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1 Introduction and summary

A central outstanding challenge in Quantum Field Theory is to understand how the spectra
of gauge theories change from weak to strong coupling. In Quantum Chromodynamics, this
is the question of how a theory of quarks and gluons in the weakly-coupled ultraviolet limit
becomes a theory of hadrons in the strongly-coupled infrared limit. A rich model for this
kind of reorganization of a gauge theory spectrum is N =4 super-Yang-Mills (SYM) theory.
In this paper, we will study this theory with gauge group SU(N) and complexified gauge

coupling 7= %—F;g;, where gyn is the Yang-Mills coupling and 6 is the theta angle. (In our

numerical study we set § =0 for simplicity.) N'=4 SYM theory is a conformal field theory
(CFT) [1-5], so the quantities of interest include the scaling dimensions and operator product
expansion (OPE) coefficients (referred to below as the CFT data) of its various operators.
In general, these quantities depend non-trivially on 7, with the exception of the scaling
dimensions of supersymmetry-protected operators that belong to shortened representations of
the superconformal algebra [6-8] and also of some of the OPE coefficients of these operators [9].
As an example, the operator with the overall lowest scaling dimension is the superconformal
primary of the multiplet in which the stress-energy tensor resides, and its protected scaling
dimension, A =2, is independent of 7. This operator transforms as the 20’ representation
of the SU(4)r R-symmetry. For small gyn, the lowest unprotected operator is the Konishi
operator [10]. It is an SU(4)g singlet, and its scaling dimension starts at A=2+0(g3,,) at
weak coupling, with an expansion in g%M that is known up to four-loop order [11-15].

N =4 SYM theory also arises in one of the best-understood instances of the AdS/CFT
correspondence [16-18] (see [19-22] for reviews), which relates it to type IIB string theory



on AdS;x S® with complexified string coupling 75 = x+i/gs, and

Lt
ﬁ:gYMNa T=Ts, (1.1)
S

where £, is the string length, and where AdS; and S® both have curvature radii equal to L.
The relations (1.1) imply that AN'=4 SYM is described by weakly-curved supergravity at large
N and large 't Hooft coupling A = g2,,N, with the 1/N and 1/ corrections arising from loop
and stringy corrections to classical type IIB supergravity. At large N and A, the low-lying
single-trace operators of A"=4 SYM theory are dual to fluctuations around AdSs x S° [23]
and they all belong to short superconformal multiplets with protected scaling dimensions.
By contrast, the unprotected single-trace operators are dual to massive string states. Their
masses are of order 1//,, and consequently the AdS/CFT dictionary [16-18] implies that the
scaling dimensions of these operators are of order A'/# [24]. The dimensions of the multi-trace
operators are just the sums of their single-trace constituents due to large N factorization [25].

An important question in holography is how exactly the spectrum of the weakly-coupled
gauge theory, which is rather dense, rearranges itself into that of the weakly-curved supergrav-
ity, which by comparison is rather sparse. This question can be answered fully in the planar
limit, i.e. at leading order in large N and at fixed X. In particular, as we increase A, the
scaling dimensions of the unprotected single-trace operators and their multi-trace composites
cross those of the protected single-trace operators and their multi-trace composites and go
to infinity as A4 at large A. This picture can be made quantitatively precise using the
integrability of planar N'=4 SYM theory [26-36].! In figure 1, based on the integrability
results in [36], we plot the scaling dimensions of the unprotected R-symmetry singlet scalar
operators that have twist at most six in the free theory, showing the first few level crossings.
As we move away from the planar limit, these level crossings are replaced by level repulsions,
and the CFT data are also adjusted due to 1/N corrections. However, it has been difficult
to go beyond the planar limit using integrability,? or even to compute OPE coefficients in
the planar limit at finite A\.> Thus, no precise picture that includes level repulsion and 1/N
corrections is currently available. (See, however, [54] for an approximate treatment.)

In this paper, we use a numerical bootstrap® approach to investigate both of these effects
for the lowest unprotected operator, which, as seen in figure 1, interpolates between the Konishi
operator at weak coupling and a double-trace composite of the protected A =2 operator
mentioned above at strong coupling. Specifically, for a wide range of N and gy, we bound the
scaling dimension of this operator and the OPE coefficient with which it appears in the OPE
of two stress tensor multiplets. As we increase IV, we find that our scaling dimension bounds
approach the planar curve in figure 1, albeit slowly in the strong-coupling regime. Our bounds

!The single-trace spectrum was also recently used to learn about other aspects of the classical string such
as the Hagedorn temperature [37-42] and the AdS Virasoro-Shapiro amplitude [43-47].

2See [48] for some first steps in this direction.

3Planar OPE coefficients were recently computed using integrability for large charge operators [49]. The
spectrum of scaling dimensions has also been combined with crossing constraints to try to fix OPE coefficients
of general operators, which has been very successful for defect CFT [50-52], but more challenging for the full
SYM theory [53].

“See [55-58] for some reviews of the conformal bootstrap, following the original work [59], and [60] for a
discussion of level repulsion using the bootstrap in the Ising model.
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Figure 1. The low-lying spectrum (up to twist six in the free theory) of unprotected scalar
superconformal primary operators in N'=4 SYM theory, obtained in the planar limit from the
Quantum Spectral Curve as described in section 2 [36]. At weak coupling, the lowest unprotected
scalar operator is the single-trace Konishi. This operator crosses with a double-trace twist-four
operator, which becomes the lowest unprotected scalar at strong coupling.

are better approximated when we include non-planar corrections at strong coupling obtained
from a holographic large-N expansion [61-65] derived from analytic bootstrap [66, 67] and
supersymmetric localization results [68]. After accounting for these corrections, we find
that our bounds smoothly interpolate between the weak-coupling expansion for the Konishi
scaling dimension and the large-N expansion for the double-trace scaling dimension, thus
providing a non-perturbative completion of these two results that captures the level repulsion
between two operators. Our OPE coefficient bounds are also suggestive of this level repulsion.
Based on the fact that our CFT data bounds match the weak and strong coupling analytical

® we conjecture that they come close to being saturated by N'=4 SYM

6

approximations,
for all values of N and gym.

As in the original numerical bootstrap study of N'=4 SYM in [69, 81], in order to
derive our scaling dimension and OPE coefficient bounds, we impose constraints coming
from supersymmetry and crossing symmetry on the four-point function of four stress tensor
multiplet operators.” The value of N can be input through the conformal anomaly or using
the values of protected OPE coefficients derived from the 2d chiral algebra [83]. In addition,
as in our previous work [84], we also impose constraints that require certain integrals of the
stress tensor four-point function to take values that can be computed using supersymmetric

5This is distinct from the original A'=4 bootstrap study [69], for which one can check that, at least at
order 1/ ¢?, where c is the conformal anomaly coefficient, the scaling dimension bounds are nearly saturated by
a putative pure AdSs supergravity theory and not type IIB string theory on AdSs x.S® [70].

5In many other bootstrap studies, the numerical bootstrap bounds were also found to be nearly saturated
by physical theories such as the critical O(N) vector models [71-76], QED3 [77-79], and the 3-state Potts
model [80].

“Superconformal symmetry implies that the four-point functions of any four operators from these multiplets
are algebraically related to the four-point function of the superconformal primary [82].



localization. The latter constraints are the only ones that are sensitive to the gauge coupling
7.8 In particular, certain integrals of the stress tensor four-point function were related
in [61, 64] to mass derivatives 92 F|u—o and 0,0:02,F|n=o of the mass-deformed S* free
energy F(m,7,7), which can be computed using supersymmetric localization as an exact
function of 7 in terms of an (N —1)-dimensional integral [68].

The difference between the present work and [84] is that in [84] the numerical bootstrap
approach was limited to N =2 and 3 due to the fact that the (/N —1)-dimensional integral was
difficult to evaluate for large IV, while here we extend the analysis to N > 3. This extension is
possible due to the observation [85] that both 92 F|,,—0 and 0,002 F|n—o can be accurately
computed for all N and 7 in terms of just two integrals, by combining the large- NV, finite-7
expansion in [62, 63] with exact results for the non-instanton sector [64, 65]. In addition, we
introduce a slight variation of the numerical method in [84] that is more numerically stable
at higher bootstrap precision, albeit at the cost of losing rigorous positivity of bootstrap
functionals at large scaling dimensions. We give a detailed argument in section 3 that the
bounds we derive would coincide with the ones obtained by the more rigorous method of [84],
if the latter method were numerically stable enough to converge. It would be interesting
to extend this more rigorous method to N >3 in the future.

The rest of this paper is organized as follows. In section 2 we review the conformal block
decomposition of the stress tensor four-point correlator, the method by which localization
can be used to constrain the correlator, and the weak-coupling, analytic bootstrap, and
integrability results for local CFT data. In section 3, we introduce the variation of the
numerical bootstrap setup with integrated constraints that is more numerically stable, and
use this algorithm to compute bounds on CFT data for a wide range of N and 7, which we
compare to the various perturbative results. Lastly, in section 4 we end with a discussion of
our results and of future directions. Various technical details are discussed in the appendix.

2 Stress tensor correlator

Our numerical bootstrap analysis relies on consistency conditions imposed on the four-point
correlator

<811J1 (fl)sfzh ('fQ)SI?,JB (53)SI4J4 ('7_’:4» (2'1)

of the superconformal primary S7;(Z) of the stress tensor multiplet of the N'=4 SYM theory.
Here, ¥ is a spacetime coordinate, the indices I,J run from 1 to 6, and S is a symmetric
traceless tensor, as is appropriate for the 20’ representation of SU(4)r. As explained in
detail in [69, 81, 84], superconformal symmetry implies that (2.1) can be written in terms
of a single function 7 (U,V) of the conformal cross-ratios

U — x%2m§4 V = 1’%4.%%3 (22)

w1323, af3a3y
with #;; =Z;—Z;. In this section we start with a brief review of just the properties of
the function 7 (U,V') that are needed for the numerical bootstrap analysis. For additional

8As shown in [84], the 7-independent bounds of [69, 81] are strictly less stringent than the 7-dependent
bounds obtained using the additional supersymmetric localization constraint.



background, we refer the reader to [84] (and references therein), whose notation we follow.
Afterwards, we discuss perturbative results at small A=g3,;N and finite N, at large N
and finite A from integrability, and at large N and finite 7 from the analytic bootstap
combined with localization.

2.1 Properties of T(U,V)

The first property of T we will need is its transformation under the crossing symmetry of
the four-point function (2.1), which requires it to obey the two relations (see for instance
(3.31) of [64])°

V'V

More abstractly, crossing symmetry corresponds to permuting the insertion points &; of the

T(Y/,U):‘[;zT(U,V), T(U 1):V27'(U,V). (2.3)

four operators. Such permutations are isomorphic to the symmetric group S4. However, since
the even permutations that replace (¥1,Z2,3,%4) by either (Zo,Z1,Z4,%3), (T3,%4,21,T2), Or
(Z4,73,%2,21) are the non-trivial elements of a Zg X Zy normal subgroup of Sy that leaves the
cross-ratios (U,V') invariant, only the subgroup Si/(ZsxZs) = S3 C Sy acts non-trivially on
(U, V). This S3 subgroup can be represented by permutations of only (¥1,Z2,73) with fixed Zy4.
The crossing symmetry (2.3) of the function 7 can be restated more succinctly by saying that
T(UV)=T(U,V)U2/3V*/3 is Sz-invariant in the sense that 7(U,V) =T (U’,V') for any
(U,V) and (U’,V’) related by an Ss permutation. Indeed, the two relations exhibited in (2.3)
are obtained from the invariance of 7 under the transpositions (i,Zs,#3) — (Z3,22,71)
and (1, 79,73) — (Z2,21,73). Since these two transpositions generate the entire Ss crossing
symmetry group, the two independent crossing relations obeyed by T can be taken to be
those in (2.3).

The second property we will need corresponds to the decomposition of (2.1) into super-
conformal blocks. With respect to the s-channel OPE, T can be split as

T(Ua V) :,ﬁong(UaV)‘FEhort(Uv V) ) (24)

where Tgport is defined in (A.1) and, in the s-channel OPE, receives contributions only from
short representations of the superconformal algebra, while Tjong receives contributions only
from long representations. Tiong can be expanded as

ﬂong(Uu V) = % Z )‘2A,€GA+4,€(U7 V) ) (25)
Oae
where each term in the sum corresponds to the exchange of a superconformal primary On ¢
of spin £=0,2,4,... and scaling dimension A > ¢+2 together with all of its superconformal
descendants, the )\2A’£ are squares of OPE coefficients, and Ga ¢(U, V') are 4d conformal blocks
with scaling dimension A and spin ¢, namely

GadU,V) = == (hars()bas-2(5)—kaselEha e (),

: (2.6)
kn(z)=z29F1(h/2,h/2,h,z),

9One can obtain three more similar relations by combining the two relations in (2.3). All five relations are
given explicitly in (3.31) of [64].
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Figure 2. The integrals defined in (2.8), rescaled by ¢c= Y-=! and evaluated as a function of g%,;/4m

for N =2 through 11.

where U=2z and V = (1—2)(1—2).

The last property of T we will use is that certain integrals of it can be calculated using
supersymmetric localization. In particular, if F'(m,7,7) is the mass-deformed sphere free
energy, then [61, 64]

1 020.0:F
= & OmOrOrl" —7

8¢ 0,0:;F ’m:o 2[7], (2.7)
Fu(r,7) = 48C(3)c_1—|—c_28§1F’m:0 =1,[T],

Fo(r,7)

N2—1

1— is the conformal anomaly coefficient and the integrals are defined as

where ¢=

3sin20f(U,V)

U2 U=1+R272R0056’7
V=R?

L[f] =_72T/deeR

2 _
Idf]z—i/de@R?’sinQH(U1+U2V+U2)D1,1,1,1(U7V)f(U7V)

U=1+R2—2Rcosf

V=R?
(2.8)

and Dy111(U,V) takes the form

IR ]

11—z
1-z

Dy111(UV)= +2Li(z)—2Li(2)> : (2.9)

byt

Z—Z

! - (log(zi) log

The mass derivatives Fa(7,7) and Fy(7,7) are written in terms of the partition function
Z(m,1,7) =exp(—F(m,7,7)), which was computed using supersymmetric localization in [68]
for SU(N)!® A'=4 SYM in terms of the matrix model integral

2

dVa [T;<; af; H? (aij) -39 2
Z(mvTﬂi): = e Sm T |Z t(maTva”” ; (210)
N! H(m)N—l Hi;éj H(aij—i—m) ins 1)
where a;; = a;—a;, the integration is over NN real variables a;, i=1,...,N subject to the

constraint Y, a; =0, the function H(m)= e~ (HN™* G(14im)G(1—im) is the product of two

10Similar expressions are given in [68] in terms of other classical groups, but we only consider SU(N) here
for simplicity.



Barnes G-functions, and Zj,s is the contribution from instantons localized at the poles
of 84, whose explicit form is a complicated infinite sum over instanton sectors as shown
in [86, 87]. For low N, the mass derivatives in (2.7) can be computed in terms of N—1
numerical integrals by truncating the instanton expansion for Zi,e, which converges rapidly
in the SL(2,Z) fundamental domain

I7[=1,  [R(D)|<5. (2.11)

N |

For arbitrary N, it was shown in [85] how Fa(7,7) and Fy(7,7) can be efficiently computed
to high precision for any N and 7 by combining the exact expressions for the non-instanton
sector as computed using orthogonal polynomials in [64, 65] with the instanton sector of the

large N finite 7 expansion of [62, 63]. For instance, we can approximate Fa(7,7) as
Fo (T,T’) s
2 00 ==y 2 . 2 . 2
T2 52 e "z (1) w i—jr (=) [ W (i—j) [ W
- 29 / dw——— L [ ) | = S (1)) [ ) L
4c¢277 )y wQSinth “ N-1 <7r72>] ”2221( ) -1 <7r72> i-1 (71’7’2)]

1| 3N _ /3 \ 45 5 O\ 17 39 /3 _\ 4125 (7 _
+Z_w2[_24 E(27T7T)+28\/NE(27T7T)+JV; |:_213E(2,T,T>+ 215 E<2,T,T>:|

1 [ 1125 (5 _\ 99225 (9 _
+E —WE 577-77- +QTE 5,7’,7’ y
k#0

(2.12)

where 7 =71 +i7%. In the first line we have the exact expression for the non-instanton terms
from [65], which for all N is written as a single integral of a finite sum of generalized Laguerre
polynomials Lz(j )(:c) In the other lines, we write the instanton part (denoted by k #0)
of the large N finite 7 expansion from [62], which is written in terms of non-holomorphic
Eisenstein series

I(s—1)
E(S,T,%):2C(2S)T§+2ﬁ721_s F(5)2 ¢(2s—1)
. 1 | (2.13)
2TV S o (K|) K,y (277 ) €277
I'(s) zo 2

where the divisor sum o0,(k) is defined as op(k) =3 450 e &, KS_% is the Bessel function
of second kind of index s—1/2, and the instanton terms consist of the k#0 sum. The
infinite sum over k converges rapidly in the fundamental domain (2.11), so as shown in [85]
only a few terms are needed to match the exact expression for Fa(7,7) as computed by
taking numerical integrals for low N. We can similarly approximate Fy(7,7), except the
non-instanton expression from [64] is written in terms of two integrals for all N, while the large
N and finite 7 expression includes both Eisensteins as well as generalized Eisensteins [88]. The
explicit expression is quite complicated, and is given in the Mathematica notebook attached
to [85]. In figure 2 we plot Fa(7,7) and F4(7,7) as functions of 7 along the imaginary axis
for the various N we will consider in the following sections.



Our numerical bootstrap study combines the conformal block expansion (2.5) with the
crossing equations (2.3) and the integrated constraints (2.7). While the second crossing
equation in (2.3) is satisfied automatically by the conformal block expansion, the first
equation in (2.3) becomes

> X (VG4 (U V) =U'Garao(U V) + UV Topor (U, V) = UV Tapor (V,U) = 0.
One

(2.14)
Similarly, the integrated constraints (2.7) become
G uv _
5 1 [ 2G4 T - Falr ) =0,
One
’ (2.15)
G uv _
> Naels “455)] + 14 [Tenort) — Fa(7,7) =0.
Oae

The numerical values of I5[Tghort] and Iy [Tshort] are given in (A.2).

2.2 Perturbative expansions

The unprotected data in 7 (U, V) is all encoded in the scaling dimensions and OPE coefficients
of the superconformal primaries Op ¢ exchanged in the expansion (2.5). These quantities can
be calculated in a weak coupling expansion about the free theory point. In the free theory, the
lowest unprotected scalar is the Konishi operator, which has twist two. Its scaling dimension
and OPE coefficient are known to four-loop order in A= g%,;N [11-15], and non-planar %

corrections first appear at order \*. The expansions are

3 3x2 21ad A (1440 ($34+1) (5)+576((3) 2496

— _ 5
B20=2% 15~ T6m1 T 25670 6553673 +OW),
o L[1 XN A2(3¢3)+T) A3(8C(3)+25¢(5)+48)
207013 4n2 3274 25670
M (2488 +328¢(3)+72¢(3)2+980¢ (5) +1470¢(7) + 45 (8¢ (5)+7¢(7
N ( C(3)+72(3) 16;(4;8 CT)+ 75 (8¢(5)+7¢( ”)mw)].

(2.16)

As discussed in the introduction, the scaling dimensions of single-trace operators can
also be computed in the strict planar limit by using the integrability of planar N'=4 SYM
theory. The results are encoded in a finite set of equations called the Quantum Spectral
Curve [89, 90]. At finite A, these equations can be solved numerically [36], yielding scaling
dimensions such as those in figure 1.

At small and at large A, these equations can also be solved analytically. If we solve
the equations for the Konishi operator at small A\, we would recover Ay as in the weak-
coupling expansion, but without the non-planar corrections. Since these corrections only
enter at order A%, the integrability results agree very well with the weak-coupling expansion
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Figure 3. Large N integrability results for the unique twist two scalar operators Ag o compared for
N =2,10 to weak coupling estimates at 3 and 4-loop order, as well as with a (2,2) Padé resummation,
and also to the large A expansion. We plot in the fundamental domain of the complexified coupling 7
along the imaginary axis from 7= 0o to 7 =1, or equivalenty from gyy =0 to gym = V4.

at small A\. At large A\, one can also solve the equations of the quantum spectral curve
analytically [91-94], yielding

2 1/2-3¢(3)  1/2+6((3)+15((5)/2
2\1/4 + 2\3/4 2\5/4

Ngo=2)\1—2+ +O(N?2). (2.17)

In particular, the leading term indicates that this operator will acquire a very large anomalous
dimension at large A, and thus cross with the twist-four double-trace operator, as shown
in figure 1.

In figure 3, we compare these different estimates for the scaling dimension of the Konishi
operator. We look at N =2 and N =10 from gyym =0 to the self-dual point gyy = V4,
with 6 =0. As we expect, at weak coupling the four-loop expansion agrees well with the
numerical integrability result at finite ), since the two estimates agree up to O(A3). We also
plot a (2,2) Padé approximant to (2.16), which follows the finite X integrability results for
a much larger range of the coupling. At large A, we can also compare the expansion (2.17)
with the finite A\ integrability results. In figure 3(b), we see that the match becomes quite
good at sufficiently large g3,;N. However, the two curves only begin to match well around
when the scaling dimension exceeds 4, at which point the Konishi is no longer the lowest
unprotected scalar operator.

In this regime, the lowest unprotected scalar is instead the twist-four double-trace
operator. In the planar limit, the scaling dimension of this operator is exactly 4 at any value
of the coupling. Non-planar corrections have been calculated in an expansion at large N with
finite 7, by combining the localization constraints (2.7) with the analytic bootstrap. For the



CFT data of the twist-four double-trace operator, this yields [62, 63, 65, 95, 96]

4 135 3 1199 3825 5
Agg=4——+—— _E(2 _ E(2 O(c—5/2
0 PRV BT (2’T> 42¢ 32./275/209/4 (2’T>+ (),
oL 19 4059 (3 ) 1 [a 4059] (2.18)
= — — —. T - —_— .
07710 T 300c  1960v/27m3/2¢7/4 T\ 2 2 1960
40025 5
- E(= O(c™/?
1792y/275/2¢9/4 (2’T>+ ),

where the non-holomorphic Eisenstein series E(s,7,7) are defined in (2.13).

In the 1/c? term for )\421,0, the rational term comes from the contact term ambiguity
as fixed from localization in [65], and the coefficient a comes from the one-loop expression
in [95-97]. The calculation that gives the value of a is described in appendix B, and can

be carried out to any desired precision, e.g.

a~3.5897946432786394668 . (2.19)

3 Numerical bootstrap

We now combine the numerical bootstrap with the two integrated constraints (2.7) to bound
CFT data as a function of gy for many values at V. We will throughout set 6 =0, because it
has been observed previously that the instanton effects controlled by 6 have only a very small
effect on the CFT data of the lowest unprotected scalar in the fundamental domain of 7 [84].

In section 3.1, we will describe a slight variation of the approach introduced in [84] that
we find leads to more numerically stable bootstrap problems. In section 3.2, we then present
our bootstrap bounds on scaling dimensions and OPE coefficients, and compare with the
perturbative results of the previous section.

3.1 Bootstrap algorithm

Without the integrated constraints (2.7), we could use the approach of [81]. Very briefly,
we define the functions

Fao(UV)=VAIG A 40U V) =UGpyao(V,U),

2774 47,2 (3.1)
Fshort(U7 V) =U"V ﬁhort(Uav)_U |4 7ghort(vva U)a
so that we can write the crossing equation (2.14) as
Z AZ,ZFA,E(U7 V)"‘Fshort(Ua V) =0. (32)

Oae

with m<n and m+ne{1,3,...,A},
at the crossing-symmetric point z=2z= % If we can find a functional parametrized by

We then expand this equation in derivatives 97'0%,

coefficients o, , such that

A, (=0,
Y man (3213?17&@\2:2:1/2) >0 W=0,2,.. A> :

Z Qm.n (8?8£Fshort|zzg:1/2) =1,

m,n
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then we have a contradiction with (3.2), and so the dimension of the lowest unprotected
scalar must satisfy Ay < A,. A similar algorithm can be used to bound the OPE coefficient
of the lowest dimension unprotected scalar.

In order to make the bootstrap sensitive to the value of the coupling gym, we also have
to impose the integrated constraints in the form (2.15). We would thus include additional
parameters as and «ay4 in our functional, and search for functionals satisfying

GA+475(U,V) GA+4,E(U7 V) m an
N R S R

a2 (12 [,Ehort] —F2 (7—7 7:)) +ay (I4 [%hort] —Fu (T,f)) +Z Qmn (aglanghordz:g:l/z) =1

>0

agly z:2=1/2) =Y

} +ayly

(3.4)

However, we run into a problem when we compute the integrals of the blocks appearing
n (3.4). We will describe this problem below, a resolution to it used previously in [84], and
a different resolution that we will employ here.

The integrated constraints were written in (2.8) as integrals over the entire real plane,
but the block expansion in (2.5) only converges for a subset of that domain. In terms of
the radial variables [98]

1672 (r2—2nr+1)?

(r2+2777“—|—1)2 ’ B (7“24—2777"4—1)2 ’

(3.5)

the block expansion converges within the domain

Di: r<—\dnl+n?43+n[+2,  [n]<1. (3.6)

The crossing symmetry group S3 mentioned in section 2.1 acts by permuting this domain
with two other regions

Dy: r>—\/4n[+n2+3+[n|+2, 0<n<l,
Dy : r>—\/4n|+n2+3+|n|+2, —-1<n<0.

After mapping back to the (U,V') plane, every point in this plane belongs to exactly one of

(3.7)

these three regions. Thus, to apply the integrated constraints to a block, we can restrict
the integration region to D; and multiply by 3 to get

Gatar Vi1-n? (T2—1)2((2—4n2)r2+r4+1)
I 2 = —
SN 3 Jp, 128775 Caraelrm),
G T2 (r2=1) (2nr—12—1) (472 +10)r2 +r4+1
L [Gara) s [ gran VI=12(r2=1)" (2nr—r?—1) ((4n>+10)r2 +rt+1) (35
U2 Dy 47 (r24-2nr+1)

xD1111Gavae(rm)|.

Crossing symmetry implies that this is equivalent to (2.8). For a given A and ¢, we can
expand the blocks, the integration measures, and DLLLI all at small r to some order p,
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perform the integrals over r exactly, and then the remaining integrals over n numerically.
The error from this expansion scales as r2 .., where ry.x = 2—1/3~.268 is the maximum
value of r in D1, and so it converges quite quickly as p is increased.

However, this maximum value of r in D; occurs at n =0 where the blocks oscillate in sign
between spins /=0 (mod 4) and /=2 (mod 4). The dominant contribution to the integral
comes from the vicinity of this point in D1, so it follows that the integrated blocks have the
same sign oscillations. This presents a problem for the bootstrap, because for large A the
integrated blocks grow as (47max)> while the block derivatives grow as (4(3—2v/2))2. For
D1, we have mmax > 3—2v/2, and so for large A the integrated constraints dominate in (3.4).
The sign oscillations would then force as = a4 =0 for a functional that is positive at large
A, and thus the integrated constraints would have no effect.

One way to circumvent this problem, which we used in [84], is to consider deformed
integration regions D’(b) in which 7yax = b >2—+/3 occurs at =41 where the blocks do
not exhibit these sign oscillations. The regions D’(b) are equivalent to D; under crossing
symmetry, and thus in the A — oo limit where we recover exact crossing symmetry in the
bootstrap, the results should be insensitive to the choice of the integration region. However, at
finite A this is no longer the case, and switching to D’(b) allows a3 and a4 to be nonzero in a
positive functional, so that the integrated constraints have an effect on the bootstrap bounds.

In fact, in [84] we found that the bounds become significantly stronger once we impose
the integrated constraints twice, using two integration regions with different values of b. In the
A — oo limit these two sets of constraints would be redundant, but at finite A they are not.

This is a satisfying resolution to the problem, in that it allows us to obtain functionals
that are positive everywhere and thus obtain rigorous bounds (up to the effects of the various
finite truncations we will describe below). However, it leads to another problem, this time
one of numerical stability. Since the two sets of integrated constraints are exactly redundant
as A — oo, they become nearly redundant at large A. Empirically, we found that this leads
to serious numerical difficulties at A > 39 (the value that was used in [84]). In this paper it
is crucial for us to reach higher values of A, as we will see in section 3, so we have to use a
different approach to solve the problem of sign oscillations in the integrated blocks at large A.

In this paper, we will avoid the oscillations by only imposing positivity of the functional
up to A =F+hpmax. This allows us to obtain functionals with any integration region, and so
for simplicity we will use Dy. This means we are guaranteed that functionals with nonzero
ag or ay will be negative for half of the spins at large A, so the clear question is whether our
bounds are trustworthy. We have two kinds of evidence that they are.

First, empirically, we have observed that there is a wide range of cutoffs hpax for which
the bounds obtained using the cutoff method are nearly identical to those obtained using
the two non-oscillating regions, for values of A at which we can use either method. We have
checked this for the bounds obtained in this paper. Additionally, we used the cutoff method
in the first version of [84], and the bounds we obtained were essentially identical to what
we obtained in the final version using two non-oscillating regions.

This phenomenon begs for an explanation: why do bounds obtained using functionals that
we know not to be positive coincide with the bounds obtained in a fully rigorous approach?
Our second piece of evidence lies in the answer to this question: the value of hy.x can be
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Figure 4. The best bound we can obtain on the scaling dimension of the lowest scalar in the SU(4)
2

theory at ﬁ(—ﬂM = % as a function of A and hy.y. For any value of hp,,y, there exists a A large enough

that we can obtain strong bounds that match the weak coupling expansion as in figure 6.

increased with A. That is, although at a fixed A we can only make hp,x S0 large before the sign
oscillations set in and the bounds weaken to their values without integrated constraints, as A
increases we can make hpyay steadily larger while still retaining the effects of the integrated
constraints. In the A — oo limit, we would recover functionals positive for arbitrarily large A.

To see how this works, recall that at any fixed spin ¢, the asymptotic scaling of a block
derivative can be written as

07" 02 Gryn il

~ Rmtn (4(3—2\/5))h. (3.9)

2=z=1/2, 5

Comparing this with the asymptotic behavior of the integrated blocks, we find that the
latter begin to dominate once

A (4(3—2\/5))h ~ (4(2—\/5))h. (3.10)
Solving this gives

A C
hmaxN_aw—l <_X> (311)

where C' =log 32__2*/\% ~0.446 and W_; is the branch of the Lambert W function which gives
the real solution we are interested in. For large A, this relation becomes

A A A
hmax =~ ol <log 5+log <log 6)) . (3.12)

This means that if we want to find functionals positive up to some cutoff hp.x, we need
to take sufficiently large!! A to ensure we have enough derivatives to balance the scaling

Hn [99], it is reported that the integrated constraints have no effect on the bounds until a critical A is
reached, after which the bounds suddenly improve. This is likely to also be a result of the sort of behavior seen
in figure 4, though the detailed interpretation differs because in their case the functionals can be rigorously
argued to be positive.
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of the integrated constraints at large h. According to (3.12), the required A should grow
roughly linearly with hpax. Hence, although we do not find strictly positive functionals, we
have a method for finding functionals positive up to any specified cutoff.

Figure 4 shows the best upper bound we can obtain on the scaling dimension of the
lowest scalar for the SU(4) theory at weak coupling (%—FM = 155) as a function of both hmax
and A. For a fixed A, we see that if hy.x becomes large enough, the bound becomes quite
large, in fact reaching the value it would have if we did not include integrated constraints.
However, this critical hpax grows roughly linearly with A, as we expect. Conversely, for
any given Amax, we can find some A for which we will be able to find a functional positive
up to that hpax which imposes a tight bound on Ay. This tight bound comes very close
to the minimum value it could take according to the weak coupling expansion (2.16), as
we will see in the following section.

We interpret this behavior as a sign that a fully rigorous proof of our bounds requires
the use of all of the information from crossing symmetry, or at the very least, more than is
contained in any finite truncation of a Taylor series at the crossing-symmetric point. This is
consistent with our finding in [84] that imposing constraints from two integration regions,
whose equivalence can only be established using exact crossing symmetry, allows us to find
positive functionals. Nevertheless, since the cutoff strategy allows us to obtain functionals
positive up to any specified hpax, and a simple model like (3.12) for the dependence of the
required A on hpax matches the numerical results, there is good reason to believe that a
fully rigorous proof of the bounds obtained in this paper exists.

In the following section, we will show bounds on scaling dimensions and OPE coefficients
obtained by converting the continuous set of constraints (3.4) into a finite linear program.
This is accomplished by using spins £ ={0,2,...,lpax }, cutting off A </l+4hpayx as described
above, and using a grid of values of A with finite spacing. This grid, along with further
details of the numerical implementation, are given in appendix C.

3.2 Results

Using the bootstrap algorithm described above, we can find upper bounds on the scaling
dimension Ag and the OPE coefficient A2 of the lowest-dimension unprotected operator in
N =4 SYM. Here we will present examples of these results, showing where they match
perturbative results given in section 2 and where they interpolate between weak-coupling
and strong-coupling behavior.

In figure 5 we summarize our bounds on A as a function of N and ¢3,,N, obtained by
extrapolating A — oo as described below. Note that some of these curves contain regions
with gym > v/47; the bounds can be obtained in this case by using SL(2,Z) duality to map
to a point with gyn < v4w. We also plot the dimension of this operator in the planar limit,
like in figure 1. We see that the planar result agrees with the bootstrap bounds for an
increasing range of g%MN as we increase N.

In figure 6, we show in more detail the upper bound on Ay as a function of % for
N =4,5, and 6, from the free theory point to the self-dual point g3,; =4 (see appendix C
for similar plots at 2 <N <11). We plot the upper bounds obtained at several finite values of
A. The convergence in A significantly worsens as we increase N. Thus, while in [84] we could
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Figure 5. Our bootstrap bounds on the scaling dimension of the lowest unprotected scalar for
2 < N <11, extrapolated to A — oo and plotted as a function of the 't Hooft coupling g3,;N. The
results in the planar limit obtained from integrability agree with this bound for an increasing large
range of the 't Hooft coupling as we increase N.

obtain well-converged bounds for N = 2,3 even at finite A, here we must extrapolate to A — oo
in order to obtain a good estimate of Ay. See appendix C for an example of this extrapolation.

We see in figure 6 that a (2,2) Padé approximant to the weak coupling expansion (2.16)
and the results from integrability both match our bounds very well near the weak-coupling
limit. We have found this agreement for every value of N we have run, although since the
convergence in A is slower at larger N, we are limited in how high in N we can go before
the extrapolation to A — co ceases to be trustworthy.

Nevertheless, there is a range of NV for which we still have sufficiently good convergence to
extrapolate A — oo, but where the large N results (2.18) match our bootstrap bounds well at
strong coupling, where the lowest-dimension unprotected scalar operator is double-trace. In
figure 7, we plot our bounds for NV =9,10, and 11, and compare with both the weak-coupling
and the large N results. The bootstrap bound at A — oo is suggestive of a level repulsion
between the single-trace and double-trace operators. As N — oo these levels sharply cross as
in figure 1, and indeed the level repulsion region is shrinking as N increases.

In addition to the scaling dimension of the lowest operator, we can use the bootstrap
to extremize its OPE coefficient in the OPE of Sx.S. We thereby obtain an upper bound
on this quantity. In figure 8, we plot this bound for 2 < N <11 as a function of g%MN . In
this case there is no known result from integrability to compare with.

We find a good match between our OPE coefficient bounds and a (2,2) Padé approximant
to the weak-coupling expansion for the OPE coefficient of the Konishi operator (2.16). In
addition, for sufficiently large N we can compare the behavior at strong coupling with the
large N result for the double-trace operator.

In figure 9 we plot our bounds on the OPE coefficient of the lowest-dimension operator
for SU(9), SU(10), and SU(11) (see appendix C for similar plots at 2< N <11). After
extrapolating to A — 0o, we see good agreement with the weak-coupling expansion, and also
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Figure 6. Examples of our bootstrap bounds on the scaling dimension of the lowest unprotected
scalar as a function of the Yang-Mills coupling from the free theory to the self-dual point for the
SU(4), SU(5), and SU(6) theories. In each case we compare with a (2,2) Padé approximant to
the weak coupling expansion (2.16). This agrees excellently with our bootstrap bounds for small
gym extrapolated to A — oo, although the convergence in A becomes slower as we increase N. The
gym-independent bounds we would obtain without integrated constraints are shown in the dotted

gray lines.
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Figure 7. Our bootstrap bounds on the dimension of the lowest scalar as a function of the Yang-Mills
coupling from the free theory to the self-dual point for the SU(9), SU(10), and SU(11) theories.
We compare with a (2,2) Padé approximant to the weak coupling expansion (2.16) for the scaling
dimension of the twist-two scalar. In addition, we plot the large N, finite gyy expansion (2.18)
for the twist-four double-trace operator. Our bound on the lowest-dimension scalar interpolates
between these two expansions in a way suggestive of a level-repulsion between the twist-two and
twist-four operators where their dimensions become close. The gyy-independent bounds we would
obtain without integrated constraints are shown in the dotted gray lines.
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Figure 8. Our bootstrap bounds on the OPE coeflicient of the lowest unprotected scalar for
3 < N <11, extrapolated to A — oo and plotted as a function of the 't Hooft coupling g%y, N. In this
case there are no integrability results with which to compare.

good agreement with the large N result in the strong-coupling region. Between them, the
bounds exhibit increasingly sharp jumps between the values in the two limits, which is also
suggestive of a level repulsion as the two operators cross.

Finally, we can take a closer look at the agreement between the large N expansion (2.18)
and our bounds for large g3, N. It is interesting to check whether the agreement improves as
we include more terms from the expansion. In figure 10, we zoom in on the strong-coupling
region for SU(10), and compare the large N expansion of both the scaling dimension and
OPE coefficient of the twist-four double-trace operator with our bootstrap bounds at order
%, ﬁ, and c% in the expansion. In both cases, we see that the agreement is improving as we
include more terms. However, we found that including the Cg% term significantly worsens

the agreement, which may be due to the asymptotic nature of the expansion.

4 Discussion

In this paper, we computed bounds on the scaling dimension and OPE coefficient of the
lowest-dimension unprotected scalar operator in SU(N) N/ =4 SYM for a wide range of N
and gym (at @ =0), thus extending the analysis of [84] for N =2 and 3 to larger N. We used
a modified integration region for the integrated constraints which allowed us to compute
bounds at larger bootstrap precision A, which was necessary to address the slower convergence
at larger N. As in [84], we showed that weak coupling results saturate these bounds in
the appropriate regime. Since we now have access to larger values of N, we were able to
show that, at large IV, our bounds interpolate from the CFT data of the Konishi operator
at weak coupling to that of the lowest double-trace operator at strong coupling, whose
CFT data is computed from string theory on AdSsx S°. In order to obtain a good match
at strong coupling, we needed to include several orders in the strong coupling expansion
in our comparison to the numerical bounds. Our bounds also describe an intermediate
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Figure 9. Examples of our bootstrap bounds on the OPE coefficient of the lowest scalar as a function
of the Yang-Mills coupling from the free theory to the self-dual point, for the SU(9), SU(10), and
SU(11) theories. We compare with a (2,2) Padé approximant to the weak coupling expansion (2.16)
for the OPE coefficient of the twist-two scalar, along with the large N, finite gy expansion (2.18)
for the OPE coefficient of the twist-four double-trace operator. Our bounds exhibit increasingly sharp
jumps between these two limits in a way suggestive of a level-repulsion between the twist-two and
twist-four operators where their dimensions become close.
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Figure 10. The bootstrap bounds as A — oo in the strong-coupling region for both the scaling
dimension and the OPE coefficient of the lowest-dimension operator for SU(10), compared with the
large N expansion (2.18) for these quantities. As we include more terms in (2.18), the agreement with
our bounds improves.

regime inaccessible to either perturbative expansion where level repulsion occurs as the lowest
dimension operator changes from the single- to the double-trace operator. We also matched
our scaling dimension bounds to planar integrability results at weak coupling, which show
that non-planar corrections are small in this regime.

Looking ahead, our main goal is to further strengthen the bootstrap so that we can
accurately estimate the value of the subleading scalar operator or of higher-spin operators.
Since perturbative methods suggest that there are at most two relevant unprotected operators,
the Konishi and one of the two double-trace scalar operators with dimension 4 in the planar
limit [28, 100], imposing the existence of just two relevant operators should allow us to
compute precise islands for CFT data as a function of 7, as long as we are sensitive to the
next lowest operator. To achieve this sensitivity, we could impose additional integrated
constraints from correlators of different half-BPS operators [61], whose localization input was
recently computed at finite N and 7 in [101-104], or from possibly independent constraints
coming from derivatives of the squashed sphere free energy. We could also consider mixed
correlators with the relevant long operators, as mixing all relevant operators was necessary to
find islands in previous bootstrap studies in non-supersymmetric CFTs [73, 105].

One question about string theory that we can address with improved precision even for
low-lying CF'T data is about higher-derivative corrections to the type IIB effective action.
The first few corrections to supergravity, namely the R* and D*R* terms in the string
effective action, were already computed analytically in [61-65] using as input the localization
constraints described in section 2. It may be possible to similarly compute the last protected
correction DY R?* using new constraints from the squashed sphere, but higher order terms
starting with D®R* are unprotected and so probably cannot be fixed analytically. In this
paper, we showed that our numerical bootstrap bounds are sensitive to at least the first
few correction terms, but we did not perform a systematic analysis. We leave such an
analysis for future work. We hope that with significantly increased bootstrap precision, we
would be able to extract the coefficients of these terms in the string effective action from
numerical bootstrap results.

Regarding the comparison to integrability, our work provides predictions for CF'T data be-
yond the planar limit. Recently, a method of going beyond the planar limit using integrability
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has also been discussed [48], but has so far been implemented only at weak coupling [106]. A
proposal was also made for how to compute OPE coefficients using integrability in the planar
limit [49], but so far strong coupling results have only been obtained in the large R-charge
limit. Another approach for computing planar OPE coefficients is to input the planar scaling
dimensions, as computed from integrability, into the numerical bootstrap. While this method
has worked well for the defect CFT defined on a Wilson line in SYM [50-52], it seems more
challenging for the full SYM theory [53]. Planar OPE coefficients at strong coupling for
single-trace operators can also be computed using the relation to a recently conjectured
form for the AdS Virasoro-Shapiro amplitude [43-47, 107]. Our new data can provide a
benchmark for all these various methods.

The method of combining bootstrap with localization can be applied to a host of other
theories in various dimensions. So far, the only other application has been to 4d N =2
SU(2) conformal SQCD [108], where bounds on unprotected scaling dimensions were also
computed as a function of the complexified Yang-Mills coupling. It would be interesting
to generalize this to higher rank conformal SQCD, or to the USp(2N) theory considered
in [109], which is one of the simplest models of holography for open string theory or F-theory.
It would also be nice to strengthen the 3d ABJM bootstrap of [110-114] using integrated
constraints, which could allow us to read off the D®R* correction to the holographic correlator
in M-theory, as initiated in [115-117]. Lastly, the 5d A'=1 bootstrap [118] could also be
improved using integrated constraints.
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A Contribution of short multiplets to 7 (U, V)

The function 7 (U, V') that appears in the stress tensor four-point function can be decomposed
into contributions from the long and short representations of the superconformal algebra, as
in (2.4). The scaling dimensions and OPE coefficients of the long multiplets are unprotected,
and these are the quantities we bootstrap in this paper. The contribution from the short
multiplets is fixed by superconformal symmetry, and was determined analytically in [81]. The
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contribution Tghor (U, V) is Tﬁ?rt (U, V)+ct Eélgrt (U,V), where

S
Tglo)rt 1 1 _ 2410g(1—2210g(1—5)
sho (1—2)%2(1—2)2 2272
L6 (=222 (22 +22+22—4)+(2+2) (2222 + 22 +22—6) +4)
(1—2)%22(1-2)%z
2(z (224 -2 +422-182+12) -3 (24— 622 +42)) log(1—=2)

’ 2(1-2)%(—2)
2(3 (2 —622+42) — (22" — 2% +422 — 182 +12) 2) log (1 — 2) (A.1)
+ P2 ~ )
(1—2)%2222(2—2)
O 1 +3610g(1_z)10g(1_5)_2(9222218+Zfz—2>10g(1—2)
short (1_2)(1_2) 2222 1—2

_Q(w;ﬁzﬁ)log(lz)Jrlg (r=ir=+) '
11—~ 2z

This function enters into the bootstrap through its localization integrals (see (2.15)
and (3.4)). These can be computed numerically to any desired precision. They are given by

0.3895281312
I5[Tshort) = 0.0462845727+ ———— |

c
50.86596767
—

(A.2)
I4[Tonort] & 5.60637758+

B One-loop OPE coefficient

Our goal is to extract the OPE coefficient of the scalar long block at one-loop, i.e. THIE,
which multiplies 1/c? in the large ¢ expansion of 7.'2 The one-loop amplitude is most
conveniently expressed using the Mellin transform

TR‘R(U,V) _ /Zoo dsdt

e VT [Q_Srr [Q_trr [2—;FMR'R(S¢), (B.1)

2 2

where u=4—s—t and the contours include poles on just one side of the Gamma functions.
The one-loop amplitude in Mellin space was written as a double sum in [121]:

MR )= %" [( Cmn + Cmn + Cmn )_bmn +C (B.2)

s=2m)(t—2n) (t—2m)(u—2n) (u—2m)(s—2n

m,n=2
where the coefficients ¢, = cnm are

SU(N) _ (m—1)*m?  2(m—1)? (3m2—6m+8) _ Im* —54m3+123m2—126m+44

Crmn o 5(m+n—1) 5(m—|—n—2) 5(m+n_3)
4(m2—4m+9) (m—2)2  6(m—3)%(m—2)2
T Bmtn—4) " B(mtn—p) (B.3)

23ee [119, 120] for similar calculations in A" =8 SCFTs.
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These coefficients diverge in the large m ~n limit, so in [65] the by, were chosen to regulate
the sum in this limit, while the constant C' was then chosen so that the Mellin amplitude
matches the position space correlator of [95], which gave

9mn 39 13
byn=7—"—3, C=—"—""0249¢(3). .
The regularized double sum
> Cmn 3mn 3mt—4Am+3ns—4n
®(s,t)= — ;
(5:) m%:ZQ{(S—Qm)(t—Qn) 2mtn | A(man) } (B.5)

was resummed in [97] (note that the last term vanishes in the symmetric combination that
enters the Mellin amplitude (B.2)). The result is

000 (40 (2-5) 40 (2-5) - (40 (2-5) o0 (2-3)) )

t
+ Ry (s,t)p® (2—;) +Ry(t,s)p© (2—2) +Ra(s,t), (B.6)
where (™ (z) is the nth derivative of the Digamma function, and we define the rational
functions
PO(Svt)
t) =
Bo(s,?) 40(s+1—10)(s+t—8)(s+t—6)(s+t—4)(s+t—2)
Pl (Svt)
t)= B.
Ba(s,1) 40(s+t—10)(s+t—8)(s+t—4)(s+t—2) (B.7)
Py(s,t
Ra(s.1) = i -30(3)

©240(s+t—10)(s+t—8)(s+t—6)(s+t—4)(s+t—2)
in terms of the polynomials

Py(s,t) = 1552 4305313 — 3605312 + 1551 — 3605°> +23045%t> — 705t +1096 5%t
—50485%t 48851 —10245% +35525% — 705t* +10965t3 — 5048512 + 86405t
— 47365488t — 10243 4 3552t% — 4736t 42048,

Pi(s,t) = —1055%t% — 45523 4+12005%t> — 7551t 4 13505%t — 772052t — 155° +4005*
— 353253 +1300852 42505t — 39805t 4172005t — 212485 — 368t>
+4192¢% — 13312t 412800,

Py(s,t) = —4551? — 6305312 — 4557t —6305%t> +194045%1? — 725"t + 5855t
+86405°t —1256045°t — 2755447755 — 10625 — 289085 +2396885% — 725t° + 5855t
+8640st> —1256045t% +520848 st — 6834245 — 27t° +477t° —1062¢* — 28908¢3

+239688¢% — 683424t + 642816+ 7> (45s4t2+52033t2+45s2t4+52032t3 —145445°t?

+545°t — 4005t — 7056 5%t +898085%t +95° — 1645° — 64852 +259845% — 1726565
+545t° —400st* — 7056 51> + 8980852 — 354528 st + 4585605 + 9t° — 164¢° — 648t

+25984¢3 — 172656t2+458560t—419328) )
(B.8)
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To extract the scalar OPE coefficient, we consider the block expansion (2.5), and take
the limit U — 0 while setting V =1. In this limit, U~2Ggo(U,V)~ U?, so we must have

TRRU, 1) =M U+ (B.9)

at this order in 1/c of the correlator.'® Thus, in order to extract the contribution to )\42170
from M%I(s,t), which we denoted by a in (2.18), all we need to do is extract the coefficient
of U? in the small U expansion of the Mellin transform (B.1) of M®% (s t) with V =1. This

is given by the integral

100 2
a:—/ dt.F[2—t} Res
ico 8T 2

with the t contour obeying 0 <t < 4, and the minus sign is because we closed the s contour

r {S;”Tr {2—;}2MR|R(5,16)] , (B.10)
s=4

to the right. This integral can be performed numerically to any precision, which yields (2.19).

C Numerical bootstrap details

The bootstrap calculations described in section 3 reduce to evaluating the feasibility of
linear programs, in which the variables parametrize a linear functional and the constraints
correspond to spins and scaling dimensions at which we impose positivity of the functional,
following the setup [59]. To find the extremal value of the OPE coefficient, we then evaluate
the optimal value of a similar linear program.

We used two linear program solvers, Gurobi and SDPB [122, 123]. Gurobi is a machine-
precision solver, and so at low values of A where this suffices (in practice, A <19), it is
faster. However, at larger A where machine precision does not suffice, we use SDPB with
512 bits of precision.

When using SDPB, we find that it is important to carefully choose the set of positivity
constraints we impose. Although ideally we would use a very fine grid of scaling dimensions
for each spin 0,2,...,fnax, in practice this causes SDPB to stall, with the step sizes going
to zero. Thus, in practice, we need to use a coarser grid in order for the solver to converge.
For each spin ¢, we impose positivity at the following values of A:

{04+2,0+2.04,... . 04+4,0+4.1,...,046,0+6.2,...,04+10,04+11,..., 04+ hpax } (C.1)

The other parameters we use are standard, and are described in table 1.

Generically, in the linear programming approach to the bootstrap, the functionals
obtained can be negative at scaling dimensions where positivity is not imposed. In practice,
our functionals will become slightly negative near where a true positive functional would
have a zero. As we make the grid finer, the extremal functional approaches a true positive
functional (up to the maximum twist; see section 3.1 for a discussion of asymptotic positivity).
We find that the bounds we obtain change very little as the grid is made finer, so that the
coarseness is not a significant source of error in our results.

13Note that if we were to consider higher spin operators, then we would need to subtract other terms that
appear 1/¢? as discussed in [97]. At order 1/c, lower orders in U terms would also appear.
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Figure 11. The extrapolation of the upper bound on the lowest scaling dimension for the SU(10)
theory at g%“ = %. We fit a quadratic polynomial to the bounds at finite A, with 19 <A <51, and then
use that polynomial to extrapolate towards A — co. This fit suggests that to obtain a bound within
1% of this extrapolated value directly from the bootstrap, we would need A > 200, which is very far
from being numerically feasible. Thus, the extrapolation procedure is necessary for the comparisons
we make in this paper.

A <19 >19
Solver Gurobi SDPB
Cmax 25 60
hmax 40 60
NumericFocus 3 -
DualReductions 0 -
precision machine (~53) | 512
dualityGapThreshold - 10730
primalErrorThreshold - 10730
dualErrorThreshold - 10730
initialMatrixScalePrimal - 1020
initialMatrixScaleDual - 10%0
feasibleCenteringParameter - 0.1
infeasibleCenteringParameter | — 0.3
stepLengthReduction - 0.7
maxComplementarity - 10100

Table 1. Parameters used in Gurobi and SDPB for the plots in this paper. We work at up to A =51,
and extrapolate to A — co. Note that the values of £, and hyax listed here are the maximum that
we use, but lower values would suffice for A <51.

,25,



4.0¢ 4.0t
SU2) SU@3)
3.5¢ 3.50
3.0} 3.0}
2.5} 2.5¢
2.5¢ 2.5}
0.0 0.2 0.4 0.6 0.8 1.0 4r 0.0 0.2 0.4 0.6 0.8 1.0 4r
AW AV A=19
4.0p .- 4.0 .
SU(6) Lt SU(7) et A =27
........................ et I e A=35
3.5¢ 22 3.5¢
A=43
3.0} 3.0} h=al
— A=
2.5¢ 2.5¢ ===== Weak Coupling Pade
i . ===== Large N
0.0 0.2 0.4 0.6 0.8 1.0 4w 0.0 0.2 0.4 0.6 0.8 1.0 47 Without ICs
AU A()
4.0r . 4 e
SU®) o su@ .-
..................... O P
350 350
3.0+ 3.0+
2.5} 2.5¢
0.0 0.2 0.4 0.6 0.8 1.0 4w 0.0 0.2 0.4 0.6 0.8 1.0 4w
AU A()
4.0¢ . 4.0 .
°Lsuao) et OFsudn, .
3.5} y 3.5}
3.0 3.0F
250 2.5}
0.0 0.2 0.4 0.6 0.8 1.0 4w 0.0 0.2 0.4 0.6 0.8 1.0 4w

Figure 12. Bootstrap bounds on the scaling dimension of the lowest unprotected scalar operator for
2< N <11, obtained as in figures 6 and 7. For N >9, we compare with the large IV expansion as in
figure 7. For N <9, this expansion is not sufficiently converged to be of use.
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Figure 13. Bootstrap bounds on the OPE coefficient of the lowest unprotected scalar operator for
2< N <11, obtained as in figure 9. For N > 9, we compare with the large N expansion as in figure 9.
For N <9, this expansion is not sufficiently converged to be of use.
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For all of our results, we obtain bootstrap bounds at A =19,27,35,43, and 51, using
binary search with a tolerance of 1074, We then extrapolate these results to A — oo using
a polynomial in % Figure 11 gives an example of this extrapolation for the upper bound

2
on the scaling dimension in the SU(10) theory at % =1
In section 3.2, we show selected results for certain values of N. In figures 12 and 13,

we give our results for all 2< N <11.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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