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Abstract—Federated Learning (FL) is an emerging paradigm
in machine learning without exposing clients’ raw data. In
practical scenarios with numerous clients, encouraging fair and
efficient client participation in federated learning is of utmost
importance, which is also challenging given the heterogeneity
in data distribution and device properties. Existing works have
proposed different client-selection methods that consider fairness;
however, they fail to select clients with high utilities while
simultaneously achieving fair accuracy levels. In this paper, we
propose a fair client-selection approach that unlocks threefold
fairness in federated learning. In addition to having a fair client-
selection strategy, we enforce an equitable number of rounds for
client participation and ensure a fair accuracy distribution over
the clients. The experimental results demonstrate that FedFair®,
in comparison to the state-of-the-art baselines, achieves 18.15%
less accuracy variance on the IID data and 54.78% on the non-
IID data, without decreasing the global accuracy. Furthermore,
it shows 24.36% less wall-clock training time on average.

Index Terms— Accuracy, Convergence Analysis, Fairness, Fed-
erated Learning, Importance Sampling, Participant Selection

I. INTRODUCTION

Traditional machine learning relies on centralized servers
for data gathering and training, which falls short when dealing
with privacy-sensitive data residing in a vast number of
edge devices. To address the challenge, Federated Learning
(FL) has emerged as a promising alternative, which operates
within a loosely federated network of clients, thereby enabling
collaborative model updates. In FL, participants retain their
data locally on their devices, perform local training, and
subsequently share their model updates with a central server
for global aggregation.

Despite its potential for distributed learning over decen-
tralized data, FL has encountered open challenges to be ad-
dressed for large-scale real-world deployments. One important
challenge is to enable a fair system where all clients are
encouraged to participate in updating their models. Otherwise,
with an unfair system, clients do not receive fair rewards
and thus become reluctant to participate. On the other hand,
efficiently learning a high-quality model in FL is challenging,
considering the diverse set of client devices and heterogeneous
data distributions. This requires judiciously giving different
priorities to clients according to their capabilities of updating
models and communicating with servers.

Recent efforts such as Oort [1] have sought to enhance
FL performance through guided participant selection, albeit
without considering client features and the distribution of

accuracy among clients. On the other hand, g-FFL [2] takes
fair accuracy distribution into account but lacks a comprehen-
sive consideration of selective client participation. Focused on
communication efficiency, [3]-[7] did not consider fairness,
inversely impacting client willingness in FL participation. All
the existing works fail to simultaneously address efficient
learning and fair client selection in FL. Moreover, there has
not even been any consensus on the definition of fairness.
To this end, this paper aims to answer the following research
question: in large-scale FL with heterogeneous clients, how
should we elicit and achieve the best possible fairness among
all the clients, while ensuring an efficient collaborative model
learning? This involves addressing the open challenges of
defining appropriate fairness constraints and designing an op-
timal client selection strategy throughout the learning process
toward efficiency and fairness goals. To address these chal-
lenges, we present a novel approach, named FedFair®, which
takes into account client features while maintaining fairness
in client participation from three perspectives, without com-
promising performance and accuracy. In particular, the client
features including data size, energy consumption, round dura-
tion, power consumption and local loss are comprehensively
considered in the probabilistic client selection framework in
FedFuair’. Different from the existing probability-based frame-
works ( [8], [9]), our approach integrates three simultaneous
notions of fairness. Firstly, participants with similar resources
and capabilities are selected with equal probability to ensure
fairness in participant selection. Secondly, we introduce the
concept of accuracy fairness, where we aim to ensure that
the performance of each participant, in terms of the model
accuracy level, is proportional to its resource and capability.
Thirdly, clients are penalized after a specific number of rounds,
to allow fair participation throughout the whole FL process.
To shed light on this, we provide a glimpse of our results
through a toy example on Fig. 1. Evaluating the variance of
accuracy of these clients in each round, it becomes evident
that FedFair® significantly outperforms Oort, which serves as
the baseline for our approach. The experimental results show
that our approach exhibits an 18.15% reduction in the variance
of accuracy over IID data and a remarkable 54.78% reduction
over non-IID data, showcasing its superiority over existing
methods. Furthermore, regarding the efficiency, FedFair® also
outperforms the baseline algorithms, achieving a 24.36% re-
duction in wall clock time, thereby advancing us closer to



the goal of achieving target accuracy in less time, a critical
objective in the realm of FL [10], [11].

Comparison of Local Accuracy (Oort vs. FedFair®)
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Fig. 1: A toy example of comparison of local accuracy (Qort vs. FedFair®)
considering 6 clients in each round.

Our Contributions are summarized as follows:

o This paper proposes a new approach that selects clients
in a fine-grained manner considering their demands and
resources including computational power, data size, time
duration and energy consumption.

« It also considers fairness regarding the accuracy variance
and the number of rounds that each client can participate
in training. We achieve this by giving larger probabilities
to those clients that have more capabilities.

e We show the experimental results, demonstrating the
deviation of accuracy, the final accuracy and the wall-
clock training time for IID and non-IID datasets.

II. BACKGROUND AND RELATED WORKS

In this section, we provide an overview of FL, including its
general concept and key components. We then summarize and
discuss related works to motivate our proposed design.

A. Preliminaries of Federated Learning

FL typically involves a vast amount of edge devices, such
as smartphones and laptops, and a server that periodically
synchronizes the global model, denoted as w, across devices or
clients. Considering f;(w) as the local loss over the n,; data
samples held by the client 7 and n denote the total number
of samples, the learning goal in FL is to solve the following
optimization problem:

N
min F(w) = Zpi,oév:Fvi(w) (1)
i1

n;

st. Fi(w) = %Z fi(w)
vi=1
Zni:n, Zpi:]-v p; >0

p; is the probability of the client selection that usually is p; =
~, and q; is the weight of client 7 that is usually considered
1. The rule of the model update is defined as below:

w™ = wt — na; VE (w')

B. Fairness and Efficiency Related Works

Fairness in Federated Learning (FL) has been explored from
various angles in previous research. The core aim of fairness
is to keep all clients engaged and motivated in the learning
process. Moreover, using the importance sampling [8], the
probability can be selected as a proportion of loss. That is,
p; « F(w). We use the importance sampling in FL, and the
experiments show that importance sampling is advantageous
over random sampling as it strategically prioritizes training
samples based on their loss values, allowing the optimization
algorithm to focus more on informative instances, resulting
in improved convergence and generalization performance.
However, we also take the client utilities and features into
account, making a more efficient and fair system. We briefly
summarized the different fairness researches as follows.

Counterfactual fairness [12] is another fairness notion in
which all individuals, considering the protected attributes in a
casual sense, should receive same distribution of prediction,
regardless the group they belong to (including race, gender,
etc.). Barocas et al. [13] and Mitchell et al. [14] also mentioned
that different sensitive groups should receive same patterns
of outcomes; otherwise, it would violate the demographic
fairness. There are also some surveys which discuss the FL
challenges with a focus on fairness issues [15]

In optimization, Mohri et al. [16] proposed a new framework
of agnostic FL that uses a minimax optimization approach,
but it optimizes the model just for a small number of clients
[2]. On a larger scale, Li et al. [2] introduced a parameter
q as the g-FFL method that provides a uniform accuracy for
the network. AFL is a special case of q-FFL, when the q is
large enough. The q-FFL approach minimizes an aggregate
reweighted loss parameterized by q such that the devices with
higher loss are given higher relative weight. However, it did
not consider participant selection. FedProx [10] incorporates a
proximal term into the local training objective with the aim of
maintaining the proximity of local models to the global model.
The authors in [17] address the trade-off between fairness and
global model performance with using an entropy perspective.
Chu et al. in [18] propose a formal FL fairness definition, fair-
ness via agent-awareness (FAA), which takes the heterogeneity
of different agents into account. In HFFL [19], agents which
contribute more to FL are rewarded more in this framework.
The agents at the different contribution levels thus receive
different model updates. Fan et al. in [20] proposed a new
approach that uses a matrix containing clients’ contributions
and data to address this problem. Another work introduced
collaborative fairness in FL (CFFL) [21], which considers
fairness regarding the clients’ contribution. It evaluates the
clients’ contributions and updates this information steadily,
so it knows the clients’ reputation and can fairly distribute
updated models. Since working with the non-IID data over a
distributed system is unfair, Ray et al. [22] introduced a new
fairness concept called core-stable fairness.



C. Motivation

Trade-off between accuracy and fairness. The trade-off
between accuracy and fairness is an open challenge. We hope
to answer the question: is there any solution to improve the
fairness without decreasing the accuracy?

Considering client features to increase the efficiency
and fairness. In FL, clients come with varying computational
resources, data sizes, and energy limitations, making it crucial
to foster fairness. While previous research has introduced
various fairness strategies [22]-[24], our work identifies a gap
between fairness and client selection probabilities.

Considering more fairness notions into account. Lacking
a consensus on fairness, we naturally wonder: Can we have
a client selection approach that simultaneously explores more
fairness notions?

In response, we propose a novel approach to tackle the
multifaceted issue of client selection. Our approach takes
a detailed view, considering individual client demands and
resources, including computing power, data volume, time
constraints, and energy usage. Different from all the existing
work, we extend our commitment to fairness beyond just client
selection. Our approach also addresses accuracy variance and
the number of training rounds allotted to each client, giving
preference to those with greater capabilities.

III. METHODOLOGY

In this section, we present our new approach, FedFair3,
to address the fairness challenge of client selection in FL.
We begin by outlining our assumptions and presenting the
objective function, which serves as the basis for our fairness
notions regarding accuracy and participant selection. We then
present our client selection method, which works in a fair
way by using a non-uniform probability distribution instead
of a random participant selection. Finally, we show that our
approach leads to a uniform and fair system regarding the
accuracy variance.

TABLE I: Notations

The M of the Notations

T The developer’s preference of duration of each round

t; The amount of time that client 4 takes to perform the training

T Local rounds

K The number of global aggregations

1 The total number of local iterations

i Duration of local round that client i takes to perform its training

[() | -is a Boolean value, if it is true, [(+) is 1, otherwise it is 0
A penalty value for those clients that take more time to complete
their round

d; The size of the data of the client @

c; Computational power of the client ¢

qi Energy consumption of each client %

Yi € {0, 1}, a binary indicator for the selection of client 7

K Batch size

Sy The current total accumulated type ¥ resource usage

7 Local resource consumption type ¥

rg Global resource consumption type ¢

IIy | Resource budget type

L Lipschitz constant

E Explored clients for updating the priority

Assumptions: We assume the following for each client i:
1) F;(w) is convex [25], ie.,

F(éwy + (1 = 6)wz) < 6F(w1) + (1= 6)F(wa2) (2)

2) F;(w) is L-Lipschitz [26], satisfying
1 (w) = Fy(w')|| < Lllw —w'|l, Yw,w" (3

A. FedFair? Algorithm

Our approach is designed to ensure fairness and efficiency
in the selection of clients for federated learning. We accom-
plish this by strategically choosing clients with higher losses,
while taking into account their distinct features. To achieve a
uniform distribution of accuracy across clients, we introduce
the concept of weighting in our objective function, denoted
as «ay. In essence, with this weighting mechanism, each client
contributes fairly to the learning process. In more practical
terms, our approach not only prioritizes clients with higher loss
functions but also factors in their resource capabilities. This
means that clients with greater computational resources, larger
datasets, lower energy consumption, and quicker training times
within our defined limit, denoted as T, have an increased
likelihood of being selected. We also ensure that we do not
repeatedly select the same clients, thus giving priority to those
who have not yet been chosen.

To achieve this, the server plays a crucial role in aggregating
clients’ characteristics before initiating the model update. This
aggregation allows us to rank clients based on their unique
features and available resources, ensuring a well-balanced se-
lection process. However, we also consider time as a valuable
resource. Clients that exceed the predefined time limit, S,
face a penalty denoted as (3, which reduces their selection
probability. Conversely, clients that require less time than
the set limit have their selection priority determined by their
available resources, provided they are selected. In each training
round, we carefully monitor the consumption of resources. If
the cumulative resource consumption surpasses our predefined
budget, the server will signal the clients to stop. This dynamic
resource management strategy not only ensures fairness but
also maintains the efficiency of the federated learning process.
We call the resource budget 11y for the resource type ¢. Thus,
we have the following resource constraint:

T+Dr+(K+1)ry <Ily,VY st. I=Kr (4)

Our algorithm relies on the design of client selection proba-
bility p; and client weight «; for the FL optimization in Eq. (1)
as follows:

P (5)
S, oy = ———
N(g+1)

where

2

1 T
U; = K|\//<; X ZLoss(i)2.(;)Z(Tqi)ﬂ./\l(TMi)”,

cid; ] L
qm”yi 0,

if client i is selected
otherwise
U; defines the client Utility which refers to a measure that

combines the loss values of data samples to assess the clients’
significance in improving model performance during various



training tasks with 7" representing the preferred round duration,
t; denoting the time taken by client ¢ to process training data,
A as the clients’ priority considering the clients features, and
I(x) serving as an indicator function that evaluates to 1 when
z is true and O otherwise. Table I demonstrates the meaning
of the notations.

We show that with the design of «; as Eq. (5) and substi-
tuting in Eq. (1), we have the equivalent objective function as
in g-fairness [2].

N N 7
o F = . i :
;plam(w) ;p Mg @)

o piFi(w) = ©
pi i (w)? _ Di w)a+
aizle(ﬁl)Fi(w)—;N(qH)m ot

Building upon the concepts of g-fairness, our algorithm aims
to address fairness considerations in the context of FL, while
also striving for equitable and efficient collaboration among
clients. With this context in mind, let’s proceed to the summary
of Algorithm 1 steps as follows:

« Stepl: The server aggregates clients’ features to calculate
individual client probabilities for participation in the FL
round (Line 3-16).

o Step2: Leveraging calculated probabilities, the server pri-
oritizes clients and samples a set based on their priority,
penalizing those with lower priority determined by their
loss values (Line 17).

o Step3: Models are sent to the sampled clients, emphasiz-
ing those with higher priority, enabling them to contribute
to the federated model update (Line 18-22).

o Step4: The server checks the resource budget by con-
sidering previous values and current available resources,
ensuring that the federated learning process aligns with
resource constraints (Line 23-24).

o Step5: Clients, whose participation adheres to the re-
source budget, engage in model training, promoting col-
laboration while respecting resource limitations (Line 29-
32).

B. Fairness Qualification

This section proves that our objective function has a uniform
distribution over clients. For the ease of mathematical exposi-
tion, we consider the following objective function of FL with
limiting q to 0 as a conventional objective function or 1 as

N
our objective function: min,, Fy(w) = Y p;alF; ,(w)?T.

We show this uniform distribution v&l/itil two definitions as
follows:

Definition 1. Uniformity of variance of the perfor-
mance distribution: we say the distribution of N clients
{Fi1 q(w), ..., Fn q(w)} under solution w is more uniform than
w if:

Vary [ 4(w), ..., Fx g(w)] < Varg[Fy 4(w'), ..., Fy q(w')]
@)

Algorithm 1: FedFair?

1 Participant selection for each round
2 At The Aggregator
3 while True do

4 Alleviating preferred time T
5 Calculate client probability:
6 for client + € E do
7 calculate LossF(7)
; Us + |l Zies
9 if ' < t; then
B
10 ‘ U, + U; x (%)
1 else
12 A ;’f—‘:’f
13 U; + i]: X A
14 end
15 pi= EU;fi
16 end
17 sample clients by priority
18 for selected clients do
19 Receive p;, a;, VF;(w), cy for all i
20 VF(w) < VF(w) + pia; VF;(w)
2 w ™t wt — nay VF(w?)
2 end
23 if 3|sy + >,y (o7 + 2rg) > 11y then
2 Send a ”’Stop” message to the clients
25 end
26 Return w
27 end

28 At the selected clients
29 while they did not receive a ”Stop” message from the
aggregator do

30 Receive w and 7

31 Perform updating w;

» Send w;, VF(w;), 19,
33 end

Our algorithm selects clients with higher losses. As a result,
we have a system with less variance. According to our first
notation of fairness, our system is fair regarding its variance.

Definition 2. Uniformity of cosine similarity between the
performance distribution and 1: we say the distribution of
cosine similarity over N clients {F} (w), ..., Fn q(w)} under
solution w and 1 is more uniform than w’ and 1 if:

L

~ 2 Figw')
> K2
15 - 1 2 ®
N Z Fi,q(w> N Fi,q(w/)

i=1 =1

Considering w* as the optimal solution of min F,(w),

N N
we have: & 3 Fii(w*) > + 3 Fio(w*) and
i=1 i=1

F; o(w*)2. similar

=
M=

Fi1(w*)?* >

1 %

-

1 o .
N Omitting

7 1



steps as in [2] due to the space limit, we have:

1 N 1 N
~ ;Fm(w*) ~ ;Fi,O(w*)

v

IV. EXPERIMENTAL RESULT

A. Experimental setup

Dataset and Models. We evalute the performance of
FedFair® on three different popular benchmark datasets includ-
ing MNIST [27], FashionMNIST [28], and CIFAR10 [29] on
IID and non-IID datasets.

Implementation. Our experiments were conducted using
the Plato framework [30]. We ran each experiment three times
using the table II parameters with a penalty factor 2. We
executed all experiments on a server, which is equipped with
NVIDIA GeForce RTX 3080Ti GPU, Intel(R) Core(TM) i9-
10900X CPU, and 64G RAM. We run both the server and
clients on the same machine, a configuration supported by the
fact that the performance metrics we evaluate are independent
of the physical separation between the server and clients.

FashionMNIST, IID
100 250

—— FedFair®
Oort

FashionMNIST, Non-IID

—4— FedDo
Oort
200 —+— FedProx
—¥— AFL
—e— FedAvg

—— FedProx
—¥— AFL
60 —e— FedAvg

50

The Average of Accuracy Variance
The Average of Accuracy Variance

o 20 40 60 80 100 o 20 40 60 80 100
# of Communication Rounds # of Communication Rounds
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Oort
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The Average of Accuracy Variance
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Fig. 2: The variance of accuracy of FedFair? versus the FedAvg, AFL,
FedProx and Oort.

B. Results and Analysis

Performance Comparison. Table IV and Fig. 2, demon-
strate the results of our experimental evaluation. We compared
the proposed approach, FedFair®, with the baseline algorithms:
Oort, FedProx, AFL and FedAvg. As depicted, the observed

TABLE II: The objective used for experimental results

I Hyperparameters
Objectives MNIST CIFAR10 FashionMNIST
\ q 2 2 \ 2
Learning Rate 0.01 0.001 0.01
| # Clients/Round 10 20 | 6
# Total Clients 100 300 100
| # Rounds 100 150 | 100
Batch Size 100 64 100
| Optimizer SGD Adam | Adam
Model Name LeNet-5 [31] VGG16 [32] LeNet-5 [31]

TABLE III: The wall clock time of FedFair® vs. baseline algorithms.

\ Wall Clock Time Comparison(in second)

Dataset AFL | FedProx Oort FedFair®
FMNIST 1ID 16908 16686 16683 16568
FMNIST Non-IID | 33598 33073 33307 33070

| MNIST IID 30458 2317 2932 2198

MNIST Non-IID 15954 3818 2332 2281

|  CIFARI10 IID 12199 12414 12701 12040
CIFARI10 Non-IID | 12712 16276 12404 12068

results indicate that there is not a substantial difference in
terms of accuracy between the compared methods. However,
it is worth noting that our algorithm demonstrates a notable
advantage in terms of reduced variance of accuracy across
different clients. Furthermore, based on the data provided in
the table IV, it can be observed that the proposed algorithm,
on the average, exhibits 21.31% less accuracy variation in CI-
FAR10, 48.48% less variation in FashionMNIST, and 45.11%
less variation in MNIST non-IID datasets compared to the Oort
algorithm. In addition to the improved accuracy variance, our
proposed algorithm, FedFair®, also offers enhanced efficiency
by considering the features of clients during the client selection
process. As illustrated in table III, it can be observed that
FedFair’ exhibits lower wall clock time, on the average 24.36
%, compared to other algorithms, particularly in non-IID
data scenarios. This indicates that FedFair® achieves faster
execution and demonstrates its advantage in terms of time
efficiency.

TABLE 1IV: Global accuracy and accuracy variance for IID and non-IID
datasets across MNIST, CIFAR10, and FashionMNIST

CIFAR10 Dataset

1ID Non-IID
Alg. Accuracy Variance Accuracy Variance
FedAvg 86.82 £0.7 | 4.81 £0.61 | 76.74 £0.87 | 17.71£1.02
AFL 86.91 £0.98 4.16+£0.4 76.1£0.3 11.01£1.1
FedProx | 86.22 +0.34 | 3.95 £0.92 | 76.25+0.88 14.73£1.15
Oort 86.13 £0.97 | 3.59 £0.83 | 75.16 £0.07 | 13.13 +0.54
FedFair® | 86.93 £0.88 | 3.25 £0.6 76.98+0.38 10.32 £0.3
FashionMNIST Dataset
1ID Non-1ID
Alg. Accuracy Variance Accuracy Variance
FedAvg 78.25£0.35 6.27E£1.03 76.31£0.75 27.7£0.74
AFL 79.58+£0.75 | 5.62 £0.93 | 74.11£0.93 | 56.47£1.35
FedProx 79.72 £0.2 | 4.23 £0.44 76.54+0.93 53.77£1.03
Oort 75.95+0.67 | 5.01 £0.65 | 75.73 +0.98 54.98+1.2
FedFair’ | 80.79 40.84 | 4.2540.74 76.84+0.99 10.13+0.93
MNIST Dataset
11D Non-IID
Alg. Accuracy Variance Accuracy Variance
FedAvg | 96.69 £0.95 | 6.79£1.07 89.27£0.92 | 27.61E£1.24
AFL 96.59+0.89 | 5.69 £1.39 | 88.92+0.98 24.46+1.04
FedProx | 96.23 £0.85 | 8.27£1.03 | 85.01 £0.76 | 10.27£0.95
Oort 96.46 £1.18 | 7.56 £0.93 | 86.73 £0.83 | 27.78 £1.3
FedFair’ 96.74 £0.8 | 5.15 +£1.23 | 89.79+0.78 9.02 £1.52




V. LIMITATION AND FUTURE WORK

In this section, we outline the limitations of our approach.
One of the assumptions of our paper is that F'(w) is a convex
function, which can be limiting in real-world scenarios. So, we
plan to enhance its practical applicability by handling non-
convex functions. Furthermore, because of the simplicity of
the FedAvg, we excluded this algorithm from the elapsed time
figures. The wall clock time of the FedFair® is slightly more
than FedAvg algorithm in some cases. Another challenge of
the approach was finding an optimal value for hyper parame-
ters such as preferred T or q; we used some specific values of
q to check the result. It is more efficient to check the q value
adaptively. Furthermore, we will try to achieve comparable
results with less computation overhead in the future leveraging
some approaches such as pruning or dropout during model
training that have negligible impact on the output.

VI. CONCLUSION

In conclusion, our study has highlighted the importance
of fairness in FL and proposed a novel approach to achieve
the goal by incorporating client resources and demands. By
introducing a weighted loss in the FedFair® algorithm, we
have ensured a fair distribution of accuracy over the clients
while optimizing resource utilization and improving system
performance. Our experimental results have demonstrated that
the FedFair® algorithm outperforms existing methods including
AFL, FedProx, Oort and FedAvg by achieving a more uniform
distribution of accuracy over the clients. By considering client
resources and demands, the FedFair? algorithm has been
successful in achieving fairness and efficiency in distributed
machine learning.
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