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Abstract—Federated learning (FL) is an emerging distributed
machine learning paradigm enabling collaborative model training
on decentralized devices without exposing their local data. A key
challenge in FL is the uneven data distribution across client
devices, violating the well-known assumption of independent-
and-identically-distributed (IID) training samples in conventional
machine learning. Clustered federated learning (CFL) addresses
this challenge by grouping clients based on the similarity of their
data distributions. However, existing CFL approaches require
a large number of communication rounds for stable cluster
formation and rely on a predefined number of clusters, thus
limiting their flexibility and adaptability. This paper proposes
FedClust, a novel CFL approach leveraging correlations between
local model weights and client data distributions. FedClust groups
clients into clusters in a one-shot manner using strategically
selected partial model weights and dynamically accommodates
newcomers in real-time. Experimental results demonstrate Fed-
Clust outperforms baseline approaches in terms of accuracy and
communication costs.

Index Terms—Federated Learning, Clustered Federated
Learning, Personalization, Non-IID Data, Client Clustering

I. INTRODUCTION

Federated learning (FL) has become a promising solution
for analyzing and processing the massive data generated by
various edge devices. Traditional machine learning approaches
fall short in handling this exponential increase in data, as they
require transmitting large volumes of user data to centralized
cloud servers. This incurs prohibitive communication costs and
raises privacy concerns. FL enables a set of participating de-
vices to collaboratively train a globally shared model under the
coordination of a central server, without exposing their local
data. Due to its superior privacy-preservation implications, FL
has been widely adopted in diverse areas.

However, deploying FL often involves a significant number
of devices that generate heterogeneous data due to vary-
ing usage patterns of users. The presence of heterogeneous
data across client devices breaks the conventional assumption
of independent-and-identically-distributed (IID) training data,
raising the new challenge of non-IID data distribution in the FL
paradigm. Such a data heterogeneity issue not only increases
the overall communication cost but also degrades global model
performance [1], [2], increasingly drawing research attention

to mitigate the adverse impact of non-IID data on FL [3]–
[5]. Several FL approaches, including personalization [6]–[8],
clustering [3], [4], [9], and device selection [10]–[12] have
been proposed in the literature to alleviate the impact of non-
IID data. Despite the significant improvements CFL-based
approaches have shown over FedAvg [13] in handling non-IID
data, they still lack efficiency due to limitations in clustering
strategies. We identify key limitations of existing CFL meth-
ods, including the difficulty in pre-determining cluster counts
[3], [4], the need for larger communication rounds to form
stable clusters [14], and the necessity of utilizing all model
weights for clustering [3], [14].

To address the aforementioned limitations, we propose a
novel clustered federated learning method, named FedClust,
which leverages our insight into the implicit relationship
between the local model weights and the underlying data
distribution on a client device.

II. BACKGROUND AND MOTIVATION

Federated learning (FL) is a privacy-preserving framework
enabling distributed clients to collaboratively train a shared
global model without sharing their local data. In FL, clients
receive initial global model parameters from a central server,
train it for a few local iterations using their local data, and
send model updates back to the server for aggregation. After
aggregation, the server sends it to clients for further training.
The above process continues until achieving a certain level of
model accuracy or a pre-specified number of communication
rounds. The server has no prior knowledge about the data
distribution across devices as it cannot access the raw data
stored in clients. In particular, the goal of FedAvg is typically
to minimize the following objective function:

min
θ

F (θ)
∆
=

m∑

i=1

ni

N
Fi(θ) (1)

Here, m is the set of participating clients and client i has local
dataset Di, where ni = |Di| and N =

∑m
i=1 ni. The local ob-

jective functions of clients can be defined as the empirical loss
over their local data Di, i.e., Fi(θ) =

1
ni

∑ni

ji=1 fji(θ;xji , yji),
where ni is the number of each client local samples. We
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(a) Layer 1 (CL) (b) Layer 7 (CL) (c) Layer 14 (FL) (d) Layer 16 (FL)

Fig. 1: Illustration of the distance matrices calculated using different layer weights (CL: convolutional layer, FL: fully connected
layer). Lighter color indicates smaller distances, i.e., the two models are more similar.

experimentally investigate the impact of model weights from
various layers on the underlying data distribution in FL by
performing a multi-class image classification task on the
CIFAR-10 [15] dataset with VGG16 [16]. To simulate non-IID
data among clients, we assume 10 different clients and group
them into two clusters based on their local label categories,
e.g., G1 = {1, 2, . . . , 5} and G2 = {6, 7, . . . , 10}. From Fig. 1,
we observe that the final layer weights implicitly represent the
underlying data distribution of clients. The clustering structure
of the clients is clearly observed in Fig. 1(d). Based on the
above experiment and previous studies [17], [18], we can
conclude that the final layer or the layer with the classifier
function reflects the model difference caused by non-IID data.
In addition, clients with similar data distributions tend to train
the model in a similar manner, resulting in closer distances
among final layer weights.

III. THE FRAMEWORK OF FEDCLUST

We present the framework of the proposed FedClust as
follows. As shown in Fig. 2, the framework of FedClust can
be described as follows.

• First, the server broadcasts the initial global model pa-
rameters to all available clients.

• The participating clients locally train the model based on
their data, and upload the updated final layer weights to
the server to represent their underlying data distribution.

New Client

②

③

Local Training 

④

Partial Weights

Global Model

Hierarchical Clustering
Calculate Distance Matrix

⑤

 

Construct

Incorporate Newcomer
⑥

Fig. 2: An overview of FedClust.

TABLE I: Test accuracy comparisons of different approaches
over different datasets for Non-IID Dir (0.1).

Method CIFAR-10 FMNIST SVHN

FedAvg 38.25 ± 2.98 81.93 ± 0.64 61.26 ± 0.95
FedProx 51.60 ± 1.40 74.53 ± 2.16 79.64 ± 0.80
CFL 41.50 ± 0.35 74.01 ± 1.19 61.96 ± 1.58
IFCA 50.51 ± 0.61 84.57 ± 0.41 74.57 ± 0.40
PACFL 51.02 ± 0.24 85.30 ± 0.28 76.35 ± 0.46
FedClust 60.25 ± 0.58 95.51 ± 0.17 78.23 ± 0.30

• The server then computes the proximity matrix between
models based on the Euclidean distance among final layer
weights uploaded by each client.

• Finally, the server employs agglomerative hierarchical
clustering (HC) [19] on the proximity matrix M to group
clients with similar data distribution into the same cluster.

• The above clustering process is done in one commu-
nication round. From the next round, the workflow of
FedClust is similar to FedAvg [13].

IV. PERFORMANCE EVALUATION

To evaluate the performance of FedClust, we consider
LeNet-5 [20] model on CIFAR-10 [15], Fashion MNIST (FM-
NIST) [21], and SVHN [22] datasets. We simulate non-IID
scenarios using Non-IID Dir (0.1) data heterogeneity settings
as in [23]. We consider following baseline approaches: FedAvg
[13], FedProx [24], IFCA [3], PACFL [9] and CFL [14].
Results in Table I demonstrate the effectiveness of FedClust
over these baselines. Exploring the performance of FedClust
across various data heterogeneity scenarios with different
models and datasets has been left as part of our future work.
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