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Opara: Exploiting Operator Parallelism for
Expediting DNN Inference on GPUs
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Abstract—GPUs have become the defacto hardware devices for
accelerating Deep Neural Network (DNN) inference workloads.
However, the conventional sequential execution mode of DNN
operators in mainstream deep learning frameworks cannot fully
utilize GPU resources, even with the operator fusion enabled,
due to the increasing complexity of model structures and a
greater diversity of operators. Moreover, the inadequate operator
launch order in parallelized execution scenarios can lead to
GPU resource wastage and unexpected performance interference
among operators. In this paper, we propose Opara, a resource-
and interference-aware DNN Operator parallel scheduling frame-
work to accelerate DNN inference on GPUs. Specifically, Opara
first employs CUDA Streams and CUDA Graph to parallelize
the execution of multiple operators automatically. To further
expedite DNN inference, Opara leverages the resource demands
of operators to judiciously adjust the operator launch order
on GPUs, overlapping the execution of compute-intensive and
memory-intensive operators. We implement and open source a
prototype of Opara based on PyTorch in a non-intrusive manner.
Extensive prototype experiments with representative DNN and
Transformer-based models demonstrate that Opara outperforms
the default sequential CUDA Graph in PyTorch and the state-of-
the-art operator parallelism systems by up to 1.68× and 1.29×,
respectively, yet with acceptable runtime overhead.
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I. INTRODUCTION

DEEP Neural Networks (DNNs) have gained notable suc-
cess in various business fields such as image process-

ing, speech recognition, and virtual reality [1]. In general,
DNN inference tasks are exceptionally latency-sensitive. For
instance, latency requirements in autonomous driving scenarios
are non-negotiable (e.g., within 100 milliseconds) due to safety
considerations [2]. Accordingly, increasing attention from both
academia and industry has been paid to fast and efficient model
serving [3]. To meet such performance requirements, modern
cloud datacenters are hosting thousands of GPUs to accelerate
DNN inference for users. For instance, Alibaba Cloud houses
more than 6, 000 GPUs, many of which are tasked with man-
aging a substantial volume of inference requests [4].

Cloud-based GPUs are equipped with an increasing amount
of computational power, which typically exceeds the resource
demands of individual inference tasks, leading to under-
utilization and wastage of hardware resources [5]. To achieve
the objective model accuracy with fewer computations, several
recent works (e.g., Szegedy et al. [6]) focus on substituting large
operators with several smaller and multiple-branch operators
in DNN models, which further exacerbates the issue of GPU
under-utilization. While batching requests [7] or co-locating
model inference tasks [8] on a GPU can mitigate such GPU
under-utilization, it inevitably prolongs the model inference due
to batching latency and performance interference [9]. Moreover,
the operator fusion [10] cannot fully utilize the GPU resources
(as discussed in Sec. II-B) due to the limited scope of pre-
defined fusion rules. Fortunately, as DNN models can typically
be represented by a Directed Acyclic Graph (DAG) with par-
allel operators, it provides us an opportunity to exploit inter-
operator parallelism for accelerating DNN inference on GPUs
while improving the GPU utilization.

However, it is nontrivial to efficiently parallelize the execu-
tion of DNN operators for a DNN inference task due to the
following two facts. First, the model DAG typically exhibits
considerable complexity, often incorporating hundreds of oper-
ators with complex inter-operator dependencies. For simplicity,
existing deep learning (DL) frameworks execute DNN opera-
tors one by one in topological sorting order [11]. To achieve
operator parallelism, a recent work (i.e., Nimble [12]) relies
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on a reduction transformation of the DNN computation graph,
which inevitably brings heavy computation overhead. Second,
inadequate operator parallel scheduling can adversely impact
the DNN inference performance. As evidenced by motivation
experiments in Sec. II-C, the inadequate operator launch order
in mainstream DL frameworks (e.g., PyTorch) can prolong the
DNN inference latency by up to 29%, due to the GPU blocking
caused by the non-preemption feature of CUDA kernels [13]
and performance interference among parallelizable operators
[9]. In addition, several existing works (e.g., IOS [14]) fail to
consider the operator launch and function call overhead due
to excessive CPU-GPU interactions when parallelizing DNN
operators in the DL framework.

To address the challenges above, in this paper, we de-
sign Opara, a resource- and interference-aware DNN Operator
parallel scheduling framework, with the aim of expediting the
execution of DNN inference while improving the GPU utiliza-
tion. We make the following contributions as below.
◃ We propose a lightweight stream allocation algorithm

without any modifications or transformations of the computa-
tion graph. It greedily allocates operators without dependencies
to multiple CUDA Streams to maximize operator parallelism.
Meanwhile, operators with data dependencies are allocated
to the same CUDA Stream without impacting parallel ex-
ecutions of operators, thereby reducing the number of time-
consuming synchronization operations.
◃ We devise a resource- and interference-aware operator

launch algorithm to judiciously prioritize launching operators
with a small amount of GPU resource demands, so as to effec-
tively mitigate GPU resource fragmentation and performance
interference while reducing DNN inference latency. Such re-
source demands of operators can be obtained by lightweight
inference profiling in practice.
◃We have implemented a prototype of Opara (https://github.

com/icloud-ecnu/Opara) as a plug-in module of PyTorch 2.0
to parallelize the executions of DNN operators. It can gener-
ate a parallelized CUDA Graph by capturing the stream al-
location plan and optimized operator launch order to mitigate
the operator launch and function call overhead. Our proto-
type experiments with 6 representative DNN and Transformer-
based models demonstrate that Opara outperforms the de-
fault sequential CUDA Graph in PyTorch and the state-of-
the-art DNN operator parallelism systems by up to 1.68× and
1.29×, respectively.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce how DNN operators are
executed in mainstream DL frameworks, and identify the key
factors that cause the low GPU utilization when serving DNN
inference on GPUs. We then conduct motivation experiments
to show how to judiciously parallelize the operator executions
on GPUs.

A. DNN Operator Executions on NVIDIA GPUs

After being scheduled on GPUs, a DNN operator is actually
recognized as a kernel. In general, a kernel comprises multiple

Fig. 1. Average SM efficiency of an NVIDIA A100-PCIE-40GB GPU
when running GoogLeNet, Inception-v3, and BERT models in PyTorch and
ONNX Runtime.

thread blocks, which are the smallest scheduling granularity in
CUDA. A thread block is scheduled to a Streaming Multipro-
cessor (SM) once the SM has sufficient resources to meet its
resource demands [15]. In particular, an SM can concurrently
execute multiple thread blocks, and each SM is constrained by
a limited number of threads, shared memory, and registers.

To enable parallel executions of operators, we launch oper-
ators on multiple CUDA Streams. Each stream is actually
a task queue that executes tasks sequentially. The execution
order of kernels in different CUDA Streams is determined
by their arrival order at the stream head. In general, the kernel
execution time is considerably short as the batch size is typically
small (i.e., ranging from 1 to 16) in latency-critical inference
scenarios [10], [16]. Accordingly, the kernel launch overhead
constitutes the primary time cost for DNN inference, which neg-
atively impacts the performance gains achieved by the parallel
executions of kernels in multiple CUDA Streams. To reduce
such overhead, CUDA Graph is a key feature introduced from
CUDA 10 that allows scheduling multiple DNN operators on
a GPU device at a time.

B. Low GPU Utilization Due to Sequential Execution of
DNN Operators

Mainstream DL frameworks execute DNN operators sequen-
tially in topological sorting order, which cannot fully utilize
GPU resources. To illustrate that, we conduct motivation exper-
iments using the stock PyTorch 2.0 and ONNX Runtime 1.121

with the operator fusion [10] enabled. We serve three typical
DNN inference models including GoogLeNet2, Inception-v3
[6], and BERT3 on both an NVIDIA A100-PCIE-40GB GPU
and an NVIDIA RTX 2080 SUPER GPU. In particular, we
adopt the SM efficiency measured using NVIDIA Nsight Com-
pute CLI4 to evaluate the GPU utilization.

As shown in Fig. 1, DNN inference on the mainstream DL
frameworks achieves relatively low to medium GPU utilization
even with the operator fusion technique enabled. Specifically,
the SM efficiency of GoogLeNet, Inception-v3, and BERT with
the batch size as 1 is merely 2.53%, 12.04%, and 18.5%, re-
spectively, achieved in the stock PyTorch on an A100 GPU.

1https://onnxruntime.ai/
2https://pytorch.org/hub/pytorch_vision_googlenet/
3https://huggingface.co/google-bert
4https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
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Fig. 2. Inference latency of GoogLeNet running on an NVIDIA RTX 2080
Super GPU with different operator launch orders and batch sizes.

Even when the batch size is increased to 16 and serving DNN
inference in the ONNX Runtime, the SM efficiency of the
three workloads is moderately increased to 57.21%, 39.9%, and
76.37%, respectively. Moreover, we repeat our experiments on
a less powerful GPU (i.e., RTX 2080 SUPER), and the SM effi-
ciency of the three workloads ranges from 10.47% to 82.98%.
Such experiment results above indicate that (1) the sequential
execution of DNN operators is the root cause of low GPU
utilization for serving DNN inference; (2) The operator fusion
technique can only combine a certain number of parallelizable
operators based on the pre-defined fusion rules [10], resulting in
moderate GPU utilization. Accordingly, there still exists enough
room to exploit the operator parallelism for improving the GPU
utilization of DNN inference on GPUs.

C. Performance Impacts of Operator Launch Order

Apart from the sequential execution of DNN operators, the
inadequate operator launch order (i.e., the topological sorting
order of the model DAG) in mainstream DL frameworks can
also lead to idle GPU resource usage and performance inter-
ference, thereby prolonging the inference latency. We conduct
two motivation experiments to identify why the operator launch
order can impact the inference latency.

GPU blocking. As each operator has a different number of
blocks requiring three types of resources for execution, i.e.,
threads, shared memory, and registers, a resource-unaware op-
erator launch order can easily block the execution of operators
until enough resources become available on the GPU. Such
GPU blocking can severely waste the available GPU resources.
As shown in Fig. 2, changing the operator launch order from or-
der 1 (i.e., depth-first topological sorting) to order 2 (i.e., Opara
designed in Sec. III) for GoogLeNet can reduce the inference
latency by up to 29% with different batch sizes. Furthermore,
we repeat such an experiment on the A100 GPU, and the exper-
iment results show around 10.3% of performance improvement
by optimizing the operator launch order for GoogLeNet.

Performance interference. As the performance interference
among operators can prolong the inference latency [9], we
further conduct another experiment on A100 to illustrate the
effectiveness of overlapping the execution of compute-intensive
and memory-intensive operators in mitigating the inference. As
depicted in Fig. 3 (case 1), prioritizing the parallel execution of
ReLU and Conv operators can cause less severe interference,
compared with parallelizing two ReLU operators, leading to a

Fig. 3. Overlapping the execution of compute-intensive and memory-
intensive operators denoted as red circles and blue circles, respectively.

Fig. 4. System overview of Opara.

13.6% reduction in the inference latency. Similarly, prioritiz-
ing the launch order of Add operator in case 2 can increase
the inference performance by 12.7%, simply because the ex-
ecution of compute-intensive and memory-intensive operators
is overlapped.

Summary. Low GPU utilization of DNN inference is mainly
caused by two factors: First, the sequential execution of DNN
operators cannot fully utilize the GPU resources, even with
the operator fusion enabled. Second, the default topologi-
cal sorting order of operator launch is commonly resource-
and interference-unaware. Accordingly, judiciously paralleliz-
ing DNN operators with an adequate operator launch order
is compelling for accelerating DNN inference on GPUs while
improving the GPU utilization.

III. SYSTEM DESIGN

In this section, we design Opara illustrated in Fig. 4, an
operator parallel scheduling framework to reduce DNN infer-
ence latency while improving the GPU resource utilization.
Specifically, Opara takes DNN models and input tensors (i.e.,
inference data) from users. According to the operator depen-
dencies in the model DAG, the Stream Allocator first employs
a stream allocation algorithm to determine which stream the
operators should be allocated to. The Model Profiler then gath-
ers the resource demands of each operator using the model
profiling. With such resource demands of operators, the Op-
erator Launcher further employs a resource- and interference-
aware operator launch algorithm to optimize the operator launch
order on GPUs. Finally, the Graph Capturer generates a paral-
lelized CUDA Graph by combing the stream allocation plan
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and operator launch order, thereby enabling efficient DNN in-
ference on GPUs.

A. Stream Allocator

To parallelize the execution of operators in CUDA
Streams, we leverage the computation graph (i.e., DAG) of
DNN models to determine how many streams to launch and
how to allocate operators to the streams.

Definition of a model DAG. DNN computation graph
can be represented as a DAG G = (V, E), where V denotes
the set of operators in the model, and E denotes the operator
dependencies. Each vertex v ∈ V denotes a DNN operator (e.g.,
Conv, MaxPool). Each edge 〈u, v〉 ∈ E denotes the operator
dependency, where u is a predecessor of v and v is a successor
of u. The set of all predecessors of an operator v are denoted
as Npred. The set of all successors of an operator v are denoted
as Nsucc.

Problem formulation and analysis. As a maximum of |V|
streams can be launched for a DAG, we simply use a matrix
A of size |V| × |V| to represent the stream allocation plan,
which determines how the DNN operators are parallelized and
synchronized. Each element aij ∈ A is a boolean value, indi-
cating whether the i-th operator is executed in the j-th stream.
We formulate the inference latency Tinf as

Tinf = Tpara + Toverhead, (1)

where Tpara denotes the parallelized execution time of a DNN
model and Toverhead denotes the operator synchronization over-
head given a stream allocation plan A. In more detail, as the
plan A can parallelize the execution of DNN operators, Tpara

can further be formulated as

Tpara = h(A) × Tseq, (2)

where Tseq denotes the inference latency of sequential execu-
tion of DNN operators and h(A) ∈ (0, 1] denotes the inference
acceleration factor achieved by operator parallelism with the
plan A. To ensure the parallelized execution of the model, a
certain number of synchronization operators [17] require to
be inserted into the model DAG. Such a process introduces
significant operator synchronization overhead Toverhead, which
can be formulated as

Toverhead = g(A) × toverhead, (3)

where toverhead is the time overhead caused by one synchro-
nization operator and g(A) is positively correlated with the
number of synchronization operators in approximation.

By substituting Eq. (3) and Eq. (2) into Eq. (1), we aim to
minimize the inference latency Tinf by identifying an optimal
stream allocation plan A. Accordingly, we formulate the stream
allocation optimization problem as

min
A

Tinf = h(A) × Tseq + g(A) × toverhead (4)

s.t.
|V|∑

j=1

aij = 1, ∀i ≤ |V| (5)

Algorithm 1: Stream allocation algorithm in Opara.
Input : DNN computation graph G = (V, E)
Output: Set of streams to be launched S

1 Initialize: S ←∅, SYNC flag ← False for each operator
v ∈ V , and sort V in topological sorting order;

2 for each operator v ∈ V do
3 for each predecessor p ∈ Npred of v do
4 if flag of p is False then
5 stream of v ← stream of p; // put v and

p in the same stream
6 flag of p ← True;
7 break out of the loop;

8 if stream of v is null then
9 stream of v ← launching a stream; // put v in

a newly launched stream
10 S ← S ∪ {stream of v};

11 return S;

where Constraint (5) mandates that each operator must be al-
located to and only to one stream. toverhead and Tseq can be
considered as constant values given a DNN model. Actually,
our optimization problem in Eq. (4) (i.e., minimizing h(A)
and g(A)) can be considered as scheduling DAGs with depen-
dency constraints (i.e., adjusting the matrix A) to minimize the
makespan, which has been proven to be an NP-hard problem
[18]. Accordingly, we turn to devising a heuristic algorithm to
acquire an appropriate (i.e., sub-optimal) solution to our stream
allocation problem.

Stream allocation algorithm. The key idea of Alg. 1 is to
allocate parallelizable operators to multiple CUDA Streams
as much as possible (i.e., minimizing the value of h(A)). More-
over, we greedily put non-root nodes (i.e., operators) in the same
CUDA stream as one of their predecessor operators, so as
to avoid excessive synchronization operators (i.e., minimizing
the value of g(A)). Specifically, given a computation graph G,
Opara first initializes a set of streams to be launched S and the
SYNC flag of each v ∈ V . It then enumerates operators in V in
topological sorting order (lines 1-2). For each operator v ∈ V ,
it iterates over all of its predecessors p ∈ Npred (line 3). If the
current predecessor p has not yet contributed to reducing the
synchronization overhead (i.e., flag is False), it allocates v to
the same stream of p, and set the flag of p as True (lines 4-7).
If v does not find a predecessor that satisfies such a condition
above, we allocate the operator v to a newly launched stream
(lines 8-10). In particular, the parallelized execution of streams
does not impact each other as long as operators are not executed
on GPUs. To ease the understanding of Alg. 1, we present an
illustrative example in Appendix A.

B. Model Profiler

As discussed in Sec. II-C, the blocks in an operator execute
the same instructions even with different data, which indicates
that the GPU resources required by the blocks in an operator are
the same. Accordingly, we obtain the resource demands of each
operator by simply profiling the resource consumption (i.e., the
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Algorithm 2: Operator launch algorithm in Opara.
Input : DNN computation graph G = (V, E)
Output: Operator queue Q in resource- and

interference-aware operator launch order

1 Initialize: List of operators to be launched L ←∅,
Lmem ←∅, Lcomp ←∅, and Q ←∅;

2 Add the operators v ∈ V with an indegree of 0 that are
memory-intensive and compute-intensive to Lmem and
Lcomp, respectively;

3 while Lmem or Lcomp is not empty do
4 L ← alternately choose a non-empty list from

{Lmem, Lcomp};
5 vmin ← the operator that requires the least amount of

GPU resources in L;
6 L.remove(vmin), and Q.append(vmin); // launch

the operator vmin

7 for each successor s ∈ Nsucc of vmin do
8 Update indegree of s ← indegree of s − 1;
9 if indegree of s == 0 then

10 if operator s is memory-intensive then
11 Lmem.append(s); // add s to Lmem

12 else
13 Lcomp.append(s); // add s to Lcomp

14 return Q;

amount of shared memory, the number of registers and GPU
threads) of a block in an operator. Such resource demands of
operators will be used by Operator Launcher to determine an
adequate operator launch order. In particular, we implement our
Model Profiler utilizing the torch.profiler.profile()
API, and it requires profiling each DNN inference only once
to acquire the resource demands information for each operator,
thereby bringing acceptable profiling overhead. We will exam-
ine the inference profiling overhead of Opara in Sec. V-C.

C. Operator Launcher

Problem analysis. As illustrated in Sec. II-C, inadequate op-
erator launch orders can significantly affect the DNN inference
latency. To identify an optimal launch order, a naive solution
is iterating through all possible topological sorting orders of a
model DAG and choosing the order with the lowest inference
latency. However, such a method involves selecting nodes with
zero indegree and deleting the corresponding vertices and their
connected edges. By assuming n operators exist in a model
DAG, the time complexity of traversing all topological sorting
orders is O(n!), which is also an NP-hard problem [18]. As a re-
sult, we turn to designing a heuristic operator launch algorithm
to solve such a complex problem.

Resource- and interference-aware operator launch algo-
rithm. Launching operators with heavy resource demands first
to the GPU is likely to cause resource fragmentation, hindering
the GPU executions of subsequent operators. Moreover, the
GPU can thus be blocked due to the non-preemptive feature
of kernel execution [13]. To maximize the GPU utilization,
the key idea of Alg. 2 is to greedily prioritize launching the

operators with the least amount of GPU resource demands, aim-
ing at maximizing the parallel executions of multiple operators
within a model. To further mitigate the performance interfer-
ence among operators [9], we simply overlap the execution of
compute-intensive operators and memory-intensive operators,
as classified by our offline-collected operator table.

Specifically, it first initializes and maintains a priority queue
Q of operators in resource- and interference-aware opera-
tor launch order (line 1). It then retrieves all operators to
be launched with an indegree of 0 in a list L, which alter-
nates between the non-empty lists for memory-intensive oper-
ators Lmem and for compute-intensive operators Lcomp (lines
2-4). Each time the operator requiring the least amount of GPU
resources (e.g., shared memory, threads, registers) is chosen
from L and then put into the queue Q (lines 5-6). In particular,
the potential GPU blocking issue faced by the remaining large
operators is noncritical in our scenario, as L is dynamic and
can be compensated for the upcoming small operators to be
launched. Finally, Lmem and Lcomp are continuously updated
by adding new operators with an indegree of 0 (lines 7-13).

D. Graph Capturer

To eliminate the overhead caused by kernel launches
and function calls, the Graph Capturer first sets the CUDA
Streams obtained from the Stream Allocator to the capture
mode, and then it launches the operators of the DNN model to
these streams according to the operator launch order specified
by the Operator Launcher. To ensure the dependencies among
operators, the Graph Capturer also launches the necessary syn-
chronization operators to the streams. Consequently, a CUDA
Graph is generated to enable operator parallelization while
improving the GPU utilization. Such a graph capture process is
lightweight and non-intrusive to PyTorch, as it has been exposed
as a high-level API in PyTorch officially. We simply use the
PyTorch API to capture and then generate the CUDA Graph.

IV. IMPLEMENTATION OF OPARA

We implement a prototype of Opara with around 1, 000 lines
of Python codes, which have been integrated into PyTorch 2.0
as a plug-in module. The source codes are publicly available on
GitHub (https://github.com/icloud-ecnu/Opara). Specifically,
we employ torch.fx.Graph as the computation graph for
DNN models in Opara. Its Intermediate Representation (IR) al-
lows us to schedule DNN operators directly in Python. In more
detail, we leverage the torch.cuda.set_stream() API
in PyTorch to launch operators on the CUDA Streams. To
particularly guarantee the operator dependency in parallelized
executions of streams, we add the appropriate synchronization
operators to the model graph using the event.record()
and stream.wait_event(event) APIs. Finally, we use
torch.cuda.graph(g) to generate a CUDA Graph that
can execute DNN operators in parallel based on the CUDA
Streams. In summary, we build our prototype of Opara only
using the high-level APIs of PyTorch in a lightweight and non-
intrusive manner, rather than modifying the computation graph
construction module as in Nimble [12].
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V. PERFORMANCE EVALUATION

In this section, we carry out prototype experiments to demon-
strate the efficacy and runtime overhead of Opara in com-
parison to the stock PyTorch and state-of-the-art operator
parallelism frameworks.

A. Experimental Setup

Hardware configuration and workloads. We conduct our
experiments on an NVIDIA A100-PCIe-40GB GPU and an
NVIDIA GeForce RTX 2080 SUPER-8GB GPU. We imple-
ment Opara based on CUDA 11.7, cuDNN 8.5.0, and as a
plug-in module of PyTorch 2.0. Our experiments employ six
representative DNN models, including the three models (i.e.,
Inception-v3 [6], GoogLeNet, BERT) adopted in Sec. II-B, as
well as DeepFM [19], NASNet5, and T56. Specifically, three
models (i.e., GoogLeNet, Inception-v3, and DeepFM) are exe-
cuted on the RTX 2080 GPU, while the other three (i.e., NasNet,
T5, and BERT) are run on the A100 GPU.

Baselines and metrics. We compare DNN inference perfor-
mance of Opara with that of the stock PyTorch (with CUDA
Graph disabled), default sequential CUDA Graph, ONNX
Runtime (with operator fusion enabled), Rammer− [10], and
Nimble [12]. Specifically, we implement Rammer’s BFS-based
operator scheduling algorithm (i.e., Wavefront) into PyTorch
2.0, denoted as Rammer−. Nimble transforms the model graph
into a bipartite graph and identifies its maximum matching to
determine an appropriate stream for each operator. In particular,
we focus on 4 key metrics including DNN inference latency,
SM efficiency, and GPU memory consumption, as well as DNN
inference throughput. All the experiment results are averaged
over 1, 000 runs.

B. Effectiveness of Opara

End-to-end inference latency. As shown in Fig. 5(a), Opara
consistently outperforms the five baselines for six represen-
tative DNN models. Specifically, Opara can achieve 1.80×
to 10.97× speedup compared to the stock PyTorch. This is
because Opara utilizes CUDA Graph to eliminate the oper-
ator launch and function call overhead. Opara surpasses the
default CUDA Graph by up to 1.68×, simply because of the
parallel execution of DNN operators in Opara. Though the op-
erator fusion technique outperforms the stock PyTorch, Opara
achieves a higher speedup by up to 2.97× and 1.18×, compared
with ONNX Runtime and Rammer−, respectively. Such perfor-
mance improvements above are mainly due to two facts: First,
the operator fusion cannot combine all parallelizable operators
based on the pre-defined fusion rules, which cannot fully utilize
the GPU resources. Second, Opara accelerates model inference
through operator parallelization, while the Wavefront schedul-
ing algorithm in Rammer introduces additional synchronization
overhead (i.e., the unnecessary operator waiting time during
wave executions). Furthermore, Opara outperforms Nimble by

5https://huggingface.co/timm/nasnetalarge.tf_in1k
6https://huggingface.co/google-t5

Fig. 5. (a) Relative speedup, (b) SM efficiency and peak memory consump-
tion of GPUs running representative DNN models with batch size set as 1
achieved by PyTorch, CUDA Graph, ONNX Runtime, Rammer−, Nimble,
and Opara operator scheduling mechanisms.

up to 1.29× because it judiciously alternates the scheduling
of different types of operators with the lowest GPU resource
consumption for each kernel launch time. Moreover, Opara
initiates enough streams to increase parallelism (e.g., 28 streams
with Opara versus 4 streams with Nimble for GoogLeNet),
thereby maximizing the operator parallelism.

GPU utilization and memory consumption. To unveil
the performance gains of Opara, we proceed to look into the
GPU utilization (i.e., SM efficiency) and memory consumption
during the model inference. As shown in Fig. 5(b), Opara
exhibits a similar improvement in GPU utilization compared
to the five baselines as in Fig. 5(a). Specifically, Opara sig-
nificantly improves the GPU utilization compared to the stock
PyTorch, because Opara mitigates the scheduling overhead of
the stock PyTorch. When compared with the default CUDA
Graph, Opara increases the GPU utilization of Inception-v3,
GoogLeNet, DeepFM, NASNet, BERT, and T5 by 36%, 58%,
126%, 48%, 20%, and 19%, respectively. Such performance
gains mainly come from the parallelized execution of operators.
When compared to ONNX Runtime, Rammer−, and Nimble,
Opara boosts the GPU utilization by up to 3.86×, 1.36× and
1.42× mainly because (1) maximizing stream allocations in
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Fig. 6. Timeline of operator executions during a segment of inference
process of GoogLeNet achieved by CUDA Graph, Nimble, and Opara.

Opara can increase operator parallelism opportunities, and (2)
optimizing the operator launch order in Opara further min-
imizes the GPU idle time. Furthermore, the parallel execu-
tion of operators requires an increased amount of data to re-
side in the GPU memory simultaneously, thereby leading to a
higher peak GPU memory consumption of Opara than that of
sequential executions.

Timeline of operator executions. We further illustrate the
operator execution timeline by taking a segment of inference
process of GoogLeNet as an example. In particular, we leverage
NVIDIA Nsight System CLI7 to track the timeline of opera-
tor executions. As depicted in Fig. 6, we observe that CUDA
Graph executes the 4 operators sequentially in a stream, and
only operators 4 and 1 appear within the time window. The re-
maining operators 2 and 3 are forced to queue up, which leads to
a long inference time. Though Nimble can parallelize operators
in the order of 1, 2, 3, and 4, it only schedules 2 operators
on two streams, causing a long GPU idle time. In contrast,
Opara prioritizes operator 4 and initiates more streams than
Nimble, so that operators 4, 1, and 2 can be executed in parallel
to maximize the operator parallelism. Accordingly, Opara can
achieve the shortest inference latency by exploring operator
parallelism compared with CUDA Graph and Nimble.

Effectiveness of Opara on Transformer-based models.
We conduct experiments with T5 and BERT model, and Opara
outperforms Nimble by 9.3% for the T5 model as shown in
Fig. 5(a). This is because Opara optimizes the launch order of
operators in T5 and schedules them into 6 streams compared
with 3 streams in Nimble. Moreover, the operator diversity
in T5 offers Opara overlap the compute-intensive Arange
operators and the memory-intensive To and Ones operators,
as shown in Fig. 7(a). For BERT, however, Opara achieves a
similar operator launch order and the same number of streams as
Nimble as depicted in Fig. 7(b). This is because the paralleliz-
able operators of BERT are always the Embedding operators
or the Sgemm operators, which reduces the opportunity for
operator overlapping and launch order optimization. Accord-
ingly, Opara achieves marginal performance gains for BERT
compared with Nimble, yet 1.08× to 4.06× speedup compared
to the stock PyTorch and CUDA Graph as shown in Fig. 5(a).

Throughput under different batch sizes. As depicted in
Fig. 8, we observe that Opara consistently surpasses the five

7https://docs.nvidia.com/nsight-systems/UserGuide/index.html

Fig. 7. Timeline of Transformer-based models achieved by Nimble and
Opara operator scheduling mechanisms. Red rectangles and blue rectan-
gles represent compute-intensive operators and memory-intensive operators,
respectively.

Fig. 8. Inference throughput of Inception-v3 with Opara and the five
baselines by varying the batch size from 1 to 32 on an RTX 2080 GPU.

baselines except for ONNX Runtime by varying the batch size
from 1 to 32. Nevertheless, the performance gains of Opara
gradually diminish as the batch size increases. As an example,
Opara outperforms the default CUDA Graph by 1.41× and
1.09× when the batch size is 1 and 32, respectively. This is
because the amount of GPU resources occupied by a single
operator increases when dealing with larger batch sizes, re-
sulting in fewer GPU resources available for the execution of
parallelized operators. This also explains why Opara exhibits
marginal throughput improvement for large batch sizes of 16
and 32. The results above also show that maximizing the oper-
ator parallelism can also improve the inference throughput.

Effectiveness of Opara on high-end GPUs with sufficient
resources. We repeat the inference experiment of Inception-
v3 on a high-end GPU (i.e., A100). As shown in Fig. 9, we
observe that Opara consistently outperforms the five baselines
by varying the batch size from 2 to 32, mainly because oper-
ator parallelism works well for high-end GPUs with sufficient
resources. In more detail, Opara achieves an inference speedup
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Fig. 9. Relative speedup of Inception-v3 with Opara and the five baselines
by varying the batch size from 2 to 32 on an A100 GPU.

TABLE I
COMPUTATION TIME (IN MILLISECONDS) OF THE STREAM ALLOCATION

ALGORITHM IN OPARA (I.E., ALG. 1) AND NIMBLE [12]
FOR VARIOUS MODELS

BERT GoogLeNet NASNet Inception-v3 T5

Opara 0.58 0.27 1.75 0.50 2.8
Nimble 20.8 5.80 257.83 14.40 161.4

by up to 2.08×, 1.29×, and 1.15× compared to ONNX Run-
time, Rammer−, and Nimble, respectively. In particular, Opara
achieves speedups of 1.47× and 1.18× relative to ONNX
Runtime for batch sizes of 16 and 32, which is larger than
the results achieved on the RTX 2080 GPU. This is because
the A100 GPU provides sufficient resources, which allows the
operator parallelism to achieve more performance gains than the
operator fusion.

C. Runtime Overhead of Opara

We evaluate the runtime overhead of Opara in terms of al-
gorithm computation time and inference profiling overhead. As
listed in Table I, Opara can reduce the computation time of the
stream allocation algorithm by up to two orders of magnitude
compared with Nimble [12]. This is because Nimble requires
a graph transformation together with an exhaustive search in
the bipartite graph. Such a process is time-consuming with a
complexity in the order of O(n3), where n is the number of
operators in a model DAG. In contrast, the time complexity of
Opara can be reduced to the order of O(n), simply because
the inner loop of Alg. 1 (lines 3-10) in Opara only depends on
the maximum width (i.e., typically below 20) of the computa-
tion graph. Accordingly, as DNN models become increasingly
complex [20], the number of operators n gets even larger, while
the algorithm computation overhead of Opara can still be well
contained. In addition, as the Model Profiler needs to run the
DNN inference only once, Opara requires several (i.e., 4.25)
milliseconds of profiling overhead in our experiment. In sum,
the runtime overhead of Opara is practically acceptable.

VI. RELATED WORK

Inter-operator parallelism within a single model. To
parallelize the execution of DNN operators, Rammer [10] pro-
poses fine-grained operator scheduling based on the Wavefront

algorithm and enables operator fusion on a GPU device. To
increase the operator parallelism, Cocktailer [21] further co-
schedules control flow and data flow operators based on Ram-
mer. The two prior works above operate at the compilation
level, which requires significant compilation overhead and man-
ual customization of operators. Orthogonal to them, Opara
focuses on the runtime operator scheduling optimization of
the stream allocation and the operator launch order. A recent
work Nimble [12] leverages the bipartite graph algorithm to
schedule operators on CUDA streams adequately. IOS [14]
deploys operator fusion and dynamic programming to deter-
mine operator parallelization plans. However, Nimble and IOS
require a lengthy search process and neglect the optimization
space of operator launch order. In contrast, Opara utilizes the
CUDA Graph to eliminate such performance overhead. It also
employs a lightweight stream allocation algorithm to achieve
inter-operator parallelism. To reduce the GPU idle time and
interference, Opara determines a feasible operator launch order
according to operator resource demands.

Inter-operator parallelism among different models. To
improve GPU utilization, several works parallelize operators
from multiple models co-located on a GPU device. For ex-
ample, S3DNN [22] and Abacus [23] optimize the co-location
of operators from different models and schedule them to the
corresponding steams. To minimize the model co-location in-
terference, iGniter [9] and Orion [16] focus on optimizing the
GPU resource allocation and operator scheduling on multiple
prioritized streams, respectively. Paella [17] dispatches the op-
timal kernel from multiple models by jointly considering the
remaining time and model fairness. Different from optimiz-
ing the inference co-location, Opara minimizes the inference
latency while increasing the GPU utilization by parallelizing
operators within a single model. Moreover, it achieves inter-
operator parallelism as a plug-in module of PyTorch 2.0 without
developing a new DL inference runtime or framework.

Intra-operator parallelism. Existing DL frameworks, such
as PyTorch and TensorFlow, employ expert-optimized operator
libraries to accelerate the execution of individual operators.
TVM [24] uses machine learning methods to automatically
search for efficient operators, which is time-consuming and
requires the specified parameter space manually. To achieve
automated code generation, Ansor [25] implements an auto-
matic search space construction of operators. As a single DNN
operator cannot fully utilize GPU resources in general, Opara
can work with the intra-operator parallelism methods above to
further improve the resource utilization of GPUs.

VII. CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of Opara,
a lightweight operator scheduling framework to speed up DNN
inference on GPUs. By reducing the synchronization overhead
among operators, Opara designs a stream allocation algorithm
to automatically allocate operators without dependencies to
different CUDA streams, thereby achieving operator paral-
lelism effectively. Furthermore, Opara leverages non-intrusive
inference profiling to judiciously select an appropriate operator
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launch order to mitigate interference and maximize the GPU
utilization. Extensive prototype experiments show that Opara
can improve the performance of DNN inference by up to 29%,
as compared to the state-of-the-art operator parallelism systems.

We plan to extend Opara in the following directions: (1)
constructing an analytical model to analyze the performance
interference caused by inter-operator parallelism, and (2) ex-
amining the effectiveness of Opara for accelerating more large
models (e.g., GPT-3, LLaMA).
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