PUBLISHED FOR SISSA BY 4) SPRINGER

pr

RECEIVED: May 9, 2024
ACCEPTED: June 30, 202/
PUBLISHED: August 2, 202/

Lattice Hamiltonian for adjoint QCD,

Ross Dempsey @, Igor R. Klebanov®,%? Silviu S. Pufu®®bc
and Benjamin T. Sggaard (©'¢

®Joseph Henry Laboratories, Princeton University,
Princeton, NJ 08544, U.S.A.

bPrinceton Center for Theoretical Science, Princeton University,
Princeton, NJ 08544, U.S.A.

¢Institute for Advanced Study,

Princeton, NJ 08540, U.S.A.

E-mail: sdempsey@princeton.edu, klebanov@princeton.edu,
spufu@princeton.edu, sogaard@princeton.edu

ABSTRACT: We introduce a Hamiltonian lattice model for the (1 + 1)-dimensional SU(V,)
gauge theory coupled to one adjoint Majorana fermion of mass m. The discretization of
the continuum theory uses staggered Majorana fermions. We analyze the symmetries of
the lattice model and find lattice analogs of the anomalies of the corresponding continuum
theory. An important role is played by the lattice translation by one lattice site, which in the
continuum limit involves a discrete axial transformation. On a lattice with periodic boundary
conditions, the Hilbert space breaks up into sectors labeled by the N.-ality p =0,... N, — 1.
Our symmetry analysis implies various exact degeneracies in the spectrum of the lattice model.
In particular, it shows that, for m = 0 and even N, the sectors p and p’ are degenerate if
|p — p'| = N./2. In the N, = 2 case, we explicitly construct the action of the Hamiltonian
on a basis of gauge-invariant states, and we perform both a strong coupling expansion and
exact diagonalization for lattices of up to 12 lattice sites. Upon extrapolation of these
results, we find good agreement with the spectrum computed previously using discretized
light-cone quantization. One of our new results is the first numerical calculation of the
fermion bilinear condensate.
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1 Introduction

The (1 + 1)-dimensional SU(N,) gauge theory coupled to one adjoint multiplet of Majorana
fermions, sometimes referred to as adjoint QCDo, is an interesting model of non-perturbative
gauge dynamics. As in other models where all the dynamical fields are in the adjoint
representation of SU(N.), the Wilson loop in the fundamental representation serves as a



precise criterion for confinement [1]. Furthermore, similarly to the one-flavor Schwinger
model [2], this theory has only massive bound states even when the fermion is massless [3-5];
hence, it is a model of non-perturbative mass gap generation (the list of such gapped 2D gauge
theories can be found in [6]). Surprisingly however, when the adjoint fermion is massless, the
fundamental Wilson loop does not obey an area law [7—10]. For these and other reasons, the
model with one adjoint Majorana fermion has been a nice playground for exploring various
interesting phenomena. They include the existence of different “universes,” i.e. sectors of the
Hilbert space distinguished by the eigenvalue of a one-form symmetry generator [9, 11-14],
spontaneous breaking of a discrete chiral symmetry [12], confinement vs. screening [7-10, 14],
and, more recently, the role of non-invertible symmetries [9].

Following 't Hooft’s solution of the large N, limit of SU(N,) gauge theory with funda-
mental fermions [15], the bound state spectrum of adjoint QCDy was studied using light-cone
quantization. By now there are quite precise estimates for the masses of the low-lying bound
states (for recent progress, see [10, 16, 17]). However, it is difficult to study the vacuum
structure in the light-cone approach. In addition, it is not clear whether the results obtained
from the light-cone approach can fully capture all the universes of the theory. For these
reasons, it is very useful to study adjoint QCDs on a spatial circle.! In this paper, we introduce
a lattice Hamiltonian formulation of this model, which builds both on the Kogut-Susskind
approach to lattice gauge theory [18] and on the lattice formulation of relativistic Majorana
fermions [19, 20]. We show that our lattice model exhibits a number of desirable features,
such as the existence of different universes at any lattice spacing. For even N, we will see
that the translation by one lattice site relates different universes in a way that implies the
vanishing of the %—string tension.? This is somewhat analogous to the n-flavor Schwinger
model, where it was recently shown [21, 22] that the one-site translation involves a discrete
axial transformation in the continuum limit and, when n is odd, changes the theta-angle by .

For N. = 2, there are two distinct universes, with the non-trivial universe corresponding
to excitations on top of a chromoelectric flux tube in the fundamental representation. We
carry out a numerical study using exact diagonalization and demonstrate good convergence
to the continuum limit by comparing the spectrum we obtain with that obtained using
light-cone quantization [16]. We also confirm the presence of a non-vanishing fermion bilinear
condensate, (tr @Zzp), and calculate its numerical value. Apart from the numerical challenge of
an exponential growth of the number of states, the main difficulty we overcome is developing
a formulation of our lattice model purely in terms of the gauge-invariant states.?

The rest of this paper is organized as follows. In section 2 we start with a brief review of
the SU(N,.) adjoint QCDs theory in the continuum and a few properties of the spectrum as
obtained from DLCQ. In section 3 we introduce our lattice model, explain its relation to the
continuum, and develop a formulation involving only gauge-invariant states and observables.
In section 4 we discuss the symmetries of the continuum and lattice model and explore

In the small circle limit, where the theory becomes weakly coupled, the Hamiltonian approach to adjoint
QCD; was implemented in [13, 14].

2The vanishing of the %—string tension was established using anomaly arguments in the continuum theory
in [14].

3See also [23, 24] for gauge-invariant formulations of lattice models for SU(2) QCD2 with fundamental
fermions.



some of their consequences. While so far the discussion is for general N, in the rest of the
paper we focus on the simpler case N, = 2. In section 5, we use the lattice strong coupling
expansion to estimate the energy of the lowest-lying state and obtain good agreement with
the DLCQ. Section 6 contains results for the spectrum and other observables using exact
numerical diagonalization. We end with a discussion of our results in section 7. Technical
details are relegated to the appendices.

2 Continuum theory

Let us start by reviewing a few facts about the SU(N,) gauge theory coupled to an adjoint
Majorana fermion . The Lagrangian density is

29%{1\/1

L =tr <—1FWF”V + iy Dyth — mi/_n/}) , (2.1)

where F,, = 0, A, — 0, A, —i[A,, A)] is the gauge field strength, and the covariant derivative
is defined to be D, 1 = 0,1 —i[A,,9]. For an adjoint-valued field X (such as A, 9, or F,,),
we can write X = XAT4 where the T are the Hermitian generators of SU(N,) normalized
so that tr (TATB) = %5/‘3, with A, B =1,...,N? - 1.

The definition of the gauge coupling constant used here differs from the convention used
in much of the light-cone quantization literature, for instance in [3-5, 10, 16, 17]; the gauge
coupling used there is gprLcq = gym/ V2. We will use gym as defined in (2.1) throughout
this paper. Furthermore, let us take 70 = o9, ¥ = —io3, and 4° = oy. In these conventions,
the Majorana spinor 1 is real and consequently 1) = 1T~?, with the transpose acting only
on the spinor indices.

As pointed out in [14], it is of further interest to consider a modified model where the
double-trace 4-fermion interaction of Gross-Neveu (GN) type is present:

SLan = r(trynp)? . (2.2)

This term, which is forbidden by the super-renormalizibility of the theory (2.1), as well
as by a non-invertible symmetry [9], can make the model confining even when the adjoint
mass vanishes [14]. However, the resulting model has rather different UV properties from
the basic model with k£ = 0, because the coupling x undergoes a logarithmic running [25].
To distinguish the model including the 4-fermion term from the basic adjoint QCD3, one
may refer to it as “adjoint GN-QCD>.” Our numerical diagonalizations in the N, = 2 case
appear to be consistent with x = 0.

The bound state spectrum of the adjoint QCDy theory with gauge group SU(N,) has
been studied using the method of discretized light-cone quantization (DLCQ), which was
introduced in [26]. In the large N, limit one can make a restriction to the single-trace
states, which simplifies the calculations [3-5, 7, 8, 10, 27-31]. Some results at finite NN,
are also available [16, 32].

A salient feature of the DLCQ spectrum is that it is gapped for all N. and m. In
particular, it is gapped at m = 0, with the lightest particle being a fermion of mass My



and the second lightest being a boson of mass M;. The DLCQ spectrum of the SU(N,)
theory was found in [16]:*

2 UV, 2 V.
m=0:  MIms7IMIe a2 gfiate. (2:3)
27 27
As m increases, My grows at a faster rate than M, and for any N, the two meet at m? =19 Y%FNC .

At this value of m, the theory becomes supersymmetric [4, 31]. The exact supersymmetry
generators of the (1,1) supersymmetry are known in the light-cone quantization of the
theory [4, 28, 31]. Note that the light-cone Hamiltonian is invariant under m — —m, so
the spectrum obtained from DLCQ will have the same property. As already mentioned
in the Introduction, it is not clear, however, whether the DLCQ spectrum reproduces the
spectrum of a single universe of the adjoint QCDs theory or of all the universes. We will
come back to this question in section 6.

3 Lattice model

We will now formulate a Hamiltonian lattice theory corresponding to a discretization of
the continuum theory (2.1), defined on a spatial circle of length L with periodic boundary
conditions both for the fermions and the gauge field.

3.1 Lattice Hamiltonian

Let N be the number of lattice sites, taken to be an even positive integer, and a = L/N be
the lattice spacing. The lattice Majorana fermions live on the lattice sites. They satisfy the
reality condition XAT = x and the canonical anti-commutation relation

{Xﬁa Xﬁ} = 5mn5AB . (31)

The lattice analog of the spatial component of the gauge field® are the unitary matrices U,
representing the parallel propagators in the fundamental representation of the gauge group.
The operators U, live on links where, for each link, the corresponding U, represents the
coordinate of a quantum particle moving on the group manifold. (For a brief review of a
particle moving on a group manifold, see appendix A.) We use the convention where link n
joins sites n and n + 1, with the identification n ~ n 4+ N. The conjugate variables to U,
are the left-acting and right-acting electric fields, which are Lie-algebra valued Hermitian
operators with SU(N,) components L4 and RZ, respectively, obeying

LA, U] = 6pmTAU,,  [RY, U] = 6pmU, T . (3.2)

The L2 and R2 are related via R2 = LBUPA with UAP = 2tr(TAU,TBU ).
The lattice Hamiltonian is

H= Z{QYMQLALA %(a‘1+(71)"m> UABXn+1] (3.3)

2
4For the squared masses of lightest bound states, the coefficients of % exhibit weak dependence on N..
5In the Hamiltonian formulation, the time component of the gauge field is eliminated and one has to impose
the Gauss law by hand.



with n ~ n 4+ N identified, as mentioned above. The Hamiltonian (3.3) is invariant under
local gauge transformations parameterized by a gauge parameter V,, on every site

Un = VUV
Ly, — VoLV, (3.4)
Xn — VanVnil .

The Hilbert space that this Hamiltonian acts on is a tensor product of the fermionic
Hilbert space and the bosonic one, Hp®H . For the fermionic factor, since we have N(N2—1)
Majorana fermions Xﬁ obeying the Clifford algebra (3.1), Hp must form a representation of

this algebra. Since N is even, Hr will be the direct sum of the two spinor representations

N(N2-1)
of 50(N(N2 — 1)), for a total dimension of 2~ 2 . The bosonic factor Hp is the tensor

product of the space of square integrable functions on SU(N,) on each link. By the Peter-Weyl

theorem, on each link we can consider a basis consisting of matrix elements of the SU(N.,)
group element in all possible irreducible representations.

As in any Hamiltonian lattice gauge theory model, the description of the model is not
complete without specifying the Gauss law. For us, the Gauss law takes the form

LA—RA  =Q4, foralln=0,...,N—1, (3.5)

where we defined the matter gauge charge Q4 = —% fABOXENC  with fABC being the
structure constants. The physical states are those states in Hr ® Hp for which (3.5) is
obeyed. Starting in section 3.4, we will work directly with the gauge-invariant states.

3.2 Relation to the continuum theory

Let us now explain how the lattice Hamiltonian introduced in the previous subsection arises
from the continuum theory (2.1). Denoting the lattice sites as =, = na, we make the following
staggered identification between the lattice fermion x,, and the spinor field v (z)

V2ay(zy), if niseven, (z/}u(q:))
n — h = )
X {\/ 2apq(xy), if nis odd, where () Ya()

where the upper and lower components of the fermions are discretized on alternating lattice

(3.6)

sites. For the gauge variables, we have link variables U,, and site variables ¢,, that are related,
respectively, to the spatial and time components of the gauge field.

Un - e—iaAl(xn) ; ¢n = Aﬂ(xn) . (37)
It is then straightforward to check that the lattice Lagrangian
N-1 1 ‘ 5
b Z " L}Qa (ZU"ijl + ¢on — Un¢n+1Uy:1> +iXnXn — PnlXn> Xn
n=0

| (3.8)
1 _ . _
+ EXnUan-i—lUn ! + Zm(_l)anUan-&-lUn !

is an approximation to (2.1) as a — 0.



One can introduce the left-acting electric fields L2 = —g% tr

TAGUULY + én —

Un®n+1U,; 1)] as the canonically-conjugate variables to the angles parameterizing U,, and

then pass to the Hamiltonian

dPa i im
AT A AyrAB. B ArrAB_ B
n=0

N (3.9)
P od (LA - R, - Q).
n=0

It is then clear that on the gauge-invariant subspace where (3.5) is obeyed, our Hamiltonian
reduces to (3.3).

If we want to study the more general space of models which includes the 4-fermion
term (2.2), we should generalize this lattice Hamiltonian. The simplest corresponding term
on the lattice appears to be

N-1
0H = —Kjat Z (tr XnUanHUn_l)2 . (3.10)
n=0
Even if we are interested in the basic adjoint QCDy model (2.1) without the 4-fermion term in
the continuum, it is possible that on the lattice k1.4 needs to be turned on and appropriately
tuned when taking the continuum limit in order to cancel the contribution of an effective
4-fermion term induced by the lattice regularization. It is also possible that the sign of k.t
induced by the lattice regulator is such that the 4-fermion coupling flows to zero at long
distances [25]; if this is the case, then no tuning seems necessary to describe the continuum
model (2.1). The study of these issues is beyond the scope of this paper.

3.3 General properties of gauge-invariant states

As already mentioned, the 2V (NZ2=1)/2_dimensional fermionic Hilbert space Hp is a sum
of the two spinor representations of so(N (N2 — 1)). These two spinor representations are
distinguished by the eigenvalues under the so(N (N2 — 1)) chirality matrix

F=FoF1 - Fn_1, F, = (gi)(fol)ﬂX?llXi ... Xﬁ’?*l ) (3.11)

Up to an overall sign which is a matter of convention, the non-trivial normalization in (3.11)
ensures that F = F! and F? = 1. The operator F should be identified with the fermion parity
operator, because under conjugation by it the lattice fermions Xﬁ change sign: F X,‘;‘J—" =
—X;f}. F can thus be used to split the Hilbert space into bosonic and fermionic states.

The fermionic operators x: transform in the vector representation of so(N (N2 —1)). In
order to impose the Gauss law (3.5), we need to know how the states transform under the
charge operators Q:}, which generate an su(N..)" subalgebra of so(N(N2—1)). The embedding
of su(N.)V into so(N(N2 — 1)) is such that the vector representation of so(N(N2 — 1))
decomposes as the direct sum

(adj,1,1,...)® (1,adj,1,...)® (1,1,adj,...) + -, (3.12)



where adj is the adjoint representation of su(N.). The decomposition (3.12) follows from the
fact that the y transform in the adjoint of the su(N,) factor for site n.

A group theory exercise (see appendix B) shows that under su(N.)", the fermionic
Hilbert space Hp decomposes as

oN(NZ-1)/2 _ oN(Ne-1)/2(R R, ... R) (3.13)

)

where R is the su(N,) representation with Dynkin label [111...1]. The Young diagram of
R consists of one column of each length ranging from 1 to N, — 1,

R= 7ttt N.—1rows,  dimR = 2Ne(Nem1)/2 (3.14)

Ne—1)/2

and it has dimension 2Ne( . We can interpret (3.13) as saying that Hp can be realized

as a tensor product
Hr = Hqubits & Hspins (3'15>

of a vector space Hqubits of V(N — 1)/2 qubits, which has dimension oNWNe=1)/2 " and the
Hilbert space Hgpins of N SU(N,) spins where each site hosts representation R of su(N,).
The Nc-ality of the representation R is

Neif N, is even,

Ne(Ne — 1) (mod N,) :{ 2 (3.16)

N-ality of R = —=
0 if N, is odd,

a fact that will be useful later.

For example, when N, = 2, Hqubits is the Hilbert space of N/2 qubits, and R = 2 is
the spin-1/2 representation of SU(2). In this case, we will make the decomposition (3.15)
more explicit in the next subsection. When N, = 3, Hqupits is the Hilbert space of N qubits,
and R = 8 is the adjoint representation of SU(3).

To construct gauge-invariant states, note that Hqupits is invariant under 5u(NC)N , SO
only the Hgpins factor participates non-trivially in this construction. In other words, the
gauge-invariant sector of the Hilbert space takes the form

H = %qubits ® Hl 5 Hl C Hspjns ® HB (317)

where Hp is the bosonic Hilbert space.
The construction of H' is as follows. Let us consider a basis for Hgpins to be

basis for Hgpins: IR, mo) |R, M) -+ |R, Mn_1) (3.18)

where m,, is a multi-index used to label the states of representation R on site n. As already
mentioned, on each link n the bosonic Hilbert space Hp is that of L?-functions on SU(N,).



Let |r,, m, 1, m,R) be a basis for this Hilbert space, with r,, being an irrep of su(N.) and
m,;, and m,r being multi-indices each labeling the states in this representation. A basis
for the bosonic Hilbert space Hg on all N links is then

basis for H p: o, Moz, Mog) [r1, M1z, MiR) - [*N—1, M(N_1)1, W(N_1)R) - (3.19)

A basis for the gauge invariant subspace H’ is then of the form

rn Rry, ’rn? IfinL, TﬁnR)
Z H ‘R mn ® H ( m(nll)Rmnan\/(m> bl (3.20)

mnyanzmnR n=0

where C:rifﬁ@?m5 = (r3mg|rimirams) are su(N.) Clebsch-Gordan coefficients.® A basis for
the full gauge-invariant Hilbert space H is obtained by taking the tensor product of the
basis (3.20) for ' with a basis for Hqubits-

Note that after fixing rg, the set of possible representations r,, that can appear is restricted
by N-ality. The r,, must obey the property that for any adjacent links the tensor product
r,—1 ® R must contain the representation r,. Thus, the N.-ality of the representations r,
must change by (3.16) when we move from one site to the next. For odd N, this means we
have N, universes of the Hilbert space where in each universe the N_.-ality of all the link
irreps is the same. When N, is even, we also have N, universes, but in each universe the
N_-ality of the link irreps alternates on even and odd links between values that differ by N./2
(mod N.). This interplay between the N -ality and the translation by one site has interesting

consequences that we will explore in more detail in section 4.

3.4 Gauge-invariant formulation for N, = 2

Let us now specialize the general discussion from the previous subsections to the case N, = 2,
and further determine the action of the Hamiltonian on the gauge-invariant subspace H'.
For N, = 2, we can take T4 = 64 /2, where ¢4 are the Pauli matrices, and fAB¢ = ¢ABC,
with A, B,C = 1,2,3.

The decomposition Hr = Hqubits @ Hspins in (3.13)—(3.15) can be made explicit with an
appropriate choice of gamma matrices. In this case Hqupits is the Hilbert space of N/2 qubits
and Hgpins is the Hilbert space of N spin-1/2 particles. Let X}, Yj, Zj, be the Pauli matrix
operators acting on the kth qubit, £k =0,..., % — 1, and let Sf be the Ath SU(2) generator
acting on the nth spin as JA/Z, with n = 0,..., N — 1. With this notation, let us define

Xow = V2(Z2021 -+ Z—1 Xi) @ So; »

(3.21)
Xoer1 = V2(Z0Z1 -+ Zy1Ye) @ Sih 1 -

One can check that these operators obey the correct anti-commutation relations (3.1). This
Clifford algebra representation has the nice property that the SU(2) generators on site n
Q= -1 ABCXT]? x¢ and the fermion parity operator F defined in (3.11) each act in only

one of the two factors of the tensor product and take the simple forms

Qi=105", F=toZyZy ®1. (3.22)

SFor N, > 2, the Clebsch-Gordan coefficients need an additional index to account for the multiplicity of r,
inr,_1 ®R.



lnax\N 4 6 8 10 12
2 40 224 1312 7808 46720
3 64 384 2432 15872 105472
4 88 544 3552 23936 164608

Table 1. The dimensions of the Hilbert space for various values of N and /,.x. For the plots in this
paper we use up to N = 12 and . = 4.

Thus, the SU(2) degrees of freedom are carried by the spins, while the fermion parity is
carried by the qubits. In particular, the fact that each spin transforms as a doublet under its
corresponding SU(2) and the qubits are SU(2)-invariant confirms the decomposition (3.13).

The construction of the gauge-invariant states is a simple specialization of the discussion
%,r%ﬁ,m—)m,andtﬁ%m,
reflecting the fact that su(2) representations are labeled by the spin ¢ and there is only one

of the previous subsection, with the replacements R —

quantum number (the magnetic quantum number) labeling the states of these representations.
Thus, we have the bases

basis for Hqubits : |s0s1...85 1) »
2
. 1 1 1
basis for Hspins : |§7m0> |§am1> T ’57mN_1> ’ (323)
basis for Hp : €0, moL, Mog) [€1, M1z, MuR) - [{N—1, M(N_1)L, M(N=1)R)
where s, € {—1,1} is the eigenvalue of Zy, m, € {—%, %} is the eigenvalue of S2, ¢, =

0, %, 1,..., and both m;; and m,p range from —/,, to ¢, in integer steps. (In the position

representation, the wavefunction on the group manifold associated with |€,, m,r, m,g) is

\Ij‘en,an:mnR

the qubit quantum numbers (sg, s1,...,sn5 ;) for the states in Hqupits and by a string of SU(2)
2

(Uy), as defined in (A.17).) The gauge-invariant states in H are uniquely labeled by

angular momenta (€g, ¢1,...,¢n_1) for the representations on the links for the states in H':

‘80...8%_0 &® \60...€N_1>

N-1 ] N 324)
wit 14 = E I | | | ln—175Ln Mmmnln mnR> (
lh |£0 N—1>_ |77mn>® (O ( 2) il ——————— ,
Mp,MpL,MpR n=0 n=0 ' 2£n ]-

with the condition that

1
lnsr = ol =5, and L=ty (3.25)
The space of gauge configurations is of course infinite, but we can truncate it by requiring
by < Lhax for all n, for some .. In table 1, we give the sizes of the truncated Hilbert
space for different N and £.x.
Having established a basis for the gauge invariant subspace, we need to determine the

2
action of the Hamiltonian (3.3) on these states. The gauge kinetic term Hgayge = ngﬂaL;‘L‘Lﬁ‘

is diagonal in this basis, and it acts only on the H’ factor:

2 N-1
a
Haange |lo - - En—1) = <9Y2M S bl + 1)) ... On_1) . (3.26)

n=0



For each link, the second term in (3.3) is proportional to the operator —% xAUuAByB 1. This
operator acts on both factors of the Hilbert space non-trivially. Based on whether n is
even or odd, the action is:

i

2X124k‘UéAkBX2Bk+1 = Zk ® O2k ) On = S;?U;?BS7?+1 y (3273)

I oA AB B s
—*X2k+1U2k:+1X2k+2 = (=F)

5 B X X @ Ogjepr - (3.27D)

It is straightforward to determine the actions of the first factors in (3.27) on the qubits
since the basis states |sg...s %71) are eigenstates of Z; with eigenvalue s, and Xy simply
flips the sign of s;. The action of O,, on the states of H' is harder to determine, but we
show in appendix C that this action is

O llo.. In_1) = > Flna, bpsas € ln) (o - L1 b by - EN—1)) (3.28)
0 €{ln—1,0n bn+1}

with the expression for f given in (C.13).

It would seem that this gauge invariant formulation of the lattice theory does not share
the symmetry of translating by two sites that is manifest in the Hamiltonian (3.3). However,
the insertion of the operator (—F) in X§71U j{‘,ﬂx{f is unitarily equivalent to an insertion
of (—F) in any other hopping term X’24k_1U2ngk. Specifically, the unitary that moves (—F)
between a hopping term with a given k£ and that with k& + 1 is implemented by

Uy, = %(11 _ )+ %Zk(}'Jr 1). (3.29)

If we denote the naive translation by two sites as T4 then the genuine symmetry of the
Hamiltonian 73 can be written as Ty = Uo7y,

4 Symmetries

In this section, we discuss the symmetries of the adjoint QCDs theory. We start with a
discussion of the continuum theory (2.1) in section 4.1, and then in section 4.2 we proceed
with an analogous discussion for the lattice model (3.3) introduced in the previous section.
As we will see, the symmetries of the two models mirror each other very closely. The
consequences of the various anomalies on the spectrum, which we discuss in section 4.3
below, will be the same in the two cases.

4.1 Symmetries of the continuum theory

As shown in [14], the internal (non-space-time) symmetries of the continuum theory (2.1) are

ot 78 x (Z9)r for N, =2, (4.1)
28] % (Z2)0| x (Zo)r, for N. > 2,
for generic m # 0, and
- Z8 X (Za)p % (Za)y, for N, = 2, 43
(23] % (Zo)o| % (Za)p x (), for Ne>2,

,10,



for m = 0. In particular, for every N. we have a fermion parity symmetry (Zs)pr and a
discrete axial symmetry (Zs), (present only when m = 0) that act by sending ¢ — —1 and
1 — 51, respectively, while leaving A,, invariant. We also have a Zy, one-form symmetry
Zg\l,]c corresponding to the center symmetry of SU(N,), under which the fundamental Wilson
lines have charge e2i/Ne.
(Z3)c, which acts by sending ¢ — T and 4, — —AE, where the transpose acts on the
generators in the fundamental representation. (We will write this transformation more

Lastly, for N, > 2, we also have a charge conjugation symmetry

explicitly later in the lattice model.) This charge conjugation symmetry does not commute
with the one-form center symmetry because it takes a fundamental Wilson line to an anti-
fundamental one, so the symmetry group involves a semi-direct product between these two
symmetries. Lastly, when N, = 2, the charge conjugation symmetry is absent because
Y — T and A, — —AE is a gauge transformation.

Let us restrict ourselves to the theory compactified on a spatial circle with periodic
boundary conditions, because this is what the lattice model introduced in the previous section
approximates.” Let us denote the generators of ch, (Z2)c, (Z2)F, and (Z2)y by U(x), C,
F , and 17, respectively, where x is the coordinate parameterizing the circle. (We use hats
when denoting the unitary operators in the continuum theory in order to distinguish these
operators from those in the lattice model, for which we will not use hats.) These are unitary
operators that act on the Hilbert space, and they can be discussed regardless of whether
the corresponding transformations they implement are symmetries of the theory or not. As
shown in [14], the algebra obeyed by the non-chiral symmetries ZE\I,}C, (Za)c, and (Z2)F is
the same at the classical and quantum levels, namely:

Ux)Ne =1, C=Ft=1, 43)
U(z)C = Clh(x)™", U(x)F = Fi(z), FC=CF. '

However, the algebra involving the axial symmetry V is realized projectively, and [14]
found that

V2=1, Uz)V = (-1)N"V (),
~~ N1 2 PN (Ne—2)(Ne—1) ~ ~ (4'4)
FV=(-DN"WF,  CVv=(-1)" =z VC.

The non-trivial signs in these expressions would not have been present classically and are
signals of quantum anomalies. They show that the algebra of the unitary operators introduced
above is realized projectively on the Hilbert space.

Lastly, let us discuss how these unitary operators act on the Hamiltonian. Let us denote
the continuum analog of the Hamiltonian (3.3) by H,, so we can keep track of the mass m.
Since ZE\IZ]C, (Z2)c, and (Zy)p are symmetries for all m, the corresponding generators commute
with the Hamiltonian, or, equivalently, the Hamiltonian is invariant under conjugation by
these unitary operators:

U(x)HnU(x)" = H,,, CH,.C '=H,, FH,F '=H,. (4.5)

"It is possible to also study both the continuum theory and the lattice model with anti-periodic boundary
conditions for the fermions.
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On the other hand, the (Zy), axial transformation is a symmetry only for m = 0, so
conjugation by it does not leave the Hamiltonian invariant for m # 0. Since the operator
tr1) changes sign under the axial transformation, the conjugation of the Hamiltonian by
V has the simple effect of changing the sign of m:

VH,V'=H_,. (4.6)

The relations (4.3)—(4.6) have important consequences for the spectrum and other
observables. (See also the discussion in [14].) Let us postpone the discussion of these
consequences until after we present the analogous relations to (4.3)—(4.6) on the lattice,
because the consequences will be the same in both cases.

4.2 Symmetries of the lattice model

The lattice model (3.3) exhibits a very similar set of symmetries and anomalies as the
continuum model. In particular, there exist unitary operators representing a lattice one-form
symmetry U,, fermion parity F, and charge conjugation C. The lattice analog of the (Zs),
generator will be the translation operator by one lattice site, V, which in the continuum
limit reduces to the product between a (Zs), transformation and an infinitesimal translation.
Let us discuss these unitary operators one by one.

4.2.1 Definitions of unitary operators

The lattice one-form symmetry is defined as follows. Let Z,, be the generator of the Zy, center
of su(N,) acting on the bosonic Hilbert space on link n (before imposing the Gauss law). On a
27i(Ne-ality of ry)/Ne |rn, TﬁnLa n_inR>

Clearly, ZNe = 1 because this relation holds on all basis states. In term of Z,, the generator

basis state |ry,, M,r, M,R), Z, acts as 2, |vy, W,p, MuR) = €

of the lattice Zy, one-form symmetry can be written as
U, = (—1)(”“)(]\[6’1)3”. (4.7)

Both Z, and U, commute with the lattice Hamlitonian (3.3) because acting with the
Hamiltonian does not change the N-ality of the states. However, only U, is a one-form
symmetry for all N, because it further obeys the property that it is topological, namely that
Uy, = U, 11 when acting on gauge-invariant states. Indeed, this property holds because the
(1) DWNVe=1) factor in (4.7) accounts for the change in N -ality when going from one link
to the next, as given by combining the Gauss law (3.5) with the N_-ality (3.16) of the states.
U, generates a Zy, symmetry because UNe = (—1)(HDNe(Ne=1) ZNe — 1 after using Z2Ne = 1
and the fact that N.(N. — 1) is always an even integer.

The fermion parity operator F was already defined in (3.11). It commutes with the
Hamiltonian and it obeys F? = 1.

The definition of the charge conjugation symmetry operator that most closely resembles
the continuum analog is that for which

CxnC =T, cuct=whH =u*, (4.8)

n

where the transpose acts on the color indices when x,, and U,, are represented as N, x N,
matrices acting in the fundamental representation of su(N.). The minus sign in the first
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equation is a matter of convention and can be removed by replacing C — FC. To make (4.8)
more explicit, let us order the su(N,) generators T such that the first N7 = w
generators are represented by pure imaginary anti-symmetric matrices in the fundamental
representation, while the last Ny = %(N‘_l) generators are represented by real traceless
symmetric matrices. In components, the transformations (4.8), as well as the corresponding

transformations of the electric fields can then be written as

CxnCt = =(=1)"x;y, CULPCT! = (-1t U,

4.9
CLyC' = —(=1)L;, CR,C'=—(-1)’"R}, 9

where 04 = 1 for the anti-symmetric generators and 6,4 = 0 for the symmetric ones:

1 for1<A<NG,
64 = ort=a=a (4.10)
0 for Nt < A< N;+Ng.

When checking that the transformations (4.9) are consistent with the various commutation
relations (for instance (A.11)), it is useful to note that the structure constants fA5¢ obey
the property (—1)¢atfstbc fABC — _ fABC  Thig property can also be used to check that
CQ;;‘C*1 = —(—1)9A Qﬁ, which implies that the transformation rules (4.9) are also consistent
with the Gauss law (3.5). Furthermore, one can also see that (4.9) imply that conjugation
by C leaves the Hamiltonian invariant.

The unitary operator C that implements (4.9) can be written as a product of two
unitaries C = CrpCp, where Cr acts on the fermions and Cg on the bosons. We will not
need an expression for Cp because for the bosons there are no non-trivial signs that can be
generated at the quantum level. However, let us write Cr explicitly because its expression
will be needed for computing the algebra of operators:

N
Cr =CroCr1---CrN—1, Crn = (20) 2 XN NIH2 L NEHNR (4.11)

This definition ensures that C% =1 and Cp = C;r,, so if Cp is defined to obey the same
properties, then so will C. We will assume this is the case.

Lastly, we also consider the unitary operator V that implements lattice translation by
one site. For our purposes it will be enough to know that

YV = Xng1 YUV =Upit, VL,V =Ly, VR,V ' = Rpi1,
(4.12)

of course with understanding that the indices obey the identification n ~ n+ N. The operator
V commutes with the Hamiltonian when m = 0, but when m # 0 it flips the sign of m, just
like in the continuum. Thus, if we denote the lattice Hamiltonian (3.3) by H,, in order to keep
track of m, then VH,,V~! = H_,,. With an appropriate normalization, one can realize V on
the Hilbert space in a way that YV = 1. This is the main difference between the translation
by one site and the (Zs), transformation in the continuum: while in the continuum V2 =1,
on the lattice we have V¥ = 1 instead. In the language of recent papers [20, 33], the (Z2)y
symmetry of the continuum theory “emanates” from the lattice translation by one site, V.
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4.2.2 Operator algebra

With the definitions above, we can determine the algebra obeyed by the various unitary
operators. The operators Uy, C, and F obey the same algebra that their hatted counterparts
obey in the continuum (see (4.3)):

Z/{T]LVC:17 C2:f2:17
1 (4.13)
U,C =CU, ", U, F =FUy,, FC=CF.
Now also including the V operator, we have a lattice analog of (4.4),
vi=1, UV = (~1)N" Vs
Ne—1 We=2)(Ne—1) (4.14)
.7:V:(—1) cTVF, Cy = (_1) 5 Ve,

with the only difference being that V¥ = 1 instead of V2 = 1, as mentioned above.
Conjugating the Hamiltonian H,, by the four unitary operators, we obtain an exact
analog of the continuum relations (4.5)—(4.6):

UnHoplhy' = Hyy,  CHWC ' =Hy, FHyF ' = Hy,

4.15
VH,V '1=H_,. (4.15)

4.3 Consequences for the spectrum

The consequences of the relations (4.13)—(4.15) are precisely the same as those of the
continuum relations (4.3)—(4.6). Let us describe these consequences in the language of
the lattice model, but the exact same conclusions hold for the spectrum of the continuum
theory compactified on a circle with periodic boundary conditions for the fermions.

First, the lattice one-form symmetry can be used to split the Hilbert space into N,
distinct universes. Let the pth universe be the sector of the Hilbert space where U, = e2™/Ne
(p is an integer identified modulo N.). Similarly, the fermion parity operator can be used to
split the Hilbert space into bosonic and fermionic states based on whether 7 = +1 or —1.
Since U,,, F, and H,, commute, they are simultaneously diagonalizable, so one can consider
a basis of eigenstates of H,, that are also eigenstates of U,, and F.

If we act with V on a simultaneous eigenstate |¢) of U,,, F, and H,, with eigenvalues
e?m/Ne  f and E, the relations (4.14)—(4.15) imply that V' |¢) is a simultaneous eigenstate
of U,, F, and H_,, with eigenvalues (—1)Ne=1¢2mi2/Ne (_1)Ne=1f and E. This means:

o If N, is even, then the bosonic/fermionic eigenstates of H,, in the pth universe (0 <
p < %) are exactly degenerate with the fermionic/bosonic eigenstates of H_,, in the
(% + p)th universe. Note that this implies an exact degeneracy in the spectrum at
m = 0 between the pth and (£ + p)th universes.

o If N, is odd, then the bosonic/fermionic eigenstates of H,, in the pth universe (0 <
p < N.) are exactly degenerate with the bosonic/fermionic eigenstates of H_,, in the
same universe. Thus, the energy spectrum of each universe is invariant under m — —m.
However, note that this statement does not necessarily imply a degeneracy in the
spectrum at m = 0.
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Also note that since the mass operator Onyass = % S (—1)"xAUABXB, | changes sign when
conjugated by V, VOmassV ! = —Omnass, it follows that

<¢‘Omass|7/)> = *<V¢|Omass|v¢> . (416)

The same expression holds in the continuum where O, = tr Qz’lﬁ.
If on the same [¢)) as above we act with C, the relations (4.13) and (4.15) imply that C |)
is a simultaneous eigenstate of U, F, and H,, with eigenvalues e~ 2mip/Ne f, and E. Thus:

o For any N, > 2, the bosonic/fermionic eigenstates of H,, in the pth universe are exactly
degenerate with the bosonic/fermionic eigenstates of H,, in the (N. — p)th universe.

For m = 0 and N, odd, V commutes with U,,, F, and Hy, so the four operators are
now simultaneously diagonalizable. Let [1)) now be a simultaneous eigenstate of these four

operators with eigenvalues v, e2mip/N. ¢, f,and E. Then C |¢) is also a simultaneous eigenstate of
(Ne—2)(Ne—1) .
the four operators, with eigenvalues (—1) 2 v, 6_27”1’/]\’6, f,and E. When N, = 4k+1
(Ne—1)(Ne—2) C. .
2 = 1, and no additional conclusions can be drawn.
(Ne—=1)(Ne—2)
2

for some integer k, then (—1)

When N, is of the form N, = 4k + 3 for some integer k, then (—1)
conclude that the eigenvalue of V changes sign upon acting with C. Then:

= —1, and we

e When m = 0 and N, = 4k + 3 for some integer k, the bosonic/fermionic eigenstates of
Hy in the pth universe (0 < p < %¢) with V-eigenvalue v are exactly degenerate with
bosonic/fermionic eigenstates of Hy in the (N, — p)th universe with V-eigenvalue —uv.

Lastly, one can make an additional statement about the p = 0 universe when N, = 4k + 3
and any m. When restricted to this universe, C acts as a symmetry, so one can simultaneously
diagonalize F, C, and H,,. Let f, ¢, and E be the corresponding eigenvalues of a state [1)).
Then V|[¢) is also in the p = 0 universe and it is a simultaneous eigenstate of F, C, and
H,, with eigenvalues f, —c¢, and E. Thus:

e When p =0 and N, = 4k + 3, bosonic/fermionic eigenstates of H,, with C = £1 are
exactly degenerate with bosonic/fermionic eigenstates of H_,, with C'= F1. Note this
implies that when we further set m = 0, the spectrum of the p = 0 universe has an
exact double degeneracy between states with C' = +1 and C = —1.

Note that the exactly degenerate states related by the action of V have opposite expectation
values for Opass according to (4.16).

4.4 Supersymmetry

In addition to the massless point, which is distinguished by the presence of the axial symmetry
discussed in the previous sections, adjoint QCDs has a special point

2
_ gymVe
m? = miygy = % . (4.17)

Using the light-cone quantization, it was shown that at this point the model exhibits (1,1)
supersymmetry [4, 31]. This very interesting result has been checked using DLCQ [5, 16, 28, 34].
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In this section, we briefly discuss the consequences of the supersymmetry for the spectrum
of the theory on a (discretized) spatial circle.

When m = 0, adjoint QCD4 has several degenerate vacua, which we expect to be split as
we turn on the mass. At m = mgysy, we expect that the lowest vacuum will be annihilated
by the supersymmetry generator, while the other vacua exhibit spontaneous breaking of
supersymmetry. Thus, there will be massless Goldstinos in these higher vacua which contain
wound flux tubes [35], while the zero energy vacuum preserves supersymimetry.

There are two regimes in which we can understand the ordering of the vacua. For
m > gym we can integrate out the adjoint fermion, and so the vacuum energy will be given
by the energy of the flux tube wrapping the spatial circle. This energy is proportional to
the lowest value of the quadratic Casimir of a representation with N.-ality p. Thus, the
vacua of the universe with p = 0 will be the lowest in this limit, followed by p =1, N, — 1,
followed by p = 2, N. — 2, etc. In the opposite limit, when |m| < gym, the vacuum energies
will be given approximately by m(Opass). Thus, at m = mgyusy ~ gym, we expect that the
vacuum of the p = 0 universe that is continuously connected to the vacuum with the most
negative VEV of the mass operator at m = 0.

For N, = 2, this manifests in a simple manner: there are two universes, and it is the
— 9ym
= D
has a massless Goldstino at this point. This implies also that the p = 0 universe has a

vacuum of the p = 0 universe that preserves supersymmetry at m The p = 1 universe
massless excitation at m = —W—:‘. We can see this explicitly with our lattice model for
N, = 2, as in figure 5. For a slightly more complicated example, we can take N. = 3. At
m/gym = %, we expect to see a massless Goldstino in the p = 1,2 vacua (they correspond
to having a confining flux tube wound around the circle in one or the other direction), but
not in the trivial sector p = 0.

5 Strong coupling expansion for SU(2)

With the lattice formulation (3.3) of adjoint QCD2, we can develop a strong coupling
expansion analogous to the one performed extensively for the Schwinger model, for instance
in [36-38]. The lattice strong coupling expansion is an expansion in z = 1/(gyma)?. To
approach the continuum limit, one has to extrapolate this expansion to x — 0o, which we
will do using appropriate Padé approximants.

In this section we set m = 0% and we study the p = 0 universe, which has half-integer
{, on even links and integer £, on odd links. (Recall that the two universes are exactly
degenerate at m = 0, so it suffices to focus on one of them.) To facilitate the strong coupling
expansion, we rescale the Hamiltonian and then write it as the sum of a diagonal term
hg and a small perturbation V:

gym
H=="—"h h=h Vv 5.1
\/5 ) o+xV, ( )

8In the strong coupling expansion for the Schwinger model [36], it is possible to include a non-zero fermion

mass in the unperturbed Hamiltonian. This cannot be done for this model because, unlike in the Schwinger
model, the fermion mass term does not commute with the gauge kinetic term.
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m U €m degeneracy
0 5055 1) @13050... 50) e =3N 2%

1 [s0..-sx ) @130...305130... 30) a=3N41 N22 !

2 | Iso---sx ) ®130...305140...305130...J0) | o = 3 +2 | N(N —2)25 7

Table 2. The lowest few energy levels in the p = 0 universe for the lattice strong coupling expansion
of the SU(2) theory.

where
1 N1 ; N-1
hozi ZL’I{?L;?7 V=—§ ZXﬁU;?BXfH- (5.2)
n=0 n=0

We will expand the eigenvalues and eigenstates of h around z = 0.

The unperturbed states are eigenstates of hg. Since hg is just the gauge kinetic term
and does not act on the qubit factor in H = Hqunits ® H', the eigenstates will be at
least dim Hqupits = 9% —fold degenerate. The lowest three energy levels €, (defined by
ho |¥m) = €m|¥m)) are given in table 2. In particular, the lowest level is obtained by
minimizing the SU(2) spins ¢, on the links. The first few excited levels are obtained by
replacing some of the instances of £, = 0 with £, = 1, and each such replacement increases
e by 1.7

Let us now focus on obtaining corrections to the lowest energy level ¢g. To deal with
the 2% -fold degeneracy, we will apply Brillouin-Wigner perturbation theory [39] which we
will now review in the context of our perturbation problem.

We define the projection operator onto the degenerate subspace of energy ¢g by

PZH@‘%707%a07%70><%a07 70’%70’ (53)

eI

The Brillouin-Wigner perturbation theory starts with the observation that the eigenvalue
equation (hg + xV)|¢) = £|1) can be used to reconstruct |¢) from its projection onto the
degenerate subspace of energy ¢, provided that we know the eigenvalue £. The reconstruction
is given by!"

) = (1 —2ReV)"'PlY),  Re=(E—ho)"'(1—-P), (5.4)
Using this, we can recast the eigenvalue problem as
Pleg +zV (1 — zReV) P |¢) = EP ) . (5.5)

In this presentation, we can solve for the projection P |¢) rather than for the full eigenvector
|). The eigenvalue £ appears explicitly on the right and also on the left within Rg, so we

9The lowest level where we can replace an £, = 1/2 with ¢, = 3/2 is the fifth excited level.

19(5.4) can be derived as follows. We first act with 1 — P on the eigenvalue equation and obtain (1 — P)(€ —
ho) |¥) = (1 — P)zV |¢). Making use of the fact that the operators 1 — P and £ — ho commute, we have
(€ —ho)(1 — P) |¢) = (1 — P)xV |¢). Multiplying both sides by (€ — ho) ™", this gives (1 — P) |[¢)) = 2RV |).
Separating out P [¢)) on the Lh.s., we then have P |¢) = (1 — zR¢V) |¢). Lastly, multiplying both sides by
(1 —zReV) ™" we obtain (5.4).
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must solve perturbatively in x for both £ and P |¢). Once £ and P [¢) are known to the
desired order in x, one can recover the eigenstate in the full Hilbert space by applying (5.4).
Depending on the details of the perturbation V, the initial degeneracy may be partially
or fully resolved at higher orders in z.

To proceed, we consider the power series ansatz

E=EO0 4260 4 226@ 4 ... Py = [0 + 2 [pM)y + 22 |3y ... (5.6)

The projected operator in the eigenvalue equation (5.5) makes no reference to the gauge field
configuration and can be viewed as an effective Hamiltonian for the factor Hupits of the full
Hilbert space that describes the N/2 qubits. Indeed, we can write

Pleg+2zV(1L —2RV) Y|P =P [eo +2h W 4+ 22h@ £ 2306 4@ 4 O(m5)] @1, (5.7)

with the effective Hamiltonian given in the square bracket of (5.7), and

1-P
E—ho

PV o1)=pPVP, PHPe1)=PV VP,  ete (5.8)
In (5.8), we postpone expanding & as in (5.6).

At first order, we need to determine PV P by projecting onto the ground states, acting
with V', and then projecting again onto the ground states. The projectors P and 1 — P both
act on Hqubits as the identity, so the nontrivial action on the qubits comes only from V. Let
us act with PV P on the state |x) ® [3030...30). Using the rules explained in section 3.4,
the actions of the terms of the hopping operator are

)

2k
l n 3
(-3 AU ) b 10§ 0. ==J(Z ) @1 030...) (5.92)

7: £2II€_I+1 \/g
<_2X124k+1U2/}c§1X23k+2> 1@l..5 0 5..)= T(XkaJrl )@l 315..) . (5.9b)

For the first order term, PV P, the second factor of P will annihilate the right hand side
of (5.9b), so only (5.9a) contributes, and we find

3N/2—1
h<1>=—Z > Z. (5.10)
k=0

We can now proceed to compute the second order term PV%VP. This time, after
acting with VP, it is only the right hand side of (5.9b) that survives the action of 1 — P.
We then have to get back to the ground state by applying the perturbation V again, which
means we have to act with the same odd hopping operator. From

] 1-P 1
(—2X§k+1U5}c§1X§k+2) S—iho (—2X§k+1U5}cﬁ1X2Bk+2) ) ®1... %0% )
3 . (5.11)
we find in total
3N 1
(2) — PE_ o (5.12)
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We can continue this program to higher orders. The third and fourth order terms are

N/2—1 N/2-2

3(3N 8) 3 5, n 1
h3) = Zy, — — SR D ¢ (WY [— 1
Z kT 39 P (=F) "z kA k41 (E—e)?’ (5.13)
g N[22 9 1
h) = 61 S XpXpm | Y. Zw| - 7JTXN/2 1X0 >z (E—a)?
k=0 K £l k1 k£N/2—1,0 €1
IN(N —2) 1 ON 1
i 5.14
T2 B (E—e) 18(E-a)? (5:14)
N/2-1 2 N/2-1
9(3N ~16) 1 3 1
_ Z —+ — Il —— .
" ( Z k) R kz::o E-a)

Note that the first-order term breaks the degeneracy of the ground state, but still leaves the
first excited state %—fold degenerate. The second-order term does not break any degeneracies,
and so it is only at third-order when the first excited state becomes unique. Using (5.5),
(5.6), (5.7), and the expressions for h() above we can solve for the two lowest eigenvalues
up to fourth order:

3N 3N 3N , 3N 4 5IN ,

& = 6 3% 3 35 % 13 + O(z), (5.15a)
3N 3 3N , 3(N-6) 5 3(17TN —64)
=2 2N —4) - g2 A P ST TR 5. 1
& 16 890( ) 35 % + 55 T 13 x4+ O(2”) (5.15b)

The bare eigenvalues are extensive in the system size, but the gap to the lowest excitation
is an intensive quantity

B 3.9 5.3,

We can now extrapolate this result derived in the strong coupling limit z < 1 to the

+0(®). (5.16)

continuum limit = > 1 using a Padé approximant. From (5.1), we see that the continuum
limit of the gap E1 — Ey = WTIX(SS is finite only when 0& scales as ~ y/x. This constraint

allows for several different approximation schemes. We found the most accurate result by

4
applying a (0,2) Padé approximant to (%) , giving

1/4 1/4
() -F(g) e o

This gives a continuum estimate for the energy gap of

3 3/4
E1 — Eo ~ gyM (2> ~ 1.355 agyM - (5.18)

This result agrees well with the lattice results of section 6, along with the results of DLCQ
given in (6.6).

We can also estimate the vacuum expectation value of the fermion bilinear operator,
(tr 1)), using the strong-coupling expansion. In the continuum, we have

1 0F,
L Om m=0

(tr o) = (5.19)
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On the lattice, this can be computed from the expectation value of the mass operator using
the identification

- 1 i N1
<tI‘ qu/)) = CL7N <0’HmaSS|0> ) Hiass = _5 Z (_1)nX£U7?BX§+1 . (520)
n=0
To compute the expectation value (0| Hmass|0), we need the ground state in the full Hilbert
space, which can be computed using (5.4). To third order, we find

_ 3 3 3 3

The identification (5.20) requires that N =1 (0| Hyass|0) ~ % at large z if we are to have
a finite continuum limit. Hence, it is appropriate to approximate the sixth power of the
right hand side of (5.21) using a (0,3) Padé approximant. Such an approximation gives
an estimate of (trip) ~ —0.33gywm.

6 Numerical results for SU(2)

Here we use the formulation of section 3.4 to explicitly calculate the low-lying spectrum of the
lattice Hamiltonian for the SU(2) theory. In section 6.1, we show that we recover the expected
energies for a pure SU(2) gauge theory on a circle when the adjoint fermion mass is made large.
In section 6.2, we study the spectrum of the massless theory in detail, showing good agreement
with results obtained from DLCQ [16, 32] and with the strong coupling expansions given in
section 5. Finally, in section 6.3 we turn on the adjoint mass and show further agreement
with DLCQ in the trivial universe, along with new results for the nontrivial universe.

For all the exact diagonalization results shown in this section, we use PETSc and
SLEPc [40-43].

6.1 Large mass limit

In the continuum theory in the m — oo limit, we expect the adjoint fermion to decouple,
leaving behind a pure SU(2) gauge theory. The energy levels for this theory on a circle
of length L are given by

2
L
By, = 9“2\4 0l +1). (6.1)

In the p = 0 universe we have £ = 0,1,..., and in the p = 1 universe we have ¢ = %, %, e
Therefore, the energy gaps above the vacuum will be

2L
AE, =E, — Ey= gY;/[ n(n+1) (p = 0 universe), (6.2a)
2
L
AE,=FE, 1 - F1 = ng[ n(n + 2) (p = 1 universe), (6.2b)
2 2
where n = 1,2,....

As explained in section 4.3, the two universes of the N, = 2 theory are connected by
the chiral symmetry transformation V which acts on the Hamiltonian by flipping the sign
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Figure 1. For the adjoint mass in a range of large values, the lowest energy gaps reproduce those of
a pure SU(2) gauge theory, given in (6.2). The lattice spacing is fixed to gyma = 0.04, and the energy
gaps are normalized by %g%ML so we can compare lattices of sizes N = 6,8, and 10. The maximum

link representation is fy.x = 4, which allows us to see continuum energy levels corresponding to

representations up to spin % When |m| = a~!, we can understand this behavior analytically as

coming from alternating links of the lattice, with the types of representations appearing on the links
determined by the sign of m (see appendix D).

of the mass. If we restrict to the p = 0 universe and take m — oo then one will recover the
trivial spectrum (6.2a). On the other hand the chiral transformation V ensures that the limit
m — —oo in the p = 0 universe is equivalent to m — oc in the p = 1 universe and thus will
result in the non-trivial spectrum (6.2b) (see also discussion in appendix D).

In figure 1, we show that this behavior is reproduced in our lattice theory. We take
the lattice spacing to be gyya = 0.04 and use lattice sizes of N = 6, 8, 10, for a large range
of masses. We find that the energy gaps precisely reproduce the sequences in (6.2) up to
the level with spin %, which is related to the link representation cutoff of ¢, = 4. For
m > 0 we have the sequence for the trivial flux tube sector, and for m < 0 we have the
sequence for the nontrivial flux tube sector.

Note that the spin % level only has the correct continuum energy at m = —25gyy = —1/a.

1

In fact, we can understand all of these states at |m| = a™" via perturbation theory on the

lattice. This is discussed in appendix D. Numerically, we find that the convergence away

1

from |m| = a7 improves rapidly with increasing N and {pax.

6.2 Massless theory

We will now set m = 0 and aim to study the spectrum of the SU(2) gauge theory on a
circle of length L = Na. In figure 2, we give the spectrum for N = 12 sites as a function
of the circle length gyyL, for the p = 0 universe. (The spectrum of the p = 1 universe is
identical to that of the p = 0 universe, with bosons and fermions swapped.) We find that the
low-lying spectrum is fairly well-converged in N even on this small lattice, so that figure 2
is representative of the large N spectrum.
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Figure 2. The low-lying spectrum of the lattice Hamiltonian for m = 0 as a function of gyy L, for
N = 12 sites with periodic boundary conditions. The spectrum on a small circle consists of equally
spaced levels of a harmonic oscillator with frequency w = %, and these levels are marked with black
lines. The Padé approximant (5.17) to the strong coupling expansion for the lowest fermion mass is
plotted in green.

The spectrum in figure 2 can be understood analytically at small and large gymL.
First, in the limit gypm L < 1, the dynamics reduces to that of the gauge holonomy. In the
continuum theory such an analysis was performed in [13] in the case where the fermions obey
anti-periodic boundary conditions and in [14] in the case of periodic boundary conditions. In
the case of periodic boundary conditions, one finds the spectrum of a harmonic oscillator
with frequency ﬁ gym- This equally-spaced harmonic oscillator energy levels are marked
with black lines in figure 2.

In the limit gyyL > 1, for fixed IV, we can use the strong coupling expansion developed
in section 5. The Padé approximant (5.17), gives the gap estimate

5 . 1/4
E\ — Ey =~ gymz () ; (6.3)
2\ 5 + ga?

which provides a very good approximation for the gap for all gyya 2 0.5. In figure 2, we
plot the estimate (6.3) using a dashed green line.

Between the small-circle and strong-coupling regimes, we see that the lowest fermionic
and bosonic excitations start developing approximate plateau regions. We found that these
plateau regions extend to larger and larger values of gyyIL as we increase IV, as shown in
figure 3(a), and we believe that it is these regions that we should extrapolate to large N in
order to extract the infinite-volume continuum spectrum. For the lowest fermionic excitation,
a proxy for where the plateau occurs is the local maximum, while for the lowest bosonic
excitation, the analogous proxy would be a local minimum. The series of these local maxima
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(a) For a given lattice size N, we estimate the mass of the lowest fermion and boson for the p = 0
universe of the m = 0 theory using local extrema of their energies as functions of the circle length.
These extrema are marked with stars.
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(b) The masses of the lowest fermion and boson for the p = 0 universe of the m = 0 theory extrapolated
to N — oo are as in (6.4) and (6.5) respectively.

Figure 3. The extraction of the lowest fermion and boson masses from lattice spectra.

and minima for N = 6, 8,10, 12 are marked with stars in figure 3(a). Extrapolating, we find
My/gym = 1.35 (6.4)
for the lowest fermion bound state mass in the continuum limit, and
My/gym ~ 1.83 (6.5)

for the lowest bosonic excitation (see figure 3(b)). The lowest fermion and boson masses
were also calculated using DLCQ in [16], and in these units were

MPCD g~ 135, MY /gy ~ 185, (6.6)

so the two methods agree well.
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Figure 4. The vacuum expectation value of the mass operator tri in the p = 0 universe as a
function of the lattice spacing for N = 6, 8,10, and 12. By extrapolating to gynma — 0 from the region
converged in N, we obtain a continuum estimate of (tr¢v)/gym = —0.37.

One advantage of the equal-time quantization is that we have access to the vacuum state
and its properties. As an example, in figure 4 we plot the chiral condensate (tr 1/_Jw> in the
p = 0 universe as a function of the lattice spacing for several values of N. Extrapolating
to a — 0 from the region where the results are converged in N, we obtain a continuum
estimate of (trew)/gym ~ —0.37. For the p = 1 universe, we would find the opposite
sign. This is in relatively good agreement with the value of —0.33 obtained from the strong
coupling expansion in section 5.

6.3 Massive theory

Once we turn on a mass m for the adjoint fermion, we can continue to extract the lowest
excitations above the vacuum by extrapolating plateaus like those of figure 3(a) to N — oc.
In figure 5, we plot the mass of the lightest particle with fermion parity opposite that of
the vacuum,!! extracted from the lattice spectra as a function of the adjoint mass for both
universes. For m > 0 in the p = 0 universe, we see that there is good agreement with DLCQ
at m = 0 and at sufficiently large mass. For m < 0, DLCQ instead agrees with the results
from the p = 1 universe. The discrepancy in either case near m = 0 can be attributed to
the light-cone Hamiltonian only depending on m?. Thus, when DLCQ is not completely
converged to its continuum limit, it will struggle to capture the linear behavior near m = 0
that is related to the non-vanishing expectation values of the mass operator.

We see in figure 5 that the gap in the p = 1 universe closes at m/gyy = 7 /2 =
0.56, as expected from the presence of the massless Goldstino of spontaneously broken
supersymmetry [35].12 Likewise, the gap closes in the p = 0 universe at m/gynm = —r~1/2,

HWith our relatively small lattices, we do not yet have sufficient precision to extract the lightest particle
with fermion parity equal to that of the vacuum.

2The discontinuity of the derivative is because the ground state becomes fermionic for m/gym > a2,
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Figure 5. For adjoint masses —gyn < m < gym, we compute the energy gap in both universes using
the same method as for the massless theory. For m > 0 in the p = 0 universe, or m < 0 in the p =1
universe, we can compare this with the lowest fermion mass computed using DLCQ in [16]. We obtain
excellent agreement, except at small (m/gyy)? where the mass dependence is known to converge
slowly in DLCQ. We also see the gap closing near m = mgygy in the p = 1 universe, or m = —mguysy
in the p = 0 universe.

At these points, the IR sector should be described by one free massless Majorana fermion
on the worldsheet of the confining flux tube [35].

7 Discussion

In this work, we introduced a new Hamiltonian lattice gauge theory model for adjoint QCDy
with gauge group SU(N.). As we explained in section 3, this lattice model uses staggered
Majorana fermions. The resulting lattice Hamiltonian is given by (3.3), and it should be
supplemented by the Gauss law constraint (3.5).

In section 4, we analyzed the symmetries and the anomalies of this lattice model. We
found lattice analogs of the Z[Ql] X (Z2)c x (Zg9)Fr symmetries present for all m, and, for
m = 0, we also found a lattice analog of the (Zs), axial symmetry, which is represented
by translation by one lattice site. Interestingly, the lattice model exhibits analogs of the
mixed 't Hooft anomalies of the continuum theory, and these mixed anomalies have various
implications on the spectrum both for m = 0 and for m # 0. In recent literature, there
have been interesting investigations of lattice non-invertible symmetries [20, 33]. We leave
further related studies of our lattice model for future work.

In sections 5 and 6, we then studied the N, = 2 theory in more detail, both analytically
in the strong coupling expansion and numerically using exact diagonalization. For m > 0 in
the p = 0 universe, or for m < 0 in the p = 1 universe, our results are in good agreement

Had we plotted the energy difference between the lowest fermionic and bosonic states, there would be no such
discontinuity.
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with the DLCQ spectrum computed in [16]. The m > 0 spectrum that we find in the p =1
universe is new, and it would be interesting to reproduce it using DLCQ. Its main feature is
that the gap closes at m = mgysy as expected from the appearance of a massless particle
due to spontaneous supersymmetry breaking. As explained in section 4, the spectrum of
the p = 1 universe for given m matches that of the p = 0 universe at —m (with bosons
and fermions swapped).

Stepping back, there has been renewed interest in the Hamiltonian formulation of lattice
gauge theory. One of the reasons is that, for theories in 1 + 1 dimensions, it is possible
to apply tensor network methods to achieve high numerical precision. Another reason is
the possibility of quantum simulations using specially designed experimental devices. Such
simulators have been constructed for the lattice one-flavor Schwinger model using, for example,
trapped ions [44]. This model contains one Dirac, or equivalently two Majorana, fermion
degrees of freedom per lattice site. The next-simplest model appears to be adjoint QCDo
with gauge group SU(2), whose lattice implementation we constructed in this paper. This
model is also gapped and contains only three Majorana degrees of freedom per lattice site.
While in this paper we carried out exact diagonalizations of this model on a periodic chain,
it would be interesting to also study our model using tensor network methods. Such a study
would hopefully lead to significantly better numerical precision. We also hope that the
relative simplicity of the SU(2) model can eventually allow an experimental construction
of a quantum simulator.

Furthermore, it is highly desirable to carry out a numerical study of our lattice model
with gauge group SU(3). Here, in the continuum treatment of the massless theory, there are
4 topological sectors [9, 14]. Two of them have zero triality; in our lattice model they are
related by a lattice translation by one site. The other two sectors have trialities 1 and 2;
they correspond to a flux tube wound around the circle in the two possible directions. On a
lattice, the ground states in these sectors are not degenerate with the ground state of the
zero triality sector. Therefore, unlike in the SU(2) model, the vanishing of the string tension
in the SU(3) theory with a massless adoint Majorana fermion [7, 9, 10] is not automatic in
our lattice model: it may require a careful numerical extrapolation to the large volume limit
and perhaps a fine tuning of the 4-fermion operators in the lattice Hamiltonian. In view of
having 8 Majorana fermions per lattice site, this model is certainly challenging numerically,
but we hope to carry out its initial studies in the future.
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A Quantum particle moving on a group manifold

A.1 Lagrangian and Hamiltonian

Consider a quantum particle moving on a group manifold G, with Lagrangian

1 . .

L=——t|UUTtoUT, (A1)
g

where U is a group element. Suppose we parameterize U using angular coordinates 8#. Then

i(0,U)U ~!is a Lie-algebra-valued vector field on the group manifold, so it can be written

as a linear combination of the Lie algebra generators T, with coefficients el’;‘ being frame

vectors on the group manifold:

QU = et et =2t [T4i(0,U)U] . (A.2)

Similarly, iU_lauU is also a linear combination of the Lie algebra generators, with different
coefficients f,‘f‘, which form another set of frame vectors on the group manifold:

U OU) = fiTA, il =20 [TAUN(9,0)] (A.3)

With the normalization tr(TAT5) = §48/2, one can then show that the two sets of frame
vectors are related to each other via the matrix U4AP = 2tr(TAUTBU ), in particular

e =UAPEY, i =UPdel (A4)

We can rewrite the Lagrangian in terms of the angles 0* as

Voapu age L apueasw
[::27926#0“6”9 :@f'u 9“f,,9 . (A5)

As usual, we can define the canonical momentum (the minus sign is for later convenience)
OL
Aok
operators (which in our lattice setup become the left-acting/right-acting electric fields) are

—my = = g%eﬁefé” = g% f:‘ fA6”. The left-acting/right-acting canonical momentum

defined by contracting m, with the corresponding inverse frame vectors. In particular, we
write 7, = e/‘;‘LA = f;;‘RA, from which we can solve for L# and R4:

LA = éMAﬂ'H, RA = f“Aﬂ#, (A.6)

where é*4 and f*4 are the inverse frames obeying é’“AeE = §48 and frA ff = 648 respec-
tively. Because of (A.4), we also have

LA =UABRE,  RA=UPALP, (A7)
The Hamiltonian is then given by the standard formula H = %9“ — L, which gives
g’ 9
H=2I11" = 2 R'R". (A.8)
2 2
Canonical quantization requires [—m,,0"] = %5/’: Using (A.6), this implies the relations

LA U] =T4U, [RAU]=UT". (A.9)
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A.2 Properties of the operators L4, R4, and UAB

From (A.9), the definition U4 = 2tr(TAUTBU1), as well as the algebra obeyed by the
generator

(T4, 78] = i fABCTC | (A.10)

we can derive the various commutation relations

[LA,LB] — _,L-fABCLC’ [RA,RB] :’ifABCRC,
[LA UBC] — _,ifABDUDC [RA UBC] — ifACDUBD ) (All)
Note that while R* obey the same algebra as the generators, the L obey it with an extra
minus sign.

UAB

For the operators we also have the relations

These relations follow directly from the definition UAB = 2tr(TAUTBU 1) as well as the

completeness relation X4 = 2tr(XT4) for any quantity in the adjoint representation.
Using (A.12), one can show that L4 = UAPRP is consistent with the commutation

relations (A.11), and moreover that the left-acting and right-acting generators commute:

LA, RP]=0. (A.13)

A.3 Hilbert space for G = SU(2)

For a general group G, the Hilbert space consists of normalizable functions on the group
manifold, which, by the Peter-Weyl theorem, can be identified with the space of matrix
elements in all irreducible representations of the group. Let us focus on G = SU(2), where
these are normalizable functions on the three-sphere. The Hilbert space splits as

He @ VDV

Z
e+

(A.14)

where V) denotes the 2¢ 4+ 1-dimensional vector space corresponding to the spin-£ rep-
resentation.

To construct the states explicitly, let |¢,m) be the standard basis of simultaneous
orthonormal eigenstates of T4T4 and T°:

TATA 4, m) = €0+ 1) [,m) ,  T?[4,m) =m|f,m) . (A.15)
Note that for a general generator T, which in the spin ¢ representation can be written
as a matrix Tfm,, we have!3

T4, m) = T4 |6, w') . (A.16)

131f we write a general state in the spin-¢ representation as ¥ = am |¢, m), then T = T4

w G [, m). Note

that the ordering of the indices of T is swapped compared to (A.16).
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We can then consider the basis of functions on SU(2) to be

20+ 1
Yom,me(U) = \/;@,mL\UM,mR). (A.17)

It can be checked that these functions are orthonormal with respect to the Haar measure
du(U) on SU(2):

/d:u(U) qu’,m’L,m’R(U)*\Ij@,mL,mR(U) = 664’5mLm’L5mRm’R : (A'18>

Starting with 7, Uy, mp(U) = Yom, mp (10,U), we can show that the angular momentum
generators act as

LAy, mp(U) = Upm, mp(TAU) RYy i, mpn(U) = Yo, mp (UTA). (A.19)
Given (A.16), we then have
A A A A
LWy mp = TmLm’L ‘ij,mme ’ RV mp = Tm’RmR\Ij@,mL,m’R : (A~20>

In particular, this relation with A = 3 shows that Wy, w, are eigenstates of L3 and R3
with eigenvalues my, and mpg, respectively. Note that the relations (A.20) are consistent with
the commutation relations in the first line of (A.11).

B Decomposition of the spinor representation

In our lattice model for the SU(N,) gauge theory coupled to Majorana adjoint fermions on
N sites, the Hilbert space of the fermions before imposing gauge invariance transforms in the
spinor representation of so(N (N2 — 1)). This representation is reducible into the sum of two
half-spinor representations, which corresponds to the decomposition of the Hilbert space into
bosonic and fermionic states, as explained in section 3.3. Here we will ignore the reducibility
of the spinor representation of so(M) when M is even, and denote this representation by
SPIN(M). We denote the defining vector representation of so(M) by VEC(M ), and the adjoint
representation of su(M) by ADI(M).

To construct gauge-invariant states, we need to understand how SPIN(N (N2 —1)) branches
under

su(N.)N < s0(N2 — 1)V < so(N(N? - 1)). (B.1)

The embedding is fixed by requiring that VEC(N?2 — 1) branches into ADJ(N..), and that
VEC(N(N2—1))+ (VEC(N2—1),1,...,1)®(1,vEC(N?~1),...,1)®---®(1,1,...,vVEC(N>—1)).
(B.2)

We can start by understanding how SPIN(N(N?2 — 1)) branches under the embedding
50(N2 — 1)V < s50(N(N2 — 1)). In an orthogonal basis, the weights of VEC(M) are

(0,0,...,11,...,0), (B.3)
|M/2]
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and additionally (0,...,0) if M is odd. The condition (B.2) tells us how to map the N(NQE_I)

weights of so0(N (N2 — 1)) into the NLN%_IJ weights of s0(N2 — 1)V, The projection matrix
takes the form

Py = (ﬂNL(Ng—n/zJ ONL(N3—1)/2JxN/2) (Neceven), Py =1yn2_1y2 (Ncodd),

(B.4)
where 14 is the d x d identity matrix and 0,,x, is the m X n zero matrix.
In the same basis, the weights of SPIN(M) are
1 1 1
-t k= ). B.
(£5:%50%5 ) (B.5)
[M/2]
Using (B.4), we find
2N/2 N,
SPIN(N (N2 — 1)) — ¢V spin(VE — 1)V (B.6)
1 N, odd

Now we can work out the branching of SPIN(N2 — 1) under the embedding su(N.) —
s50(N2 — 1). Since the vector of so(N2? — 1) has to branch into ADJ(N,), the projection
matrix can be taken as

Py, = (621 Qg GN,(N.~1)/2 O(Nc—l)xL(Nc—l)/2J> , (B.7)

where the @; are positive roots of su(N.) in the orthogonal basis. Using this projection, we
find that the weights of SPIN(N2 — 1) map to

{ﬁ,ﬁd’l,ﬁd’g,...,ﬁz&i}, (B.8)
7

Ne—1)

where p = %Zl a; is the Weyl vector of su(N.), each with multiplicity 21( /2] coming

from the zero columns in (B.7). Not counting this multiplicity, the set of weights in (B.8) are

precisely those of the representation R defined in (3.14) whose highest weight is p. (One can

check that this representation has dimension 2Ve(Ne=1)/2 anq there are precisely this many

weights in (B.8). Thus, under the embedding su(N.) < so(N2 — 1), we have
SPIN(N? — 1) — 2l(Ne=1/2IR | (B.9)
Combining (B.6) with (B.9), we find
SPIN(N(N2 — 1)) = 2VWVe=D/2(R R,...,R) , (B.10)

as in (3.13).
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C The action of O,, on gauge-invariant states

In this appendix we explain the derivation of (3.28), namely how the operator O, =
SAUABSE | defined in (3.27a) acts on the gauge-invariant states (3.24). Since O,, only
involves the states on sites n and n + 1, let us strip out the factors from (3.24) that do

not involve m, or my,4+1, and define

Cin_1yRolnrt 1 1 b 1%0 Y |0n, My, mpR)
(n—1)R>*n>»*(n+1)L __ n—154tn ngtntl ny tnly n
= -, —,m C C S
¢m(n71)R,m(n+1)L mn,Emn:+1,’27 n> |27 n+1> My 1) RMnMp L~ My RMp 1M (54 1)L 2&1"’1
My, MR
(C.1)

In other words, we only impose the Gauss law on sites n and n + 1 and consider the quantum
numbers m, 1)z and m,_1;, as fixed. The action of O,, on (3.24) can be straightforwardly
inferred from its action on this state.

In order to declutter (C.1), let us use the simplified notation

my — my, Mn+1 — MY
Un—1,Mn_1)r) — (b, M),
(bp, My, mpg) — (6, mp, mp), (C.2)
(Un+1, mpy1yr) = (brymy),

U, — U, 0, — 0 = S{tUuBsh .

Thus, we consider the state

1 1 Ry, ¢lg, {,mp, mp
Gblr = 3™ | my) |5, ma) Cnd s, |tmp,mp)

B mi,ma, 2 2 MMM E = MR 2 M \/26 + 1 ’ (03)

mr,mpgr

Writing the Clebsch-Gordan coefficients in (C.3) as matrix elements, passing to the

- . . . 0,00 0,00
position representation for the bosonic state, and defining 1" = dom, mpme |01, ™), we have

1 1 1
Q;‘&ZT‘(U) o2 Z |€l7ml> |§7m1> <€l7ml7 §7m1|£amL>
T mi,ma,

mymyp . mpg (C4)

1 1
X <£7 mL|U|€7 mR> ’57 m2> <£7 me, 57 m2|£7"7 mT‘> .
To simplify the following analysis, we can pass to a new basis [¢,mg) — U~! |¢,mg), |%, ma) —
Ut |%, ma), |€r,m,) — U~ |f.,m,), where U~! acts in the appropriate SU(2) representation.
After this change of basis, we have (¢,mp|1|{,mg) = dm,my, S0 (denoting m;, = mp = m)

1 1 1 1
bblr = O,my) | = O, my, =, m|l,m) | = 0,m, =, mally,m,) .
my 27T2m;n2’| s l>|2am1><l7 l72>m1| ) >’27m2><a 72am2| Ty r> (05)
m;,m
The operator O in (C.2) whose action we want to determine simplifies to O = S{*54.
The equation (C.5) has the manifest structure of addition of three angular momenta,

for which (¢, ® %) ® % — I ® % — £.. In other words, denoting by jg, jl, jg, f, J.. the
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angular momentum operators acting on the states with magnetic quantum numbers m;, my,
ma, m, and m,, respectively, we have

J=Ji+ A, J=J+. (C.6)

In standard notation, (C.5) can also be written as

1 1
ZZ7Z’€T‘ = g 67
m T o |<( 2%

and we would like to determine the action of the operator © = Jj - Jo. Since O = %(J122 —
J2 — J2) where Jig = Jy + Js, there is another way of writing the state thy, in which the
action of O is trivial, and where we first multiply together the spin-1/2 states into states

of angular momentum s: 4 ® (3 ® ) = 4, ® s — Ly

YW (eéaé;&) y(él, (;;) s) tymy) (C.8)

where W are Racah coefficients. Acting with O on each term then gives a factor of
3 (s(s +1)— %), so in total we have

) (o) (©.7)

zl,e ¢

501

O@bﬁ{f’gr = Zf(&,ﬁr;é’,ﬁ) ﬁ{;ﬂl’g’", (C.9)
with
fll,e A )= Z (2s+1) (25—1—1)(26’4—1)1 [s(s—kl)—g} W(E 15 1'65) W(E EE 1'5’5)
Iytry Xty — 2 l2 T2; l2 7‘27 .

s=0,1 2
(C.10)

Note that for s = 0,1, we have 3(2s + 1) { (s+1)— %} = (—1)**12. In terms of 6j-symbols,
the equation above can also be written as

3 ) Loy (et
f(fz,fr;f/,f) — Z Z(_1)2€z+2€r+ +1\/(2€+1)(2€/+1){ ZT S} {%l 627“ S} . (C.ll)

1
s=0,1 2

Note that 2¢; must have the same parity as 2/,, so (—1)%*26 = 1. Moreover, we can
insert inside the sum in (C.11) the identity

1:2(23+1){

NI DO
I

i} . (C.12)

Then, using an identity that relates a sum over products of three 6j-symbols to a single

1 f33 1
i en

This is the expression for f that should be substituted in (3.28) in the main text.

product of two 6j-symbols, we can show that

ol
N

Fll, bt 0) = (—1)fl+f+€’+fr§\/(2e +1)(20 +1) {
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D Large mass limit on the lattice

We will now explain how the large mass limit m > gy considered in section 6.1 can also be
understood analytically in the lattice model, if we simultaneously approach the continuum
and heavy fermion limit as a=! = |m| > gym with L = aN fixed. Even for finite a, setting
a~! = |m| offers a significant simplification in the lattice Hamiltonian (3.3), because either
the odd or even hopping terms cancel depending on the sign of m.
We can begin with a positive mass m = a~!. The Hamiltonian reduces to
N/2-1

H=q1 . A 7AB B (QYMG)2
=a |— Z XokUok Xopy1 + 5
k=0

N
2 Z LSL;? = a_l[Weven + (gYMa)QWgaUge] :

n=0
(D.1)

In the limit @ — 0, we can treat the dimensionless gauge kinetic term Wyayge as a perturbation
of the sum of the fermion kinetic and mass terms, denoted Weyen.

Due to the cancellation between the fermion kinetic and mass terms for m = a~!, the
degenerate ground states of Weyen can be determined exactly. Writing out Weyen using the
basis (3.21), we find & terms

N/2—1
Weven = 2 Z 2, ® SSCUQIL}CBSiJrl . (DQ)
k=0

— 5AB

As detailed in appendix C, we can effectively set U. 2“}63 which leaves a simple Hamiltonian

of decoupled terms 27, ® SQL}CSQL}C 41 on every even link. The factor SQL}CS’Q‘}C 41 has eigenvalues
—% or % depending on whether the spin—%s are put in a singlet or triplet configuration.
Thus, the ground states will have the SU(2) spins arranged pairwise in singlets, and all
qubits in the s = +1 state.

This ground state space is infinitely degenerate because we also have to include the
representations on the links. If we fix the representation on one of the odd links to ¢ €
72, then the representations on all odd links are ¢ due to the Gauss law, and hence the
representations on even links are £ + % To find the explicit form of the state, we take the
2 x 2 Hamiltonian corresponding to the action of SﬁUﬁ‘}gB 5252 41 on an even link in the basis

{|...,€,€+%,E,...),L..,é,é— %,f,...}}:
2043 VA1)

7 I
S UAPSE | = \/4E((2£T+11)) 22—;_11 ’ (D.3)
20+1 4(20+1)

which follows from the matrix elements derived in appendix C. The eigenvector with eigen-

value —% is

A oA Cg+ 3 C£+ 1 +€ E
b - _ _ ’ [ - = _— D4:
S9155k 11 (C&_) 1 (C&_> , Co+ \ 1 10 cy, 140 (D.4)

Using these coefficients, we can write down the full set of degenerate ground states param-
eterized by the representation ¢ on the odd link as

NoSS o NS
0= 3 I I g, b ety ) L, 1) . (D.5)

mn::t%
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These states all have unperturbed energies of

3N
Weven |€> — _T |Z

). (D.6)
The matrix elements of the perturbing term are simply
N 3
(Wil ) = b0 [0+ 1)+ 3] (D.7)

from which we can read off the perturbed spectrum. After restoring the factor of g%,Ma, this
gives the spectrum (6.1) of the pure SU(2) theory. Since the ground states are parametrized
by odd link representations ¢ € Z, this gives the gaps (6.2a).

If we instead take m = —a~!, then we have a very similar problem, except the singlet
pairs are on sites (2n — 1,2n) and the degenerate ground state space is parametrized by
a representation ¢ € Z + % on an even link. We clearly recover the same splitting (D.7),
except with ¢ € Z + 3, which leads to (6.2b).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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