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Abstract

BCART (Bayesian Classification and Regression Trees) and BART (Bayesian Additive
Regression Trees) are popular Bayesian regression models widely applicable in modern re-
gression problems. Their popularity is intimately tied to the ability to flexibly model complex
responses depending on high-dimensional inputs while simultaneously being able to quantify
uncertainties. This ability to quantify uncertainties is key, as it allows researchers to perform
appropriate inferential analyses in settings that have generally been too difficult to handle
using the Bayesian approach. However, surprisingly little work has been done to evaluate
the sensitivity of these modern regression models to violations of modeling assumptions. In
particular, we will consider influential observations, which one reasonably would imagine to
be common — or at least a concern — in the big-data setting. In this paper, we consider both
the problem of detecting influential observations and adjusting predictions to not be unduly
affected by such potentially problematic data. We consider three detection diagnostics for
Bayesian tree models, one an analogue of Cook’s distance and the others taking the form of
a divergence measure and a conditional predictive density metric, and then propose an im-
portance sampling algorithm to re-weight previously sampled posterior draws so as to remove

the effects of influential data in a computationally efficient manner. Finally, our methods
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are demonstrated on real-world data where blind application of the models can lead to poor

predictions and inference.

Keywords: Nonparametric regression, uncertainty quantification, big data, applied statistical

inference



1 Introduction

In the contemporary approach to data-driven problem solving, statistical models have received
increasing attention and popularity as a means for arriving at answers to complex research, science
and business questions. As datasets have increased in size with the transition to the “big-data” era,
the complexity and scalability of statistical models have seen rapid advances in order to address
the needs of these modern problems. Popular examples of such models include neural networks
(Ghugare et al., 2014), random forests (Breiman, 2001) and localized Gaussian Processes (Gramacy
and Apley, 2015). In problems where uncertainty quantification is deemed necessary, Bayesian
methods have come to the fore, such as the Bayesian variants of neural networks (MacKay, 1995),
Bayesian localized GPs (Liu et al., 2020) and Bayesian Regression Tree models (Chipman et al.,
1998, 2010; Pratola, 2016; Horiguchi et al., 2021, 2022).

Despite the increasing popularity and capability of these modern statistical tools, there has been
a conspicuous disconnect in terms of tools that support the application of such complex models
when compared to their humble, small-dataset, low-dimensional ancestors. For example, in linear
regression, students are taught an extensive array of tools for validating modeling assumptions in
the classical setting, such as residual diagnostics, outlier detection and influence metrics (Weisberg,
2013; Cook and Weisberg, 1982). The Bayesian linear model has also received attention earlier in
the literature (Chaloner and Brant, 1988; Zellner and Moulton, 1985; Johnson and Geisser, 1983;
Zellner, 1975). Yet surprisingly, such supporting tools have not received the same attention in the
development of modern variants of statistical models. The assumption, it seems, is that in the

big-data setting such issues are of lesser concern. We have found this assumption to be incorrect.

Our focus in this paper is on the single-tree Bayesian classification and regression tree (BCART)
model (Chipman et al., 1998), and the ensemble-of-trees Bayesian Additive Regression Tree (BART)
model of Chipman et al. (2010) in particular. This class of models is currently receiving much at-
tention in the research community, and has been used in a wide variety of problems including
medical studies (Tan and Roy, 2019), causal analysis (Hahn et al., 2020), computer experiments
(Pratola and Higdon, 2014) and applied optimization (Horiguchi et al., 2022). BCART and BART
models have contributed to this popularity due to their ability to scale to moderately sized big-

data applications while retaining the ability to fully quantify statistical uncertainties due to the



elegant exploitation of conjugacies in the MCMC sampler. Our work arose out of a simple curios-
ity: can BCART or BART models be negatively affected by a potentially problematic observation,
i.e. an observation that can be influential or is an outlier (or both)? On the one hand, since such
Bayesian tree models fit simple localized models, it may appear that any problematic behavior due
to a bad observation would be localized, and perhaps of not serious concern when working with large
datasets. On the other hand, big-data usually is also high-dimensional, and in high-dimensions our

notions of what constitutes a large sample size may not match our intuition.
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Figure 1: Effect of two problematic observations on posterior predictions of BCART (left panel,
m = 1 trees) and BART (right panel, m = 200 trees) models. Observation ‘a’ is a large outlier
but has less influence due to its location in the center of the regression domain, while observation
‘b’ is both a large outlier and has higher influence due to its location at the edge of the regression
domain. The resulting fits demonstrate the effect of removing these observations on the resulting
posterior predictions (solid line) versus leaving them in (dotted line). The grey solid line denotes

the true mean function.

Figure 1 demonstrates a simple example of this scenario. In fact, this scenario is rather favorable
as it is low-dimensional and there is plenty of data — both of these choices make it easy to visualize
the behavior of BART with m = 1 and m = 200 trees. Yet despite this seemingly favorable

situation (i.e. one where we might not expect any serious effect due to influence or outliers), there



is a suprisingly strong effect of two problematic observations, denoted in the figure by the ‘a’ and
‘b’ symbols. Certainly, the effect is localized as expected, so the overall fit may be reasonable
for much of the regression domain of interest. Yet, in the local region containing the problematic
observation, the predictions are severely affected and it is reasonable to expect this type of issue

to become worse in more realisitic, higher-dimensional applications.

In the classical linear regression model, y; = x;8+¢;, € ~ N(0,0%) where z; € R?, the approach to
handling such problematic observations is to detect and remove such observations before proceeding
to the final model fitting and inference stages. The popular classical tools include calculating the
leverage of observations based on the diagonal entries of the hat-matrix, and calculating Cook’s
distance, defined for observation 7 as

S (G = i)
ds?

D; =

where g;(;) represents the model’s prediction when observation ¢ is held out from the training data,
and s? is the usual least-squares estimate of error variance, o2. Cook’s distance can itself can be
factored into a term that represents detecting observations problematic due to a large potential
for influence (leverage) and a term detecting influence due to a large residual. These terms are
combined product-wise to arrive at D;, implying that good observations are those with low residual
and low leverage while problematic observations could be problematic for either or both of these

issues.

In the modern Bayesian context, it is less clear how to handle such problematic data. For instance,
do we care about point predictions or do we care about the posterior distribution? In the former
setting, an analogue of the classical Cook’s distance may be quite reasonable. In the latter setting,
some theoretical work suggests that if the problematic observation is known, one may not need to
completely remove it from the analysis; instead the posterior can be adjusted to correct the effect of
the problematic data on the resulting posterior. This implies that there are in fact two procedures

needed to appropriately handle problematic observations in our modern Bayesian regression setting:

i. identification of problematic observations;

ii. model (posterior) adjustment given identified problematic observations.



In this work, we propose three approaches for the identification problem (i). First, a direct ex-
tension of Cook’s distance to the regression tree model setting is outlined, and has the benefit of
providing an easy and sensible interpretation. Second, an alternative divergence-based metric is
also proposed. The divergence approach has the benefit of identifying observations that affect the
posterior distribution. Third, identification can be performed by detecting changes in the condi-
tional predicitve distribution. For the adjustment problem (ii), we explore two alternatives: the
simple (but wasteful) dropped-observation approach, and an importance-sampling approach that
reweights posterior expectations to account for the problematic observation without going so far

as to completely remove it.

The paper proceeds as follows. In Section 2 we review the the BCART and BART models. In
Section 3, we outline our proposed Cook’s distance metric for trees as well as the divergence
and predictive distribution metrics. In Section 4 we derive importance samplers for reweighting
BCART and BART posteriors to account for problematic observations. We then apply these tools
to a variety of simulated datasets and to real-world data involving biomass fuels in Section 5.

Finally, we conclude with a discussion in Section 6.

2 Bayesian Regression Trees and BART

For high-dimensional regression, most statistical and machine learning techniques focus on the
estimation of E[y|x] = f(x). It is typically assumed that Var[y|x] = 02 with the data generated

according to the homoscedastic process

y(x) = f(x) + 07 (1)
where Z ~ N(0,1) and x = (x1,...,24) is a d-dimensional vector of predictor variables.

BART models the unknown mean function f(x) with an ensemble of Bayesian regression trees. Such
regression trees provide a simple yet powerful non-parametric specification of multidimensional
regression bases, where the form of the basis elements are themselves learned from the observed
data. Each Bayesian regression tree is a recursive binary tree partition that is made up of interior

nodes, T, and a set of parameter values, M, associated with the terminal nodes. Each interior tree



node, 7;, has a left and right child, denoted [(n;) and r(n;). In addition, all nodes also have one
parent node, pa(n;), except for the tree root. One may also refer to a node by a unique integer
identifier 7, counting from the root where the left child node is 79; and the right child node is 7g;41.
For example, the root node 7, is node 1, with node 2 and node 3 being 7;’s children. Figure 2

summarizes our notation.

Figure 2: Labeling for a single regression tree T. Nodes are denoted by circles and labeled using
the symbol 7. Lines denote branches connecting the nodes. Nodes can also be identified as left and
right children (e.g. 1y = [(n;)) or as parent (e.g. m1 = pa(nz)). Terminal nodes have no branches
below them and contain associated parameter values 6. Note that later in the paper T; will also

index one member of an ensemble of trees, its use will be clear from context.

Internal nodes of regression trees have split rules depending on the predictors and “cutpoints” that
are the particular predictor values at which the internal nodes split. This modeling structure is
encoded in T, which accounts for the split rules at each internal node of a tree and the topological
arrangement of nodes and edges forming the tree. Given the design matrix X of predictors having
dimension n x d, each column represents a predictor variable v € {1,...,d}, and each row x
corresponds to the observed settings of these predictors. At a given internal node, the split rule
is then of the form x, < ¢ where z, is the chosen split variable and c is the chosen cutpoint ¢ for

split variable z,,.



The Bayesian formulation proceeds by specifying discrete probability distributions on the split
variables v taking on a value in {1,...,d} and specifying discrete probability distributions on the
set of distinct possible cutpoint values, where n, is the total number of discrete cutpoints available
for variable v. For a discrete predictor, n, will equal the number of levels the predictor has, while
for a continuous predictor a choice of n, = 100 is common (Chipman et al., 2010). The internal

modeling structure of a tree, T, can then be expressed as T = {(vq, 1), (v2, c2), .. .}

The Bayesian formulation is completed by specifying prior distributions on the parameters at the
terminal nodes. For B = |M| terminal nodes in a given tree, where | - | denotes cardinality, the
corresponding parameters are M = {u, ..., up}. Taken all together, the Bayesian regression tree

defines a function g(x; T, M) which maps input x to a particular p;, jel...B.

The original BART model is then obtained as the ensemble sum of m such Bayesian regression
trees plus an error component, y(x;) = 270, g(x;; Ty, M;) + 0Z;,  Z; ~ N(0,1), where y(x;)
is the observation collected at predictor setting x;, and o2 is the variance of the homoscedatic
process. Combining all the parameters together as © = (T, M, ¢?), the BART prior is factored
as m(0) = m(M|T)x(T)m(c?). For the terminal node parameters, normal priors are specified as,
m(wjr) ~ N(0,72), where uj is the kth terminal node component for tree j, and an inverse chi-
squared prior is specified for the variance, 0% ~ x72(v, A), where x~2(v, \) denotes the distribution
(vA)/x2, and x2 is the chi-squared distribution with v degrees of freedom. For a prior on the tree
structure, we specify a stochastic process that describes how a tree is drawn. A node at depth
§€{0,1,2,...} spawns children with probability a(1 + §)~?, for a € (0,1) and 3 > 1. As the tree
grows, 0 gets bigger so that a node is less likely to spawn children and more likely to remain a
terminal node, thus penalizing tree complexity. Details on specifying the parameters of the prior
distributions are discussed in detail in Chipman et al. (2010), while typically the choice m = 200
trees appears to be reasonable in many situations (Chipman et al., 2010; Hill, 2011; Starling et al.,
2020; Horiguchi et al., 2021). Meanwhile, choosing m = 1 results in the BCART model.

The use of normal priors on the terminal node u’s, and an inverse chi-square prior on the vari-
ance, greatly facilitates the posterior simulation via an MCMC algorithm as they are conditionally
conjugate. Selecting the split variables and cutpoints of internal tree nodes is performed using a

Metropolis-Hastings step by growing and pruning each regression tree. The growing/pruning are



performed using so-called birth and death proposals, which either split a current terminal node in
M on some variable v at some cutpoint ¢, or collapse two terminal nodes in M to remove a split.
For complete details of the MCMC algorithm, the reader is referred to Chipman et al. (1998);
Denison et al. (1998); Chipman et al. (2010); Pratola (2016).

3 Influence Diagnostics for Trees

We now outline three diagnostic tests for the detection of problematic observations. The first is a
direct application of Cook’s distance to Bayesian regression trees, the second is a divergence-based

approach and the third a conditional predictive distribution approach.

3.1 Conditional Cook’s Distance for Regression Trees

Conditioning on the tree (T, M), a single regression tree can be expressed in the usual linear form
as g(x; T, M) = Y0 | uply(x) where B is the total number of terminal nodes in the tree and I, (z) is
the indicator function taking the value 1 when x maps to the hyperrectangle defined by terminal
node b, and 0 otherwise. The analogous formula for Cook’s distance in the single-tree case by

regressing y on [,(x) (see Supplement) becomes

1 (& 2 TL(Z)
D= = (—) M 2
B x o x (n@ —1)2 (2)
— ——

Tree Complexity = Normalized Residual Node Purity

where e; = y; — Zle ply(x;) is the regression residual for observation 7, and n() is the number
of observations in the terminal node to which observation ¢ maps. Note here that in comparison
to the classical Cook’s distance, we have replaced & with the parameter itself, for which we have
samples. This form of D; provides helpful interpretations. For instance, it is a decreasing function
of the number of terminal nodes, B, but on the other hand it increases as node purity increases
(i.e. as n() becomes small) and in particular will blow up when n;y — 1 = 0. Also, we see that
D; increases if the residual of observation i is large relative to the standard error, and this effect

increases like the square for every unit increase in standard devation of the residual for observation



1. To arrive at an overall estimate, we take the posterior sample mean over our N MCMC draws

of (T, M, o),

I 1 &
E[DIY] = < >, D" (3)
k=1

") is the conditional Cook’s distance as defined in equation (2).

where each Dg

For the sum-of-trees BART model, we can extend this idea in a few ways. One simple approach is
to report the average D; across all of the m tree’s in BART’s sum. That is, if D](f) is the Cook’s

distance calculated as in equation (2) above for tree j, then one could report

E[Di|Y] = Z D" where D" Z D,
Another practical alternative would be to report the average maximum Dj; over the trees,

E[D:]Y] = 2 " where D;* = maz;DY.

The exact solution can be found by converting each sum-of-trees function into a single tree repre-
sentation as in Horiguchi et al. (2021) to calculate the conditional Cook’s distances for the BART
sum-of-trees ensemble. In this case, the linear form is expressed as g(x; T, M°) = 25:51 Iy ()
where the superscript S denotes the supertree representation of the ensemble. Note that each
iy here is itself the sum of m p;; parameters from the original BART representation. If B; is
the number of terminal nodes in tree 7}, then the number of terminal nodes in the supertree
BY < Zm: Bj, where typically this inequality is ‘<<’. Let n;) be the number of observa-
tions in the terminal node of tree j to which observation ¢ maps, and similarly let n ) be the
number of observations in the supertree’s terminal node to which observation ¢ maps. Typ1cally,

f ) < mingng) << > j—1 1j,(;) since the hyperrectangle defined by the supertree terminal node to

which observation ¢ maps is the intersection of the corresponding hyperrectangles from the m trees

in the additive form, i.e. vol(Iys(7;)) := vol(nJL,I; (;)). We can then calculate the conditional
S

Cook’s distance as D; = BLS (%)2 (n:(—fl)Q and then report the posterior average of these values.
@)

Note that in this exact calculation, we see that it is likely for the influential or outlying observation
¢ to have a much smaller n(SZ.) than any single tree j, which serves to inflate the Cook’s distance
more agressively than in the above approximations. However, the approximations Eﬁk) and 5Z(k)

may be preferable for their computational simplicity.



3.2 Kullback-Leibler Divergence Diagnostic

Recall the Kullback-Leibler divergence from distribution () to P is defined as

Dicn(PI|Q) = f‘; log (g) P

where Dg, > 0 with equality iff P = @. In our context, we propose to take the reference distribution

to be the posterior involving all the data,
P:=r(0Y),

and the distribution ) is taken to be the posterior when the potentially problematic data is held

out. If we consider the simplest case of holding out a single obseration y;, then
Q =7(0]Y_,).

The KL divergence diagnostic has a simple Bayesian interpretation when evaluating the potential
for observations to be problematic: if Dk ~ 0 then observation y; is not very influential on
the posterior distribution, whereas if Dy >> 0 then observation y; is unduly influential on the

posterior distribution.
In practice, we can estimate this metric quite simply using posterior samples from our full-data fit.
Denoting f(-|©) as the likelihood function, for the theoretical divergence we have

Dict((@IY)[a(O1Y ) = | 1o ( f(ﬁY:g;;ggg;;gg) ~(0[Y)de

- L log (f(y:]©)) 7(©]Y)dO + log <7:$%)) (4)

where the first term is due to the i.i.d. form of the likelihood. Since Dg; > 0, we know that the
divergence is minimized when both the first and second term are zero. The first term captures
the contribution of y; to the posterior distribution of ©, and can be approximated using the full-
data posterior samples, ©® ~ 7(0]Y), as + SV log (f(y:|©™)) . The second term is a bit more
involved, but can be easily estimated by recognizing it as log ([W(yi|Y—i)]_l) . Note the connection
of this term to the Conditional Predictive Ordinate (CPO), defined as 7(y;|Y_;), where large

values of CPO indicate a good fitting model for y; while large values of the inverse of CPO identify



problematic observations (Pettit, 1990; Gelfand et al., 1992; Gkisser, 2017). We can estimate this

term appealing to an importance sampling trick as summarized in Proposition 0.

Proposition 0: Suppose 7(O|Y) and w(©|Y_;) are probability density functions such that
7(0]Y) > 0 whenever 7(0|Y_;) > 0. Consider 7(y;|Y_;) = FEo [7(v:]Y_;,0)7(0O]Y_;)/m(6O|Y)]
where the expectation Eg is with respect to 7(0]Y). Let O ... 0W) ~ 7(6O]Y) be independent.
Then, log (% Sy [f(yi]@(k))]_1> — log (”7(?(2;;)) as N — .

Substituting our estimators for each term of the theoretical KL divergence, we arrive at our overall

KL-divergence based criterion,

-1\ . k .
5, _ | ¥ T o8 (F10®) +log (3 T (IO ™) ity =1z mvik

o0 otherwise
yi—3m g ul) ? (k)
where f(1;|0®) = m exp [ —3 (%) , W () is the terminal node parameter in tree
j from posterior sample k£ to which observation ¢ maps, and ngk()l) is the number of obsevations

mapping to the terminal node to which y; belongs in tree 7 and posterior sample k.

3.3 Conditional Predictive Ordinate Diagnostic

Alternatively, one can show that Dy can be rewritten as
Dyr = m(y:[Y )" f log(f(y:]©)) f(y:|©)m(OY i) + 7(ys[ Y i)~
5]
= CPO™" x | og(F(u:10)) 1w ©)m(OIY ) + log(CPO™)
e

Note that the integrand log(f(y:|©))f(y;|©) — 0 when the squared residual e? = (y; — uu)* grows
large. This suggests the inverse CPO term in the KL-divergence is the important term to consider
in identifying problematic observations, and as mentioned earlier, the inverse CPO has seen much
use for exactly this purpose. This motivates our third diagnostic, which approximates the (log)
inverse CPO using the full-data posterior samples ©*) ~ 7(6[Y) as in Proposition 0,

1NN 1EN-1Y iR g S :
CNDiz log(NZkzlf(yZ]@ ) >1fnj7(i) 1 >=ng, Vy, k ©

o otherwise ,

10



and comparing CNDZ to a reference level as outlined in the next section.

Overall, the advantage of these KL-divergence based diagnostics is that they tell us something
about the sensitivity of the entire posterior distribution whereas the tree-based Cook’s distance
diagnostic (2) only tells us about the sensitivity of the mean function. Nonetheless, we again see
that (5) and (6) also exhibit inflationary behavior when we get into the degenerate situation of n;
small, as determined by the minimum number of observations per terminal node parameter, ng,
which usually has a default value of ng = 5 in most BART implementations. The interpretation of
these diagnostics is then clear: CADl and @; are large in the non-degenerate case when observation ¢
is far away from the other observations in its terminal node (since the density of y; will be small),

or infinite in the degenerate case.

3.4 Detecting Influential Observations

In order to apply the above diagnostics, one requires a rule that will flag observations as potentially
problematic. Since we are operating in the Bayesian realm, a simple approach would be to take high-
quantile values of the posterior samples of the diagnostics, such as the 97.5% and 99% quantiles,
and use these as decision boundaries for detecting influentials. However, this is approach is less
than ideal since even in the case where there are no influential observations in a dataset, this

approach will nonetheless flag 2.5% or 1% of observations as being problematic.

As motivated by the discussion for the CPO criterion (6), we prefer the following alternative based
on the notion of how large a residual would have to be in order to be considered problematic.
For Gaussian data, a residual that is £ = 2 standard deviations away would likely be the most
conservative level most analysts would use to flag influentials, and £ = 3 standard deviations might
be a more typical choice. This implies substituting e; = 20 or ¢; = 30 in the diagnostics D;, @Z
and CBZ respectively. For D;, one additionally needs to impute values for the tree complexity and
node purity terms. One approach would be to substitute posterior averages from the fitted model.
Alternatively, we can impute values based on the priors; this suggests 1/8 for the tree complexity

term and since the default value of ng is typically 5, this suggests 5/16 for the node purity term.

Calibrating the decision rules in this way is intuitive and interpretable for the practitioner, and

11



in our applications appears to work quite well. See, for instance, Figures 3-6 that apply this rule

using 20 and 30 cutoffs in Section 5.

4 Adjusting Predictions via Importance Sampling

While one could use the proposed diagnostics to detect problematic observations and then refit the
model with such observations removed from the dataset, for Bayesian models implemented using
MCMC sampling algorithms (such as BART), this is a computationally wasteful approach. Instead,
Bradlow and Zaslavsky (1997) propose to estimate functions of interest, ¢(©), using importance
sampling as

T(OY_;)

E[g(0)|Y_] = Lg@)Ww(@w)d@.

(k) _ m(@=0W|Y_;) f(Y_i[©=0%
Let Wiy = Ze=e®mY) f(Y|e=6()

vation i is to be dropped and O%) ~ 7(0|Y). Then,

S wig(Om)
Elg0)]Y ] ~ =5
21 W)

where the renormalization in the denominator removes the dependence on the proportionality con-

) be the importance sampling weights of interest when obser-

?

stant 7(Y)/m(Y_;). Intuitively, this importance sampling approach adjusts our posterior samples
used in predicting g(©) as if we had instead sampled from ©|Y_;. The weights also have a clear
connection to the KL-divergence diagnostic proposed in Section 3, with the difference being that
the diagnostic is based on the log density ratio whereas the weights are calculated on the density
ratio scale. However, it turns out that direct application of these weights to posterior quantities of
interest does not behave well due to the high-dimensional parameter space of treed models, par-
ticularly the richer models such as BART. This is because in a high-dimesional parameter space,
the localized parameters affected by the problematic observation tend to be uncorrelated with
poor draws for the rest of the high-dimensional parameter, and so downweighting entire poste-
rior realizations from such high-dimensional parameter spaces tends to remove good samples for
the rest of the parameter space. This problem with the “global reweighting” scheme can only be

overcome by collecting extremely large numbers of posterior samples, which is computationally

12



prohibitive. Fortunately, careful investigation of the situation in the prediction setting yields an

effective reweighting scheme.

4.1 Re-weighting Bayesian Tree Predictions

As we are typically interested in prediction, we will focus on a reweighting scheme for poste-
rior quantities involving the terminal node parameters. The conditional independence structure
of Bayesian trees allow us to simplify the calculation of the importance sampling weights while
increasing their effectiveness in practice. Suppose the observation to be removed, y;, belongs to
terminal node 7; with mean parameter p; in the current tree defined by ©. Furthermore, let P; be
the set of internal nodes with associated split rules that define the path from 7; back to the root
node, and let O = O\ Pj, pj represent the remaining tree parameters. Note that P; implicitly de-
fines a hyperrectangle in the input space that maps to terminal node 7; with associated prediction

ft;. Then we have the following.

Proposition 1: Consider functions g(©) = g(u;), such as predictions involving only terminal node
n;j. Then, the weights are given by wgf))ocf_l(yi\uj, P, o®)1(|n;]—1 = ng) where |n;] is the number of
observations from the full dataset Y that map to terminal node 7; and ny is the minimum number
of observations allowed per terminal node. Similarly, consider functions ¢(0) = g(y;),l # j such

as predictions not involving terminal node 7;. Then the weights are wgf)) = 1.

Note that this result still holds in the case that ng = 0. In words, Proposition 1 says that when
we hold-out y;, the weights for predictions involving the subregion of the input space defined by
P; involves re-weighting the predictions by the inverse density in y; if the node would have been
valid with the case deleted, otherwise the prediction receives zero weight. Meanwhile, weights for
predictions involving terminal nodes other than n; effectively receive a weight of 1, indicating no

ill effect of the case deletion and lending the interpretation that influence in Bayesian tree models

has a local effect in terms of prediction.

The conditional independence structure of Bayesian trees allows this idea to be extended to func-
tionals of other tree parameters, or more than single-case deletion, although the practical calcula-

tion may be come unwieldy as the factorization of the tree becomes more complex.
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4.2 Re-weighting BART Predictions

We can extend the idea of reweighting to draws from the additive tree model of BART. Consider
using BART’s m-tree ensemble to predict at some new input setting x. The added complexity
in this situation arises from the possibility that all m terminal nodes from the m trees that will
be used to predict the response at x may have full, partial or no dependence on the problematic
observation y;. That is, all m terminal nodes may have contained y;, or some subset of the m
terminal nodes may have contained y;, or perhaps none. Proposition 2 describes the weighting

scheme in this case.

Proposition 2: Consider functions g(©) = g(3;-, #1j()), such as predictions involving only the
m terminal nodes, 7., to which input x maps. Suppose y; maps to the m terminal nodes 7, .
Let n, = n,, u n,. Then, if at least one of the terminal nodes in 7, is in 7, the weight is
wgf)) (x)ocm Hn*emi I(|n*| = 1 = ng). Analogously, for predictions at = which do not
map to any terminal node in 7, , the corresponding weight is 1.

Proposition 2 essentially says that predictions involving any subset of the terminal nodes to which
x; maps will be reweighted, and the weights are essentially the same except for the indicator
function verifying the ng constraint. That is, the union of the rectangular regions defined by the
terminal nodes to which z; maps will be reweighted when predicting at a new z that lies somewhere
in this union. This means calculating the weights is relatively more complex than the single-tree
case described earlier, and it also suggests that the weighting will often be inefficient much as the
original method of Bradlow and Zaslavsky (1997) was when applied to the single-tree case. This is
motivated by the fact that BART prefers shallow trees, and so the union of regions involving the

x; across all m trees may in fact be quite large.

It is tempting, then, to consider a more localized variant — a weighting scheme that only involves
predictions that fall in the intersection of regions defined by the terminal nodes to which x; maps.
In fact, such an approach can again be supported by recalling that the BART likelihood involving

a sum-of-trees mean function can, conditionally, be equivalently described by a single “super-tree”

14



mean function (Horiguchi et al., 2021), that is

s ((T(k), M(k))) ™ (0?)

s

7(OfY)ecf (Y|(TW, MW), ... (T, M™), 0?)

1

=f (Y|S, 02) T ((T(k), M(k))) T (02) ,

-

k=1

where § represents the analogous super-tree representation, i.e. g(z;8) = >7" , g(x; (T®), M*))).
Note that the prior remains the same, even though we reinterpret the likelihood’s sum-of-trees as a
new, equivalent, single super-tree. Suppose again that y; is the problematic observation, observed
at input z; and let 70 be the terminal node in & to which z; maps, noting that there is a single
unique such terminal node in §. Let X represent the hyperrectangle defined by 7. Then we have

the following.

Proposition 3: Let z be a prediction input of interest. Let X; be the hyperrectangles in each tree
J =1,...,m of the BART ensemble such that = € X;,Vj. Let X = nJ_,X; be the hyperrectangle
defined as the intersection of all the X;’s, which corresponds to the supertree terminal node n' to
which z belongs. Supppose also that the input x; for influential observation y; also maps to 7; .

Then to predict the response y(z) for all x € X the weights are

1 YA
> > , if [n’|—1=mforallk=1,....m
w® (z) = plyilu) ™ P P 52y |n]l |
(i) )
0 otherwise
where n](f) is the [th terminal node in tree j to which x; maps in the original sum-of-trees repre-
sentation.

Note in this version of the weighting scheme, the observation x; only maps to a single terminal node
in the supertree representation, and this node corresponds to the intersection of rectangular regions
defined by all of the m terminal nodes involving z; in the original sum-of-trees representation. As
such, Proposition 3 defines a more localized weighting scheme, and is also easier to manage from

an implementation perspective.

4.2.1 A union of intersections

The practical implementation of Proposition 3 results in a different localized region, say X®*, for

each of the & = 1,..., N posterior realizations. This makes predictions more computationally
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expensive. A practical alternative is to take some sort of “average” localized region as the single
region to reweight, simplifying posterior prediction calculations. A natural choice is the union of
the individual regions, say X = ué\;lX(’“). Not only does this simplify the calculation of posterior
predictions, it also results in only requiring a single region X to be saved from model training,
reducing the amount of memory required to store the model. Since each X®*) is itself a region

defined by the intersection resulting from the supertree, we refer to this method as union-int.

4.2.2 An L1 distance alternative

Since the reweighting region defined by X is simply a hyperrectangle, it is tempting to consider
a less involved approach. One possibility is, upon identifying a problematic observation, to take
an L1 region around this point, say X, as the region to be reweighted. That is, take X = {x :
||Ty — Tl <9 Vv=1,... d} for some well-chosen scalar constant 0. We refer to this method as
/1, and briefly consider this empirical alternative in Section 5.2. However, it turns out to not be

practically useful as choosing a good ¢ is itself an expensive optimization.

5 Examples

5.1 Motivating Examples

To motivate our influence metrics, we start with a simple 1-dimensional and 2-dimensional test
function. The 1D function is cubic, having an input domain [0, 1] and response values calculated
as f(xr) = 8+ (x —0.5)3. The n = 100 observations are generated as y = f(x) + ¢, € ~ N(0,0.05?).
The 2D function is taken to be the popular Branin function. The Branin function is a smoothly
varying response surface computed over the 2-dimensional domain z € [0,1]? as

1 [, 51z 5@ 0
L e N NS BT 4481
1) = 5755 [(” R < 57 C05(@) )]

where Z; = 1521 — 5, %9 = 1525 (Picheny et al., 2013). The function exhibits steep slopes in some
regions of the input space, particularly along the edges of the domain. The n = 500 observations

were generated as y = f(x) + ¢, € ~ N(0,0.05%). For both of these simple functions we fit the
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BART model using the default options, in particular m = 200 trees, k = 2, numcut = 100, and a

minimum of ng = 5 observations per terminal node.

5.1.1 Diagnostics

First, we consider the influence diagnostics and investigate two scenarios: no influential observa-
tions and influential observations with a residual of 3 s.d. We refer to Cook’s distance (equation
2) as cooks, the KL-divergence metric D; (equation 5) as KL and the log inverse CPO metric D;
(equation 6) as CPO. As a reference, we compute cooks and CPO (4) by plugging in 2 and 3 s.d.
residuals with posterior mean estimates of other relevant quantities to serve as a gauge of severity
of the calculated diagnostics of each observation. For KL we use the estimated posterior 97.5th and
99.5th quantiles. For the scenarios where influential observations were constructed, two such ob-
servations were formed: influential observation #1 at the center of the regression domain (0.5 and
(0.5,0.5) for cubic and Branin respectively), and one at an edge of the domain (1.0 and (0.0, 1.0)

for cubic and Branin respectively).

1D Cubic

With no influential observations, the results of computing the three discussed diagnostics are shown
in Figure 3. This figure shows that mean cooks and KL diagnostics do a good job when there is
nothing to detect. The maximum cooks and KL diagnostics appear overly sensitive as some ob-
servations are suggested as problematic. For KL this is not surprising as there will always be some
diagnostic values falling above the empirical 97.5th and 99.5th quantiles. Note that some obser-
vations also evaluate to infinity for the KL and CPO diagnostics. These observations violate the ng
constraint of the model, and the locations of these observations tend to occur at the edges of the

prediction domain, or where there are gaps in the data (not shown).

The results once we add in the influential observations are shown in Figure 4. We can see that both
the mean cooks, KL and CPO diagnostics are able to pick up the influential observations accurately

(the KL and CPO for the observation at z = 1 in fact evaluates to infinity, so is not shown in panels
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(iii) and (iv)). We also note that observation #2, located at © = 1, exerts greater influence than the
observation at z = 0.5, as one would expect. The maximum cooks diagnostic also easily detects
the two influentials, but also suggests a few other observations might be problematic when they
are not. Similarly, KL easily detects the influentials but again indicates its propensity to suggest
problematic observations where there are none. Note again that the observations for which the KL
and CPO diagnostics evaluate to infinity tend to occur at the edges of the domain, where the ng

constraint is most likely to be violated.

Branin

The results for no influential observations for the Branin function are shown in Figure 5. Here
we see that, as expected, the mean cooks and CPO diagnostics do not suggest any problematic
observations. The maximum cooks and KL diagnostics again suggest potentially problematic ob-
servations, which might indicate that these diagnostics are overly sensitive. As before, the KL
and CPO diagnostics do not plot any observations whose criterion evaluated to infinity. In fact,
8 observations in this example did evaluate to infinity, indicating that the ngy limit was violated
once those observations were held out from their respective terminal nodes. These observations
generally occured at the edges of the domain and/or in regions where the response is changing
rapidly. These are scenarios where it is known that the quality of BART’s fit can suffer, and it is
interesting that these diagnostics (and possibly the maximum cooks diagnostic) are able to detect

such issues.

Adding in influential observations results in the diagnostic outputs shown in Figure 6. Here we see
that the mean cooks diagnostic is able to pick up the influential at (0,1) easily and also suggests
a potential problem with the influential at (0.5,0.5), although some observations around index 200
and index 400 give similar diagnostic values. The maximum cooks diagnostic easily detects the
influential at (0,1), but also flags a few observations around index 200 and index 400 while barely
detecting the influential at (0.5,0.5). These plots suggest that while the cooks diagnostics can
be useful, they may also suffer from higher than desired false positive and false negative errors.

The KL diagnostic has fairly good performance but also suggests a few observations that might be
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Figure 3: Influence diagnostics for the 1D cubic test function with no constructed influentials. Panel
(i) displays the mean cooks diagnostic; (ii) displays the maximum cooks diagnostic; (iii) displays
the KL divergence diagnostic (excluding infinities); and (iv) shows the CPO diagnostic (excluding
infinities). Grey dashed line denotes the 20 cut-off while the black dashed line denotes the 3o

cut-off.

19



(i) (ii)

Te]
o | % 0 ¥
8 Al
@D < c
o - o
s © g o
47 a
8 2 - ® 0
7)) v —
X 3
8 N o o |
(@) © £ —
S - Tt g W
g s ¥ 5 S x
o [ = il - - _... - -
8 | S Sty W g | conmmsenplosnias s dupmnibon aseldomss
| | | | | | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Index Index
(iii) (iv)
* Q %
o 7
= 0 _|
2 Y o e o oo - o
3 5
g @ 7 = o
o @)
2 - >
¢ - - 7
O | & remmmies el smmes s on O { o cumteriing o Mremnation semne tes o
| | | | | | T T 1 1 T T
0 20 40 60 80 100 0 20 40 60 80 100
Index Index

Figure 4: Influence diagnostics for the 1D cubic test function with influentials at = 0.5 and
x = 1. Panel (i) displays the mean cooks diagnostic; (ii) displays the maximum cooks diagnostic;
(iii) displays the KL diagnostic (excluding infinities); and (iv) shows the CPO diagnostic (excluding
infinities). The true influential observations are denoted by . Grey dashed line denotes the 20

cut-off while the black dashed line denotes the 3o cut-off.
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Figure 5: Influence diagnostics for Branin test function with no constructed influentials. Panel

(i) displays the mean cooks diagnostic; (ii) displays the maximum cooks diagnostic; (iii) displays

the KL diagnostic (excluding infinities); and (iv) displays the CPO diagnostic (excluding infinities).

Grey dashed line denotes the 20 cut-off while the black dashed line denotes the 3o cut-off.
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Figure 6: Influence diagnostics for Branin test function with influentials at = = (0.5,0.5) and = =
(0,1). Panel (i) displays the mean cooks diagnostic; (ii) displays the maximum cooks diagnostic;
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cut-off while the black dashed line denotes the 3o cut-off.
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flagged as problematic when they are not. The CPO diagnostic appears to be the most powerful of
the four - it easily, and strongly detects the two influential observations and succesfully ignores the
observations that were not influential. And, as an added feature, this diagnostic again detected

observations along the perimeter of the domain that evaluate to infinity (not shown).

5.1.2 Reweighting Predictions

Given the successful identification of problematically influential observations, an existing fit to our
respective test functions can be reweighted to alleviate the impact of the influentials. We apply
all three methods described in Section 4, including the method of Bradlow and Zaslavsky (1997)
which we refer to as global and the proposed methods of Propositions 1, 2 and 3 which were refer

to as union, int and union-int respectively.

The results for the cubic test function are shown in Figure 7. The original BART fit (light grey)
demonstrates the local effect of the influential observations located at x = 0.5 and = = 1 respec-
tively. The three reweighting methods are summarized in Figure 7(i)-(iii). From this example
we observe that global is the worst of the reweighting methods, noticeable affecting the quality
of fit away from the influential observations. The union method, in this case, matches global’s
performance. This somewhat counter-intuitive behavior arises from the fact that the union of
hyperrectangles in this method ends up being the entire [0,1] input domain. The int method
demonstrates much better performance, having nearly identical model fit quality as the original
BART posterior away from the influential observations while correcting for the influential observa-
tions in their respective localities. These localities, defined by the intersection of hyperrectangles
in this case, are shown over all 10K posterior draws in Figure 7(iv). Finally, the union-int pro-
vides the best performance by ‘collapsing’ the posterior draws in Figure 7(iv) while also being

computationally cheaper to perform.

A similar behavior is seen for the Branin test function. Table 1 summarizes the performance by
looking at in-sample and out-of-sample RMSE for the various BART predictors. Similar to the
cubic test function, we see that the global and union methods have equal performance since

union again results in the union of hyperrectangles being the entire [0,1]* input domain. Both
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Figure 7: Reweighting psoterior predictive distribution draws of fitted cubic test function with
influential observations at x = 0.5 and « = 1. The original BART fit (uncorrected) is shown as the
light gray lines along with +/-2sd credible intervals, while corrected predictions and intervals are
shown in black. Panel (i) shows the global correction, (ii) shows the union correction and (iii)
shows the int correction. In panel (iv), the hyperrectangular regions to which the int correction
is applied is shown for all 10K posterior draws. In comparison, the union correction is applied to

the entire [0,1] domain, resulting in the same performance as global in this example.
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Figure 8: Posterior hyperrectangle regions of influence for the Branin test function using the int
method (left panel) and union-int method (right panel). The true influential observations are

located at input settings = (0.5,0.5) and z = (0.0, 1.0).

methods introduce variance in the predictor that inflates the prediction error relative to BART fit
without including the influentials, denoted as oracle. Meanwhile, the int method again exhibits
performance on par with the oracle BART fit by removing the influence of the outliers located
at x = (0.5,0.5) and x = (0.0,1.0). The posterior intersection hyperrectangles detected by int
are shown in Figure 8 (left panel), confirming that the reweighting procedure is being applied in
appropriate regions of the input space. Finally, the union-int provides slightly better performance

than int by taking the regions shown in Figure 8 (right panel).

Table 1: RMSE performance of BART predictors for the Branin test function.

- oracle | global | union int | union-int

in-sample | 0.0540 | 0.0904 | 0.0904 | 0.0564 0.0531
out-sample | 0.1584 | 0.1595 | 0.1595 | 0.1528 0.1463
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5.2 Simulation Study

For a broader persepctive on the performance of our detection and reweighting methods, we con-
sidered a simulation study using the 5-dimensional Friedman test function, defined as f(x) =
10sin (ma122)+20 (25 — 0.5)° 41024+ 525 where the input domain is z € [0, 1]°. We consider a single
influential observation at the centroid, x;,s = (0.5,0.5,0.5,0.5,0.5) and the influential observation
is generated using an offset of 5. We also explore m = 1 and m = 200 settings reflecting single-tree
and default BART models respectively, and vary the sample size as n = 50 (m = 1 only), n = 100
and n = 500. All other settings, in particular ng = 5, were left at the BART defaults. At each of
these experimental settings, 100 replicate runs were performed by generating a new dataset, fitting
BART, and then calculating the usual BART posterior prediction. Performance was measured in
terms of local and global prediction performance. Global prediction was estimated by evaluating
the prediction error at n, = 5,000 out-of-sample inputs drawn in [0, 1]> while local prediction error

considered n, = 5,000 out-of-sample inputs drawin in [0.4, 0.6]°.

To generate the data with the outlier being influential enough to be detected and corrected, one
can use the nice interpretation of (2) to motivate the offset to add to the influential observation.
Equation (2) allows one to ask how many standard deviations away (say k) would an influential

observation need to be to be as influential as an observation 2 standard deviations away when

n0_ % "= where we can take n, to
n()—l (TL*—l)

m = ng? The solution is given by the inequality k > \/ 22 x
be the typical number of observations in a terminal node. Under the default tree prior we expect
no more than 8 terminal nodes, so with a simulation study of n = 50 — 500 a reasonable range for
ny is 6 — 60. This results in k£ ranging from 2.28 — 8.5; we take & = 5. Finally, since we generate

the data with ¢ = 1, a reasonable offset for our simulated influential observation is therefore 5.

The results are summarized in Tables 2 and 3. The results labeled as default are regular BART
without reweighting, while the oracle results are the best case performance achieved by explicitly
training BART with the influential observation removed. The reweighting schemes considered are
labeled global (Bradlow and Zaslavsky, 1997), union (Theorem 1), int (Theorem 2), union-int
(Theorem 3) and ¢;, where the ¢; method used an L1 distance of 0.09. A criterion setting of
oracle denotes when the true influential observations are taken as known, whereas cooks, KL and

CPO detects the influentials using our proposed diagnostics.
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Table 2: Local RMSE performance in region around influential observation for Friedman simulation

study.

m=1| m=1 m=1 | m=200 | m = 200

Criterion | Weighting | n =50 | n =100 | n =500 | n =100 | n = 500
oracle default 2.39 2.88 2.89 1.77 0.72
oracle oracle 2.17 2.49 2.84 1.01 0.55
oracle global 2.11 2.56 2.79 1.27 0.65
oracle union 2.16 2.59 2.72 1.27 0.65
oracle int 2.16 2.59 2.72 1.76 0.73
oracle | union-int | 2.11 2.58 2.79 1.28 0.67
oracle 2 2.23 2.70 2.82 1.45 0.67
cooks global 2.80 3.01 3.02 2.15 0.76
cooks union 2.22 2.69 2.73 2.15 0.76
cooks int 2.22 2.69 2.73 1.76 0.72
cooks union-int | 2.85 2.95 2.98 1.73 0.72
cooks % 2.35 2.82 2.89 1.74 0.72
KL global 2.83 3.00 3.11 2.03 0.82
KL union 2.26 2.89 2.79 2.03 0.82
KL int 2.26 2.89 2.79 1.76 0.74
KL union-int | 2.91 2.99 3.10 1.42 0.66
KL 12 2.35 2.82 2.90 1.54 0.67
CPO global 2.75 2.94 3.02 2.08 0.82
CPO union 2.31 2.70 2.73 2.08 0.82
CPO int 2.31 2.70 2.73 1.76 0.73
CPO union-int 2.76 2.84 2.98 1.53 0.66
CPO 12 2.35 2.82 2.89 1.62 0.67

There are a few takeaways from the above study. First, as expected, the global method often
provides the worse performance particularly over the global prediction domain. That is, possible
improvements in local prediction near the influential observation often results in a decrease in global

performance. The union method also displays this unfavorable tradeoff as it is most similar to the
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Table 3: Global RMSE performance over entire prediction domain for Friedman simulation study.

m=1| m=1 m=1 | m=200 | m =200

Criterion | Weighting | n =50 | n =100 | n =500 | n =100 | n = 500
oracle default 3.79 3.38 2.78 1.55 0.67
oracle oracle 3.80 3.35 2.77 1.48 0.67
oracle global 3.81 3.39 2.78 1.71 0.78
oracle union 4.03 3.51 2.81 1.71 0.78
oracle int 4.03 3.51 2.81 1.55 0.67
oracle | union-int | 3.81 3.39 2.78 1.55 0.67
oracle 2 3.79 3.38 2.78 1.55 0.67
cooks global 4.27 3.59 2.89 2.10 0.77
cooks union 4.71 4.01 2.99 2.10 0.77
cooks int 4.71 4.01 2.99 1.55 0.67
cooks union-int | 4.29 3.61 2.85 1.55 0.67
cooks I 3.80 3.38 2.78 1.55 0.67
KL global 4.24 3.60 2.93 2.10 0.91
KL union 4.67 4.03 3.05 2.10 0.91
KL int 4.67 4.03 3.05 1.55 0.67
KL union-int | 4.25 3.63 2.88 1.56 0.67
KL I 3.80 3.38 2.78 1.55 0.67
CPO global 4.23 3.61 2.89 2.09 0.90
CPO union 4.64 4.04 2.99 2.09 0.90
CPO int 4.64 4.04 2.99 1.55 0.67
CPO union-int | 4.21 3.60 2.85 1.56 0.67
CPO 5 3.80 3.38 2.78 1.55 0.67

global method, even though the local prediction was often good. The int method appears to suffer
from over-localization, making its performance more dependent on the behavior of the response
surface and/or the settings of BART’s prior. The union-int method appears to be the approach
that is broadly robust, providing best or near-best performance in both local and global metrics.

The ¢; method can also provide good performance, but its dependence on the tuning of a distance

28



parameter would render it computationally problematic in most cases. Finally, while the BART
oracle local performance remains out of reach for all methods, there is nonetheless a significant
reduction in error offered by the best methods, which approach oracle-level performance in many

cases, particularly for CPO with union-int.

Finally, we note that the detected influentials of cooks, KL and CPQ generally have a large degree
of overlap, with perhaps some slight differences. The most notable difference in detecting the true
influentials was between cooks and the other methods when m = 200 — here, cooks only detected
the true influentials about 5% of the time while KL detected the influentials 70 — 100% of the
time and CPQ achieved a perfect detection rate. Meanwhile in the m = 1 runs, all of the methods
suffered due to the model being in the underfit regime, leading to an accuracy no higher than
45% for detecting the true influentials. This suggests combining the detected influentials amongst
metrics to possibly increase performance. We suggest combining cooks with CPO since both can

choose the detection threshold in the same principled manner.

5.3 Real World Example

Our motivating dataset comes from a study of biomass fuels and the application of artificial intelli-
gence models to predicting the Higher Heating Value (HHV) of such fuels based on their molecular
makeup (Ghugare et al., 2014). Biomass fuels are the fourth largest source of energy, with the most
common sources being solid products such as wood and biomass pellets. However, determining the
HHYV potential of a biomass fuel involves expensive and time-consuming calorimetric experiments.
Instead, a popular alternative is to use mathematical models to approximate the HHV potential
of a fuel source based on its makeup of key components. Ghugare et al. (2014) consider a dataset
involving n = 536 observations where biomass covariates recorded include the amount of carbon,
hydrogen, oxygen, nitrogen and sulfur present in the fuel (as a percentage of mass), with the
response being the HHV value measured in MJ/kg. The dataset is available in the modeldata
package on CRAN, and consists of n = 536 samples, of which 80 are test-set observations and 456

are training-set observations.

We applied BART to the training data with ny = 10 and using m = 50 trees, and explored our

influence metrics to determine if there are any worriesome observations in the data. Figure 9 shows
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Figure 9: Influence diagnostics for the HHV training data when fit using BART with ng = 10 and
m = 50 trees. Panel (i) displays the mean cooks diagnostics, (ii) displays the maximum cooks
diagnostic, (iii) displays the KL diagnostic (excluding infinities) and (iv) displays the CPQO diagnostic
(excluding infinities). Grey dashed line denotes the 20 cut-off while the black dashed line denotes
the 30 cut-off.

the resulting mean and maximum cooks diagnostics as well as the KL and CPO diagnostics. All
four metrics provide evidence of influential observations, though to varying degrees. The mean
cooks diagnostic seems the least sensitive in this example while the max cooks diagnostic is the
most sensitive. The CPO diagnostic is somewhere in-between these extremes, although there are
additionally 8 infinities for this metric that correspond to observations whose deletion would result
in that observations terminal node failing the ny requirement. The covariate values of observations
whose CPO metric evaluates to infinity are shown as black triangles in Figure 10. As expected,
these observations are located in regions of relative data sparsity and/or towards the boundaries

of the range of covariate values observed.

We also note there was generally agreement about which observations were potentially problematic
amongst these influence metrics. Based on this, we marked all 17 observations falling above the
2 s.d. (grey dashed) line for the KL and CPO metric in Figure 9 as influentials (note that the

influentials evaluating to infinity are not shown in this panel).

The RMSE performance of BART is summarized in Table 4, where again default is the regular
BART fit, oracle is the fit obtained by dropping the detected influentials, global is the reweighting
method of Bradlow and Zaslavsky (1997), and the remaining methods are as proposed in this
paper. In addition, the RMSE performance of Ghugare et al. (2014)’s Genetic Programming (GP)
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Figure 10: Location of infinities (black triangles) as evaluated by the CPO diagnostic and additional
observations marked as influentials by KL and CPO diagnostics (plus symbols) for the HHV training
data (grey dots) when fit using BART.
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Table 4: RMSE performance on the HHV dataset for BART model fits as well as GP and MLP
fits from Ghugare et al. (2014).

default | oracle | global | union | int | union-int | GP | MLP

training set 0.61 0.61 0.66 0.66 | 0.64 0.62 1.086 | 0.867
test set 1.49 1.08 1.60 1.60 | 1.32 1.17 0.942 | 0.987

and Multilayer Perceptron (MLP) models are also noted. The performance of BART’s fit on the
training dataset is very strong, while the simpler reweighting methods (global, union) show a
modest decrease in performance while the int and union-int methods give better results among
the reweighting methods. As in the simulation study, we again see the union-int demonstrating
the best performance, nearly matching the in-sample performance of the regular BART fit. In
comparison, BART’s performance on the test data is significantly worse than on the training data,
and trails the GP and MLP models. Again, the union-int method provides the highest reduction
in error for BART, bringing it close to the performance of GP and MLP on the test data. The
remaining gap here could likely be explained by the smooth, continous fits of the GP and MLP

models which would be a favourable characteristic for this dataset.

Of particular interest in Ghugare et al. (2014) is the performance of the models at different regimes
of HHV. In particular, they note difficulty in predicting high-HHV performance, and break down
their performance summary into three ranges of HHV values: 0-16 MJ/kg, 16-25 MJ/kg and 25-
36 MJ/kg. The performance in these ranges is summarized in Table 5. We see that the pattern
obtained confirms Ghugare et al. (2014) description of high HHV being particularly hard to predict.
Nonetheless, the union-int method improves on the default BART fit in all three regimes, and
in fact beats the oracle performance in the 16-25 MJ/kg range where most of the observations
lie. Still, it is hard to match the performance of GP and MLP in the 0-16 MJ/kg and 16-26 MJ/kg
regimes, but in the high-HHV regime the oracle method dominates.
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Table 5: Range-wise RMSE performance on the HHV test dataset for BART model fits as well as
GP and MLP fits from Ghugare et al. (2014).

Range default | oracle | global | union | int | union-int | GP | MLP

0-16MJ /kg 1.71 1.48 1.96 1.96 | 1.48 1.52 1.16 | 0.90
16-25MJ /kg 1.02 1.01 1.15 1.15 | 1.03 1.00 0.84 | 0.81
25-36MJ /kg 4.27 1.36 4.33 4.33 | 3.32 2.35 2.55 | 1.55

6 Conclusion

In this paper we proposed BART diagnostics for detecting influential observations, and devised
reweighting procedures that allow posterior BART samples to be reweighted once influential ob-
servations are identified. The influence diagnostics include a (conditional) Cook’s distance metric,
whose form is amenable to simple interpretation but only considers the effect of influentials on the
mean function, and KL-divergence and conditional predictive distribution metrics which measure
the influence of an observation on the posterior distribution. Meanwhile, the reweighting proce-
dures make use of importance sampling so that model training need only be done once, and the
posterior samples obtained can be corrected by easily calculated weights to improve prediction

performance.

Our methods were demonstrated on both simulated data and a real-world example involving
biomass fuel HHV prediction. The consistently best method was the CPO diagnostic combined
with the union-int reweighting procedure, which captures the empirical notion that highly flex-
ible statistical learning models such as BART are affected locally by influential observations and
so diagnostic and correction procedures need to capture this property in order to be practically ef-
fective. Generally our reweighting procedure provided 10-20% improvements in test-set prediction
error as measured by RMSE while having negligible impact on training-set performance. In con-
trast, directly applying global methods such as the reweighting approach of Bradlow and Zaslavsky
(1997) significantly deteriorated both test-set and training-set performance.

Our approach has focused on prediction performance as this is perhaps the most prominent use case
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for BART. Nonetheless, it would be interesting to explore extensions to alternative settings such as
variable importance (Horiguchi et al., 2021) and high-dimensional models based on BART (Linero,
2018). However, in such settings factorizing the BART posterior in a way that allows weights to be
efficiently computed is likely to be problematic and a more empirical approach perhaps motivated

by the ¢; method in this paper may be more practical.

Overall, we have found a suprising amount of gains can be found by addressing influential observa-
tions even though conventional wisdom suggests that highly flexible statistical learning models like
BART are not affected by such problematic observations due to their localized fits. In reality, when
faced with large datasets and high-dimensional covariate spaces, the notion of ‘local’ is very much
a misnomer. Even in 1-dimension, we can easily demonstrate the effect of influential observations
on BART. Therefore, careful application of BART should at minimum include a diagnostic step
to detect possibly problematic observations, upon which investigation, removal or the reweighting

procedures proposed here can be performed.
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