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SUMMARY:

Many popular survival models rely on restrictive parametric or semiparametric assumptions that may lead to incor-
rect inference or survival predictions when the effects of covariates are complex. Modern advances in computational
hardware has led to increasing interest in flexible Bayesian nonparametric methods for time-to-event data such as that
provided by Bayesian additive regression trees (BART). We propose a novel approach, called nonparametric failure
time (NFT) BART, that incorporates flexibility in Accelerated Failure Time (AFT) models in three ways: 1) a BART
component for the mean function of the natural logarithm with time’s distribution; 2) a heteroskedastic BART
component to handle a covariate dependent variance function; and 3) a flexible nonparametric error distribution
using Dirichlet Process Mixtures (DPM). Our proposed approach can be scaled up to large sample sizes, and can
be seamlessly employed for variable selection. We provide convenient, user-friendly, computer software that is freely
available as a reference implementation. Simulations demonstrate that NFT BART maintains excellent performance
even when AFT assumptions are violated. We illustrate the proposed model on a real data example of hematopoietic

stem cell transplantation as a treatment for blood-borne cancers.
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1. Introduction

Many popular survival models rely on restrictive parametric or semiparametric assumptions
that may lead to incorrect inference or survival predictions when the effects of covariates
are complex. These include the proportional hazards model (Cox, 1972), and the accelerated
failure time (AFT) model (Miller, 1976; Buckley and James, 1979; Aitkin, 1981; Koul et al.,
1981; Miller and Halpern, 1982). Ensemble models such as gradient boosting (Freund and
Schapire, 1997; Friedman, 2001) and random survival forests (Ishwaran et al., 2008) relax
these assumptions, and have been shown to have excellent out-of-sample predictive perfor-
mance (Baldi and Brunak, 2001; Kuhn and Johnson, 2013). Recently, due to modern advances
in computational hardware, there has been increasing interest in Bayesian nonparametric
methods such as Bayesian additive regression trees (BART) (Chipman et al., 2010). BART
is a Bayesian nonparametric machine learning prior methodology that possesses attractive
properties for continuous, categorical and time-to-event outcomes. As the sum of a large
number of trees, BART falls within the class of ensemble models. High-dimensional data set
extensions can be naturally incorporated into BART via a sparse Dirichlet prior (Linero,
2018).

Several authors have incorporated BART within survival analysis models. Bonato et al.
(2011) implement methods for proportional hazards, AFT and Weibull regression; although,
these extensions include restrictive assumptions. Sparapani et al. (2016) take the discrete
time approach (Fahrmeir, 2014) which is relatively assumption-free; however, due to the
expansion of the data along a grid of time points, this method will struggle with increasingly
larger sample sizes. AFT BART was proposed by Henderson et al. (2020) taking an AFT
approach extended by Dirichlet Process mixtures (DPM) (Escobar and West, 1995) for a
nonparametric random error distribution; however, this approach still relies on a restrictive

AFT assumption. Most recently, Modulated BART is a nonparametric model of the failure
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time as the first occurrence of a non-homogeneous Poisson process (Linero et al., 2021);
however, this method may struggle with increasingly larger sample sizes due to its stochastic
process generation of a grid of time points.

In this research, we propose a novel time-to-event approach that we call nonparametric
failure time (NFT) BART incorporating more flexibility into Accelerated Failure Time (AFT)
models in three ways: 1) a BART component for the mean function of the natural logarithm
with time’s distribution; 2) a heteroskedastic BART (Pratola et al., 2020) component to han-
dle a covariate dependent variance function; and 3) a flexible nonparametric error distribution
using Dirichlet Process Mixtures (DPM). Our proposed approach can be scaled up to large
sample sizes, and can be seamlessly employed for variable selection. We provide convenient,
user-friendly, computer software that is freely available as a reference implementation.

For many patients suffering from blood-borne cancers, hematopoietic stem cell transplant
(HSCT) is the therapy that gives them the best chance of survival. In this case, these
transplant recipients are matched to their donors at four human leukocyte antigen (HLA) loci
which is called an eight out of eight match which we denote by 8/8. Yet, some recipients have
many choices of donor with an 8/8 match. Previous research has focused on several recipient-
donor match criteria beyond 8/8: age of donor, sex/child-birth parity of donor vs. recipient,
HLA loci DPB1 and DQBI1 (two additional loci beyond the four) and cytomegalovirus
exposure of donor vs. recipient. For example, our previous work has shown that younger
donors are preferable for an early binary composite endpoint of acute graft-versus-host
disease or death within 180 days, but we did not model longer-term time-to-event outcomes
(Logan et al., 2021). The training data available to us consists of about 7000 patients which
is at the upper limits of what can be routinely evaluated with discrete time-to-event BART
(Sparapani et al., 2016); hence, the impetus for this research.

This article is organized as follows. Section 2 describing the methodology of this article
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has several parts. First, we introduce binary regression trees and BART in Section 2.1. Next,
we describe heteroskedastic BART (HBART) in Section 2.2. We introduce the AFT model
and the AFT BART extension in Section 2.4. AFT BART and NFT BART are based on
DPM and constrained DPM which is introduced in Section 2.6. We introduce the novel
NFT BART model in Section 2.5. In Section 2.7, we discuss posterior inference. And, in
Section 2.8, we discuss model performance and comparison with Pseudo-Bayes factors and
Thompson sampling variable selection. A simulation study comparison of AFT BART with
NFT BART appears in Section 3.1. We describe the result of application of NF'T BART to a
real-world data example identifying the optimal donor characteristics for HSCT recipients in
Section 4. We put this research into perspective with a discussion in Section 5. And, finally,
we demonstrate the capabilities of the freely available reference software in the Appendix

via an example along with a brief description of the Gibbs conditionals.

2. Methods

2.1 Binary tree regression models and Bayesian additive regression trees (BART)

BART (Chipman et al., 2010) is a sum of binary trees nonparametric machine learning
regression model where the relationship between the outcome, y;, and the covariates, x;, is
learned from the data itself. We first describe this model for a continuous outcome. Let y; be

a continuous outcome with ¢ = 1,..., N indexing subjects and x; is a vector of covariates.

The BART model has the following form.

yi = p+ f(T:) + & €0’ " N(O; 02)
X" BART(a, b, k, H) o2 P A2 (v)

fla) =) glas; Th, M)

h=1
Here 1 is a constant that centers the data (a typical choice is u = ¥), while g(x;; T, M)

is a regression tree function with 7 denoting the tree structure and branch decision rules
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and M = {p, pa, ..., pr} denoting the L leaf values. For a detailed discussion of the BART
priors, please refer to the following work (Chipman et al., 2010; Sparapani et al., 2021); these
rely on Bayesian binary tree priors (Chipman et al., 1998; Denison et al., 1998; Wu et al.,
2007; Pratola, 2016). In brief, where possible, prior default argument settings are employed
that often provide adequate fitting in most settings: a = 0.05, b = 2 and k = 2. The number
of trees, H, is large with typical settings of 50, 100 or 200 where 50 is a common choice

(Bleich et al., 2014).

2.2 Heteroskedastic BART

Heteroskedastic BART (Pratola et al., 2020) is an extension to BART where we have both
a mean function, f, and a variance function, s?, to fit as a flexible nonparametric function

of 2. This model can be written as

yi = p+ f(z) + & €| s° e (Ov wfsz(a:i))
P BART(a, b, k, H) s> PR HBART (v, A, H) (1)
ﬁ ~ —_—
(@) = [ [ 9(@i; Tw, Ma)
h=1

Here w? are known constants, w?, that are multiples of the variance; these can be set to w; = 1
if not needed. For f and s2, in concert, prior default argument settings are employed that
often provide adequate fitting in most settings: v = 10, A = 532;7 a=0.05b=2and k =5.
For s? the number of trees, H , 18 typically about one-fifth that of H since previous experience
has shown that the data contains less information about the variance with respect to the
covariates than the mean so fewer trees are necessary, i.e., the default setting is H~H /5.

For a more detailed discussion of the HBART prior specification, please see Pratola et al.

(2020).
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2.3 Accelerated failure time (AFT)
Suppose that we have time-to-event data of the following form: (¢;,0;) where ¢; is time;
and 9; is the event status: 0 for right-censoring or 1 for an event. The AFT model can be

parametrized in the form of a linear model on the log time scale as

yi =logt; = o+ ;B + € (2)

where ¢; has a parametric error distribution; see Kalbfleisch and Prentice (2002) or Klein

and Moeschberger (2003) for more information.

24 AFT BART

Henderson et al. (2020) proposed an AFT BART model that replaces the linear regression
component with a BART model and also replaces the parametric error distribution of ¢; with
a nonparametric random error term using Dirichlet Process Mixtures (Escobar and West,

1995). The model is written as follows.

v = p+ fl@) +e &l (1i,0%) * N, 0?) (3)
f X" BART(a,b, k, H) o2 P a2 (v)

Here the p;’s in the DPM are subject to a constraint N='>" p; = 0 for identifiability; we
defer the description of the prior for p; until Section 2.6. Since some of the y; are unobserved
due to censoring, we set the centering value y = Bo from an AFT model with no covariates (2).
Note that when we have a censored time, the method utilizes data augmentation by random
draws from the truncated distribution. The AFT BART model has nonparametric flexibility
allowing it to adapt to the distribution of random error; however, the covariates are only
capable of explaining a location-shift on the log time scale, which is a result of the restrictive

AFT assumption.
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2.5 NFT BART

Our proposed method, called NFT BART, enhances the AFT model in two ways. First, it
allows the covariates to flexibly explain both a location shift and a scale change. Furthermore,
it boosts the flexibility of the nonparametric error distribution of ¢;. To facilitate explaining
the model, we move fluidly between a parameterization by the precision, 7;, and by the
variance, o2 = 7, ', whenever it is more convenient notationally since it is often arbitrary

except where noted otherwise. The NF'T BART model is as follows subject to the constraints

N5 . pi=0and Nty 07 =1 for identifiability.

yi = p+ f(T) + 6 Gi‘(ﬂiaﬂ‘a52) ~ N(:“iv 01'252(%')) (4)
f P BART(a, b, k, H) s? "7 HBART(v, )\, H)

As with AFT BART, we set the value = 3, from an AFT model with no covariates (2).

Also, censored times are handled using data augmentation, where

~ N(p+ pi + f(x:), 02s*(x;)) (logt;, 00) if § = 0, right-censoring
Yi
= logt; if 6 =1, an event time

2.6 DPM, constrained DPM and LIO DPM

The error distribution in the NFT BART model is based on Dirichlet Process Mixtures
(DPM). MCMC sampling of the posterior for Bayesian nonparametric DPM, with both
conjugate and non-conjugate priors, can be performed efficiently (Neal, 2000; Ishwaran and
James, 2002; Jain and Neal, 2007; Kalli et al., 2011).

The DPM shared atom clusters are random figments in the sense that they don’t represent
meaningful clusters of the data set (to detect data-derived DPM-like interpretable clusters,
see Geng et al. (2019)). Rather, DPM clusters are employed here to nonparametrically adapt
to the unknown distribution of random error. If we index the MCMC draws by m = 1,..., M,

then the number of clusters for draw m is the random quantity K,, that expands and
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contracts as needed where K o< avlog N (within context, we are suppressing the m subscript
for convenience). The number of subects sharing each atom is n; for j = 1,..., K with

corresponding weights w; = n;/N that obviously sum to one.

(i, 7)|G "~ Gla "~ DP (@, Fuomikom)
o PR Gamma (1.5, 7.5) ol (70, ko) p/r_;_c’)r N(0, 75 kg ") (5)
by PR Gamma (2, 1) To|bo pri:’)r Gamma (3, bo)

prior

a ~ Gamma (1, 0.1)

Note that the DPM structure for NF'T BART differ from that of AFT BART, which only
models p;; our strategy provides more flexibility in the nonparametric error distribution.
The prior parameter default settings for (u;, 7;) used in this specification follow the Low
Information Omnibus (LIO) prior hierarchy for DPM (Shi et al., 2019). Note that LIO, like
BART/HBART, was designed to have robust prior parameter default settings that should
work well for most data situations without needing manual intervention except for perhaps
altering the relative number of desired clusters via the « prior.

It is important to note that NFT BART is over-parameterized such that (f,s?), is not
identifiable as the models have been described up to this point. Therefore, we employ what
is known as constrained DPM (Yang et al., 2010) to ensure identifiability. First, consider
the constraint g = N~'Y". y; = 0. Constrained DPM is relatively simple to implement by
drawing (u;, 73)|G (or u;|G as in AFT BART) without constraint, defining fi; = p; — i and
then re-defining p; = fi; . Similarly, for the constraint 02 = N™'3". 02 = 1, we can define

7, = 1;02 and then re-define 7; = 7; .



8 Biometrics, MM YYYY

2.7 Posterior inference with AFT BART and NFT BART

Our primary interest with respect to statistical inference here is the distribution of the time-
to-event in relation to the corresponding impact of the covariates. In particular, the survival
function, S(t¢, x), plays a central role with respect to inference. The nonparametric estimation
of survival is arrived at by aggregating over the DPM clusters (Escobar and West, 1995). So,

for NF'T BART, we arrive at the following calculation where ®(.) is the standard Normal

distribution function and m = 1,..., M indexes draws from the posterior.
K.
- logt — p— W, — frn(T)
S,t,x)=1-— m® I 6
) =1 = ot (RS ©

From the above, we calculate our survival function estimate by the mean with respect to the
posterior as S(t,®) = M~ S, (t, ). We can create 1— 27 level credible intervals via the
7 and 1 — 7 quantiles of the posterior, (S(t, ), Sy_.(t,)), such that S,(t, ) = S, (L, )
where my, is the posterior draw corresponding to the p = 7, or p = 1—m, quantile respectively.

However, notice that these are inferences for all covariates at once. Often, we are interested
in the marginal distribution of a subset of the covariates which are arrived at via an
aggregation technique similar to that employed for DPM inference. For marginal effects, we
employ Friedman’s partial dependence function (Friedman, 2001) that is a common choice
for nonparametric regression and/or machine learning applications. We divide the covariates
into a subset of interest, A, and their complement, B, where all covariates are A U B. The
covariates of interest are fixed at settings of interest, a single setting denoted x;4. The
complement take on the observed values found in the training data set, denoted x;p for
subject ¢, with the corresponding setting for all covariates denoted as (x;4, ;). Therefore,

we arrive at the marginal effect for setting x4 for NF'T BART as follows.

al logt — pt — flim — fon(; B)
SA(t,ij>:1—M1N122q>(0g = Pim meA,sz> -

Uimsm(ij7 wiB)

m  1=1

And, finally, credible intervals for the marginal effects are provided by the posterior quantiles

as shown above.
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2.8 Model performance comparison and selection

Assessment of model performance is important for contrasting competing models and for
identifying important variables. Here, we discuss procedures for model performance compar-

ison and selection with NFT BART that leverage the Bayesian methodology.

2.8.1 Model comparison with pseudo-Bayes factors. Comparison between models is often
performed with Bayes factors (BF) (Kass and Raftery, 1995). For example, suppose that we
want to compare model 2 (denoted by ws) vs. model 1 (wl) with respect to the data’s evidence.

The BF is a ratio of marginal likelihoods: ¢ = = Jo. lylw, 0.] [0.,] A6, with

0., denoting the parameters for model w (and [0] is generic bracket notation (Gelfand and
Smith, 1990) denoting the distribution of 6, e.g., the prior for #). A BF substantially larger
than one would imply that there is more evidentiary support in favor of model 2 found within
the data as opposed to model 1. However, for models with a nonparametric BART prior, the
marginal distribution [y|w] is not computable.

A proposed alternative to the marginal likelihood is the pseudo-marginal likelihood (PML)
from the predictive distribution: m = I, [vily—i,w] (Geisser and Eddy, 1979) where the
term [y;|y_;, w] is called the conditional predictive ordinate (CPO). The CPO can be approx-

imated conveniently from the posterior samples by [y;|y_;,w] ~ {M~1 3" [yi|0wm,w]_1}_1

(Gelfand and Dey, 1994). For the CPO calculation with NFT BART and right-censoring, we

log t;—pt—phim — fm (€4)

CimSm(x;) and

replace the term [y]fom, w] with ¢(2im )% [1 — ®(zim)]' " where 2, =
¢(.) is the standard Normal density function. Therefore, we can conduct model comparisons
via the so-called pseudo-Bayes factor (PBF) as the ratio of PML from each model analogously
to the BF. However, these calculations may underflow so taking the natural logarithm is war-
ranted, i.e., the log PML, or LPML, is log m and the PBF is exp <logm — log m>
N.B. Jeffreys (1961) has suggested thresholds for BF inference which are applicable to PBF

as well.
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2.8.2 Variable selection with Thompson sampling. A variety of methods for variable selec-
tion with BART have been proposed: variable importance (Chipman et al., 2010); permutation-
based (Bleich et al., 2014); decoupling, shrinkage and selection (Hahn and Carvalho, 2015;
Sparapani et al., 2020); sparse Dirichlet priors (Linero, 2018); and Thompson sampling
(Liu and Roc¢kovd, 2021). Here we describe the application of Thompson sampling variable
selection (TSVS) to the proposed NFT BART model that we will employ in our real data
example. TSVS can be performed with, or without, the assistance of sparse Dirichlet priors;
however, their pairing together is likely to be more effective.

TSVS relies on Thompson sampling as the name implies (for a tutorial of Thompson
sampling, see Russo et al. (2018)). Briefly, Thompson sampling is a heuristic algorithm for
decision problems where actions are taken sequentially counter-balancing the optimization of
current performance based on what has been learned in favor of stochastically exploring the
problem space to accumulate new knowledge benefiting future performance. The algorithm
addresses a broad range of problems in a computationally efficient manner.

In the TSVS algorithm, multiple variables are randomly chosen based on posterior samples
of their reward probabilities. TSVS with BART extends the reach of variable selection to
nonparametric models for large data sets with many predictors (big P), or many observations
(big N). Unlike deterministic optimization methods for spike-and-slab variable selection, the
stochastic nature of TSVS makes it less prone to sub-optimal convergence and, hence, more
robust.

Here, we give a concise adaptation of TSVS for NF'T BART with big P. TSVS requires
a small number of trees such that the BART/HBART prior is poised to select only those
variables of the greatest import; therefore, we set H + H for a total that is small such as

10, 20 or 40 where smaller numbers engender more sparsity. As shown below, TSVS is an
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iterative process where k = 1,..., K are the number of steps taken with prior parameters

a0 = Qo and bjO = bo.

a. For j =1,..., P: draw 6, ~ Beta (a;x_1, bjr_1).
b. Set By = {j : 0,1 > 0.5}: the subset of covariates selected at step k.
c. Fit an NFT BART model with covariates z;; where j € By,

d. For j =1,..., P: do each sub-step.

(i) If j & By, then v, = 0, else v = I(Ujemr + Viesr > 0) where Ujpar (Vjear) are the
number of branch decision rules for variable x;; at step k from f (s?) with draw M.

(ii) Update based on the reward: a;i = a;,—1 + Vi and bjr = bjp—1 + 1 — i .

Ak
ajp+bjk

(iii) Calculate inclusion probabilities: 7, =
e. If k < K, then return to a. and increment k.

Variables are deemed to be important that have trajectories for 7, exceeding 0.5 by K.

3. Simulation Study

3.1 Simulation settings

We conducted a simulation study to compare the AFT BART and NFT BART models.
Data sets were simulated from AFT BART and NFT BART while subsequently analyzed by
both models. The simulated training data sets were created with two sample sizes: 500 and
2000. For training data sets of size 500 (2000), we simulated 200 (100) data set replicates.
The out-of-sample validation data set was simulated at a sample size of 500. Two cases
were considered for censoring: 0% (no censoring) and 50%. For each data set, we simulated
P = 20 covariates: xg;41 S B(0.5) and x; S U(0,1) where 7 = 1,...,10. We considered
two data generation scenarios: homoskedastic AFT and heteroskedastic NFT. AFT data
was generated by logt~N(u(z), exp(—4)) where p(z) = 2 4+ 1.6z1 + 0.8x9 — 2.4x0x3, i.e.,

only three covariates have an impact on the outcome and the rest are noise. NF'T data was

11
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generated by logt~N(u(z), o?(x)) where pu(z) = 2 — 1.5x1 + 0.5x9 + 2z973 and o(x) =
exp(—2 + 1.6x4 + 0.8x5 — 2.4x516), i.e., only six covariates have an impact on the outcome
and the rest are noise.

Model comparisons were performed with the following metrics at a grid of times cor-
responding to survival probabilities of 0.9, 0.7, 0.5, 0.3 and 0.1: root mean square error
(RMSE), bias, 95% interval coverage and 95% interval length. We define these metrics
as follows. Suppose that 7 = 1,...,5 indexes the known survival probability at a grid
of time-points chosen such that S(t;;, ;) = S; = 0.9 — 0.2(j — 1) for subject ¢ in the
validation data set. Now, we can calculate the bias for subject i at survival S; as b;; =

K1y, [S’k(tij,:ci) — Sj] where k = 1,..., K indexes the simulated data sets. Similarly,

the RMSE is r;; = \/K—lzk(gk(tij,azi) — 5;)%. We calculate 95% interval coverage as
Cij = K1 Zk1<*§k,0.025(tijami) < Sj < §k70_975(tij,:13i)>. And 95% interval length is lij =
K1y, [gk70.975<tij, x;) — §k70,025(tij, wz)] . All of these metrics are summarized via box-plots

for the 500 subjects in the validation data set.

3.1.1 Results for sample size of 2000. Here we restrict our attention to the larger sample
size of 2000 (for 500, see below). Consider the data generated from the AFT scenario In
Figure 1, we summarized RMSE and their was a slight advantage in favor of AFT BART as
might be expected. In Figure 2, we summarized interval coverage and there was a slight
advantage in favor of AFT BART being closer to the 95% level. In Web Figure 1, we
summarized bias and there was a slight advantage in favor of AFT BART as might be
expected. In Web Figure 2, we summarized the 95% interval length and there was an
advantage in favor of AFT BART as might be expected.

Consider data generated from the NFT scenario for the larger sample size of 2000. In
Figure 3, we summarized RMSE and their was a considerable improvement in favor of NFT

BART as we anticipated. In Figure 4, we summarized interval coverage and there was a
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considerable advantage in favor of NF'T BART being closer to the 95% level at virtually
all survival settings. In Web Figure 3, we summarized bias and there was a considerable
advantage in favor of NFT BART as we anticipated. In Web Figure 4, we summarized the

95% interval length and there was an advantage in favor of NF'T BART as we anticipated.

3.1.2 Results for sample size of 500. Here we restrict our attention to the smaller sample
size of 500 Consider the data generated from the AFT scenario. In Web Figure 5, we
summarized RMSE and their was a slight advantage in favor of AFT BART as might be
expected. In Web Figure 6, we summarized interval coverage and there was a slight advantage
in favor of AFT BART being closer to the 95% level. In Web Figure 7, we summarized bias
and there was a slight advantage in favor of AFT BART as might be expected. In Web
Figure 8, we summarized the 95% interval length and there was an advantage in favor of
AFT BART for 0% censoring while NF'T BART had an advantage for 50% censoring.

Consider data generated from the NFT scenario for the smaller sample size of 500. In Web
Figure 9, we summarized RMSE and their was a considerable improvement in favor of NFT
BART as we anticipated. In Web Figure 10, we summarized interval coverage and there was
a considerable advantage in favor of NFT BART being closer to the 95% level. In Web Figure
11, we summarized bias and there was a considerable advantage in favor of NF'T BART as
we anticipated. In Web Figure 12, we summarized the 95% interval length and there was an

advantage in favor of NFT BART as we anticipated.

4. Personalized donor matching for HSCT recipients

We illustrate the proposed NFT BART model to build a prediction model for overall survival
outcomes after a hematopoietic stem cell transplant (HSCT) used to treat hematologic
malignancies and non-malignant blood disorders. The data set consists of 8830 patients

undergoing their first HSCT in the US between 2016 and 2018 from an Human Leuko-

13
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cyte Antigen (HLA) matched unrelated donor (8/8 high-resolution matched at A, B, C
and DRBI1 loci), with data reported to the Center for International Blood and Marrow
Transplant Research (CIBMTR). A total of 7373 patients were used for the training set,
with the remainder analyzed in the validation set. A variety of patient, donor, and disease
factors were examined in building the prediction model. Patient factors included gender,
age, race/ethnicity, performance score, Hematopoietic Cell Transplant Comorbidity Index
(HCT-CI), Cytomegalovirus (CMV) status, history of mechanical ventilation, history of
invasive fungal infection, history of malignancy, prior autologous transplant, median family
income by ZIP code, interval from diagnosis to transplant, disease, disease status, disease
related molecular markers, and other disease specific risk factors. Transplant characteristics
included conditioning regimen intensity, graft type, Graft-versus-host disease prophylaxis,
use of serotherapy. Donor factors included CMV matching, gender and child-bearing parity,
and HLA matching information at additional loci of DPB1 and DQBI1. First, we describe
the impact for one of the most prognostic recipient factors: the HCT-CI comorbidity index.
Based on TSVS, comorbidity is among the top five most important covariates for survival.
As we can see in Figure 8 of the marginal effect (as computed by (7)), increasing comorbidity
leads to a drop in survival until a value of 6, with only a small drop in survival for greater
values.

In addition to building a survival prediction model, there is substantial clinical interest in
understanding which donor factors are the most important with respect to survival. This can
help to inform optimal donor selection for each patient, as we have explored in prior work
using BART with an early binary composite endpoint of acute graft-versus-host disease or
death within 180 days (Logan et al., 2021). Because of the strong effect of recipient factors,
we include all 39 recipient factors in our models while searching for the most important donor

factors. We employed TSVS to identify which donor factors are of paramount import: donor
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age and donor sex/child-bearing parity were ranked in that order; for a graphical depiction,
see Figure 6. Furthermore, via PBF, we found that there was decisive evidence (Jeffreys,
1961) in favor of the model with only these two donor factors (donor age and donor sex/child-
bearing parity) as opposed to all donor factors: exp(—7133 + 7187) = exp(54) ~ 3 x 10%.
This suggests that there may be limited to no benefit to further optimizing donors over other

factors besides donor age and sex/child-bearing parity.

5. Discussion

Our proposed NFT BART model implements an extremely flexible time-to-event Bayesian
ensemble model. It avoids many restrictive assumptions such as linearity, proportional haz-
ards and/or AFT structure by utilizing BART components for both the log time mean
function and the variance function, combined with a nonparametric error distribution. This
flexibility shows substantially improved prediction performance in simulation studies when
the AFT model assumption does not hold, with minimal loss of performance compared to
competing methods when it does. The procedure is scalable, in contrast to the nonpara-
metric discrete time survival BART model (Sparapani et al., 2016). NFT BART can be
seamlessly employed in the tasks of model comparison and variable selection with modern
Bayesian /pseudo-Bayesian techniques. While NF'T BART has distinct advantages, it is not
immediately clear if NF'T can easily be extended to other types of survival analysis outcomes
such as recurrent events (Sparapani et al., 2020) and/or competing risks (Sparapani et al.,
2020). This is an important area for future research. Nevertheless, NF'T BART is a flexible

Bayesian nonparametric time-to-event inference methodology that has attractive properties.
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APPENDIX MATERIAL: SOFTWARE IMPLEMENTATION

The software necessary to implement the methodology explored in this article is not trivial
to implement. For NFT BART, we created the nftbart R package that is freely available
online hosted on the Comprehensive R Archive Network (CRAN) (Sparapani and McCulloch,
2021). The nftbart package relied on several key computational methods some of which
were explored in this article. The next section demonstrates an example discussing missing
data imputation and the marginal effects methodology employed here. Further, the Gibbs
conditionals necessary for NF'T BART are shown in the last section of the Appendix. Other
computational methods employed include BART (Chipman et al., 2010), HBART (Pratola
et al., 2020), efficient BART/HBART posterior sampling (Pratola, 2016), efficient DPM
sampling (Neal, 2000), constrained DPM (Yang et al., 2010), DPM LIO (Shi et al., 2019)
and data augmentation for left-/right-censoring (Henderson et al., 2020). For AFT BART
(Henderson et al., 2020), we relied on the AFTrees R package freely available online at

https://github.com/nchenderson/AFTrees.

Advanced lung cancer example

With the nftbart R package, we present a real data example of an advanced lung cancer
study (Loprinzi et al., 1994). Two-hundred and twenty-eight patients with lung cancer were
followed by the North Central Cancer Treatment Group for a median of roughly one year.
Several covariates of interest were collected including age, sex, daily activity performance
scores, diet and weight-loss information. All of these variables were largely non-missing with
the exception of the calories consumed at meals for which missingness was 20.6%.

For this limited amount of missing data, we utilized record-level cold-decking imputation
that is biased towards the null. The name reflects its similarity to hot-decking (de Waal et al.,
2011) except that no attempt is made to locate a nearby/hot neighbor based on the outcome

nor any other covariate criteria (near/hot vs. further/cold distances like in the children’s
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game hide’'n’seek), i.e., cold-decking is a simple random selection of a non-missing subject’s
record to replace the missing values with. For subject’s with multiple missing values, the
joint relationships between covariates are maintained by replacing all of the missing values
from the non-missing subject randomly chosen. This simple missing data imputation method
is sufficient for data sets with relatively few missing values; for more prevalent missingness
we recommend the sequential BART algorithm (Xu et al., 2016).

For this example, sex was determined to be the most important covariate by TSVS with 138
male and 90 female participants. To demonstrate a common computation with nftbart, we will
compare the survival experience of males vs. females by their marginal effects with Friedman’s
partial dependence function (Friedman, 2001) as shown in (7). As we can see in Figure 9,
females generally have longer survival; however, for advanced lung cancer the prognosis is
dire in the era of the collected data since the survival probability declines precipitously for
both sexes. This demonstration is included with the nftbart package. You can install the
nftbart R package and run this example as follows (use a nearby CRAN mirror for best

results installing; see http://cran.r-project.org/mirrors.html).

> options(repos=c(CRAN="http://cran.r-project.org"))

> install.packages("nftbart", dependencies=TRUE)

> ## system.file() shows you where lung.R is installed to see its contents
> system.file("demo/lung.R", package="nftbart")

> source(system.file("demo/lung.R", package="nftbart"))

> ## demo("lung", package="nftbart") ## via the demo() facility

N.B. there is also a demonstration of TSVS for this example "demo/TSVSlung.R".
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APPENDIX DERIVATIONS FOR NFT BART: GIBBS CONDITIONALS

In order to perform Markov chain Monte Carlo (MCMC) posterior sampling, we need
to derive the Gibbs conditionals. Derivations like these are fairly standard in the BART
literature; what Tan and Roy have coined a term for: the “General BART” model (Tan and
Roy, 2019).

First, we isolate the impact of f from the other parameters by r; = y; — u — p; = f(x;) +
s(x;)os€e; where 1| (f, 82, i, 71)~N(f(x;), s*(x;)0?). So, let r; = y; — p — p; be the outcome
(with w? = s*(x;)o? as in (1)), then draw f|(r, s%, u;, 7;) from its Gibbs conditional. Next,

we draw s similarly: u; = @) = g(z)e; where w|(f, 5%, i, 73)~N(0, s2(x;)). So, with

oF)

u; = =@ a5 the outcome, then draw s2|(u, f, pi, ) as in (1). And, finally, we draw (4, 7;)

g4

: — yi—u—f(xi) 2 i 2 — yi—u—f(x;)
with v, = ¥ g‘(wi) = s(’;i) + o0;€; where v;|(f, s ,/Li,Ti)NN<S—(wLZ_), ai). Here, v; = y;‘T
is the outcome and we draw (115, ;)| (v, f, $%, @) as in (5). However, notice that we are actually
drawing 6, = E [v;] = ﬁ rather than p;. Therefore, we define p; = s(x;)0; in the training

cohort. And, since y; is random, we define it by analogy u; = s(z)¢; in other calculations

such as that shown in (6).
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Figure 1. Results of a simulation study comparing AFT BART to NFT BART with

sample size 2000. RMSE is on the vertical axis and survival settings are on the horizontal
axis. This figure consists of data generated from the AFT scenario. The left (right) column
are the results for AFT (NFT) BART. The top (bottom) row are for data generated with
0% (50%) censoring.
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Figure 2. Results of a simulation study comparing AFT BART to NFT BART with

sample size 2000. 95% interval coverage is on the vertical axis and survival settings are on
the horizontal axis. This figure consists of data generated from the AFT scenario. The left
(right) column are the results for AFT (NFT) BART. The top (bottom) row are for data

generated with 0% (50%) censoring.
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Figure 3. Results of a simulation study comparing AFT BART to NFT BART with

sample size 2000. RMSE is on the vertical axis and survival settings are on the horizontal
axis. This figure consists of data generated from the NFT scenario. The left (right) column
are the results for AFT (NFT) BART. The top (bottom) row are for data generated with
0% (50%) censoring.
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Figure 4. Results of a simulation study comparing AFT BART to NFT BART with

sample size 2000. 95% interval coverage is on the vertical axis and survival settings are on
the horizontal axis. This figure consists of data generated from the NF'T scenario. The left
(right) column are the results for AFT (NFT) BART. The top (bottom) row are for data
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Figure 5. Hematopoietic stem cell transplant treatment for blood-borne cancer. The
marginal effect due to the comorbidity index is inversely proportional to survival until
approaching an asymptote at the value of 6 (as calculated by the NFT BART model with
Friedman’s partial dependence function). Survival is on the y-axis and months on the z-axis.
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Figure 6. Hematopoietic stem cell transplant treatment for blood-borne cancer. Thompson
sampling variable selection (TSVS) was performed on all of the 45 covariates. Here we restrict
our attention to the donor characteristics. We performed a series of TSVS inferences by
varying the number of BART trees: H = 10, 20, 30, 40, 50 and 60 that are depicted in the
six cells above. Variable selection probability is on the y-axis and the TSVS steps are on the
z-axis. Only donor age (blue dashed line) and donor sex/child-bearing parity (red dotted
line) exceed 0.5 (solid gray line) that is the TSVS decision threshold by the last step of the
algorithm. Furthermore, donor age exceeds 0.5 starting with 20 trees while donor sex/parity
doesn’t achieve that until 50 trees are considered, i.e., donor age is the more important
covariate among these two.
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Figure 7. Hematopoietic stem cell transplant treatment for blood-borne cancer. The
marginal effect due to the donor’s age is inversely proportional to survival until approaching
an asymptote at the value of 42 (as calculated by the NFT BART model with Friedman’s
partial dependence function). Survival is on the y-axis and months on the z-axis.
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Figure 8. Hematopoietic stem cell transplant treatment for blood-borne cancer. The
marginal effect due to the sex/child-birth parity of the donor for male recipients: the marginal
effect for female recipients is roughly equivalent but not shown (as calculated by the NFT
BART model with Friedman’s partial dependence function). Male donors are denoted by
“M” with a dashed blue line. Female donors who are nulliparous (parous) are denoted by
“0” (“17) with a dashed red (solid black) line. Survival is on the y-axis and months on the
x-axis.
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Figure 9. Advanced lung cancer study example: males vs. females. Two-hundred and
twenty-eight patients with lung cancer were followed by the North Central Cancer Treatment
Group for a median of roughly one year: 138 male and 90 female participants. For this data
set, statistical inference was performed with NFT BART for the collected covariates including
age, sex, daily activity performance scores, diet and weight-loss information. The solid lines
summarize the survival marginal effect for males (blue) and females (red) where the dashed
lines are 95% credible intervals.
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