
Investigating the Generalizability of Assistive Robots Models over

Various Tasks

Hamid Osooli, Christopher Coco, Johnathan Spanos, Amin Majdi and Reza Azadeh

Abstract— In the domain of assistive robotics, the significance
of effective modeling is well acknowledged. Prior research has
primarily focused on enhancing model accuracy or involved
the collection of extensive, often impractical amounts of data.
While improving individual model accuracy is beneficial, it
necessitates constant remodeling for each new task and user
interaction. In this paper, we investigate the generalizability
of different modeling methods. We focus on constructing the
dynamic model of an assistive exoskeleton using six data-
driven regression algorithms. Six tasks are considered in our
experiments, including horizontal, vertical, diagonal from left
leg to the right eye and the opposite, as well as eating and
pushing. We constructed thirty-six unique models applying
different regression methods to data gathered from each task.
Each trained model’s performance was evaluated in a cross-
validation scenario, utilizing five folds for each dataset. These
trained models are then tested on the other tasks that the
model is not trained with. Finally the models in our study
are assessed in terms of generalizability. Results show the
superior generalizability of the task model performed along
the horizontal plane, and decision tree based algorithms.

I. INTRODUCTION

The importance of modeling in the realm of assistive

robotics is a well-recognized aspect that is crucial for effec-

tive control and user interaction. Assistive robots, particularly

those in constant interaction with human users, present

unique challenges in modeling. Unlike conventional rigid

body systems governed by standard physics, these robots

involve complex interactions between the user and the robot.

This complexity necessitates the adoption of data-driven

modeling techniques, which are frequently used in robotics

research [1], [2], [3], [4].

One of the primary challenges in these systems is the

variability of the user actions. For a model to be task

generalizable, it ideally needs exposure to a comprehensive

range of movement trajectories. Previous studies, such as

[3], demonstrated the need for an extensive set of motion

trajectories, by training robots on a vast array of random

movement trajectories, enhancing their ability to perform un-

foreseen tasks. However, this approach is impractical in real-

world scenarios, especially when considering the vast data

requirements and the unique challenges posed by assistive

robots used by individuals with disabilities.

To enhance the accuracy of the trained model, Zhang

et al. [4] proposed an optimization problem, where model

accuracy is a constraint. While novel methods to increase

Authors are with the Persistent Autonomy and Robot Learning
(PeARL) Lab, University of Massachusetts Lowell, Lowell, MA
01854, USA {hamid osooli, reza azadeh}@uml.edu,
{christopher coco, johnathan spanos,
amin majdi}@student.uml.edu

Fig. 1. Myopro prosthetic augmented with IMU sensors for data
collection. Figure annotation highlights the placement of sEMG
sensors and the rotational axes of APDM Opal IMU sensors.

accuracy are valuable, they do not inherently lead to a

generalizable model that minimizes the need for additional

data collection. This highlights the need for an in-depth

study into generalizability that provides sufficient data for

developing a generalizable model.

This paper introduces a comprehensive study on the

generalizability of the tasks models. We focus on upper-

limb exoskeletons, specifically using the MyoPro 2 Motion-

G, a 2 DOF exoskeleton, equipped with two APDM opal

IMU sensors. Our study encompasses six algorithms namely

Locally Weighted Projection Regression (LWPR), K-Nearest

Neighbours (KNN), Support Vector Regression (SVR), eX-

treme Gradient Boosting (XGBoost), Multi Layer Percep-

tron (MLP), and Gaussian Process Regression (GPR). The

performance of each algorithm is evaluated on six different

tasks (Horizontal (H), Vertical (V), diagonal from Left leg to

Right eye (LR), diagonal from Right leg to Left eye (RL),

Eating (E), and Pushing (P)). We use the R-squared score

to assess the effectiveness and generalizability of each task

model and algorithm.

Results show that the task models performed along the

horizontal plane, and decision tree based algorithms are

superior in terms of the generalizability. These findings are

practical for developing strategies that can enhance the effec-

tiveness and adaptability of models across diverse scenarios.

II. RELATED WORK

The generalizability of the machine learning models helps

on reducing the need for repetitive training and data col-

lection. This concept has been addressed in other fields

that study the generalizability of deep learning models in

visual tasks [5]. However, generalizability remains a largely

2024 21st International Conference on Ubiquitous Robots (UR)
June 24 - 27, 2024, New York University, USA

979-8-3503-6107-0/24/$31.00 ©2024 IEEE 227

20
24

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 U

bi
qu

ito
us

 R
ob

ot
s (

U
R)

 |
 9

79
-8

-3
50

3-
61

07
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

U
R6

13
95

.2
02

4.
10

59
75

14

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 09,2025 at 21:23:03 UTC from IEEE Xplore. Restrictions apply.

unexplored factor in modeling the interaction between the

users and the prosthetic robots.

Siu et al., [6] introduced a non-adaptive controller that

integrates pressure and sEMG data gathered during train-

ing to construct a K-nearest neighbors (KNN) classifier.

This classifier was built on fourteen signal features derived

from each of the six sEMG sensors. The sEMG features

were normalized through mean subtraction and division by

standard deviation. Additionally, an adaptive controller was

employed to update the sEMG mapping using the KNN

classifier. The effectiveness of the proposed model was as-

sessed through a tabletop book-shelving task. The controller

exhibited adaptability to user-specific physiological changes,

such as fatigue. The authors then proposed a Learning from

Demonstration (LfD) [7], [8] approach in which the user

demonstrates the task for the robot, enabling it to learn and be

trained. Although practical in many robotic experiments, LfD

approach may be less effective, especially in cases where the

prosthesis is being used for an impaired limb.

Fig. 2. Overview of the diverse tasks employed for data acquisition
from test subjects, including Horizontal (H), Vertical (V), diagonal
from Left leg to Right eye (LR), diagonal from Right leg to Left
eye (RL), Eating (E), and Pushing (P).

To achieve task generalizable capability, the model neces-

sitates exposure to a comprehensive set of diverse trajec-

tories. Kwiatkowski and Lipson [3] addressed this require-

ment by training the robot on a dataset comprising 1000

randomly generated trajectories, enhancing its adaptability to

unforeseen tasks. Zhang et al. [4] approached the modeling

task as an optimization problem, treating model accuracy

as a constraint. Since pre-covering the complete state-space

with data is impractical [9], many of the works in this area

proposed online model learning [10], [11], [12], as a way to

gather more data for modeling.

While collection of huge amounts of motion trajectory data

is feasible in various scenarios, it poses a challenge for as-

sistive robots, particularly exoskeletons. These devices often

help users with limited mobility, such as individuals with

disabilities, who may not engage in extensive movements

suitable for data collection. Therefore, the strategic design

of efficient tasks that results in sufficient amount of data

for training a generalized model becomes important in such

contexts.

III. PROBLEM FORMULATION

A comprehensive model capturing the interaction between

the user and the exoskeleton necessitates an encompassing

description of the device states across its elbow and wrist

degrees of freedom. The system’s formulation, encapsulating

robot states, inputs, and user inputs can be formulated as:

xt+1 = xt + f(xt, ut, vt) + ηt, ηt ∼ N (0,Ση), (1)

where f defines the unknown dynamic evolution of the

interaction between the user and the exoskeleton over time

t, x ∈ R
L is the state vector (elbow/wrist angles and angular

velocities), and v ∈ R
N is the user’s action incorporating

biceps/triceps sEMG measurements for the elbow and the

wrist, u ∈ R
M is the robots action vector including the

thresholds considered on the difference between the sEMG

signals of the biceps and triceps or opening and closing of

the hand. This sEMG threshold triggers the robot’s assistance

when surpassed. The uncertainties from IMUs are modeled

by an additive white Gaussian noise [13]. Potential noises

from the exoskeleton, however, were compensated by the

built-in mechanisms, allowing for their exclusion from our

noise consideration framework.

IV. DYNAMIC MODEL LEARNING VIA REGRESSION

Modeling the dynamics of exoskeleton robots is more

challenging due to the presence of human actions and the

interaction between the device and the human. To accurately

model f , in this paper, we utilize six different regression

methods, namely Locally Weighted Projection Regression

(LWPR), K-Nearest Neighbours (KNN), Support Vector

Regression (SVR), eXtreme Gradient Boosting (XGBoost),

Multi Layer Perceptron (MLP), and Gaussian Process Re-

gression (GPR).

Each model incorporates an input vector made of the states

xt, robot’s actions ut and the user’s actions vt, represented

as the vector x̃t = [xt, ut, vt] ∈ R
L+M+N . For the training

targets, we use the difference between the current and future

state vectors: ∆xt = xt+1 − xt ∈ R
L. The target dataset is

defined as TL
1:t = {f(x̃1), . . . , f(x̃t)}, and a new input point

at which the model is queried is shown with x̃∗.

A. Locally Weighted Projection Regression (LWPR)

LWPR [14] is an algorithm that achieves nonlinear func-

tion approximation in high dimensional spaces with redun-

dant and irrelevant input dimensions having little to no

impact on the output. It considers R locally linear models

for approximation of the function as: f = E{f̄k|x̃∗} =
∑R

k=1
f̄kp(k|x̃∗). From the Bayes’ theorem, when we query

a new input point x̃∗, the probability of the model k can be

expressed as:

p(k|x̃∗) =
p(k|x̃∗)

p(x̃∗)
=

p(k|x̃∗)
∑R

k=1
p(k|x̃∗)

=
wk

∑R
k=1

wk

. (2)

Hence,

f(x̃∗) ∼

∑R
k=1

wkf̄k(x̃∗)
∑R

k=1
wk

, (3)

we have f̄k = x̄⊤
k θ̂k and x̄k = [(x̃∗ − ck)

⊤, 1]⊤, in which

θ̂K consists of the estimated parameters of the model, and

ck is the center of the k-th linear model. wk is the weight

that determines whether a data point x̃∗ is into the region of

validity of the model k. This is similar to a receptive field,

and is defined by a Gaussian kernel

228Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 09,2025 at 21:23:03 UTC from IEEE Xplore. Restrictions apply.

wk = exp(−
1

2
(x̃∗ − ck)

⊤Dk(x̃∗ − ck)), (4)

where Dk is the distance matrix and should be positive

definite. In the learning procedure, the shape of the Dk

and the θ̂k parameters of the local models are adjusted to

minimize the error between the predicted values and the

observed targets [11]. We initialize Dk as Dk = rIL+M+N ,

where r is a constant value tuned based on the model

performance and I is the identity matrix with the same size

as the inputs.

B. K-Nearest Neighbours (KNN)

The KNN algorithm [15] is based on the distance-weighted

nearest neighbor estimation, where k most similar values of

the input data x̃ are used for the prediction of the diameter

distribution of f(x̃). The similarity of the data is measured

by their distance as

dij =

L
∑

l=1

cl∥(x̃il − x̃jl)∥, (5)

where x̃l is the input, and cl is the coefficient for the

input. Then the distances d are sorted based on the weight

calculated by

wij =
(1

1+dij
)p

∑k
i=1

(1

1+dij
)p
, ∀ i ̸= j, (6)

where k is the number of the nearest neighbors used, and

p is the weighting parameter of distance. The weighting

parameter p determines how fast should the weights of the

nearest neighbors decrease when the distance dij increases,

and weights should sum to one.

C. Support Vector Regression (SVR)

SVR [16] is an algorithm that belongs to the family of

support vector machines. In SVR, the regression function

f(x̃) is estimated by the hyper plane h:

f(x̃) = h⊤x̃∗ + b with h ∈ R
L+M+N , b ∈ R. (7)

Exploiting the structural risk minimization [17], the gener-

alization accuracy of the SVR is optimized on the empirical

error and flatness of the f(x̃) which is the result of the small

values for h. Therefore the SVR aims to include the dataset

patterns inside an ϵ-tube while minimizing the ∥h∥2. We can

formulate this as an optimization problem:

minimize
1

2
∥h∥2 + C

l
∑

i=1

(ξi + ξ∗i),

s.t. f(x̃i)− h⊤x̃i − b ≤ ϵ+ ξi,

h⊤x̃i + b− f(x̃i) ≤ ϵ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l, (8)

where C, ϵ, and ξ, ξ∗ are the cost for the trade-off between

the empirical error and the flatness of the f(x̃), the ϵ-tube

size, and slack variables. Adding the Lagrangian multipliers

α and α∗ transforms the quadratic programming problem

into a dual optimization. Furthermore, SVR is capable of

non-linear function approximation by employing a kernel

function kf (x̃i, x̃j). Thus the SVR estimates f as:

f(x̃) ∼
s

∑

i=1

(α− α∗)kf (x̃i, x̃j) + b, (9)

where s is the number of the support vectors, and b is a

constant [18]. In this paper we use a composite kernel as

kf (x̃i, x̃j) = kconstant + kmatern + kwhite where kconstant = 12,

kwhite = Λ2, and kmatern(x̃i, x̃j). Λ is the noise level for the

white kernel. We consider l = 2, ν = 1.5, and Λ = 1.

D. eXtreme Gradient Boosting (XGBoost)

XGBoost [19] is an algorithm that uses a decision tree as

its base classifier for the target dataset DL
1:t, that contains

L observations. In the typical Gradient Boosting (GB) algo-

rithms, we use B additive functions for G times boosting

of the gradient, to predict the output. Consider fk(x̃) as the

prediction for the k-th instance at the b-th boost

fk(x̃) ∼

B
∑

b=1

fb(x̃k). (10)

GB minimizes a loss function:

Ob =

L
∑

k=1

e(fk(x̃), f̂k(x̃)), (11)

where e(fk(x̃), f̂k(x̃)) is the measurement of the difference

between the prediction fk(x̃) and its real value f̂k(x̃).
If we add a regularization term Ω(fb) to (11), the result

will be the loss function of XGBoost:

Ob =
L
∑

k=1

e(fk(x̃), f̂k(x̃)) +
B
∑

b=1

Ω(fb)

=
L
∑

k=1

e(fk(x̃), f̂k(x̃)) + γτ + 0.5λ∥ω∥2. (12)

The regularization term Ω(fb) penalizes the complexity of

the model, and can be expressed as γτ+0.5λ∥ω∥2. Where τ

represents the number of leaves in the tree filled with data,

and γ is the minimum loss reduction threshold for further

partition. If the loss reduction is less than γ, XGBoost will

stop. λ is a fixed coefficient, and ∥ω∥2 is the Euclidean norm

of the leaf weight [20].

E. Multi Layer Perceptron (MLP)

MLP [21] is a class of artificial neural network that

consists of multiple layers of neurons, each layer fully

connected to the next one. Usually the structure includes

an input layer, one or more hidden layers, and an output

layer. In MLP, each hidden layer g (where 1 ≤ g ≤ G)

transforms the output of the previous layer x̃g−1 using a

weight matrix ϖg and a bias vector βg . The transformation

is a linear combination followed by a nonlinear activation σ:

229Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 09,2025 at 21:23:03 UTC from IEEE Xplore. Restrictions apply.

f̂(x̃)g = σ(ϖg f̂(x̃)g−1 + βg). (13)

In this paper, we used ReLU as the activation function σ. The

final layer G produces the output. We also use L-BFGS [22]

to update the parameters using the gradient of the R-squared

as the loss function.

F. Gaussian Process Regression (GPR)

GPR [23] is an algorithm that for each dimension

z = 1, . . . , L of the difference vector ∆xt, estimates f

as

f(x̃) ∼ GP(µf (x̃), kf (x̃, x̃
′)). (14)

For the target dataset DL
1:t, the trained GPR model can be

queried at a new input point x̃∗:

p(f(x̃∗)|D
L
1:t, x̃∗) = N (µf (x̃∗), σ

2

f (x̃∗)). (15)

Unlike other regression methods, GPR does not provide a

prediction set. Instead, it provides two lists of means and

variances for each prediction. The mean and variance pre-

dictions are calculated by a kernel vector kf = k(DL
1:t, x̃∗),

and a kernel matrix Kf , with entries of K
ij
f = kf (x̃i, x̃j) as

µf (x̃∗) = k
⊤
f K

−1

f DL
1:t

σ2

f (x̃∗) = kf (x̃∗, x̃∗)− k
⊤
f K

−1

f kf . (16)

where kf is the composite kernel used in SVR. To leverage

the same evaluation used for other models, we incorporate

the mean values of the GPR output.

V. EXPERIMENTAL SETUP

In our experiments, we use the MyoPro, a lightweight two

degrees of freedom upper limb exoskeleton [24]. This wear-

able robot utilizes four surface electromyography (sEMG)

sensors. Sensor placement includes two on the upper arm

and two on the forearm. The device allows for user-specific

threshold adjustments at these sensor locations, which dif-

ferentiate between the muscular activities of the biceps and

triceps for arm movements, and those related to the hand’s

opening and closing gestures. Activation of the device’s

motor occurs upon exceeding these predefined thresholds,

thereby facilitating user assistance. While the system pro-

vides data concerning the velocity of the integrated motors,

it lacks the capability to offer information pertaining to the

rotational movements of the hand.

To collect data for modeling the robot, we add two APDM

opal IMU sensors to the arm and wrist locations to measure

the rotations of the hand (see Fig. 1). Having access to the

APDM opal IMU gyroscopes, we use Unscented Kalman

filter [25] for calculation of the angles from angular velocity

readings.

We conducted data collection for six distinct tasks: Hori-

zontal (H), Vertical (V), diagonal from Left leg to the Right

eye (LR), diagonal from Right leg to the Left eye (RL),

Eating (E), and Pushing (P) shown in Fig. 2. These tasks are

chosen due to their diverse features. Horizontal (H) involves

a movement along the horizontal plane while Vertical (V)

is a movement along the vertical plane. On the other hand,

diagonal from Left leg to Right eye (LR) and diagonal from

Right leg to Left eye (RL) are movements that cross the

body. The last two tasks replicate the daily activities of the

user where Eating (E) involves a range of motions towards

the mouth, and Pushing (P) is a movement in the outward

direction.

For the horizontal task, participants moved an empty can

between two predefined points on a table. The vertical task

involved rotating the arm around the axis originating from

the shoulder. We also introduced two diagonal tasks to

complement horizontal and vertical tasks, requiring partic-

ipants to move their hand from their leg to the front of

their eye—either from the left leg towards the right eye

or the opposite. The last two tasks are eating and pushing.

In the eating task, participants moved their wrist from the

table towards their mouth, while in the pushing task, they

performed a forward arm movement, closing and opening

the arm starting from the chest.

Fig. 3. Mean and standard deviation of the first two input features
(elbow angle and angular velocity) calculated with 99% confidence
interval from four trials for each of the six tasks, with data collected
from three test subjects distinguished by different colors from left
to the right.

VI. DATA PROCESSING AND VALIDATION

As illustrated in Fig. 3, four separate trials for each task is

separated from the data. We then averaged over the number

of trials (four) to construct our dataset. To have a similar

interval length across different tasks dataset, we employed

one-dimensional linear interpolation. We linearly rescaled the

inputs to have zero mean and unit variance on the training

set. Although it is possible to similarly rescale the output

data, we chose not to do this because our tests showed that

it did not significantly enhance our results.

230Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 09,2025 at 21:23:03 UTC from IEEE Xplore. Restrictions apply.

All of the six experiments were repeated by three users

(among the authors), and the data was used for modeling by

six different regression methods discussed in Sec IV.

We divided the dataset into five distinct subsets for cross-

validation. The performance of the models were evaluated by

averaging the outcomes of the R-squared score, expressed in

percentage terms, across the cross-validation subsets. This

metric was chosen over other evaluation criteria due to its

universal applicability across all models and methods used

in our study.

VII. RESULTS & DISCUSSION

Our main goal is to determine the capability of a model,

trained on a specific task (Fig. 2) to generalize to other

tasks. We evaluate the generalizability of the obtained models

when trained on a specific task and tested on other tasks.

The complication is due to the fact that the trained model

must be capable of approximating twelve different features

as mentioned in Sec. III. For instance as it is shown in Fig. 3

while the elbow angle follows a roughly similar pattern in

different tasks, the angular velocity varies significantly from

one task to the other.

We use a graph representation to demonstrate the results.

The nodes indicate tasks, while the edges show level of gen-

eralizability of the model when tested on the task in the des-

tination node. As shown in Fig. 4, each model was trained on

the home task, node and tested on the destination task node.

The brightness of the edges indicates the R-squared score for

that specific training averaged over the models trained for

three subjects. Thus a brighter or darker edge means lower

or higher generalizability, respectively. It also allows us to

assign a score based on the average number of input/output

edge weights to the graphs, and order the models from the

highest to the lowest. Based on their corresponding scores in

Fig. 4, we notice that in terms of generalizability the selected

regression algorithms can be sorted from best to worst

as: XGBoost (84.93%), GPR (82.31%), KNN (76.79%),

LWPR (69.31%), SVR (63.31%), and MLP (55.65%).

The difference in performances could have various rea-

sons. For instance, the performance of LWPR is highly

dependent on the choice of the hyper-parameter r, which

defines the initial distance between local models. To have

a fair comparison, we tuned r once the model was being

trained, and kept it fixed when testing on other task datasets.

In addition to our finding about the generalizability of the

trained models, by considering an R-squared value of 80% as

the threshold for acceptable performance, and counting the

output edges of each node, we can assess the extent to which

each task model is generalizable within each algorithm.

Fig. 5 shows the results for this evaluation. We notice that

on a model trained by LWPR algorithm the H task model

has the highest generalizability in comparison to the set of

(RL, E, and P) task models that are 16.39%, 17.98%, and

16.98% less generalizable respectively. In this algorithm the

V and the LR task models do not generalize to any other

model with an over 80% R-squared. When using KNN, the

E task model is the most generalizable and the set of (H,

Fig. 4. Performance evaluation of each model, where training
is conducted on the home node and testing is performed on the
destination node data. Edge color intensity inversely correlates with
the models’ ability to generalize; a brighter edge shows lower
generalizability.

Fig. 5. The generalizability of different task data sets within each
algorithm, using a R-squared value of 80% as the threshold for
acceptable performance.

LR, RL, and P) are 17.18%, 16.79%, 17.02%, and 16.32%

less generalizable and the V task is not generalizable over

the threshold. In SVR only the model trained on the task

P is 16.11% generalizable and other task models generalize

below the 80% threshold.

In the XGBoost that was ranked first in terms of general-

izability, the H task on average generalizes by 86.90% to the

other tasks and V, LR, RL, E, and P task models are 32.65%,

18.69%, 17.05%, 15.91%, 17.33% less generalizable than it.

When ranking the models on their level of generalizability,

we noticed that in MLP that is the least generalizable, all of

the task models are nearly generalizable by 36 37%. Except

231Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 09,2025 at 21:23:03 UTC from IEEE Xplore. Restrictions apply.

for the LR and the P that are 18% less generalizable than

the others. Our second place in the ranking list was for GPR

that has a different generalizability from others. When using

GPR, the RL is the most generalizable task model and V, H,

E, LR, and P are respectively less generalizable models by

16.83%, 32.09%, 32.94%, 51.68%, 52.15%.

We then evaluated the algorithm-agnostic generalizability

of the task models by summing their levels of generalizability

in each algorithm and averaging over the total number of

tasks. Fig. 6 shows that we can order the task models in our

study for descending generalizability as H, RL, E, P, V, and

LR.

Fig. 6. The average generalizability for the task datasets in our
study, using an R-squared value of 80 as the threshold for acceptable
performance.

The average training times for LWPR, KNN, SVR, XG-

Boost, MLP, and GPR in our study averaged over 5 folds of

cross validation sets, six tasks and three subjects, were 0.003,

0.034, 0.005, 0.147, 0.247, and 0.243 seconds, respectively.

This information can offer a more holistic view of the model

performance when integrated with the generalizability.

VIII. CONCLUSION

In this paper, we focused on task generalizability in the

data-driven modeling of assistive robots, particularly focus-

ing on upper-limb exoskeletons. Our study employed six

regression modeling techniques, among which the dynamic

model constructed using the XGBoost algorithm showed

superior generalizability capabilities. We collected the data

from six different tasks, with an emphasis on cross-validating

models trained on each one. The main finding from our

experiments was the superiority of the model built for the H

task in terms of generalizability. This insight provides context

for refining the selection of model learning techniques and

choosing appropriate tasks with specific features for model

training. This study provides potential opportunities to con-

struct more generalizable models that could lead to improved

performance in a diverse array of tasks, ultimately benefiting

the users of such assistive technologies.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-

dation (CMMI-2110214).

REFERENCES

[1] T. Wu and J. Movellan, “Semi-parametric gaussian process for robot
system identification,” in IEEE/RSJ International Conference on In-

telligent Robots and Systems. IEEE, 2012, pp. 725–731.

[2] S. Riedel and F. Stulp, “Comparing semi-parametric model learning
algorithms for dynamic model estimation in robotics,” stat, vol. 1050,
p. 27, 2019.

[3] R. Kwiatkowski and H. Lipson, “Task-agnostic self-modeling ma-
chines,” Science Robotics, vol. 4, no. 26, p. eaau9354, 2019.

[4] C. Zhang, A. Khan, S. Paternain, and A. Ribeiro, “Sufficiently accurate
model learning,” in IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2020, pp. 10 991–10 997.
[5] K. Alhamoud, H. A. A. K. Hammoud, M. Alfarra, and B. Ghanem,

“Generalizability of adversarial robustness under distribution shifts,”
Transactions on Machine Learning Research, 2023.

[6] H. C. Siu, A. M. Arenas, T. Sun, and L. A. Stirling, “Implementation
of a surface electromyography-based upper extremity exoskeleton
controller using learning from demonstration,” Sensors, vol. 18, no. 2,
p. 467, 2018.

[7] B. Hertel, M. Pelland, and S. R. Ahmadzadeh, “Robot learning
from demonstration using elastic maps,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 7407–7413.

[8] H. Ravichandar, S. R. Ahmadzadeh, M. A. Rana, and S. Chernova,
“Skill acquisition via automated multi-coordinate cost balancing,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 7776–7782.

[9] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, pp. 319–340, 2011.

[10] H. Cao, Y. Yin, D. Du, L. Lin, W. Gu, and Z. Yang, “Neural-network
inverse dynamic online learning control on physical exoskeleton,”
in Neural Information Processing: 13th International Conference

(ICONIP). Springer, 2006, pp. 702–710.
[11] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with

local gaussian process regression,” Advanced Robotics, vol. 23, no. 15,
pp. 2015–2034, 2009.

[12] R. F. Reinhart and J. J. Steil, “Reaching movement generation with a
recurrent neural network based on learning inverse kinematics for the
humanoid robot icub,” in 9th IEEE-RAS International Conference on

Humanoid Robots. IEEE, 2009, pp. 323–330.
[13] K. Nirmal, A. Sreejith, J. Mathew, M. Sarpotdar, A. Suresh,

A. Prakash, M. Safonova, and J. Murthy, “Noise modeling and analysis
of an imu-based attitude sensor: improvement of performance by
filtering and sensor fusion,” in Advances in optical and mechanical

technologies for telescopes and instrumentation II, vol. 9912. SPIE,
2016, pp. 2138–2147.

[14] S. Vijayakumar, A. D’Souza, and S. Schaal, “Lwpr: A scalable
method for incremental online learning in high dimensions,” Journal

of Machine Learning Research, pp. 623–626, 2008.
[15] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.
[16] M. Awad, R. Khanna, M. Awad, and R. Khanna, “Support vector

regression,” Efficient learning machines: Theories, concepts, and ap-

plications for engineers and system designers, pp. 67–80, 2015.
[17] V. Vapnik, The nature of statistical learning theory. Springer science

& business media, 1999.
[18] D. Kim, H.-j. Lee, and S. Cho, “Response modeling with support

vector regression,” Expert Systems with Applications, vol. 34, no. 2,
pp. 1102–1108, 2008.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining, 2016, pp. 785–794.
[20] Y. Wang and S. Ni, “A xgboost risk model via feature selection

and bayesian hyper-parameter optimization,” International Journal of

Database Management Systems (IJDMS), vol. 11, no. 1, 2019.
[21] F. Murtagh, “Multilayer perceptrons for classification and regression,”

Neurocomputing, vol. 2, no. 5-6, pp. 183–197, 1991.
[22] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for

large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[23] C. Williams and C. Rasmussen, “Gaussian processes for regression,”
Advances in neural information processing systems, vol. 8, 1995.

[24] M. Myomo Inc., Cambridge, “Myomo – The MyoPro Brace for Stroke
Survivor’s Paralyzed Arm.” [Online]. Available: https://myomo.com

[25] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter
for nonlinear estimation,” in IEEE Adaptive Systems for Signal Pro-

cessing, Communications, and Control Symposium. IEEE, 2000, pp.
153–158.

232Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 09,2025 at 21:23:03 UTC from IEEE Xplore. Restrictions apply.

