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Abstract—This paper studies the classical problem of com-
munication across channels with state estimated at the receiver,
in the context of wireless channels with reconfigurable intelligent
surfaces (RIS). The RIS channels are characterized by numerous
channel parameters but often have a sparse underlying structure.
Under these conditions, the communication, channel training,
and the characteristics of sparse recovery algorithms, interact in
intricate ways. We calculate a training-based achievable rate for
the RIS-induced sparse channel. We use an efficient sparse model
for the RIS-aided channel that eliminates the need for recovering
angles of arrival and departure at the RIS. We incorporate in the
analysis the misalignment between the discrete parameter model
of compressive sensing and the actual continuous-valued channel
parameters, referred to as basis mismatch. Finally, we offer
insights into designing RIS size and compressive sensing-based
channel estimation parameters for RIS-aided communication
systems.

I. INTRODUCTION

In channels with estimated states at the receiver, allocation
of channel resources to estimation and communication tasks
has been a classical problem in wireless information the-
ory [1]. This paper studies a new manifestation of this problem
with many channel parameters (as in the case of reconfigurable
intelligent surface (RIS) [2], [3]) while the underlying channels
are sparse. A key point of interest in this paper is to uncover
how the inherent features of sparse channel estimation, such
as grid mismatch, influence the above-mentioned tradeoff
in capacity optimization, and the resulting overall system
behavior and performance.

For coherent reception, the channel state must be known
at the receiver. In the context of RIS, some works consider
capacity analysis without requiring channel estimation [4], [5]
(i.e., with genie-aided channel states). In practice, channel
estimates are obtained by pilot transmission that involves
the expenditure of power and degrees of freedom. The large
number of RIS parameters complicates pilot transmission and
channel estimation [6]–[9]. The effect of channel estimation
overhead on the capacity of RIS-aided channel is studied
in [10], [11].

The use of RIS is most compelling in millimeter wave
(mmWave) frequencies when the channels are sparse. Com-
pressive sensing is often used for sparse recovery, including
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in mmWave channel estimation [12], and is computation-
ally more efficient than competing algorithms [13]. However,
compressive sensing is inherently finite-dimensional, while
channel parameters such as angles of arrival and depar-
ture are continuous-valued. This results in a basis mismatch
problem [14] arising from the differences between true and
quantized angles. The compressive RIS channel estimation
has been studied in [15]–[19]. However, the effect of basis
mismatch on the performance of the channel estimation and
connections to spectral efficiency is not examined in the
context of communication using RIS link.

This paper derives a training-based lower bound on the
capacity of RIS-aided communication, subject to channel
state recovery by compressive sensing. We use an efficient
representation of the end-to-end sparse channel that avoids
the recovery of the angles of arrival and departure at the RIS.
Only the angles at the transmitter and receiver are discretized
for compressive sensing and consequently estimated. This
results in smaller dimensions, lower complexity, and smaller
estimation errors, compared with earlier representations [18].
We analyze errors due to grid mismatch. Our results also
highlight the effect of parameters such as the number of
dominant paths, quantization resolution, and power allocation
on the spectral efficiency of the mmWave RIS-aided commu-
nication. Simulation results provide valuable insight into the
optimal training overhead, RIS size, and the design criteria for
compressive sensing channel estimation.

II. RIS-AIDED MMWAVE SYSTEM MODEL

Assume an Nt-antenna transmitter and Nr-antenna receiver
communicate through a wireless link assisted by RIS with N
passive elements. Let G ∈ CN×Nt denote the channel between
the transmitter and the RIS and H ∈ CNr×N denote the
channel between the RIS and the receiver. The RIS reflection
coefficient matrix is denoted by Ψ = diag(ψ), with the passive
elements ψ = [ψ1, . . . , ψN ]T , of the form ψi = νie

jτi , where
νi ∈ [0, 1], and τi ∈ [0, 2π). Let x be the input signal and ρ
be the transmit power, the received signal is given by

y =
√
ρWHHΨGFx+WHn, (1)

where F ∈ CNt×Mt is the precoding matrix employed at the
transmitter to beamform the signal and W ∈ CNr×Mr is the
combining matrix preprocesses the signal at the receiver and
WHn is the additive white Gaussian noise with variance σ2

n.
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Fig. 1. RIS-assisted system model

The direct channel between the transmitter and receiver is
assumed to be blocked. The corresponding system model is
illustrated in Fig. 1.

To estimate the channel, the transmitter sends Mt pilot
symbols at Mt successive time slots (represented by Sp),
resulting in the received signal Yp ∈ CMr×Mt :

Yp =
√
ρpW

HHΨGFSp +Np, (2)

where the transmit power dedicated to pilot transmission is
denoted by ρp. We assume the geometric channel model based
on the propagation path gains of each link and their angles of
arrival and departure [20]. The transmitter and receiver are
considered to be equipped with a uniform linear array with
antenna spacing dt, and dr respectively, and without loss of
generality, we model the RIS as a uniform linear array with
element spacing dn. L is the number of paths between the
transmitter and RIS and P is the number of paths between the
RIS and receiver. The channel G can be written as follows

G =

L∑
l=1

αla2(θl)a
H
1 (ϕl), (3)

where αl is the complex gain of the l-th path, ϕl and θl are the
l-th azimuth angles of departure and arrival at the transmitter
and the RIS, respectively, uniformly distributed over the range
of [−π, π]. The vectors a1(.) and a2(.) are the steering
and response vectors which are defined using fM (x) =
[1, ej

2π
λ x, . . . , ej(M−1) 2π

λ x] where λ is the carrier wavelength,
as a1(ϕl) = fNt

(dt sin(ϕl)), a2(θl) = fN (dn sin(θl)). Simi-
larly, the channel H is written as

H =
P∑

p=1

βpb2(ϑp)b
H
1 (φp), (4)

where βp is the complex gain of the p-th path, φp and ϑp
are the azimuth angles of departure and arrival at the RIS and
receiver, respectively, and steering and response vectors are
b1(φp) = fN (dn sin(φp)) and b2(ϑp) = fNr (dr sin(ϑp)).

One can rewrite the channel matrices G and H as follows

G = A2ΛgA
H
1 , (5)

H = B2ΛhB
H
1 , (6)

where Λg ≜ diag([α1, . . . , αL]
T ) and Λh ≜

diag([β1, . . . , βP ]T ) are matrices corresponding to the
path gains. The steering matrix A1 is obtained from
the corresponding steering vectors of L paths, as
A1 =

[
a1(ϕ1) a1(ϕ2) · · · a1(ϕL)

]
and matrices

A2,B1 and B2 are similarly obtained.

III. SPARSE CHANNEL ESTIMATION

The sparse channel estimation employing compressive sens-
ing is as follows. Without loss of generality, we consider the
pilot signal to be Sp = IMt . By vectorizing the received signal
yp = vec(Yp), and using the Kronecker product ⊗ and Khatri-
Rao product ⊙, we have

yp =
√
ρp(F

T ⊗WH)vec(HΨG) + np

=
√
ρp(F

T ⊗WH)(GT ⊙H)ψ + np

=
√
ρp(F

T ⊗WH)(A∗
1Λ

T
g A

T
2 ⊙B2ΛhB

H
1 )ψ + np,

(7)

where np = vec(Np). One can write yp as
√
ρp (F

T ⊗WH)︸ ︷︷ ︸
Φ

(A∗
1 ⊗B2)︸ ︷︷ ︸
Γa

(ΛT
g ⊗Λh)(A

T
2 ⊙BH

1 )ψ︸ ︷︷ ︸
ca

+np,

(8)

where ca ∈ CLP×1 is the signal to be recovered which is
represented with respect to the basis Γa ∈ CNtNr×LP and
Φ ∈ CMtMr×NtNr is the measurement matrix.

To model the system for the compressed sensing procedure,
a representation of the channel in a quantized angular domain
is required. In this paper, we employ a channel representation
where the sparse signal to be recovered includes both the cas-
caded channel and the RIS configuration matrix. The basis for
this signal is obtained by discretizing only the angular domain
at the transmitter and receiver. This approach simplifies the
problem by avoiding the need to discretize the angles at the
RIS, resulting in lower complexity and reduced errors due to
the basis mismatch.

Therefore, the problem of estimating the channel is formed
as the following compressive sensing problem

yp =
√
ρpΦΓvcv + np, (9)

where Γv = Ã∗
1 ⊗ B̃2 ∈ CNtNr×GH is the quantized basis

defined by the product of transmitter and receiver dictionary
matrices Ã1 and B̃2 which are unitary matrices obtained from
the uniform sampling of the angular domain with resolution G
and H . In this paper, these matrices are Nt ×G and Nr ×H
DFT matrices, respectively (orthonormal DFT matrix for G =
Nt, H = Nr and overcomplete DFT matrix for G > Nt and
H > Nr). The vector cv is a sparse vector in the basis Γv ,
with non-zero values on the elements corresponding to the grid
points where the true angle of arrival and departure lie. Note
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that the number of grid points GH is far greater than the level
of sparsity.

To recover the sparse vector cv , assume that cv = Rψ
where R is a row sparse matrix with LP non-zero rows con-
taining the virtual representation of the steering vectors of RIS-
side as well as the product of the channel gains. To estimate
all the elements in the matrix R, N observations are needed.
In this representation, the pilot signal is received in Mt time
slots, repeated N times using N different RIS configuration
vector ψ, i.e. RΨ′ = Cv . Ψ′ is N×N RIS coefficient matrix
with N orthogonal columns (e.g. columns of the DFT matrix)
and Cv ∈ CGH×N is a row sparse matrix obtained from
concatenating different cv column vectors corresponding to N
different RIS coefficients. Therefore, the compressive sensing
problem results in estimating the channel coefficients in Cv

from the observation Y′
p ∈ CMtMr×N

Y′
p =

√
ρpΦΓvCv +N′

p, (10)

where N′
p ∈ CMtMr×N is the additive noise. Employing

compressive sensing algorithms such as orthogonal matching
pursuit to obtain Cv , one can recover the matrix R from
the set of equations R′Ψ′ = C′

v where R′ ∈ CLP×N and
C′

v ∈ CLP×N are attained from omitting the zero rows in the
matrices R and Cv , respectively. In this way, one can estimate
the cascaded channel C ≜ GT ⊙ H = (Ã∗

1 ⊗ B̃2)R whose
estimation is necessary and sufficient for coherent detection at
the receiver and beamforming at the transmitter and RIS.

The advantage of employing this method is that one can
recover the cascaded channel using the fact that the path
gains in the quantized basis is sparse, annihilating many
elements in the RIS side steering matrices A2 and B1. This
prevents quantizing the RIS-end angular domain and reduces
the complexity.

The discretization of the angular domain may result in an
estimation error if the true angles do not lie on the discretized
angle and the power leakage to the other neighboring quan-
tized angle deteriorates the recovery of all the parameters. This
issue is referred to as basis mismatch [14]. The problem of
basis mismatch arises when the quantized representation of
the basis does not match the true angle domain basis, i.e.,
cv = Γ†

vΓaca ≜ Γca where Γ is the mismatch between the
true basis Γa and the quantized basis Γv and † is the Moore-
Penrose inverse.

The element (H(m− 1) + k, LP (l− 1) + p) of the matrix
Γ is calculated as

1

GH
ej

1
2 (η(Nt−1)+ζ(Nr−1)) sin (ηNt/2) sin (ζNr/2)

sin (η/2) sin (ζ/2)
, (11)

where η ≜ 2π( (m−1)
G − ϕl) and ζ ≜ 2π(ϑp − (k−1)

H ). Every
element of the basis mismatch matrix is a Dirichlet kernel
function, which is two-dimensional due to the discretization
of the angular domain at both transmitter and receiver. This
means that any mismatch between true angles ϕl and ϑp and
their corresponding DFT element (m−1)

G and (k−1)
H lead to

leakage to the adjacent cells, which is shown by Dirichlet ker-
nel function. This results in an error in the channel estimation

stage defined as E ≜ Γ − Γ in which Γ is the case where
the quantized basis and true basis are perfectly matched. We
consider this error in the capacity analysis in the following
section.

IV. ACHIEVABLE RATE

During channel estimation, Tp time slots are assigned to
pilots, making the pilot transmission time equal to Tp = NMt.
The remaining time slots in the coherence interval T are dedi-
cated to data transmission, denoted by Td ≜ T −Tp. Consider
the received data given as Yd =

√
ρ
d
WHHΨGFSd + Nd,

where ρd is the data transmission power and Sd is composed
of vectors of data symbols of size Mt × 1 sent over Td time
slots. By vectorizing the received signal Yd, we have yd =√
ρd(S

T
d ⊗ IMr

)Φc+ nd where c = Cψ and nd = vec(Nd)
is the additive noise.

Proposition 1. The capacity lower bound for the RIS-assisted
sparse channel with channel state obtained via compressive
sensing is

C ≥ (
T −NMt

T
)E{log2(1 +

ρdψ̃
H
Ĉ
ĈHΦHΦĈψ̃Ĉ

σ2
n

)},

(12)

where Ĉ is the estimate of the cascaded channel using the
orthogonal matching pursuit algorithm, ψ̃Ĉ is the optimal RIS
phase shift and

σ2
n = (1 +

ρdMt

ρp(T −NMt)
)σ2

n +
2LPGHρd

NtNrMr(T −NMt)
σ2
eσ

2
α,

(13)
where σ2

e ≜ E{EHE} and σ2
α is the variance of the cascaded

channel path gains.

Proof. To obtain the capacity of the above system, one needs
to calculate:

C = max
p(Sd,ψ)

I(Sd;Yd, Ĉ), (14)

where p(Sd,ψ) is the joint distribution of the input signal Sd

and the RIS coefficient vector ψ. We have:

C = max
p(Sd,ψ)

I(Sd;Yd|Ĉ) + I(Sd; Ĉ)

≥ max
p(Sd),ψĈ

I(Sd;Yd|Ĉ), (15)

where (15) holds since the maximization over p(Sd,ψ), is
replaced with the maximization over the distribution of the
data, and the RIS phase shifts vector ψĈ which is set em-
ploying the channel estimate. Also, I(Sd; Ĉ) = 0 holds, since
the transmit data is independent of the estimated channel.
To calculate the capacity lower bound, the received signal
yd =

√
ρd(S

T
d ⊗ IMr )ΦCψ + nd can be rewritten as

√
ρd(S

T
d ⊗ IMr

)ΦĈψ +
√
ρd(S

T
d ⊗ IMr

)Φc̃+ nd, (16)

where c̃ = c − Ĉψ is the cascaded channel estimation error
which is due to the error caused by employing orthogonal
matching pursuit algorithm and the mismatch error E. Let the
sparse estimation error in (16) denoted by ñ ≜

√
ρd(S

T
d ⊗

2165Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 08,2025 at 21:51:24 UTC from IEEE Xplore.  Restrictions apply. 



IMr
)Φc̃. The corresponding combined noise for the data

transmission phase is defined as n ≜ ñ + nd. To evaluate
the effect of the combined noise n on data transmission, the
correlation between the combined noise and the transmitted
signal is calculated as

E{SdN
H |Ĉ} = E{Sd(

√
ρdW

HC̃FSd +Nd)
H |Ĉ} (17)

=
√
ρdE{SdS

H
d FHC̃HW|Ĉ} (18)

=
√
ρdE{SdS

H
d |Ĉ}E{FHC̃HW|Ĉ}

= 0, (19)

where in (17) we have N ∈ CMr×Td and C̃ ∈ CNr×Nt which
are equivalent noise matrix obtained from vec(N) = n and the
cascaded channel estimation error derived from vec(C̃) = c̃,
respectively. (18) holds since the transmitted signal and the
receiver noise are independent, and the noise is Gaussian with
zero mean. Due to randomly generating the precoding and
combining matrices from a discrete uniform distribution with
values {±1,±j} which has zero mean [21], the equality in
(19) is obtained resulting in the signal and noise to be uncor-
related. Therefore, one can utilize the worst-case uncorrelated
noise theorem, to calculate a training-based lower bound for
the capacity [1]

C ≥ max
p(Sd),ψĈ

(
T − Tp
T

)E{log2(1+
ρdψ

H
Ĉ
ĈHΦHQΦĈψĈ

σ2
n

)},
(20)

where Q ≜ E{(ST
d ⊗ IMr

)H(ST
d ⊗ IMr

)} ∈ CMtMr×MtMr

is the equivalent transmit signal covariance matrix and σ2
n is

the variance of the equivalent additive noise. The distribution
of the transmit signal Sd which maximizes the capacity is
Gaussian. We consider the data transmission is done through
transmit antennas independently and with equal power, the
covariance matrix of Sd is E{S∗

dS
T
d } = IMt

, resulting in Q =
IMtMr .

Therefore, the maximization problem in (20) is simplified to
maximizing the capacity with respect to ψĈ. The maximiza-
tion can be performed on ψH

Ĉ
ĈHΦHΦĈψĈ with respect to

ψĈ assuming each RIS coefficient ψi = νie
jτi has amplitude

νi = 1 and phase τi ∈ [0, 2π) for i = 1, . . . , N . Since this is,
in general, an NP-hard problem, by defining D ≜ ĈHΦHΦĈ
and using ψH

Ĉ
DψĈ = tr(DΨ̃) with Ψ̃ = ψĈψ

H
Ĉ

, one can
solve the equivalent semi-definite problem

max
Ψ̃

tr(DΨ̃)

s.t. [Ψ̃]i,i = 1, Ψ̃ ⪰ 0, rank(Ψ̃) = 1,
(21)

where [Ψ̃]i,i is the element (i, i) in Ψ̃ [22]. One can relax the
rank-one constraint on Ψ̃ to obtain the solution. Therefore,
the optimization problem becomes a convex semi-definite pro-
gramming where the solution can be obtained using existing
optimization solvers. The answer to the relaxed problem may
have higher ranks. One can employ the method in [23] to find
a rank-one solution, denoted by ψ̃Ĉ from the attained optimal
higher-rank.

The equivalent noise variance in (20) is calculated as, σ2
n

σ2
n =

1

MrTd
E{||nd + ñ||22}

=
1

MrTd

(
tr
{
E{ndn

H
d }

}
+ tr

{
E{ññH}

})
=

1

MrTd
tr{σ2

nIMrTd
}

+
ρd

MrTd
tr
{
E{(ST

d ⊗ IMr
)Φc̃c̃HΦH(ST

d ⊗ IMr
)H}

}
= σ2

n +
ρd

MrTd
tr
{
E{S∗

dS
T
d ⊗ IMr}E{Φc̃c̃HΦH}

}
= σ2

n +
ρd

MrTd
E
{

tr{c̃c̃H}
}
, (22)

where E{ΦHΦ} = INtNr which is due to the characteristics
of combining and precoding matrices, and E

{
tr{c̃c̃H}

}
is the

channel estimation error variance. This error can be upper
bounded by MrMt

ρp
σ2
n+

2LPGH
NtNr

σ2
eσ

2
α [24]. The first term in this

upper bound is the estimation error of the employed orthogonal
matching pursuit algorithm, and the second term is due to the
basis mismatch error E. This proves the proposition.

For the setting where the sparsity of the channel is of
the order LP and the size of the sparse signal is GH ,
since there are Mr measurements for each pilot which is
sent over Mt time slots, with N times transmission using N
different RIS coefficients, Mt can be calculated according to
Tp = NMt = O(LP

Mr
log(GH)) for the orthogonal matching

pursuit algorithm [25].

V. SIMULATION RESULTS

Throughout the simulations, a 32 × 32 communication
system is assumed and the data and training powers are set to
be equal. Fig. 2 investigates the effect of choice of the training
length Tp on the spectral efficiency for RIS with 32 elements
and the coherence interval T = 300. As a reference, we
provide the spectral efficiency of the case where the channel
state information at the receiver (CSIR) is perfectly known.
The figure demonstrates that as the length of the training
increases, the gap between the training-based capacity bound
and the capacity with perfect knowledge of CSIR becomes
more pronounced.

Fig. 3 demonstrates the effect of basis mismatch on the
training-based bound on the capacity as a function of block
length T . It can be noticed that the capacity bound is improved
as the mismatch error variance is decreased, which is achieved
through selecting an appropriate dictionary size (setting G
and H to integer multiplies of the number of transmit and
receive antennas). Therefore, the overall capacity expression is
increased due to the reduced mismatch error and the improved
cascaded channel estimate.

In Fig. 4, the training-based bound is shown as a function
of the number of RIS elements for block lengths T = 300
under different SNR levels. It can be seen that the spectral
efficiency is increased up to a certain value. Beyond the
corresponding N , increasing the number of RIS elements does
not improve the capacity bound. This limitation arises because,
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beyond the optimal RIS sizes shown in the figure, increasing N
results in significantly higher training overhead, reducing the
available time for effective RIS beamforming. Consequently,
there is a decline in spectral efficiency as the resources are
predominantly consumed by the training phase, restricting the
potential for optimal RIS beamforming exploitation.

To further illustrate these observations, Fig. 5 demonstrates
the effect of increasing the number of RIS elements beyond
the optimal value, on the spectral efficiency as a function of
the block length. The existing gap between the training-based
capacity bound and the capacity with perfect knowledge of
CSIR for RIS of size 8 is remarkably lower than the case
where the RIS size is 20. Therefore, increasing the number
of RIS elements higher than a certain amount is ineffective in
training-based systems and results in performance degradation.

VI. CONCLUSION

This study investigated the achievable rate for sparse RIS-
assisted communication channels when channel states are
known at the receiver. Employing the compressive sensing
algorithm to obtain the channel estimate, we derived a training-
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based capacity lower bound based on the training phase pa-
rameters. Our results illustrated the impact of the misalignment
between the assumed discrete parameter model for compres-
sive sensing and the actual continuous channel parameters, on
the spectral efficiency of RIS-aided channels.
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