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Tetris: Proactive Container Scheduling for
Long-Term Load Balancing in Shared Clusters

Fei Xu

Abstract—ILong-running containerized workloads (e.g., machine
learning), which typically show time-varying patterns, are increas-
ingly prevailing in shared production clusters. To improve work-
load performance, current schedulers mainly focus on optimizing
short-term benefits of cluster load balancing or initial container
placement on servers. However, this would inevitably bring many
invalid migrations (i.e., containers are migrated back and forth
among servers over a short time window), leading to significant ser-
vice level objective (SLO) violations. This paper introduces 7Zetris,
amodel predictive control (MPC)-based container scheduling strat-
egy to proactively migrate long-running workloads for cluster load
balancing. Specifically, we first build a discrete-time dynamic model
for long-term optimization of container scheduling. To solve such an
optimization problem, Tetris then employs two main components:
(1) a container resource predictor, which leverages time-series
analysis approaches to accurately predict the container resource
consumption; (2) an MPC-based container scheduler that jointly
optimizes the cluster load balancing and container migration cost
over a certain sliding time window. We implement and open source a
prototype of Tetris based on K8s. Extensive prototype experiments
and trace-driven simulations demonstrate that 7efris can improve
the cluster load balancing degree by up to 77.8% without incurring
any SLO violations, compared to the state-of-the-art container
scheduling strategies.
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I. INTRODUCTION

ARGE production clusters are commonly hosting various

long-running containerized workloads, ranging from on-
line Web services to machine learning applications [1]. Unlike
traditional batched jobs that are typically executed within sec-
onds to minutes, these long-running workloads generally last for
hours to months [2]. They are often stateful and have stringent
service level objectives (SLOs) [3]. However, the time-varying
request loads of such long-running workloads [4] can cause
severe contention of shared cluster resources among containers,
leading to cluster load imbalance and thus many potential SLO
violations [5]. Therefore, the mainstream cluster schedulers
such as Borg [6] and Kubernetes (K8s) [7] enable container
scheduling to achieve load balancing [8] in shared production
clusters.

Though the existing container scheduling policies such as
Sandpiper [8] and Medea [2] perform well in achieving cluster
load balancing, there still exist a noticeable number of invalid
migrations (i.e., containers are migrated back and forth among
servers over a short time window) in shared production clusters.
As evidenced by our motivational analysis (in Section II-B) on
both Alibaba cluster traces v2018 and v2022 [9], more than
half of container migrations are invalid migrations as the time
window size is set as 3 hours. Such invalid migrations are likely
to make the workloads hosted on the migrated containers suffer
from serious SLO violations, leading to unexpected performance
interference to the containers that are co-located on servers
(i.e., migration cost). Meanwhile, our motivation experiments
in Section II-B reveal that invalid migrations can significantly
reduce the number of requests processed by an Apache Tomcat
Web server hosted on a migrated container by up to 99.8%. Ac-
cordingly, it is essential for the cluster scheduler to circumvent
invalid migrations, especially for long-running workloads.

Unfortunately, many research efforts have been devoted to
making short-term scheduling decisions based on the current
cluster status for workload consolidation [10] or load balanc-
ing [11]. Though such scheduling policies can acquire short-
term (e.g., the current or upcoming timeslot) benefits, they are
oblivious to the time-varying resource consumption of long-
running workloads, which is actually the root cause of invalid
migrations as discussed in Section II-B. There have also been
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Fig. 1. Overview of Tetris. It comprises two pieces of modules including
a Container Resource Predictor and an MPC-based Container Scheduler. By
Jointly optimizing the cluster load balancing degree and container migration cost,
Tetris decides the appropriate container scheduling plans over a time window
[t1,tw], which are performed by the Container Migration Module of K8s in
the containerized cluster.

recent works on the long-term optimization of container schedul-
ing, which are reinforcement learning (RL)-based [5], [12] or
control-based [13], [14] scheduling policies, to partially tackle
the issue of invalid migrations. Nevertheless, these techniques
solely focus on optimizing the initial placement or resource
auto-scaling of containerized workloads (i.e., where to schedule)
over the entire time period (i.e., infinite future). The containers
to be scheduled (i.e., which container to schedule) and the
migration cost of containers have surprisingly received little
attention. Such long-term optimization techniques can still cause
unexpected SLO violations, as evidenced in Section II-C. As a
result, scant research attention has been paid to developing con-
tainer scheduling policies to fully deal with the invalid migrations
of long-running workloads in production containerized clusters.

To fill this gap, we propose Tetris shown in Fig. 1, a model pre-
dictive control [15] (MPC)-based container scheduling strategy
to proactively make scheduling decisions for long-running con-
tainerized workloads. Tetris simply optimizes container schedul-
ing over a certain sliding time window rather than the infinite
future (as in RL-based method [3]) for two reasons: First, the
prediction accuracy of container resource consumption dramat-
ically decreases as the prediction window size increases. Our
prediction results using time-series techniques (in Section V-B)
indicate that the prediction error can exceed 20% as the predic-
tion window size reaches 6. Second, blindly increasing the time
window size can significantly increase the number of samples
of Tetris, which requires noticeable computation overhead to
obtain container scheduling plans. To the best of our knowledge,
Tetris is the first attempt to achieve the long-term optimization of
container scheduling to circumvent as many as possible invalid
migrations, by jointly optimizing the cluster load balancing and
container migration cost over a certain sliding time window. Our
main contributions are summarized as follows.

> First, we build a discrete-time dynamic model for shared
containerized clusters to capture the time-varying resource con-
sumption of containers and the corresponding mapping of con-
tainers on servers (Section III). Based on such a model, we
further devise a cost function of container scheduling over a
time window and formulate our long-term workload scheduling
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Fig.2. Container uptime in Alibaba cluster traces v2018 and v2022 [9]. More
than 80% of containers last for over 175 hours in the v2018 trace, while around
60% of containers run over 312 hours in the v2022 trace.

optimization problem based on MPC, by jointly considering the
cluster load imbalance degree and migration cost of containers.

> Second, we design Tetris to achieve long-term scheduling
optimization for cluster load balancing (Section IV). Specifi-
cally, the Container Resource Predictor in Tetris first accurately
predicts the container resource consumption (Section IV-A).
The MPC-based Container Scheduler then leverages the Monte
Carlo method [16] to judiciously identify the container schedul-
ing decisions for each timeslot, by minimizing our formulated
cost function of container scheduling (Section IV-B). To par-
ticularly reduce the complexity of Tetris container scheduling
strategy, we calculate the thresholds of server load imbalance
degree to classify the migration source and destination servers
in Tetris.

> Finally, we implement a prototype of Tetris (https://github.
com/icloud-ecnu/Tetris) based on K8s. We evaluate the effec-
tiveness and runtime overhead of Tetris with prototype experi-
ments on 10 EC2 instances (i.e., 60 containers) and large-scale
simulations driven by Alibaba cluster trace v2018 (Section V).
Compared with the conventional scheduling strategy (i.e., Sand-
piper [8]) and the state-of-the-art RL-based method (i.e., Metis™,
a modified version of Metis [3]), Tetris is able to improve the
cluster load balancing degree by up to 77.8% while cutting down
the migration cost by up to 79.5%, yet with acceptable runtime
overhead.

II. BACKGROUND AND MOTIVATION
A. Long-Running Containerized Workloads

Large-scale shared production clusters often host many long-
running containers in response to latency-critical user re-
quests [17]. Taking Alibaba as an example, its online services
are mainly long-running and stateful containerized applications,
such as online shopping, database, and machine learning [18].
As shown in Fig. 2, more than half of the containers are executed
over 175 hours in the Alibaba production clusters. Additionally,
the stateful (including partially stateful) workloads account for
over 50% in the latest measurement study in Microsoft produc-
tion clusters [19]. Due to the unpredictability of user requests,
such long-running workloads place diverse demands on multi-
dimensional container resources including CPU, GPU, memory,
network and disk I/O, which are characterized by dynamic
variability and uncertainty in the resource consumption [20].
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Fig. 3. Illustration of invalid migration. Containers c2 and c5 are migrated

back and forth among servers s1, s2, and s3.

Accordingly, the co-location of containerized workloads can
lead to contention for shared resources, which can easily cause
performance interference and resource wastage in the shared
clusters.

Based on the above, enabling adequate (re)scheduling of
long-running containerized workloads is essential to cluster load
balancing. In shared production clusters, K8s achieves load
balancing among servers by carrying out container reschedul-
ing' (i.e., container migrations [21]). Currently, CRIU (Check-
point/Restore In Userspace)® supports the pre-copy-based live
migration of containers [22]. To simplify the container migration
process, we simulate it with the following three steps: i.e.,
stopping containerized services on the source server first, then
iteratively replicating the memory dirty pages to restore services,
and finally restarting the services on the destination server. In
general, the container scheduling inevitably brings a noticeable
amount of migration cost, which requires to be considered during
the scheduling of containers, especially for stateful workloads.

B. Invalid Migrations of Long-Running Workloads

While many existing scheduling policies (e.g., Sandpiper [8])
perform well in load balancing in shared containerized clus-
ters, they usually focus on the short-term benefits of con-
tainer scheduling. Such a short-term optimization of container
scheduling policy can easily make invalid migration decisions
for containers, resulting in unpredictable migration cost and
potential SLO violations.

Specifically, we take a cluster of three servers hosting five con-
tainers illustrated in Fig. 3 as an example. The cluster scheduler
(e.g., the default K8s scheduler) first migrates container ¢2 and
¢d from server sl and s3, respectively, to server s2, in order to
obtain a temporary benefits of load balancing at time ¢. Unfortu-
nately, server s2 becomes overloaded as the resource consump-
tion of three containers (i.e., ¢3, ¢2, ¢b) dramatically increases,
which triggers two container migrations (i.e., container c2, c5b)
from server s2 to sl and s3, respectively. In such a case, naive
scheduling policies are likely to make long-running containers
migrated back and forth among servers, thereby causing heavy
and unnecessary migration cost to containers. Accordingly, we
formally define invalid migrations as in Definition 1.

Descheduler  for  Kubernetes:
descheduler

2CRIU: https://criu.org/Main_Page

https://github.com/kubernetes-sigs/
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Fig.4. Number of invalid migrations within a time window size varying from
1 to 6 hours for 67,437 containers in Alibaba cluster trace v2018 and 676,938
containers in Alibaba cluster trace v2022.

Definition 1: If a container is migrated back and forth among
servers over a time window [t, t + w], we define such container
migrations as invalid migrations within a time window size w.

Moreover, we validate the prevalence of invalid migrations
with Sandpiper using both Alibaba cluster traces v2018 (i.e., an
8-day period) and v2022 (i.e., a 13-day period) [9]. As shown
in Fig. 4, the number of invalid migrations increases as the
scheduling time window increases. Specifically, the cumulative
number of invalid migrations exceeds 1,200 and 30,000 for the
v2018 and v2022 traces, respectively, as w is set as 3 hours.
The number reaches over 50,000, accounting for over 75% of
container migrations for the v2022 trace when w increases to
6 hours. To further illustrate the performance impact of invalid
migrations, we conduct experiments on a cluster of 10 servers
(i.e., 60 containers) deployed with Apache Tomcat Web server
(partially stateful workloads). Our experiment results reveal that
61.7% of the containers are affected by invalid migrations. The
number of requests processed by a migrated container can be
reduced by up to 99.8% (74.0% on average), severely degrading
the quality of long-running Web service. Therefore, it is essential
to design a long-term container scheduling strategy to alleviate
invalid migrations by explicitly considering the future resource
consumption of containers.

C. An Illustrative Example

To avoid invalid migrations, we design 7etris in Section IV, a
simple yet effective container scheduling strategy that leverages
the MPC approach to proactively migrate long-running work-
loads for achieving the cluster load balancing. In particular,
MPC adopts a compromise strategy that allows the current
timeslot to be optimized while taking finite future timeslots
into account [23]. To illustrate how Tetris works, we show
a motivation example in Fig. 5 by comparing Tetris with an
RL-based scheduling method (i.e., Metist, a modified version
of Metis [3] which will be introduced in Section V-A). Though
Metis™ greedily achieves the optimal load balancing degree and
minimizes the migration cost over the entire time period of
[t,t + 2], it can still overload server s2 at time ¢ + 2 and trigger
the migration of container ¢3 from server s2 to sl. In contrast,
our MPC approach (i.e., Tetris, with the window size set as 2)
jointly optimizes the load balancing degree and migration cost
for two sliding timeslots (i.e., [t,t + 1], and [t + 1,¢ + 2]) and
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TABLE I
KEY NOTATIONS IN OUR DISCRETE-TIME DYNAMIC MODEL AT TIME ¢

Scenario A
s1/cl|c2| c3 s1| ¢l |c2 c3 s1| e2 c3 cl . ..
let]ez] '\| | I [ ] ! l | ‘] | Notation ‘ Definition
s2 4 [ 3 | s2[ ca ] | s2[ 4 e1] |
Time t Time t+1 Time t+2 M, N Sets of servers and containers
Scenario B W Time window size

1]c2 1 [ 1 e 3 -
cicd | et ez ] | 1l ] S | Ch(t) Load imbalance degree of the cluster
N | 2 | 2B Cm(t) | Container migration cost of the cluster

Time t Time t+1 Time t+2
cpu(t) | CPU consumption of a container k

Fig. 5. An illustrative example of MPC-based container scheduling (our k . £ . k
proposed Tetris in scenario A), as compared with RL-based container scheduling mem (t) Memory consumption of a container

A . — :
(Metis™ [3] in scenario B). CPU(t) | Average CPU consumption of a server

MEM(t) | Average memory consumption of a server

guarantees SLOs of all containerized workloads. Accordingly, a Normalized.model coefficient of migration
the RL-based method can optimize the scheduling objective over cost to load imbalance degree
the entire time period at the cost of overloading a certain number Normalized model coefficient of memory
of containers, while Tetris achieves the long-term optimization p resources to CPU resources
for cor}tglner scheduling within a certain sliding fzme window. 5 Linear model coefficients of container mi-
In addition, Fh'e RL-based me.thf)d has the following problf:ms gl gration cost in terms of the memory size
such as requiring repeated training on a large amount of high- % ; ] ; ; ;

. L o i (t Indicator if a container k is on a server ¢
quality data samples and lacking interpretability as well as poor 2
scalability [3], which will be further validated in Section V-D. m"(t) | Indicator whether a container k is migrated

Summary: Avoiding invalid migrations is critical to container
scheduling, and such invalid migrations are mainly caused by the
short-term (e.g., the current or upcoming timeslot) optimization
of container scheduling. Moreover, greedily optimizing con-
tainer scheduling over the entire time period (i.e., infinite future)
is likely to cause unexpected SLO violations. Accordingly, there
is a compelling need to design a long-term container scheduling
strategy, by jointly optimizing the cluster load balancing and mi-
gration cost of containers within a certain sliding time window.

III. MODEL AND PROBLEM FORMULATION

In this section, we first build a discrete-time dynamic model to
capture the load imbalance degree of clusters and the migration
cost of containers. Next, we formulate a container scheduling
optimization problem based on our dynamic model. The key
model notations are summarized in Table 1.

A. Discrete-Time Dynamic Model

We consider a containerized cluster with a set of servers M
hosting a set of containers A/. We assume the time ¢ is dis-
crete and slotted, where t = {t¢,t1,...,tw } and W is the time
window size. For each container k € N, its CPU and memory
resource consumption at each time ¢ is recorded as cpu®(t) and
mem"(t), respectively. For each server i € M, CPU;(t) and
M EM;(t) represent its total CPU and total memory resource
consumption at time ¢, respectively.

Cluster load imbalance degree: We use the variance of re-
source consumption of all cluster servers to represent the load
imbalance degree of the cluster. A larger degree value indicates
a severer load imbalance situation. By taking CPU and memory
resources as an example, the cluster load imbalance degree
is represented by calculating the weighted sum of the load

imbalance degrees of each resource of servers, which is given
by

2
Cy(t) = I/\/ll%l ; gfzf(t) - epuk(t) — CPU(t)
+B- Y ak(t) - mem"(t) - MEM(t) | |,
keN
(D

where § € [0, 1] denotes the normalized parameter of memory
resources to CPU resources. In practice, 3 can be empirically
determined as the square of the ratio of CPU to memory resource
consumption of workloads. 2% (¢) denotes whether the container
k is hosted on the server .

k 1, if a container k runs on a server i,
i (t)y =</ .
0, otherwise.

Then, we proceed to denote the average CPU resource con-

sumption CPU (1) = ﬁ > ke cpu (t) and average memory
resource consumption M EM (t) = ﬁ > wen mem®(t) of a
server in the cluster.

Container migration cost: We use the sum of unit cost of
the migrated containers C* ,(t) to denote the migration cost

C,(t), which is formulated as
Con(t) = D Crig (1) - m*(2), )
keN

where  m*(t) =Y, v 2F(t) - (1—2F(t—1)) indicates
whether a container %k is migrated from a source server i@
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at time t. As elaborated in Section II-A, the migration cost
of containers is roughly linear to their memory footprint
memP (t) [24]. Accordingly, C¥ . (t) can be given by

mig

C’ffw]( ) =04 - mem"(t), 3)

where ~ and § are linear model coefficients, which are empirical
and constant values. We elaborate the configuration process of
model coefficients in Appendix C, available online.

To sum up, we further formulate the cost function C(t) of
container scheduling at each timeslot, by combining the cluster
load imbalance degree C(t) and the migration cost C, (t) as
below,

C(t) = Cp(t) + a- Cp(t), 4)

where « € [0, 1] denotes the normalized parameter of migration
cost C,, (t) to cluster load imbalance degree C (), which can
practically be obtained by the trace analysis. By incorporating
CPU(t) and M EM (t) into (1), and (3) and m”(¢) into (2), we
yield Cy(t) and C,,, (), respectively, which are formulated as

PIPIE

zEM kJeN

Co(t) = M1 M| ) - (cpu® (t)epul (t)

&)
+B - mem” (t)mem!(t)) + C1,

Cn(t) =Coy — Z Z (6 +~ - memF(t)) - 2 ()2t (t —1).

keN ieM
(6)

Given a containerized cluster and workloads at time ¢, C =
_IMI(CPU® +BMEM(®)) _ Lyen(epu® (8)*+B-mem* (£)%)
IM[-1 [M|-1
Co =6 |N|+7-> e mem”(t) are both constant values.
The mathematical derivations can be found in Appendix A, avail-
able online. By analyzing the formulations above, (5) indicates
that the cluster load imbalance degree is determined by the sum
of the pairwise multiplications between the resource consump-
tion of containers hosted on each server. Equation (6) implies
that the migration cost across the cluster can be determined by
the negative sum of migration costs of the migrated containers.

and

B. Workload Scheduling Optimization Problem Over a Time
Window

Based on our discrete-time dynamic model above, we proceed
to formulate the long-term optimization problem of container
scheduling based on MPC. At each time ¢, MPC leverages
the predicted container resource consumption (i.e., cpu®(t),
memP (t )) to make scheduling decisions (i.e., judiciously de-
ciding z¥(t)) to minimize the cost function C(t) over the time
window (as in (7)). We assume the scheduling within the time
window ¢ € [ty, ty], and our optimization problem can be for-
mulated as

tw
min C(t @)
20 )
sty af(t)=1, VkeN (8)
ieM
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Fig. 6. Resource consumption of containers with respect to the physical

machine resources over time: (a) a periodic container (id = 404), and (b) an
aperiodic container (¢d = 22) in Alibaba cluster trace v2022.

Z af(t) - cpuf(t) < CPUP(t), Vie M 9)
keN
> ak(t) - memF(t) < MEM{™(t)Vie M (10)
keN

where the hard constraints in our optimization problem are
as follows. Constraint (8) limits each container to be hosted
only on one server per time to avoid scheduling conflicts. Con-
straints (9)—(10) ensure the total CPU and memory resource
consumption on each server cannot exceed the server resource
capacity (i.e., CPU{"(t) and M EM " (t)).

Problem analysis: For each timeslot, the problem defined
in (7) can be easily reduced to a multiprocessor scheduling
problem (MSP) [25]. MSP is considered as finding a schedule
for multiple tasks to be executed on a multiprocessor system at
different timeslots, with the aim of minimizing the completion
time. Such a scheduling problem is known to be NP-hard [26].
Moreover, (7) is a multi-objective optimization problem that
jointly considers minimizing the migration cost and the cluster
load imbalance degree, which makes it hard to solve. As a
result, our optimization problem turns out to be harder than
MSP. In the upcoming section, we turn to leveraging the Monte
Carlo method [16] to solve our long-term workload scheduling
optimization problem.

IV. TETRIS DESIGN

Based on our discrete-time dynamic model defined in Sec-
tion I1I, this section designs Tetris, including a container resource
predictor (Section IV-A) and an MPC-based container scheduler
(Section I'V-B), with the aim of jointly optimizing the cluster load
balancing degree and container migration cost over a certain time
window.

A. Predicting Container Resource Consumption

We first classify workloads as periodic and aperiodic con-
tainers shown in Fig. 6, as most containerized workloads show
a diurnal pattern [27]. Specifically, we first obtain the frequency
of container resource consumption values and calculate its cor-
responding periodicity. With such a value, we then slice the con-
tainer resource consumption into several segments. We finally
calculate the Pearson correlation coefficients between every

Downloaded on February 09,2025 at 21:46:42 UTC from IEEE Xplore. Restrictions apply.
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two consecutive segments and decide whether such coefficients
exceed a given periodicity threshold thrperioa (e.g., 0.85). If
the correlation coefficients exceed thrpe,ioq, We consider such
a container as periodic. Otherwise, we consider the container as
aperiodic.

Next, we proceed to predict the resource consumption for
such two types of containers separately. Specifically, we adopt
ARIMA [28] to predict the resource consumption of periodic
containers. We mainly obtain three key parameters (i.e., the
autoregressive process of order p, the moving average process
of order ¢, and the difference order d) of the ARIMA model. In
addition, we leverage a simple yet effective LSTM [29] model
to predict the resource consumption of aperiodic containers,
rather than a more sophisticated attention-based model [30]. We
adopt a 4-layer stacked LSTM model with 50 neurons per layer
and add a Dropout layer between every two LSTM layers to
reduce overfitting. To alleviate the impact of error propagation,
we directly conduct the multistep-ahead predictions and set the
number of prediction steps as W. In particular, we use the
historical container resource consumption to train the shared
ARIMA and LSTM models for newly-launched containers. To
improve the prediction accuracy, we further leverage incre-
mental learning [31] to update a personalized model for each
container periodically.

B. MPC-Based Container Scheduling

We design Tetris in Algorithm 1 by leveraging the MPC
approach to make container scheduling decisions over the time
window W. Specifically, we use a |[M| x |[N| matrix X; of
2¥(t) (i € M,k € N) to denote the mapping of containers to
servers at time ¢ € [to, tw]. According to MPC, we first solve
the scheduling optimization problem in Section III-B to obtain
Xy, Vt € [t1, tw], at the current time to. Then, we proactively
perform the container scheduling decision X;, for the first
timeslot ¢1. After the containers are scheduled to migration des-
tination servers at the “current” time ¢1, we continue solving the
scheduling optimization problem and then perform the container
scheduling decisions for the “first” timeslot ¢5. Accordingly,
Tetris can be periodically (e.g., for several minutes or hours)
executed at each timeslot to maintain the load balancing of the
containerized cluster.

In more detail, we solve the scheduling optimization problem
using the Monte Carlo method [16] as discussed in Section I1I-B.
We take Z sample solutions in total, and each sample solution
includes a set of container scheduling decisions X; over the
time window ¢ € [t1, tw] (lines 1 to 2). To obtain the container
scheduling decisions for each timeslot ¢, we design two phases
in Algorithm 1 including server classification (lines 3 to 9) and
container scheduling (lines 10 to 18), which are elaborated as
follows.

Phase I. server classification: We classify the cluster servers
into three categories, i.e., migration source servers and des-
tination servers as well as the remaining servers (lines 3 to
9). Based on the cluster load imbalance degree (i.e., (5)) de-
fined in our dynamic model, we can obtain the simplified
load imbalance degree (i.e., load;(t)) for each server i given
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Algorithm 1: Tetris: Proactive MPC-Based Container
Scheduling Algorithm for Long-Term Load Balancing.

Input: Current mapping X, of container set N to
server set M, time window size W, number
of samples Z, number of trials K.
1 forall z € [1,Z] do
2 | forallt € [t1,tw] do

// Phase I: server classification

3 Initialize: the load threshold of migration
source servers load.(t) < Eq. (12) and that
of destination servers loadges:(t) <— Eq. (13),
the set of migration source/destination
servers Mg . < ¢, Myest < @;

for each server i € M do

Calculate load;(t) < Eq. (11);

if load;(t) > loads,.(t) then
L Put server 7 in the set M,.;

if load;(t) < loadges: (t) then
| Putserver i in the set M ges;

g S G B

/ Phase II: container scheduling

10 orall k € [1,K] do

11 Obtain the set of migrated containers
Npnig < sampling containers from M,..;
12 for each container ¢ € Nyiq do

13 for each server i € Mgest do

14 Calculate the container scheduling
cost C(t) < Eq. (4), if container ¢
is migrated to server ¢;

[

15 Update X; by migrating container c to
the server ¢ with the smallest C(t);

16 if X satisfies the Constraints (8) — (10) then
17 | break;

18 Update X; <— X;_1; // X; cannot

satisfy scheduling constraints

19 | Calculate the overall container scheduling cost
over the time window W as cost, < Eq. (7)
with X, for each sample z;

20 Obtain X;’”” — X; with the minimum cost, among
all Z samples;

21 return: Container scheduling decisions for the first
timeslot (i.e., X{’l‘i").

by

load;(t) = Z ol (t)zk(t) - (cpu® (t)epu' (t)

k,eN

+ B - mem” (t)mem! (t)). (11)
Obviously, the CPU and memory resource consumption of each
server are C' PU (t) and M E M (t), respectively, when the cluster
reaches the “ideal” load-balanced state. As the load imbalance
degree load;(t) of each server ¢ can vary with the hosted
containers and their resource consumption, we obtain the load
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threshold of migration source servers loads...(t) and that of des-
tination servers load .s;(t) as in Theorem 1. In particular, Tetris
can tolerate moderate prediction errors of container resource
consumption for classifying migration source and destination
servers.

Theorem 1: Given a server hosting a set of containers with the
average CPU and memory resource consumption (i.e., C PU (t)

and M EM (t) at time ¢, we formulate the two load thresholds
loadsy(t) and loadges:(t) as

loadyy(t) = W2||N1 : (CPU(t)2 +8- MEM(t)2> ,
(12)
loadear(t) = % CPUQ) + - MEM(D)
n(t)
— (cpuk ()% + B - memF (t)?)
k=1
(13)

By sorting containers in descending order with the CPU and
memory resource consumption, cpu®(t) and mem?”(t) repre-
sent the CPU and memory consumption of the kth container
at time ¢, respectively. n(t) denotes the minimum number

of containers which satisfies ZS} cpuF(t) < CPU(t) and

S memk (t) < MEM(2).

Proof: The proof can be found in Appendix B, available
online. O

Phase II. container scheduling: To make Algorithm 1 prac-
tical, we sample a set of containers to be migrated ./\/'mig from
the set of migration source servers M,... To achieve extensive
coverage of possibilities with a small number of samples, we
adopt Latin Hypercube Sampling (LHS) with a sampling rate
of v per migration source server (line 11). For each container to
be migrated, we further select the migration destination server
in M 4.5t With the smallest container scheduling cost and then
update X, (lines 12 to 15). Considering the randomness of
sampling, the obtained container scheduling decisions X; can
violate constraints (8) — (10). If no violations occur, X is valid
and we continue the container scheduling process for the next
timeslot ¢ 4 1. Otherwise, we require re-sampling Nmig and
obtain another X, until K trials are finished (line 10) or the
scheduling constraints are satisfied (lines 16 to 17).

Finally, we iteratively calculate the overall container schedul-
ing cost over the time window W for each sample z. We choose
the container scheduling decisions X7*" with the minimized
scheduling cost among Z samples. According to MPC, we only
perform the container scheduling decisions X;’fi" for the first
timeslot ¢1 (lines 19 to 21).

Determining parameters in Tetris : We obtain three key pa-
rameters (i.e., v, W, Z) in Algorithm 1 as below. First, we set
the sampling rate v for migration containers as the minimum
of two ratios (i.e., one is the ratio of migration source servers
with the CPU resource consumption exceeding C'PU (t), and the
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other is the server ratio with the memory resource consumption
exceeding M EM (t)). Second, we configure the time window
size W as the minimum of two values (i.e., Wy, Ws). W7 is the
maximum time window with the prediction error of container
resource consumption below a threshold (e.g., 20%). W5 is
the window size with the fastest growing number of invalid
migrations (in Fig. 4). Third is to set the number of samples Z.
To uniformly sample different types of containers, we perform
k-means clustering on the CPU and memory resource consump-
tion of containers. We simply set the cluster number £ as the
lower bound of Z.

Time complexity analysis: According to Algorithm 1, the time
complexity of Tetris is in the order of O(ZW K - |N||M]). As
the number of containers || and the number of servers | M| are
both far larger than the time window size W and the number
of trials K, the complexity can be reduced to O(Z - |N] - |[M|).
Accordingly, given a containerized cluster and workloads, the
computation overhead of Tetris can be practically acceptable,
which will be validated in Section V-D.

Prototype implementation: We implement a prototype of
Tetris based on K8s, with over 1,000 lines of Python and Linux
Shell codes which are publicly available on GitHub.? In par-
ticular, we implement the container migration module of 7Tetris
by converting container scheduling decisions into a series of
K8s pod operations (i.e., pod deletion and creation commands
executed on migration source and destination servers). We plan
to integrate the container live migration of CRIU into Tetris as
our future work.

V. PERFORMANCE EVALUATION

In this section, we evaluate Tetris by conducting prototype
experiments based on a 60-container K8s cluster in Amazon EC2
and complementary large-scale simulations driven by real-world
Alibaba production cluster traces v2018 and v2022. We focus
on answering the questions listed below.

® Accuracy: Can Tetris accurately predict the resource con-
sumption of long-running containers? (Section V-B)

e Effectiveness: Can our Tetris scheduling strategy jointly
optimize the cluster load balancing degree and migration
cost for long-running containers without incurring SLO
violations? (Section V-C)

® Overhead: How much runtime overhead does Tetris prac-
tically bring? (Section V-D)

A. Experimental Setup

Cluster configurations and workloads: We carry out prototype
experiments upon 10 mé6a.large EC2 instances. Each instance
is equipped with 2 vCPUs and 8 GB memory and initially
hosting 6 containers. We select three representative container-
ized workloads including Apache Tomcat server?, Redis’, and

3https://github.com/icloud-ecnu/Tetris
“https://tomcat.apache.org/
Shttps://redis.io/
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Fig.7. (a) Sum of the squared errors (SSE) of k-means clustering on CPU and

memory resource consumption of containers with different k values, and (b) the
optimization objective value decreasing slowly from 20 samples in the Monte
Carlo method.

ResNet50 [32] training. We use Apache-benchmark® and redis-
benchmark’ as the time-varying user requests for Tomcat Web
server and Redis, respectively. We adopt CIFAR-10% as the
dataset for ResNet50. We randomly deploy the three workloads
on the 60 containers in our cluster. To obtain complementary
insights, we build a trace-driven simulator based on a discrete-
event simulation framework [33]. We adopt Alibaba cluster
traces v2018 and v2022 [9] for the prediction of container
resource consumption and large-scale simulations.

Tetris parameters and model coefficients: We first configure
four Tetris parameters. The number of samples Z is set as 20,
as the container resource consumption can be clustered with
20 types and the optimization value converges at 20 samples
shown in Fig. 7. The time window size W is set as 2 based
on the prediction accuracy of container resource consumption.
The number of trials K and the sampling ratio v of migration
containers are empirically set as 10 and 40%, respectively.
Second, we empirically set four model coefficients including «,
5,7, and d as 0.004, 0.0025, 1, and 10, respectively. The detailed
configuration process can be found in Appendix C, available
online.

Baselines and metrics: We evaluate Tetris against the con-
ventional Sandpiper [8] and the state-of-the-art Metis™ (i.e., a
modified version of Metis [3]) scheduling algorithms. To achieve
load balancing, Sandpiper performs a greedy worst-fit algorithm
to schedule containers according to the container index volume
calculated by the multi-dimensional resource consumption [8].
Metis™ uses the method in Tetris to select migration source
servers and migrated containers and leverages the negative value
of (4) as the reward of RL to make container scheduling (i.e.,
where to schedule) decisions. In particular, we use the mean
absolute percentage error (MAPE) [34] to evaluate the efficacy
of the predictor module of Tetris. Meanwhile, we adopt the
load imbalance degree defined in (1) and the migration cost
defined in (2) as well as the number of SLO violations to
evaluate the efficacy of the scheduler module of Tetris. Due
to the randomness of sampling in the Monte Carlo method and
workload placement on containers, we illustrate the container

Shttps://httpd.apache.org/docs/2.4/programs/ab.html
"https://redis.io/topics/benchmarks
8https://www.cs.toronto.edu/~kriz/cifar.html
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TABLE II
NUMBER OF CONTAINERS WITH PERIODIC OR APERIODIC CPU/MEMORY
RESOURCE CONSUMPTION IN ALIBABA CLUSTER TRACE V2018 AND v2022

‘ Container type CPU Memory
g #periodic containers | 49,962 40,501
& | #aperiodic containers | 17,475 26,936
g #periodic containers | 416,905 151,147
< | #aperiodic containers | 260,033 525,791

scheduling performance with error bars of standard deviation
by repeating experiments three times.

B. Validating Container Resource Predictor in Tetris

We first classify the resource consumption of containers
as periodic or aperiodic using the method elaborated in Sec-
tion IV-A. As shown in Table II, the periodic CPU and mem-
ory resource consumption accounts for 61.6% — 74.1% and
22.3% — 60.1% of containers, respectively, while the propor-
tion of aperiodic CPU and memory resource consumption are
only 25.9% — 38.4% and 39.9% — 77.7%, respectively, for both
Alibaba cluster traces v2018 and v2022.

We next examine the prediction accuracy of container re-
source consumption. We use 70% of the trace data to train the
ARIMA and LSTM models in Zetris. As shown in Fig. 8, we first
observe that ARIMA is more accurate than LSTM in predicting
the resource consumption of periodic containers. This is because
the moving average and autoregression in ARIMA accurately
captures the periodic resource consumption of containers, with
a small prediction error (i.e., less than 15%). Second, LSTM
achieves a more accurate prediction error (i.e., 0.9% — 13.9%) for
the resource consumption of aperiodic containers compared with
ARIMA. This is mainly because ARIMA can easily be affected
by abnormal spikes in aperiodic resource consumption, while
LSTM can learn such large resource fluctuations through model
training. Interestingly, LSTM achieves around 10.4% — 23.9%
of prediction error for periodic containers as depicted in Fig. 8(b)
and (d), simply because LSTM contains nonlinear activation
functions and thus overfits the periodic data [35]. Third, the pre-
diction error of container resource consumption can significantly
increase from 0.9% to 23.9% with the time window size ranging
from 1 to 6. That is the reason why 7etris controls the time
window size W within 3 to maintain an acceptable prediction
error (i.e., within 20%) of container resource consumption.

We finally examine the prediction overhead of Tetris.
Specifically, the average prediction time of ARIMA and
LSTM are 0.25 seconds and 0.36 seconds, respectively,
for each container. Though Tetris requires a shared model
for all containers and a personalized model for each con-
tainer, the average storage footprint of an ARIMA model
and an LSTM model are just 556KB and 908KB, re-
spectively. Such time and space overhead above for the
prediction of container resource consumption is practically
acceptable.
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Fig. 9. Performance comparison of Tetris with Sandpiper and Metis ™t strate-

gies under K8s-based prototype experiments, in terms of the cumulative values
of (a) cluster load imbalance degree and (b) migration cost of containers over
time (i.e., 5 timeslots with 5 minutes each).

C. Effectiveness of Tetris

Prototype experiments on Amazon EC2: We first evaluate the
effectiveness of Tetris in a 60-container K8s cluster by setting
the timeslof® as 5 minutes. As shown in Fig. 9, Tetris achieves
a lower load imbalance degree by 74.4% — 77.8% and 53.0%
— 59.6% compared with Sandpiper and Metis™, respectively.
Moreover, the migration cost with Tetris is 7.8% — 79.5% and
10.3% — 77.0% lower than that with Sandpiper and Metis™,
respectively. This is because (1) Tetris jointly optimizes the load
imbalance degree and migration cost, while Sandpiper greed-
ily migrates containers to alleviate the server hotspot without
considering the negative impact of migration cost, which causes
37 invalid migrations in total. (2) Though Metis™ leverages the
RL method to explicitly consider the migration cost, it sacrifices
the container performance for a certain number of timeslots to
optimize container scheduling over the entire time period (i.e.,
infinite future), bringing 12 invalid migrations for 5 timeslots.
In contrast, Tetris continuously optimizes each timeslot (i.e., 5
minutes) using a certain sliding time window.

To illustrate the effectiveness of Zetris, we further take a close
look at the scheduling decisions made by the three strategies. As
shown in Fig. 10, we observe that Tetris achieves the most load
balancing than the other two strategies at both time 0 and time 1,
by proactively migrating out four small containers (i.e., c3 — c6)
at time 0. In comparison, Sandpiper causes an invalid migration
of container cl. As server sl is overloaded at time O by setting
the overload threshold as 85%, Sandpiper chooses to migrate

9The timeslot can be determined by the cluster administrator according to the
cluster requirements.
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Fig. 10.  Comparison of container scheduling decisions on server s1 of the 60-

container K8s cluster in the timeslot [0,1] under 7etris, Sandpiper, and Metist
strategies.

TABLE III
CUMULATIVE NUMBER OF SLO VIOLATIONS OVER TIME IN OUR PROTOTYPE
EXPERIMENTS ON A 60-CONTAINER K8s CLUSTER

Duration (timeslots) ‘ 0o 1 2 3 4 5
Sandpiper 0 0 14 22 26 61
Metis ™ 0 0 0 8 8 20
Tetris 0 0o 0o 0 0 O

container c1 (i.e., the container with the maximum volume) to
server s2. It then migrates container c1 back to server s1 as server
52 is overloaded at time 1, resulting in poor load balancing and
large migration cost. As for Metis™, it migrates out containers
(i.e., ¢2 — c4) and container ¢6 at time 0 and time 1, respectively,
because it adopts online training of the RL model, which has
not been trained well enough over the initial time [0,1]. In
addition, Metis™ mainly considers the optimization over the
infinite future, which is likely to increase the load imbalance
degree or migration cost over a certain time period (e.g., time
[0,1]).

We proceed to examine whether Tetris can guarantee the
SLO of workloads. For simplicity, we consider the containers
hosted on the overloaded servers as SLO violations. As shown in
Table I1I, Tetris causes zero SLO violations, while Sandpiper and
Metis™ can cause up to 35 and 12 SLO violations, respectively,
within one timeslot (i.e., at time 5). The reason is that Tetris
explicitly considers the hard constraints (i.e., Constraints (9)—
(10)) on the CPU and memory resource capacities of servers,
guaranteeing the workload SLO for each timeslot. However,
Sandpiper greedily migrates the container with the largest vol-
ume to the server with the lightest load. It does not check whether
the server load exceeds the capacity on the migration destination
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Fig. 12.  Cumulative number of invalid migrations of Tetris compared with
that of Sandpiper and Metist strategies under simulations on a 24-hour Alibaba
cluster trace v2018.

server, causing unexpected SLO violations to containers. The RL
method in Metis™ is not designed to guarantee the scheduling
constraints, so that it allows the occurrence of SLO violations
over a certain time period to optimize container scheduling (i.e.,
maximize the action reward) over the infinite future.

Large-scale simulations driven by Alibaba cluster trace: We
next evaluate the effectiveness of Tetris with real-world trace-
driven simulations, by setting the timeslot as 1 h. As shown
in Fig. 11, Tetris can reduce the load imbalance degree of the
cluster by 9.7% — 28.6% compared with Sandpiper and Metis™.
Additionally, Tetris achieves the lowest migration cost, which is
reduced by 27.4% — 74.1% than the other two strategies. Such
results above are consistent with our prototype experiments. This
is because Tetris co-optimizes the load balancing and migration
cost to alleviate invalid migrations. In contrast, Sandpiper greed-
ily alleviates the heavy server load using the worst-fit algorithm,
resulting in many invalid migrations and a high growth rate of
migration cost as depicted in Fig. 11(b). Though Metis™ can
optimize the load imbalance degree and migration cost over the
infinite future, it achieves a worse load balancing degree in the
early stage (i.e., the first 5 days) and a better load degree in
the late stage (i.e., day 8) compared with Tetris as shown in
Fig. 11(a). This is because it requires continuous online training
until the RL model converges (after day 5), which is likely
to cause a moderate number of invalid migrations in the early
stages.

We further examine whether Tetris can alleviate invalid mi-
grations. As shown in Fig. 12, Tetris reduces the number of
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TABLE IV
CUMULATIVE NUMBER OF SLO VIOLATIONS OVER TIME IN A SIMULATED
67,437-CONTAINER CLUSTER DRIVEN BY ALIBABA CLUSTER TRACE V2018

Duration (days) ‘ 1 3 5 8

Sandpiper 881 3,512 12,248 14,403

Metis™ 0 220 220 918

Tetris 0 0 0 0
TABLE V

PERFORMANCE COMPARISON OF TETRIS WITH VARIOUS PARAMETER
CONFIGURATIONS (LE., [W, Z]) ON A 24-HOUR ALIBABA CLUSTER TRACE
v2018, BY JOINTLY CONSIDERING CLUSTER LOAD IMBALANCE DEGREE
(Cy(t)) AND MIGRATION COST OF CONTAINERS (Cip, (1))

[W, Z] | [2,20] [4,20] [6,20] [2,10] [2,30]

Cy(t) | 59.8  60.8
Cu(t) | 1.6 2.0

[2, 20] particularly denotes the default Tetris.

63.1
3.5

62.4
2.8

60.4
1.7

invalid migrations by 59.4% — 81.3% and 32.4% — 78.9% as
compared with Sandpiper and Metis™, respectively. Tetris and
Metis™ can reduce the number of invalid migrations, simply
because they both consider long-term co-optimization of load
balancing and migration cost for container scheduling. In com-
parison, Sandpiper only considers short-term optimization of
container scheduling, resulting in a significant number of invalid
migrations. As MetisT achieves long-term container scheduling
over the infinite future, which can cause more invalid migrations
than Tetris over a certain number of timeslots. In particular,
Sandpiper invokes a significant number of invalid migrations at
time 20, because the resource consumption of containers varies
greatly which overloads a number of servers at time 20.

Similar to our prototype experiments, we proceed to examine
whether Tetris can guarantee the SLO of workloads in large-scale
simulations. As shown in Table IV, we observe that Tetris does
not cause any SLO violations for 8 days, while both Sandpiper
and Metis™ can cause up to 14,403 and 918 SLO violations,
respectively, which account for 21.4% and 1.4% of the total num-
ber of containers. Our simulation results above are consistent
with the prototype experiments, demonstrating the effectiveness
of Tetris in guaranteeing workload SLOs.

We finally conduct a sensitivity analysis of two key Tetris
parameters (i.e., the window size W and the number of samples
Z) in Algorithm 1. As shown in Table V, the default Zetris
achieves the lowest container scheduling performance among
various parameter configurations. Specifically, the performance
metrics (i.e., Cy(t) and C,,(t)) both increase moderately as
W varies from 2 to 6, simply because the prediction error of
container resource consumption increases as shown in Fig. 8.
Additionally, the performance of container scheduling first de-
creases and then stabilizes as Z increases from 10 to 30, which
is consistent with our configuration analysis of Z in Fig. 7.
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17 containers.

TABLE VI
CUMULATIVE COMPUTATION OVERHEAD (IN MINUTES) OF TETRIS, SANDPIPER
AND METIST SCHEDULING ALGORITHMS EXECUTED ON A 8-DAY ALIABABA
CLUSTER TRACE v2018

Duration (days) ‘ 1 3 5 8

Sandpiper 45 176 285  46.7
Metis™ 86.1 333.6 503.2 827.1
Tetris 6.5 19.8° 29.2 515

D. Runtime Overhead of Tetris

As shown in Fig. 13(a), we observe that the runtime overhead
of the three strategies increases quadratically with the cluster
scale, while Sandpiper and Tetris achieve much lower overhead
than Metis™. The rationale is that the search space of Metis™
contains all possible mappings of containers to servers, while
Sandpiper and Tetris only consider the overloaded servers (con-
tainers) and the containers on the migration source and destina-
tion servers, respectively. Though the time complexity of Tetris
is in the order of O(|N| - |M|) (as discussed in Section IV-B),
the quadratic term ratio (obtained using polynomial regression)
of Tetris is only 1.9e — 07, which is much smaller than that
of Metis™ (i.e., 2.4e — 05) and Sandpiper (i.e., 5.5¢ — 07).
Similarly, Tetris consumes a much smaller amount of memory
than Metis™ and Sandpiper as shown in Fig. 13(b). This is
because Metis™ stores the policy of RL which involves all states
and actions as well as the large parameters of neural networks.
Sandpiper requires storing the volumes of all containers and
servers. In comparison, Tetris only needs to calculate the load
imbalance degree of all servers and the migration cost of a subset
of containers (i.e., containers to be migrated).

In addition, we illustrate the computation overhead of three
strategies over various time scales (i.e., from 1 to 8 days) in
Table VI. The computation time of Zetris is slightly longer than
that of Sandpiper (i.e., 0.7 — 4.8 minutes), while much shorter
than that of Metis™ (i.e., 79.6 — 775.6 minutes) as the time scale
increases. This is because Sandpiper triggers the fewest algo-
rithm executions only when the resource hotspot occurs. Metis™
greedily selects the largest reward action across all state spaces
in each timeslot. Also, it requires online training to update the
RL model. In contrast, Tetris periodically triggers the execution
of Algorithm 1 in each timeslot. Such time overhead is much
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smaller than Metis™ per timeslot as depicted in Fig. 13(a). As a
result, the runtime overhead of Tetris is practically acceptable.

VI. RELATED WORK

Short-term optimization of workload scheduling: There have
been many works devoted to scheduling VMs or containers by
considering the short-term (e.g., the current or upcoming times-
lot) benefits. To predict the resource consumption of workloads,
Dabbagh et al. [36] leverage the Wiener filter method for achiev-
ing VM consolidations [37], while Madu [30] designs a more
complicated attention-based machine learning model to reduce
workload latency. Bayesian optimization [38] and prediction-
based vertical auto-scaling [39] have been proposed to improve
cluster utilization and workload performance. Medea [2] fur-
ther considers several constraints like affinity and cardinality
of containers. To particularly optimize the initial placement
of containers, Lv et al. [24] propose a communication-aware
worst-fit decreasing algorithm and select the best server for
satisfying the network SLO in K8s [40]. To achieve cluster load
balancing, Sandpiper [8] performs the worst fitting algorithm us-
ing the server load index based on cluster resources. ATCM [41]
schedules containers among the cloud servers to minimize the
migration cost while maintaining the degree of load balance in a
short time scale. Nevertheless, such short-term optimizations of
workload scheduling above can inevitably cause invalid migra-
tions as illustrated in Section II-B. In contrast, 7etris leverages
the MPC approach to achieve the long-term optimization of
container scheduling and jointly optimize load balancing and
migration cost for long-running workloads.

RL-based workload scheduling: Two recent works (i.e.,
Metis [3], George [5]) design RL algorithms to obtain effi-
cient initial placement plans for long-running containers, by
modeling the reward as an indicator of container performance
and constraint violations. To improve cluster utilization Mondal
et al. [4] schedule time-varying workloads to servers using
deep reinforcement learning (DRL). To consider the long-term
optimization of workload scheduling, Megh [42] leverages an
online RL-based VM migration method to minimize energy
consumption and avoid SLO violations. A-SARSA [43] adopts
an RL-based container horizontal scaling approach to adjust the
number of actions corresponding to each state to avoid repeated
scheduling. However, RL-based scheduling methods can cause
unexpected SLO violations by considering the long-term opti-
mization over the infinite future, as evidenced by Section II-C
and Section V-C. Additionally, RL. methods have high time com-
plexity and memory consumption even after the dimensionality
reduction, which requires efforts to be deployed in large-scale
clusters as shown in Section V-D. To reduce the computation
complexity to minutes, Tetris leverages the MPC approach to
obtain a sub-optimal solution over a certain and sliding time
window, which is sufficient for our requirements of long-term
container scheduling in production clusters.

VII. CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of
Tetris, a proactive MPC-based container scheduling strategy for
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achieving long-term load balancing of clusters. By devising a
discrete-time dynamic model of shared containerized clusters,
Tetris judiciously identifies the container scheduling decisions
(i.e., which container to schedule and where to schedule) for each
timeslot using the Monte Carlo method, with the aim of jointly
optimizing cluster load balancing and migration cost of contain-
ers. We implement a prototype of Tetris and conduct prototype
experiments on Amazon EC2 and large-scale simulations driven
by Alibaba cluster traces v2018 and v2022. Our experiment
results demonstrate that 7etris can improve the cluster load
balancing degree by up to 77.8%, while reducing the migration
costby up to 79.5% with acceptable runtime overhead, compared
with the state-of-the-art container scheduling strategies.

As our future work, we plan to extend our discrete-time
dynamic model by incorporating more types of server resources
such as GPU, network and disk I/O resources. We also plan to
incorporate CRIU into Tetris to support container live migra-
tions and examine the effectiveness and scalability of Tetris in
large-scale production clusters.
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