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1. INTRODUCTION

In this paper, a data-driven sensor fusion technique is pro-
posed to optimally reduce/remove the distortion caused by
multiple disturbances from unknown locations in atomic
force microscope (AFM) image in atomic force microscope
(AFM) image. As one of the most important instruments
in nanoscale science and technology exploration (Sun-
dararajan and Bhushan (2002)), AFM is sensitive to ex-
ternal disturbances including acoustic noise and mechan-
ical vibrations, as these disturbances interfere the probe-
sample interaction directly result in the distortion in AFM
images (Go�lek et al. (2014)). Although passive noise ap-
paratuses (Ito et al. (2015); Benmouna and Johannsmann
(2002)) have been employed to combat acoustic distur-
bance, such a de facto industry standard faces limitations
in both performance, usability and cost. Moreover, acous-
tic and mechanical vibration cancellation, is complicated
by the co-existence of multiple noise/vibration source and
heterogeneous dynamic effects of these disturbances on
AFM imaging. Thus, this work aims to tackle these chal-
lenges through the development of a sensor-fusion-based
technique to minimize the effects of multiple acoustic and
mechanical vibration disturbances on AFM image.

Techniques need to be developed to eliminate AFM im-
age distortions caused by multiple external disturbances
from arbitrary locations unknown a priori. It is impor-
tant to maintain the probe-sample interaction accurately

around the set point value in AFM applications (Eaton
and West (2010)). Although significant progresses have
been achieved to account for/avoid the probe vibration
caused by the excitation of the dynamics and hysteresis
behaviors of the nanopositioning system in AFM—through
hardware improvement (e.g., using piezo actuator and/or
cantilever of higher bandwidth) (Schitter et al. (2007)),
and/or software enhancement of more advanced control
techniques (Ren and Zou (2014a,b); Wu and Zou (2009)).
External disturbances (causing probe vibration) have been
mainly accounted for via passive vibration/noise isolation
apparatus. These passive apparatus are costly and bulky,
not implementable when AFM needs to be integrated
with other instrument like optical microscope. Moreover,
residual image distortion still persists, and the image
quality obtained cannot meet the stringent requirements
such as in cleanroom nanometrology in semi-conductor
industry (Ducourtieux and Poyet (2011)). Few work has
been reported on active control or post-filtering of acoustic
noise for AFM, not to mention the general scenario of
co-existing multiple heterogeneous disturbances (acoustic
and mechanical vibrations). Recently, a data-driven active
acoustic noise control technique has been proposed to re-
ject acoustic disturbance during AFM imaging (Sicheng Yi
(2018)). Although this technique has been effectively
demonstrated through experiments, its performance can
be sensitive to the location of the acoustic source, partic-
ularly when the location of the disturbance is unknown
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Fig. 1. An experimental setup for studying noise effect on
AFM operation, where it is assumed that the location
of the noise source (speakers) is unknown while the
sensors (microphone and accelerometer) are placed at
fixed and known locations.

and distant away from the sensor (i.e., microphone). This
issue of arbitrary unknown acoustic disturbance has been
addressed through a data-driven post-filtering technique
where a library-based approach is developed to allocate the
disturbance and account for the un-collocation of the dis-
turbance and the sensor (Chen and Zou (2022a)). However,
the construction of the acoustic propagation and acoustic
dynamics libraries is time consuming and prone to the
acoustic changes in AFM imaging. To tackle this challenge
critical in practical implementations, an optimal filtering
technique based on the Wiener filtering theory (Haykin
(2013)) has been developed (Chen and Zou (2023)) to
minimize the acoustic-caused image distortion caused by
an arbitrary unknown disturbance, and has been extended
to active online noise control in AFM imaging (Chen
and Zou (2022b)). Although experimental implementation
shows that the image quality can be recovered regardless
the disturbance location, only the effect of a single acoustic
disturbance is considered—issues related to signal to noise
ratio and heterogeneous effects in multiple disturbance
case have not yet been addressed. Thus, technique needs
to be developed to combat multiple types of noise effect
on AFM image.

The main contribution of this paper is the development of
a data-driven sensor-fusion-based technique to minimized
AFM image distortions caused by multiple heterogeneous
disturbances. Specifically, the general problem of sensing
optimization and disturbance rejection via post filtering
using multiple sensor signals is considered. A coherence
minimization based approach is proposed to optimally
combine the multiple sensor signals measured, and then,
minimize the overall image distortions. The filtering tech-
nique is purely data driven and does not require character-
izing the acoustic/vibration dynamics a priori, providing
robustness and ease of implementation in practical uses.
The proposed fusion scheme is implemented on AFM im-
age examples and the experimental results show that the
image distortion are significantly reduced in complicated
noisy environment.

2. SENSOR FUSION FOR MULTIPLE NOISE
SOURCES

2.1 Problem Formulation

It is important in AFM applications to eliminate exter-
nal disturbances including acoustic noise and mechanical
vibrations. The basic principle of AFM measurement is
to manipulate a nanometer-size cantilever-tip to interact
with the sample and regulate the probe-sample interaction
with nanoscale precision. Thus, external disturbances can
induce extraneous perturbation to the probe-sample in-
teraction, and thereby, loss of precision and quality in the
AFM measurements (See Fig. 1). More specifically, during
tapping-mode (TM) imaging of AFM, the cantilever tip
is tapping on the sample surface at a frequency near the
resonant frequency of the cantilever (driven by a dither
piezo actuator) while scanning across the sampling surface
(Hansma et al. (1994)). Provided that the tapping ampli-
tude is kept closely around a pre-chosen constant level via
feedback control so that the tip-sample interaction (i.e.,
the tip tapping) is well maintained, the sample topography
image can be obtained from the (vertical) displacement
of the cantilever. However, the mechanical structure of
the AFM can be excited by environmental disturbances,
resulting in unwanted cantilever vibration and thereby,
image distortion.

The challenge arises as in general, multiple external dis-
turbances such as acoustic noise and ground vibrations
exist and couple together in affecting the imaging pro-
cess. Moreover, The locations of the disturbances are
usually unknown and might not be fixed, resulting in
the so-called source-sensor non-collocation. This dynamic,
source-sensor non-collocation imposes two challenges to
the filtering of the image distortion caused by external
disturbances: One, single sensor may not be adequate to
capture multiple disturbance signals, and secondly, low
SNR when the sensor is far away from the acoustic source.
Hence, we propose a sensor-fusion based technique to
optimally utilize multiple sensors to combat these two
challenges.

Specifically, we aim to develop a post-imaging filtering
technique to optimally reduce the AFM image distortion
caused by multiple acoustic and ground vibration distur-
bances from different unknown locations. Without loss of
generality, we assume that

Assumption 1: The locations of the disturbances are fixed
but arbitrary and unknown.

Assumption 2: The disturbances n1[k], n2[k], ..., nm[k] are
zero-mean, band-limited wide-sense stationary (WSS) ran-
dom processes which are not correlated with each other,
and the variation of their primary disturbance dynamics
(PDD) is quasi static.
The PDD in Assumption 2 is the dynamics from the
noise signal (as the input) to the AFM image signal (as
the output response). Assumption 2 is reasonable as the
variation of the PDD is mainly caused by the change of the
noise source location, i.e., the noise propagation route and
the AFM configuration (e.g., mounting of the cantilever),
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both remain unchanged during an imaging process but
otherwise can vary significantly in day-to-day operations.

In the presence of multiple disturbances, the measured
AFM signals zm[k] becomes

zm[k] = zs[k] + zdst[k], for k = 0, · · · , NI − 1, (1)

where zs[k] and zdst[k] are the z-axis piezo displacement
corresponding to the sample topography and that due
to the noises, and NI is the total number of sampling
data acquired in the given imaging process, respectively.
As zm[k] is used to plot the sample topography image,
in the following, zm[k], zs[k], and zdst[k] are called the
measured image signal, the true sample image signal, and
the combined image disturbance signal, respectively,

zdst[k] =
m∑
i=1

zi[k], for k = 0, · · · , NI − 1, (2)

with

zi[k] = gi[k] ∗ ni[k], (3)

for i = 1, · · · ,m, and k = 0, · · · , NI − 1,

where g[k] is the impulse response of the PDD of the
respective noise (disturbance), m is the number of noises
and “*” denotes convolution operations. Equivalently, the
above combined disturbance can also be represented in the
frequency domain as

Zdst(jωk) =

m∑
i=1

Gi(jωk)Ni(jωk) for i = 1, · · · ,m (4)

Data-driven Optimal Filtering of Multi-Disturbance
(DD-OFMD) AFM Image Distortion Let Assump-
tions 1-3 hold, the problem is to design a data-driven
method to optimally combine the sensor signals, then
design the optimal filter directly from the measured sensor
signals (without a parameterized model), such that

O-1 The fused disturbance signal nt[k] is also a zero-mean
WSS, and the SNR of the fused sensor signal is op-
timized that maximizes the effect of the disturbance
on the measured AFM signal in the correlation sense,
i.e.,

max
n̂t[k]

Jn = E{n̂t[k − j]zm[j]}2, (5)

O-2 The filter ĝ∗dst[k] is optimal such that the expecta-
tion of the disturbance-caused image distortion eI [k]
between the true image and the filtered image is zero,

E(eI [k]) = E{zT [k]− zF [k]} = 0 (6)

and the variance of the distortion is minimized.

min
ĝ∗
dst

[k]
Jz = E{eI [k]}2 (7)

O-3 The fused signal and the filter are designed directly
from the measured sensor signals (without a param-
eterized model).

We proceed by achieving the three objectives in order.

2.2 [O-1&2] Optimization of Fused Sensor Signal and
Acoustic-Image Filter

In practice, the disturbances Ni(jωk) and the respective
PDDs Gi(jωk) are unknown, and multiple sensors can
be deployed. Therefore, we propose to fuse the RMS-
normalized measured signals from multiple sensors to
replace the unknown disturbances and construct a PDD
Gdst(jωk) to represent the effect of the combined PDDs,
i.e. we presume that

Zdst(jωk) = Gdst(jωk)Nt(jωk) (8)

= Gdst(jωk)

l∑
i=1

αi(jωk)N̂i(jωk)

where αi(jωk) ∈ (0, 1) are the frequency-dependent weight
coefficients, l is the number of sensors deployed and
N̂i(jωk) is the discrete Fourier transform of the normalized
measured signal n̂i[k], i.e.,

n̂i[k] =
nmi[k]√∑Ni

j=1
nmi[k]2

Ni

for i = 1, · · · , l (9)

with nmi[k] the measured signal from the ith sensor. To
ensure the solution of weight αi is unique, the weight
coefficients are normalized as follows

l∑
i=1

αi(jωk) = 1 (10)

In order to search the optimal set of weight coefficients
α∗
i (jωk), we propose to exploit the coherence, representa-

tion of the correlation in frequency domain (Welch (1967)),
between the fused noise signal Nt(jωk) and the measured
image signal Zm(jωk)

Cnz(jωk) =
E2[N∗

t (jωk)Zm(jωk)]

E[N2
t (jωk)]E[Z2

m(jωk)]
(11)

such that

minJc =

NF∑
k=1

(1− Cnz(jωk)) (12)

because the coherence represents the strength of relation-
ship between the fused signal and the measured image sig-
nal. Hence, the αi would optimize the SNR of disturbances
measured by sensors.

We define the error E(jωk) as

E(jωk) � Zm(jωk)−Gdst(jωk)Nt(jωk) (13)

By assumption 2

Cnz(jωk) =
[Gdst(jωk)Nt(jωk)]

2

[Gdst(jωk)Nt(jωk)]2 + E2(jωk)
(14)

the maximal of Cnz(jωk) is achieved when E(jωk) =
Zs(jωk) as Zs(jωk) is not correlated to any disturbance
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N(jωk), Sω is the set of the sampled discretized frequen-
cies,

Sω =

{
kωs

NI

∣∣∣∣ k = 0, 1, · · · , NI − 1, and ωs = 2πfs

}
(15)

NF denotes the total number of effective frequency com-
ponents in the noise source n[k], i.e., ωNF

is the lowest

frequency at which the magnitude of N̂(jωk) becomes

negligible, e.g., |N̂(jωk)| ≤ εn for all ωk ≥ NF and chosen
threshold εn.

Similarly, the optimal acoustic-image filter gdst[k] to min-
imize the error between the true image and the filtered
image can be designed by optimizing the estimated true
image zf [k] to minimize the power of correlation between
the fused noise nt[k] and the filtered image zf [k]—It can
be shown that minimizing the cost function Jz in Eq. (7)

is equivalent to minimizing the following correlation Ĵz:

min Ĵz = E{n̂[k − j]zf [j]}2 (16)

where
zf [k] = zm[k]− gdst[k] ∗ nt[k] (17)

2.3 [O-3] Data-Driven Design Method

Next we present a data-driven approach to construct and
implement the above optimal filter via coherence mini-
mization. In practice, the optimal sensor fusion coefficients
α∗
i (jωk)s in Eq. (8) are obtained through the gradient

descent search method, i.e., for any given ωk ∈ Sω

αi,j(jωk) = αi,j−1(jωk) + λ
∂Jc

∂N̂j−1(jωk)

= αi,j−1(jωk)+λ
∂Jc

∂αi,j−1(jωk)

1

Ni(jωk)
(18)

for i ≥ 1, where initially αi,0 is chosen as 1
l , λ ∈ (0, 1)

is a pre-chosen constant to ensure the increase of the
coherence. The coefficient obtained after each iteration is
normalized before the next iteration:

α̂i,j(jωk) =
αi,j(jωk)∑l
i=1 αi,j(jωk)

(19)

Then, the optimal acoustic-image filter gdst[k] to minimize
the error between the true image and the filtered image can
be designed through the Wiener-filter-based modulator
optimization approach. Specifically, the minimization of
Eq. (16) yields a Wiener Filter as a solution

ĝ∗
dst = Rn

−1pnz (20)

where Rn is the auto-correlation matrix of the fused noise,
nt,

Rn = E{ntn
T
t } (21)

=




Rn[0] Rn[1] . . . Rn[NI − 1]
Rn[1] Rn[0] . . . Rn[NI − 2]

...
...

. . .
...

Rn[NI − 1] Rn[NI − 2] . . . Rn[0]




and pnz = E{ntz
T
m} is the cross-correlation between the

fused noise n∗
t [k] and the measured sample image signal

zm[k], respectively. Then ĝ∗
dst is further enhanced by a

coherence minimization technique. Readers can refer to ...
for more details.

3. EXPERIMENT IMPLEMENTATION

The proposed approach was demonstrated through an
AFM imaging experiment. The AFM imaging experiment
was performed on a commercial AFM system (Dimension
Icon, Bruker Nano Inc.), where the acoustic noise was
induced by a speaker placed on the sample stage, and mea-
sured via a precision array microphone (BK 4958, Bruel
Kjaer Inc.) and an acceleromter chip (ADXL203,Analog
Devices), as shown in Fig. 1. The acoustic noise sensor
signal was first pre-filtered and amplified using a home-
made Op-Amp circuit, while the seismic vibration was
measured directly. Both of them were measured via a
data acquisition system (NI RIO, USB-7856R, National
Instrument Inc.). All the filtering algorithms were designed
and implemented in MATLAB (Mathworks Inc.).

First, the acoustic-noise-effected AFM images were ac-
quired under the noise effects from the speaker. A cali-
bration sample (STR-1800R) and a silicon sample were
imaged at a scan rate of 5 Hz under contact mode when
a band-limited (20-1kHz) white noise with zero-mean and
constant variance of 100 dB was boardcasted to the room
through the speaker, while the microphone and accelerom-
eter were placed at a known and fixed location.

Then, to improve the SNR of total noise nt(k), the two
measured signals were further fused and optimized by
the modulator-based sensor fusion method (described in
Sec. 2). The filtered images were obtained by using the
optimized total noise and the optimized filters obtain by
coherence minimization approach to obtain the filtered im-
age. For comparison, the images were also filtered directly
by using the acoustic noise only and seismic vibration only.

Results and Discussions

The experimental results are shown in Figs. (2)-(6). The
PDDs from the accelerometer, microphone signal and the
fused sensor signal to the corresponding estimated noise
distortion were quantified by measuring its error with
that from the corresponding sensor signal to the “real”
distortion (difference from the raw image and the reference
image) in Fig. 3. The raw noise-effect images of the calibra-
tion sample and the silicon sample are compared to those
filtered by using the accelerometer only, the microphone
only and the fused signal in Fig. 2, respectively. Then, the
line comparison of the filtering results are shown Fig. 5.
The quantification of 2-norm errors are shown in Fig 6.

The imaging results demonstrated that the distortion
caused by acoustic noise from an arbitrary unknown lo-
cation can be substantially further reduced by using the
proposed approach comparing to using any single sensor.
First, the PDD was captured more accurately when using
the fused signal, specifically at the frequency range near
200 Hz and 500 - 700 Hz. The error of PDD was signifi-
cantly further reduced (see Fig. 3). Such an improvement
in the PDD estimation resulted in the better elimination
of the acoustic-caused image distortion while maintaining
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Fig. 2. Comparison of the original raw images obtained at a scan rate of 5 Hz (a1,b1) under the induced acoustic noise,
and those filtered by (a2,b2) using the accelerometer only, and (a3,b3) using the microphone only and (a4,b4) using
the proposed fused signal for (top row) the calibration sample and (second row) the silicon sample, respectively.
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Fig. 3. The error (magnitude part) of the estimated
dynamics using accelerometer, microphone and that
of the sensor fusion method compared to the actual
PDD, respectively.

the sample topography features. As shown in Fig. 2 (a1-
a4), by using the proposed, the acoustic-caused image
distortion was better removed and much closer to reference
image quality (see Fig. 2 (a4)), whereas when using only
one sensor, the edge of the pitches and the flat surface
part were more smeared in the filtered image (see Fig. 2
(a2-3)). Such comparison was more obviously shown on
silicon sample (see Fig. 2 (b1-b4)). To be specific, the
relative 2-norm error was reduced by 72%-82% by using
individual sensor, and then further by another 10%-15%
by using the proposed sensor fusion technique. Therefore,
the experimental results demonstrated the efficacy of the
proposed approach.

4. CONCLUSION

A data-driven sensor fusion technique was developed to
eliminate AFM image distortion caused by multiple or

(a)

(b)

Fig. 4. The line comparisons of filtered signals using
accelerometer only, microphone only, and that of
the sensor fusion method compared to the measured
image signal of (a) calibration sample and (b) silicon
sample, respectively.

different type of noises using sensor array. The coherence
relationship between noises and raw image is exploited to
combine the signals and improve the SNR of the fused
sensor signal. It is shown that by introducing a modulator
weight to each noise signal, the error in the estimated
acoustic dynamics and the low SNR of the measured acous-
tic noise can be eliminated by optimizing the modulator
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Fig. 5. The reference image of (a) calibration sample
and (b) silicon sample acquired in quiet environment,
respectively.
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Fig. 6. Comparison of the normalized image error (with
respect to the raw image error) for (a) the calibration
sample and (b) the silicon sample in 2-norm, respec-
tively.

via a gradient-based coherence minimization approach.
The efficacy of the proposed approach was demonstrated
by filtering experimentally measured AFM images. The
results showed that the image distortion was substantially
further reduced by the proposed technique than using any
individual signal.
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