish separability but produce
new and efficient expressions for the iterative optimization of
beamforming. We characterize RIS beamforming optimization
via convex relaxation and semidefinite methods. Numerical
results validate our findings and illustrate the effectiveness of
the proposed passive and active beamforming designs in terms
of the ergodic capacity.

II. SYSTEM MODEL

We consider a narrowband point-to-point communication
system assisted by an RIS. The transmitter (Tx) consists of Mt

antennas, communicating with the receiver (Rx) equipped with
Mr antennas, through the RIS with N controllable elements.
For brevity, it is assumed that the direct link between the Tx
and the Rx is absent, and they only communicate through the
RIS. Let G ∈ CN×Mt and H ∈ CMr×N denote the Tx-RIS
channel and the RIS-Rx channel, respectively. The received
signal at the Rx at each time interval, y ∈ CMr×1, is written
as follows:

y =
√
ρHΦGfx+ z, (1)

where f ∈ CMt×1 is the beamforming vector, x ∈ C is the
transmitted signal with E[|x|2] = 1, and ρ is the total transmit

1Also, [9] establishes successive optimization at RIS and transmitter rather
than separability; therefore, the optimization in [9] is not local (distributed).
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power of the Tx. Moreover, z ∈ CMr×1 is the additive white
Gaussian noise with i.i.d. elements, i.e. z ∼ CN (0, σ2IMr),
and Φ = diag{ψ} is the phase shift matrix of the RIS
elements with ψ = [ϕ1, ..., ϕN ] and ϕi = ejφi .

We consider spatially-correlated Rician fading model [13]
for the Tx-RIS, and RIS-Rx channel statistics. Hence, the Tx-
RIS channel can be modeled using a deterministic mean and
a random deviation component, denoted as G ∈ CN×Mt and
G̃ ∈ CN×Mt , respectively, as

G =

√
κG

κG + 1
G+

√
1

κG + 1
G̃, (2)

where κG represents the Rician factor of the Tx-RIS channel
statistic. The random component follows a circularly complex
Gaussian distribution as vec(G̃) ∼ CN (0,RG), where RG =
E[vec(G̃)vec(G̃)H] and vec(.) is an operator which stacks the
matrix column-wise into a vector. The covariance matrix RG

can be approximated using the Kronecker product of the RIS
and Tx spatial correlation matrices as RG ≈ RTx,G⊗RRIS,G

[14], where RRIS,G = 1
Mt

E[G̃G̃H] ∈ CN×N and R∗
Tx,G =

1
NE[G̃HG̃] ∈ CMt×Mt are the spatial correlation matrices
of the Tx-RIS channel at the Tx antennas and RIS elements,
respectively. One can characterize the deviation component
for the Tx-RIS channel statistic by the RIS and Tx correlation
matrices [15]:

G̃ ≈ (RRIS,G)
1
2WG(RTx,G)

1
2 , (3)

where the elements of WG ∈ CN×Mt are independent
and identically distributed random variables and follow a
standard complex Gaussian distribution, i.e., vec(WG) ∼
CN (0, IMtN ). The RIS-Rx channel can be modeled similarly
using a Rician factor κH as

H =

√
κH

κH + 1
H+

√
1

κH + 1
H̃, (4)

where H ∈ CMr×N is the mean component of the channel
statistic, which is deterministic, and H̃ ∈ CMr×N is the
random deviation component, which follows a circularly com-
plex Normal distribution vec(H̃) ∼ CN (0,RH). The random
deviation component H̃ can be expressed similarly to (3) as

H̃ ≈ (RRx,H)
1
2WH(RRIS,H)

1
2 , (5)

where WH ∈ CMr×N and vec(WH) ∼ CN (0, IMrN ).
Moreover, RRx,H = 1

NE[H̃H̃H] ∈ CMr×Mr and R∗
RIS,H =

1
Mr

E[H̃HH̃] ∈ CN×N are the spatial correlation matrices of
the RIS-Rx channel at the Rx antennas and RIS elements,
respectively.

The spatial correlation matrices depend on the angles of
the multipath components at the antenna arrays, the number
of antennas, and antenna spacing. We assume uniform planar
arrays for the Tx, Rx, and RIS antennas. Considering the
planar array in the X-Y plane, we denote m as the element
index in the X-axis and l as the element index in the Y-
axis, starting from a fixed point. The (m, l) element of the
correlation matrix at p ∈ {Tx,Rx,RIS} corresponding to

the channels H and G denoted by q ∈ {H,G}, can be
approximated as [16]

[Rp,q]m,l ≈ β

∫ ∫
ej2π(m−l)d1,p sin(θ) (6)

× ej2π(m−l)d2,p cos(θ) sin(ω)fp,q(ω, θ)dωdθ,

where β represents the total average gain of the multipath
components, while d1,p and d2,p denote the vertical and
horizontal antenna spacing at p, respectively. Additionally,
ω and θ represent the elevation and azimuth angles of a
multipath component of the channel at p with distribution
fp,q . According to the scattering model of the system, the
angles ω and θ can be considered as random deviations from
deterministic angles with either a Gaussian distribution or a
uniform distribution. Assuming angles with a small deviation,
these matrices can be further approximated as shown in [15].
With knowledge of the correlation matrices, we can design
the RIS phase shifts and transmit beamforming, as further
discussed in the following section.

III. JOINT TRANSMIT AND RIS BEAMFORMING DESIGN

We aim to jointly design the beamforming vector at the
transmitter and the phase shifts at the RIS to maximize the
ergodic capacity. We consider the knowledge of statistical
CSI at the transmitter and RIS for the beamforming design,
while we assume perfect instantaneous CSI at the receiver.
The ergodic capacity of this system is given by [17]

C = E
[
log

(
1 +

ρ

Mrσ2
||HΦGf ||2

)]
. (7)

Using Jensen’s inequality, an upper bound on the ergodic
capacity is obtained as

C ≤ Cu = log(1 + γ), (8)

where γ = ρ
Mrσ2E[||HΦGf ||2] is the SNR. We aim to

maximize the upper bound on the ergodic capacity, which
leads to maximization of the SNR. Therefore, the optimization
problem to design the transmit beamforming and RIS phase
shifts can be written as

P1 : max
f ,ψ

L(f ,ψ) = E[||HΦGf ||2]

s.t. ||f ||2 ≤ 1,

|ϕi| = 1, i = 1, ..., N.

(9)

Due to the non-convex constraint of unit modulus phase shifts,
the optimization problem P1 is non-convex. Moreover, the
objective function is coupled in f and ψ, which makes the
optimization more challenging. In the following, we simplify
this optimization problem to design the transmit beamforming
and RIS phase shifts iteratively, when one is fixed. We obtain
equivalent problems for each one, which can be solved using
existing optimization approaches. Further, we simplify the
equations for the Rayleigh Tx-RIS channel and show that the
joint optimization problem gets decoupled.
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Lemma 1 (Beamforming Vector Design). Assuming a fixed
RIS phase shift vector, the beamforming vector can be obtained
from the following optimization problem:

P2 : max
f

fHTf

s.t. ||f ||2 ≤ 1,
(10)

where T ∈ CMt×Mt is defined as

T ≜ unvec

((
κG(G

T ⊗GH) +RT
G

)
(11)

× vec
(
(ψ∗ψT)⊙ (κHH

HH+MrR
∗
RIS,H)

))
,

and unvec(.) is the reverse operator of vec(.) and ⊗ and ⊙
are the Kronecker and Hadamard products, respectively.

Proof. The proof is provided in Appendix A.

The optimization problem P2 is quadratic with an L2 norm
constraint and is a convex optimization. Since T is a positive
semidefinite matrix, by employing the eigenvalue decomposi-
tion of T and representing f as a linear combination of the
orthogonal eigenvectors of T, it can be readily shown that its
optimal solution is f = u, where u = [u1, . . . , uN ]T repre-
sents the dominant eigenvector (the eigenvector corresponding
to the dominant eigenvalue) of T. As can be observed, the
beamforming design depends on the mean components of
the Tx-RIS and RIS-Rx channels, i.e., G and H, as well as
the spatial correlation matrices RTx,G, RRIS,G, and RRIS,H,
and it is independent of the spatial correlation matrix at the
Rx antennas. Knowing the spatial correlation matrices of the
channels at the RIS and Tx sides, one can calculate the matrix
Q and choose the phase shift vector ψ through the above
optimization problem.

Lemma 2 (RIS Phase Shift Design). Assuming a fixed beam-
forming vector, the optimization problem for designing RIS
phase shifts is

P3 : max
ψ

ψHQψ

s.t. |ϕi| = 1, i = 1, ..., N,
(12)

where Q ∈ CN×N is defined as

Q ≜ unvec

((
κG(G⊗G∗) +RG

)
vec(f∗fT)

)
⊙
(
κHH

HH+MrR
∗
RIS,H

)
.

(13)

Proof. The proof is provided in Appendix B.

Similar to the beamforming vector design problem, obtain-
ing the RIS phase shifts requires the mean components of the
channels, the correlation matrix of the Tx-RIS channel at the
Tx antennas, and the correlation matrices of the Tx-RIS and
RIS-Rx channels at the RIS elements. However, in contrast
to the beamforming vector design problem, this optimization
problem is non-convex due to the non-convex constraint and
is generally an NP-hard problem [18]. Several approaches
exist to address this non-convex optimization problem, such

as semidefinite program (SDP) relaxation [18] and convex
relaxation [15].

In the convex relaxation method presented in [15], the unit-
modulus constraint in the optimization problem P3 is replaced
with an L2 norm constraint. We then seek the solution to the
following optimization problem:

P4 : max
ψ

ψHQψ

s.t. ||ψ||2 ≤ N.
(14)

The optimization problem P4 is convex and the optimum phase
shift vector can be obtained similar to (14) as ψ =

√
Nv,

where v = [v1, . . . , vN ]T represents the dominant eigenvector
of Q. Therefore, to obtain the solution of P3, we can choose
ψ in the direction of v. More specifically, each element of the
RIS phase shift vector is chosen as ψ̂i = ej arg{vi} [15].

In the SDP relaxation approach, the optimization problem
P3 is reformulated as [18]

P5 : max
Φ

tr{QΦ}

s.t. [Φ]ii = 1, i = 1, ..., N,

Φ ≥ 0, Rank(Φ) = 1.

(15)

By relaxing the rank-1 constraint, the optimization problem
is transformed into a convex SDP that can be solved using
convex optimization solvers such as CVX. Subsequently, an
approximate solution to the original optimization problem can
be derived based on this solution as follows [19]:

1. Let Φ̂ be the solution for SDP relaxation. Apply Cholesky
decomposition on Φ̂, yielding Φ̂ = KKH.

2. Generate a circularly Gaussian random vector r ∈
CN (0, IN).

3. Let the approximate solution for (12) be ϕ̂i = ej arg(si),
i = 1, ..., N , where [s1, ..., sN ]T = Kr.

Lemma 3 (Separability of Beamforming and RIS Design).
When the Tx-RIS channel follows a Rayleigh fading model,
i.e., κG = 0, the joint optimization problem P1 in (9) for f
and ψ can be decoupled into two disjoint problems:
1) Optimizing Tx beamforming vector f :

P6 : max
f

fHRTx,Gf

s.t. ||f ||2 ≤ 1.
(16)

2) Optimizing RIS phase shift vector ψ:

P7 : max
ψ

ψH
(
R∗

RIS,G ⊙ (κHH
HH+MrR

∗
RIS,H)

)
ψ

s.t. |ϕi| = 1, i = 1, ..., N.
(17)

Proof. The proof is provided in Appendix C.

It is worth mentioning that the decoupling of the two
optimization problems is solely due to the Rayleigh Tx-RIS
channel and is valid for both Rayleigh and Rician RIS-Rx
channels. As a result, for the Rayleigh Tx-RIS channel, in the
absence of channel estimates and relying solely on the long-
term channel statistics, the transmit beamforming and RIS
phase shift vectors are designed independently. The transmit

2148Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 08,2025 at 21:48:16 UTC from IEEE Xplore.  Restrictions apply. 



1 2 3 4 5 6 7 8
7

8

9

10

11

12

13

14

15

Fig. 1. Ergodic capacity versus the number of
iterations for Rician channels.
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Fig. 2. Ergodic capacity versus the number of
iterations for the Rayleigh Tx-RIS channel.
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Fig. 3. Ergodic capacity versus the number of
RIS elements.

beamforming is designed based on the spatial correlation
matrix at the transmitter and the RIS phase shifts are designed
utilizing RIS correlation matrices.

IV. NUMERICAL RESULTS

In this section, we present the numerical results to verify our
findings in designing RIS phase shifts and Tx beamforming
vectors in two cases of Rayleigh and Rician Tx-RIS channels.
We consider a MIMO system with 10 transmit and receive
antennas. To construct the mean components and correlation
matrices of the channel statistics, we randomly generate ele-
vation and azimuth angles from uniform distributions within
the ranges [0, π] and [0, 2π], respectively.

Specifically, we utilize the approximated expression pre-
sented in [16] to obtain the correlation matrices and the expres-
sion presented in [20] for the mean components. Throughout
the simulations, we assume ρ

σ2 to be 10 dB and the upper
bound on the ergodic capacity is calculated according to (8)
using the simplified equations for SNR in (27) and (22). The
antenna spacing for Tx, Rx, and RIS are dTx = dRx = λ

2

and dRIS = λ
4 , respectively, where λ is the carrier wavelength

associated with the carrier frequency of 0.3 GHz.
In Fig. 1, we depict the upper bound on the ergodic capacity

against the number of iterations required to achieve the optimal
designs for different numbers of RIS elements, assuming the
channels to be Rician with κG = κH = 1. In the first iteration,
the RIS phase shift vector is set as a random vector. In the
next iteration, the beamforming vector is designed based on
the optimal solution for the optimization problem P3 using
the random RIS phase shift. Then, the RIS beamforming is
designed using the suboptimal solution for P5 in the convex
relaxation case and the suboptimal solution for P6 in the
SDP relaxation. This process continues iteratively until the
rate converges. It can be seen that both the convex and SDP
relaxations result in the same answer, and the optimal designs
are obtained after a few steps.

The same setting is utilized in Fig. 2 for the case where the
Tx-RIS channel is Rayleigh, i.e., κG = 0, while the RIS-Rx
channel is Rician with κG = 1. In this case, the presented
iterative algorithm converges after the first step. This is due to

the fact that for the Rayleigh Tx-RIS channel, the optimization
problems are decoupled, as mentioned previously. Hence, the
optimal passive and active beamformings can be obtained in
one iteration using the solutions for P8 and P9, respectively,
and there is no need to use the iterative algorithm.

To observe the effect of the number of RIS elements on
the optimal design under Rician and Rayleigh assumptions,
the corresponding upper bounds on the ergodic capacity are
provided in Fig. 3. For the Rayleigh case, we have κG = 0,
and for the Rician case, we assume κG = 10. In both
cases, we assume κH = 10. It can be seen from the figure
that as the number of RIS elements increases, the rate is
improved for both Rician and Rayleigh channels. The optimal
Tx beamforming and suboptimal RIS phase shifts result in a
higher rate in the Rician channels compared to the Rayleigh
channel, due to employing the mean components and jointly
designing the passive and active beamforming. The results
are compared with the case where RIS is adjusted randomly
and the beamforming vector is designed based on P8, which
demonstrates the effectiveness of the proposed beamforming
designs.

V. CONCLUSION

In this paper, we investigated the design of RIS phase
shifts and transmit beamforming in a correlated Rician fading
RIS-aided MIMO channel to improve the ergodic capacity
while utilizing only channel statistics. Employing an iterative
algorithm, we optimally designed the transmit beamforming
and sub-optimally designed the RIS phase shifts. Additionally,
we studied the special case of the correlated Rayleigh model,
which results in the optimization problem being simplified to
two disjoint design problems for RIS phase shifts and transmit
beamforming. Using numerical results, we showed that the
proposed iterative algorithm converges in a few iterations for
the general Rician channels. For the Rayleigh channel, it
converges in a single iteration, which validates our result on
the design problems being disjoint.
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APPENDIX A

We assume a fixed RIS phase shift vector and obtain the
beamforming vector from the following optimization problem:

P8 : max
f

L(f ,ψ) = E[||HΦGf ||2]

s.t. ||f ||2 ≤ 1.
(18)

The objective function L(f ,ψ) can be simplified as follows:

L(f ,ψ) = E
[
fHGHΦHHHHΦGf

]
(19)

= fHE
[
GHΦHE[HHH|G]ΦG

]
f

= fHunvec
(
E
[(
(ΦG)T ⊗ (ΦG)H

)
vec(E[HHH])

])
f

= fHunvec
(
E
[
(ΦG)T ⊗ (ΦG)H

]
vec(E[HHH])

)
f

= fHunvec
(
E[GT ⊗GH](ΦT ⊗ΦH)vec(E[HHH])

)
f ,

The equalities are derived using the law of total expectations
and the properties of the Kronecker product. It can be easily
seen that ΦT ⊗ΦH = diag(vec(ψ∗ψT)). Hence,

L(f ,ψ) (20)

= fHunvec
(
E[GT ⊗GH]diag(vec(ψ∗ψT))vec(E[HHH])

))
f

= fHunvec
(
E[G⊗G∗]T

(
vec(ψ∗ψT)⊙ vec(E[HHH])

))
f

= fHunvec
(
E[G⊗G∗]Tvec

(
(ψ∗ψT)⊙ E[HHH]

))
f .

Using (2) and (4), we have

E[G⊗G∗] =
κG

κG + 1
(G⊗G∗) +

1

κG + 1
E[G̃⊗ G̃∗]

E[HHH] =
κH

κH + 1
HHH+

Mr

κH + 1
R∗

RIS,H. (21)

We define RG ≜ E[G̃⊗G̃∗], which can be approximated using
(3) by RG ≈ vec(R∗

RIS,G) (vec(RTx,G))
T (the derivation is

omitted for brevity). Hence, L(f ,ψ) can be obtained as

L(f ,ψ) = fHunvec

(( κG
κG + 1

(GT ⊗GH) +
1

κG + 1
RT

G

)
× vec

(
(ψ∗ψT)⊙ (

κH
κH + 1

HHH+
Mr

κH + 1
R∗

RIS,H)
))

f .

(22)

APPENDIX B

We design the RIS phase shift vector ψ assuming a fixed
beamforming vector f using the following optimization prob-
lem:

P9 :max
ψ

L(f ,ψ) = E[||HΦGf ||2]

s.t. |ϕi| = 1, i = 1, ..., N.
(23)

We simplify the objective function L(f ,ψ) using Kronecker
product properties as

L(f ,ψ) = E[fHGHΦHHHHΦGf ] (24)

= E
[
fHGHΦHE[HHH|G]ΦGf

]
= E

[(
(ΦGf)T ⊗ (ΦGf)H

)
vec(E[HHH])

]
= E

[
(ΦGf)T ⊗ (ΦGf)H

]
vec(E[HHH])

= E
[
(Gf)T ⊗ (Gf)H

]
(ΦT ⊗ΦH)vec(E[HHH])

= E
[
vec((Gf)∗(Gf)T)

]T
(ΦT ⊗ΦH)vec(E[HHH]).

L(f ,ψ) can be further simplified using ΦT ⊗ ΦH =
diag(vec(ψ∗ψT)) as follows:

L(f ,ψ) (25)

= E
[
vec((Gf)∗(Gf)T)

]T
diag(vec(ψ∗ψT))vec(E[HHH])

=
(
vec(E

[
G∗(f∗fT)GT

]
)
)T

diag(vec(E[HHH]))vec(ψ∗ψT)

=
(
vec(E

[
G∗(f∗fT)GT

]
⊙ E[HHH])

)T
vec(ψ∗ψT).

It can be easily shown that for a matrix A and a vector a, we
have (vec(A))Tvec(a∗a) = aHAa. Hence,

L(f ,ψ) = ψH
(
E
[
G∗(f∗fT)GT

]
⊙ E[HHH]

)
ψ (26)

= ψH
(
E
[
unvec((G⊗G∗)vec(f∗fT))

]
⊙ E[HHH]

)
ψ

= ψH
(
unvec

(
E
[
G⊗G∗]vec(f∗fT))⊙ E[HHH]

)
ψ.

Now, using (21), we have

L(f ,ψ) = ψH

(
unvec

(
(

κG
κG + 1

(G⊗G∗) +
1

κG + 1
RG)

× vec(f∗fT)
)
⊙ (

κH
κH + 1

HHH+
Mr

κH + 1
R∗

RIS,H)

)
ψ.

(27)

APPENDIX C
For the Rayleigh Tx-RIS channel, i.e., κG = 0, the objec-

tive function L(f ,ψ) can be simplified according to (22) as
follows:

L(f ,ψ) = fHunvec

(
vec(RTx,G)

(
vec(R∗

RIS,G)
)T

(28)

× vec
(
(ψ∗ψT)⊙ (

κH
κH + 1

HHH+
Mr

κH + 1
R∗

RIS,H)
))

f .

Now, since
(
vec(R∗

RIS,G)
)T

vec
(
(ψ∗ψT) ⊙ ( κH

κH+1H
HH +

Mr

κH+1R
∗
RIS,H)

)
is a scalar, it can come out of the unvec

operation. Hence, we have

L(f ,ψ) =
(
fHunvec

(
vec(RTx,G)

)
f

)((
vec(R∗

RIS,G)
)T

× vec
(
(ψ∗ψT)⊙ (

κH
κH + 1

HHH+
Mr

κH + 1
R∗

RIS,H)
))

=

(
fHRTx,Gf

)((
vec(R∗

RIS,G ⊙ (
κH

κH + 1
HHH

+
Mr

κH + 1
R∗

RIS,H)
)T

vec
(
(ψ∗ψT)

)
=

(
fHRTx,Gf

)(
ψH

(
R∗

RIS,G ⊙ (
κH

κH + 1
HHH

+
Mr

κH + 1
R∗

RIS,H)
)
ψ

)
. (29)

This could also be achieved by setting κG to 0 in (27).
Now, since fHRTx,Gf is a scalar independent of ψ, and
ψH

(
R∗

RIS,G ⊙ ( κH

κH+1H
HH + Mr

κH+1R
∗
RIS,H)

)
ψ is a scalar

independent of f , the joint optimization problem P1 in (9)
for f and ψ can be decoupled into two disjoint problems of
P6 and P7.
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