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Abstract 
Both the transient and limiting dynamical behavior of classical ran-
dom walks on non-abelian groups have a well-developed theory utilizing 
non-commutative Fourier analysis. The success of the non-commutative 
Fourier transform in the analysis of such random walks lies in the 
fact that in the Fourier domain the distribution for the next step 
can be determined by a multiplication instead of a convolution oper-
ation, and character theory can be used to find analytical formulas 
for the distribution. In this paper, we initiate a study of using non-
commutative Fourier transform for expressing the dynamics of discrete 
quantum walks in non-abelian groups. More specifically, we investi-
gate the discrete-time quantum walk model on Cayley graphs of the 
symmetric group. We present the following results: 1) An expression 
for the probability amplitude of the walker’s state using a recur-
rence relation in the Fourier domain; 2) A relationship between cer-
tain symmetries of the initial state, the generating set for the Cay-
ley graph, and the state of the walker; 3) An expression for the 
probability amplitudes, derived for the Cayley graph with only two 
generators, based on a sequence that behaves like a 1-D Walsh matrix. 
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1 Introduction 
The phenomenon of random walks on graphs has been widely studied and 
applied to a wide variety of problems in computational sciences. In particular, 
they have been instrumental in developing randomized and approximation 
algorithms [1]. More recently, higher-dimensional analogues of random walks 
(over simplicial complexes) have been proposed [2]. Propagation properties 
of random walks can be characterized by Markov chains. Hence, the walk is 
amenable to characterization using methods from spectral graph theory [3]. 

Unlike classical random walks, a quantum walk propagates using the princi-
ples of quantum mechanics. A few notable differences include: 1) Instead of real 
probabilities, the state of the walk is specified by complex amplitudes1 . 2) The 
random walk coin is now replaced by a unitary transformation. The unitary 
evolution ensures the walk is reversible2 . 3) Propagation of the walk gener-
ates a superposition state over all possible positions available to the walker. 
4) Finally, we can sample the positions by applying suitable measurements on 
the state of the walker. 

There are various (somewhat equivalent) models of quantum walks. The 
study of quantum walks has a long history, going back to the early works 
of Feynman, Meyer, Aharonov, Gutmann, and others [5–7]. The hope is that 
quantum walks can emulate the success of random walks in the development 
of classical algorithms for creating quantum algorithms. Quantum or classical 
walks3 have been primarily used as generative models for probability distri-
butions. Hence, two of the most important properties to study are the kinds 
of distributions they can generate and their converging behavior. In general, 
quantum walks do not converge to a stationary distribution. However, their 
time-averaged distribution (introduced later) does converge. Quantum walks 
have been shown to generalize Grover’s diffusion-based search on graphs. They 
have been used to obtain currently best-known quantum algorithms for cer-
tain problems. Most notable among them are element distinctness, triangle 
finding, faster simulation of Markov chains, expansion testing, etc. [8–10]. 

1.1 Results 
In this paper, we focus on a discrete-time model of quantum walk. The model 
we study originated in the seminal paper by Aharonov et al.[11]. The model is 
also referred to as the coined discrete-time quantum walk (DTQW) 4 . We study 
DTQWs on Cayley graphs of the symmetric group with appropriate generating 
sets. There have only been a few studies of DTQWs for Cayley graphs gen-
erated from non-abelian groups. As far as we are aware, no such studies have 
been published for the alternating group, symmetric group, and the general 

1 However, in some cases, if the amplitudes are constrained to be in R, working with them 
becomes slightly simpler. 

2 For open systems, the walk operator need not be unitary. Interspersing walking with 
measurements also leads to non-unitary dynamics[4] 

3 Henceforth, we will refer to classical random walks simply as classical walks. 
4 Even though all discrete quantum walks use some type of coin space to make the walk operator 

unitary, the coin space may be implicitly constructed, such as in scattering quantum walks[12]. 
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linear group. This seems partly due to the fact that non-commutativity makes 
the dynamical behavior, loosely speaking, information theoretically incom-
pressible. That is, to determine the state of the walker after t steps, one has to 
remember all the paths that lead to that state from the starting state, which 
are exponentially many. However, as we show, certain properties can be deter-
mined about the walks relative to some simplifying assumptions. We present 
the following results. 
1. An expression derived for the probability amplitude of the walker’s state, 

using a recurrence relation in the Fourier domain. 
2. A relationship between certain symmetries of the initial state, the gener-

ating set for the Cayley graph, and the state of the walker. Specifically, 
if the generating set is closed under conjugation, the distribution is uni-
form over the conjugacy classes when the initial state of the walker in the 
coin-basis is the uniform superposition state. 

3. An expression for the probability amplitudes, derived for the Cayley graph 
with only two generators ((12), (1 · · · n)), is based on a sequence that 
behaves like a 1-D Walsh matrix. This graph was chosen due to: 1) its 
simplicity - it is the Cayley graph with the least degree for the symmetric 
group, 2) its lower expansion rate compared to graphs constructed from 
other generating sets, and 3) its out-degree of 2, which allows us to use 
the Hadamard coin operator. Even in this simple setting, the dynamical 
behavior of the walk is highly non-trivial and somewhat validates why 
not much progress has been made in studying DTQWs on non-abelian 
Cayley graphs. 

2 Preliminaries 
2.1 Cayley Graphs 
Let (G, ◦) be any finite group, and S be a generator of G. We take |G| = N and 
|S| = d. The Cayley graph of the pair Γ(G, S) is a directed graph Γ defined as 
follows. The vertex set V (Γ) = G. The edge set is defined as 

E(Γ) = {(g, h), g, h ∈ G | g−1 ◦ h ∈ S} 

Henceforth, we omit the “◦” and simply write g◦h as gh, where g, h ∈ G. If S is 
closed under inverse, that is s ∈ S =⇒ s−1 ∈ S then Γ is undirected. We use 
e to denote the identity element of G. If e ̸∈ S then Γ does not have any self-
loops. Clearly Γ is d-regular. This allows for a reversible walk operator with 
a fixed-sized coin space (defined shortly), which is a requirement for unitary 
quantum evolution. In this paper we associate G with the symmetric group 
Sn of all n-permutations. Some typical generators of G are - the set of all 
transpositions, {(12), (13), . . . , (1n)}, {(ij), (1 · · · n)} where gcd(|i − j|, n) = 2 
etc. Later, we will study the Cayley graph, denoted as Γn, with respect to the 
last generator (specifically {(12), (1 · · · n)}). Figure 1 shows Γ4. For n ≥ 3, Γn 
is directed with in-degree and out-degree of two. The element µ = (12) is of 
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order 2 and hence the pair of edges (g, gµ) and (gµ, g) could be taken together 
as an undirected edge. These edges form perfect matchings. On the other hand, 
the element σ = (1 · · · n) creates directed n-cycles. We say S is conjugate 
invariant, if it is a union of one or more conjugacy classes. For example, S = 
set of all transpositions. 

Fig. 1: The graph Γ4. Edges corresponding to the element (12) (resp. (1 · · · n)) 
are colored green (resp. blue). It has 24 vertices and has a diameter of 6. 

2.2 Formal Description of DTQW 
Physically, a particle with some internal degrees of freedom moves in super-
position, as it propagates on the vertices of G. The state of such a particle at 
any moment is described using a vector in the Hilbert space H with a basis set 
{|s, g⟩ | s ∈ S and g ∈ G} (standard basis). Thus we can write H = HG ⊗ HS . 
The space HG describes the position of the particle over the group elements 
(alternatively over the vertices of Γ). HS is the coin (chiral) space, which 
describes the state of a particle’s internal degrees of freedom (sometimes 
referred to as the particle’s chirality). One step of the walk consists of applying 
the two unitaries CS ⊗ IG and Λ in succession. We first apply the coin opera-
tor C ⊗ IG which acts trivially on HG. This transforms the chiral state of the 
particle. Then, we apply the shift operator Λ which acts on the total space H 
and performs a conditional shift of the particle’s position based on its current 
chiral state in HS . Together, each step of the walk consists of applying the 
unitary WWW = Λ(C ⊗ I) to the current state. Although there are no particular 
restrictions on the unitary C, in this work, we mainly consider the case when 
C is the Grover operator. This choice is made to keep our analysis tractable 
and is consistent with previous studies of DTQWs on Cayley graphs (section 
3). Additionally, even when C is restricted to the Grover coin, the walk pro-
duces highly non-trivial distributions that could prove to be useful for certain 
sampling problems. We describe C and Λ next. 
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2.2.1 Coin operators 

For d ≥ 3 the Grover operator D (reflection about the mean) is defined as 
follows. D is also commonly known as the diffusion operator. It is defined as: 
D = 2 |ψ⟩⟨ψ| − I, where |ψ⟩ = 1√ 

d 

 
s∈S |s⟩ is the uniform superposition over 

the basis states in HS . The operator D acts only on the coin space HS . Let 
δ ij be the Kronecker delta function. In the matrix notation (i, j)th entry of D 
is given by: Dij = δija + (1 − δij ) b where a = 2d − 1 and b = 2 

d . When |S| = 2 

we consider the Hadamard operator H = 1 √
2 

 
1 1 
1 −1 

 
or the operator I+iX √

2 . 

Here X is the not gate 
 
0 1 
1 0 

 
. It has been shown that the propagation of the 

walk on the line when C = I+iX √
2 is symmetric [13] as opposed to H which has 

a heavy tail on one side. 

2.2.2 The Λ operator 

The shift operator is defined as Λ = 
 

s∈S,g∈G |s, gs⟩⟨s, g|. In literature it is 
sometimes referred to as the move operator to distinguish it from some of its 
extensions. The operator Λ sends the walker at position g along to gs if its 
coin state is |s⟩ (|s, g⟩ −→ |s, gs⟩). In the matrix form, Λ is a dn × dn block 
diagonal matrix with d blocks. There is a block corresponding to each s ∈ S. 
The block corresponding to s is the n × n permutation matrix associated with 
the action of s on G. A more general version of Λ also permutes the basis in 
HS . Specifically, Λπ = 


s∈S,g∈G |π(s), gs⟩⟨s, g|. In the case of the grid graph, 

π performing a directional flip (|↑⟩ to |↓⟩ and |←⟩ to |→⟩ and vice versa), gives 
rise to the so-called flip-flop walk [14]. 

2.2.3 Initial states and evolution 

We use |ψt⟩ = αs,t(g) |s, g⟩ to denote the state of the walker after t steps. |ψ0⟩ 
is the initial state. We can write, 

|ψt⟩ =WWW t |ψ0⟩ 

Then the probability of observing a particle at g when measured on the 
standard basis {|s, g⟩} is 

Pt[g | ψ0] = 
 

s 

|αs,t(g)|2 

Since WWW is unitary, |ψt⟩ is periodic with respect to t [11] as long as |ψ0⟩ is 
not an eigenvector of WWW . In general Pt does not converge. However the time 
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averaged distribution (defined below) does. 

P T [g | ψ0] = 
1

T 

T −1 

t=0 

Pt[g | ψ0] 

P T can be interpreted as the expected value of the distribution Pt when t is 
selected uniformly at random from the set {0, . . . , T −1}. If the amplitudes are 
all real then to study the convergence of P T it suffices to study the amplitudes 
only. Let π[ | ψ0] be the limiting distribution of the walk starting from the 
initial state |ψ0⟩. Convergence is measured via the total variation distance 
∥ P − π ∥= 1

2 


g |P [g] − π[g]|. Various convergence parameters have been 
introduced in the literature. Notable among them is the mixing time of the 
walk. The mixing time itself can be defined in several way. We use the definition 
from [11] which can be thought of as the average mixing time. 

Mϵ = min{t | ∀T ≥ t, |s, g⟩ :∥ P T [· | |s, g⟩] − π[· | |s, g⟩] ∥ ≤ ϵ} 

We also consider the mixing time starting from a specific state |ϕ⟩ as defined 
below. 

M ϕ 
ϵ = min{t | ∀T ≥ t :∥ P T [ | |ϕ⟩] − π[ | |ϕ⟩] ∥ ≤ ϵ} 

When estimating the mixing time via numerical simulation it is easier to 
compute Mϕ 

ϵ than Mϵ, where the former gives a lower bound for the latter. 

3 Previous Work 
Over the past two decades, there has been significant research on various 
aspects of DTQWs. To maintain the relevance of our review, we will first briefly 
discuss the seminal paper that introduced the DTQW model under study. 
This will be followed by an examination of papers that conduct analytical 
investigations of DTQWs on Cayley graphs. 

Aharonov et al. [11] were the first to propose a discrete time model of quan-
tum walks using a coin operator. They characterized the convergence behavior 
of walks on abelian groups. They show that the time-averaged distribution 
converges to the uniform distribution whenever the eigenvalues of U are all 
distinct. They also gave an O(n log n 

ϵ3 ) upper bound on the mixing time for Zn 
(the cycle graph). Some lower bounds were also proved in terms of the graph’s 
conductance. 

Following their introduction, DTQWs has been studied for several graph 
families. Nayak and Vishwanath [15] gave a detailed analysis for the line using 
Fourier analysis. They were able to show that the Hadamard walk mixes almost 
uniformly with only O(t) steps, giving a quadratic speedup over its classical 
counterpart. Moor and Russell [16] analyzed the Grover walk on the Cayley 
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graph of Zn 
2 (a.k.a the hypercube). They show an instantaneous mixing time 

of O(n), which again beats the classical Ω(n log n) bound. Acevedo and Gob-
ron studied quantum walks for certain Cayley graphs and, in particular, gave 
several results for graphs generated by free groups [17]. D’Ariano et. al. inves-
tigated the case where the group is virtually abelian [18]. Virtual abelianity 
allowed them to reduce the problem to an equivalent one on an abelian group 
with a larger chiral space dimension and use the Fourier method of [15]. More 
recently, DTQWs has been studied for the Dihedral group Dn by [19] Dai et. 
al. Since, Dn is isomorphic to the semi-direct product Zn ⋊ Z2; (again) the 
Fourier approach introduced in [15] carries over. Using which authors gave 
spectral decomposition of U for the Grover walk. A detailed survey about var-
ious types of quantum walks including DTQWs can be found in [20] and the 
reference therein. A recent survey of DTQWs on Cayley graphs can be found 
in [21]5 . 

Finally, we mention the continuous time quantum walk model studied in 
[22] by Gerhardt and Watrous. In the continuous setting the walk operator 
WWW (t) = eitA is determined by the adjacency matrix of the Cayley graph. When 
S is the set of transpositions, they show, the time averaged distribution is 
far from the uniform distribution. They explicitly calculate the probability of 
reaching a n-cycle starting from e by expressing the eigenstates of WWW using 
the characters of Sn. Unfortunately, in the discrete time model an analogous 
description of WWW seems elusive. 

4 Results via Representation Theory 
We use representation theory to express the amplitudes αs,t(g) using a sum 
over the irreducible characters. Let |ψ0⟩ be the initial state of the walk. After 
t steps the state is |ψt⟩ where, 

|ψt⟩ = 
 

s,g 

α s,t(g) |s, g⟩ 

Since αs,t(g)’s are functions from G to C which enables us to apply the non-
commutative Fourier transformation to get their duals: 

α̂s,t(ρ) = 
 

g∈G 

αs,t(g)ρ(g) (1) 

for every ρ ∈ ˆ G, the set of all irreducible representations of G. Where ρ : 
G → GL(V ) is a homomorphism from G to the space of linear maps on some 
vector space V satisfying the following. For all g, h ∈ G, ρ(g)ρ(h) = ρ(gh) and 
ρ(e) = I. We denote by dρ, the dimension of V , as the dimension of ρ. The 

5 We were unable to get complete bibliographical information for this reference. 
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character of a representation ρ is defined as χρ(g) = tr(ρ(g)). Here tr() is the 
trace operator. Following properties of χρ will be useful: 
1. χρ(e) = dρ 
2. ∀g, h ∈ G : χρ(gh) = χρ(hg) (cyclic property) 
3. ∀g, h ∈ G : χρ(hgh−1) = χρ(g) (χρ is constant over the conjugacy classes) 
Additionally, we have ρ(g−1) = ρ(g)† , where A† is the adjoint of the oper-

ator A. Here we assume the representations are unitary. Proof of the above 
relations directly follows from the definition of χρ and ρ. For further infor-
mation and introduction to representation theory, especially in the context of 
random walks, we refer the reader to the monograph by Diaconis [23]. The 
book by Terras [24] gives a comprehensive introduction to non-commutative 
Fourier analysis. 

A recurrence for αs,t(g). 
Let |ψ′ 

t⟩ = (D ⊗ I) |ψt⟩ and |ψt+1⟩ = Λ |ψ′ 
t⟩ so that |ψt+1⟩ = WWW |ψt⟩. Applying 

the Grover operator D on the basis states in HS we get, 

|s⟩ → a |s⟩ + 
 

s ′ ∈S,s ̸=s ′ 

b |s ′ ⟩ 

This gives |ϕ′ t⟩ as the intermediate state just after applying the coin operator. 

|ψ ′ t ⟩ = 
 

s,g 

α s,t(g) 

 a |s⟩ + 
 

s ′ ∈S,s ̸=s ′ 

b |s ′ ⟩

  |g⟩ 

After applying Λ we get the state after completing a full step of the walk. 

|ψt+1⟩ = 
 

s,g 

αs,t(g) 

  
 

s ′ ∈S,s ′ ̸=s 

b |s ′ , gs ′ ⟩ + a |s, gs⟩

  

= 
 

s,g 

 aα s,t(gs−1) + b 
 

s ′ ∈S,s ′ ̸=s 

αs ′ ,t(gs
−1)

  |s, g⟩ 

The above gives a recurrence relation for the amplitude after t steps: 

α s,t(g) = aα s,t−1(gs
−1) + b 

 

s ′ ∈S,s ′ ̸=s 

αs ′ ,t−1(gs
−1) 

Now we expand Eq. 1, giving 

α̂s,t(ρ) = 
 

g∈G 

αs,t(g)ρ(g) = 
 

g∈G 

 aαs,t−1(gs
−1) + b 

 

s̸=s ′ 

αs ′ ,t−1(gs
−1)

  ρ(g) 
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= 
 

g∈G 

 aα s,t−1(g) + b 
 

s̸=s ′ 

αs ′ ,t−1(g)

  ρ(gs) (2) 

= 

 aα̂s,t−1(ρ) + b 
 

s̸=s ′ 

α̂s ′ ,t−1(ρ)

  ρ(s) (3) 

Due to the dependence on ρ(s) the above recurrence does not have a closed 
form solution. However, αs,t(g) can be expressed as a sum of characters. We 
derive this next. 

Lemma 1 Given the Grover operator acting on HS and the initial state |ψ0⟩ = 
1√ 
d 

 
s |s, e⟩ we have for t > 0, d > 2: 

αs,t(g) = 1 √ 
dN 

t−1 

k=0 
(a t−k−1 b k)

   
 

ρ∈ Ĝ,r∈Rk,t,s 

dρχρ(g −1 r)

   . (4) 

where every r ∈ Rk,t,s has a generating sequence of the following form: 

Rk,t,s ∋ r = 

 
s t if k = 0 
spk 
k s

pk−1 
k−1 . . . s

p1 
1 s otherwise 

satisfying - 1) ∀i ∈ {0, . . . , k − 1}, si ̸= si+1(s0 = s) and 2) 
 
i pi = t − 1. 

Proof We prove this by induction on t. For the base case we take t = 1. From Eq. 2 
we get: 

α̂s,1(ρ) = 

 aα̂s,0(ρ) + b 
 

s̸=s ′ 

α̂s ′ ,0(ρ)

  ρ(s) 

= 

 a 
 

g ′ ∈G 
αs,0(g ′ )ρ(g ′ ) + b 


s̸=s ′ 

 

g ′ ∈G 
αs ′ ,0(g ′ )ρ(g ′ )

  ρ(s) 

= 

 aα s,0(e)ρ(e) + b 
 

s̸=s ′ 

αs ′ ,0(e)ρ(e)

  ρ(s) = ρ(s)√ 
d 
(a + (d − 1)b) = ρ(s)√ 

d 

The inverse Fourier transform of α̂s,t is given by [25]: 

αs,t(g) = 1 
N 

 

ρ∈ Ĝ 

dρT r(ρ†(g)α̂s,t(ρ)) 

For t = 1 we get: 

αs,1(g) = 1 
N 
√ 
d 

 

ρ∈ Ĝ 

dρT r(ρ(g −1 s)) 

For the inductive case, assume Eq. 2 holds upto t − 1. Let 1
N

√ 
d 
= β. Then, 

αs,t(g) = aαs,t−1(gs −1) + b 
 

s ′ ̸=s 
αs ′ ,t−1(gs 

−1) 
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= β 
t−2 

k=0 
(a t−k−1 b k) 

 

ρ,r∈Rk,t−1,s 

dρχρ(sg −1 r) 

+ β 
 

s ′ ̸=s 

t−2 

k=0 
(a t−k−2 b k+1) 

 

ρ,r∈R k,t−1,s ′ 

dρχρ(sg −1 r) 

= β 
t−2 

k=0 
(a t−k−1 b k) 

 

ρ, r∈Rk,t,s 
r=ps, p∈Rk,t−1,s 

dρχρ(g −1 r) 

+ β 
t−2 

k=0 
(a t−k−2 b k+1) 

 

s ′ ̸=s 

 

ρ, r∈Rk+1,t,s 
r=qs, q∈R k,t−1,s ′ 

dρχρ(g −1 r) 

Where the second equality follows from the cyclic property of characters and rear-
ranging the sums in the second term. Substituting k + 1 for k in the above and 
rearranging the summations in the second term we get 

αs,t(g) = β 
t−2 

k=0 
(a t−k−1 b k) 

 

ρ∈ Ĝ 
r∈P 

dρχρ(g −1 r) 

+ β 
t−1 

k=1 
(a t−k−1 b k) 

 

s ′ ̸=s 

 

ρ∈ Ĝ 
r∈Qs ′ 

dρχρ(g −1 r) (5) 

Where, 

P = {r ∈ R k,t,s | ∃p ∈ R k,t−1,s r = ps} and 

Qs ′ = {r ∈ R k,t,s | ∃q ∈ Rk−1,t−1,s ′ r = qs ∧ s ′ ̸= s} 

Since Rk,t,s = P ∪ 
 

s̸=s ′ Qs ′ 

 
we can combine the two terms in Eq. 5 to get, 

αs,t(g) = β 
t−1 

k=0 
(a t−k−1 b k) 

 

ρ∈ Ĝ, r∈Rk,t,s 

dρχρ(g −1 r) 

□ 

Theorem 2 Defining, 

#k,t,s(g) = 
 {r ∈ Rk,t,s | r = g} 

  (6) 

we have 

αs,t(g) = 1 √ 
d 

t−1 

k=0 
(a t−k−1 b k )#k,t,s(g) 

Proof Recall,  

ρ∈ Ĝ 

dρχρ(g) = 

 
N g = e 
0 otherwise 
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Substituting this in Eq. 4 we have, 

αs,t(g) = 1 √ 
dN 

t−1 

k=0 
(a t−k−1 bk) 

 

ρ∈ Ĝ, r∈Rk,t,s 

dρχρ(g −1 r) 

=
1 √ 
dN 

t−1 

k=0 
(a t−k−1 bk) 

 

r∈Rk,t,s 

g−1 r=e 

 

ρ∈ Ĝ 

dρχρ(e) = 1 √ 
dN 

t−1 

k=0 
(a t−k−1 bk) 

 

r∈Rk,t 

g−1 r=e 

N 

=
1 √ 
d 

t−1 

k=0 
(a t−k−1 b k )#k,t,s(g) 

□ 

4.1 When S is Conjugate Invariant 
Recall that a generating set S is conjugate invariant if it is a union of one or 
more conjugacy classes. 

Corollary 3 If the generating set S is conjugate invariant then the walk is uniform 
over the conjugacy classes of G. Specifically, the distribution Pt[ | ψ0 ] after t steps is 
a class function. 

Proof Suppose the elements g, h are from the same conjugacy class. Let h = τgτ−1 

for some τ ∈ G. Then, 

αs,t(h) = αs,t(τgτ−1) = 1 √ 
d 

t−1 

k=0 
(a t−k−1 b k )#k,t,s(τgτ

−1) (7) 

We note that for any τ ∈ G the function τ−1()τ : S → S is an automorphism. 
This implies it is also an isomorphism from R k,t,s to Rk,t,τ−1 sτ . To show this take
r = spk 

k s
pk−1 
k−1 · · · sp1 

1 s. Then, 

τ−1 rτ = τ−1 s pk 
k ττ

−1 s pk−1 
k−1 τ · · · τ

−1 sτ = s ′pk 
k s 

′pk−1 
k−1 . . . s

′p1 
1 τ

−1 sτ = r ′ ∈ R k,t,τ−1sτ 
(8) 

where s ′ i = τ−1 siτ . The last containment follows from the fact that si ̸ = si+1 ⇐⇒ 
s ′ i ̸= s ′ i+1. To show injectivity we note that τ−1 rτ = τ−1 r′ τ =⇒ r = r ′ . Then, 

#k,t,s(τgτ
−1) = 

{r ∈ R k,t,s | r = τgτ−1} 
 = 

{r ∈ R k,t,τ−1sτ | r = g} 
  = #k,t,τ−1 sτ (g) 

Substituting the above in Eq. 7 we have, 

αs,t(h) = 1 √ 
d 

t−1 

k=0 
(a t−k−1 b k )#k,t,τ−1sτ (g) = α τ−1sτ,t(g) 

Finally, 
Pt[τgτ

−1 |ψ0 ] = 
 

τ−1sτ∈S 

 α τ−1sτ,t(g) 
2 

= 
 

s∈S 
|αs,t(g)| 2 = Pt[g |ψ0 ]. 

□ 

Remark 1 From the above it follows that the time average distribution P [| ψ0] is 
also a class function. 
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4.2 When |ψ0⟩ is a Basis State 
In order to determine the mixing time we want to know the distribution 
starting from a basis state; that is |ψ0⟩ = |s∗, g∗⟩. Rs∗ be the set of gener-
ating sequences beginning with s∗. We define Rk,t,s,+s∗ = Rk,t,s ∩ Rs∗ and 
Rk,t,s,−s∗ = Rk,t,s \ Rk,t,s,+s∗ . Analogous to Eq. 6 we define, 

#k,t,s,+s∗ (g) = |{r ∈ Rk,t,s,+s∗ | r = g}| and #k,t,s,−s∗ (g) = |{r ∈ Rk,t,s,−s∗ | r = g}| 

Theorem 4 Starting at |ψ0⟩ = |s∗, g∗⟩ we have, 

αs,t(g) = 
t−1 

k=0 
a t−k−1 b k 

 
a#k,t,s,+s∗ (g

−1 
∗ g) + b#k,t,s,−s∗ (g

−1 
∗ g) 

 

Proof The proof is similar to Theorem 2 except the initial step which leads to a 
dependency on g∗, s∗. □ 

Taken together, the following two lemmas show that, up to a permutation 
of G, the distribution does not depend on the initial state |s∗, g∗⟩, if S is 
conjugate invariant. 

Lemma 5 

Pt[g ||s∗,πg∗⟩] = Pt[π−1 g ||s∗ ,g∗⟩] 

Proof Since #k,t,s,±s∗ ((πg∗)
−1 g) = #k,t,s,±s∗ (g

−1 
∗ π

−1 g). □ 

Lemma 6 If the generating set S is conjugate invariant and s∗ ̸= s ′∗, then 

Pt[g ||s ′ 
∗,g∗⟩] = Pt[πg ||s∗ ,g∗⟩] 

for some π acting on G. 

Proof Every generator has the same order and creates cycles of the same length 
in Γ (if g = τhτ−1 and gk = e then hk = e). Thus Γ is symmetric with respect 
to its generators. Specifically, the chirality of the initial state 

 s ′∗, g∗ 
 
specifies the 

initial “direction” of the walk. Previous argument implies that these directions are 
symmetric. Hence, the distribution of the walk is same as when starting from |s∗, g∗⟩ 
up to a permutation on the vertices of Γ. More formally, using an argument similar 
to that in Corollary 3 we can show #k,t,s,±s ′ 

∗
(g) = #k,t,s,±s∗ (τgτ

−1), where s ′∗ = 
τs∗τ

−1 . 
□ 
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Remark 2 Unfortunately, a result analogous to Corollary 3 does not hold in this case 
even if we relax our definition of a class function as follows. We say, f is a class 
function up to some permutation iff there exists some fixed permutation π acting on 
G such that: f(πg) = f(h) whenever g and h belong to the same conjugacy class. 
The following graph serves as a counterexample. Let G = S4 and S = set of all 
transpositions of G. G has 5 conjugacy classes. However, the probability distribution 
after the first two steps of the walk starting from |(1, 2), e⟩ has 6 distinct values: 

Pt[||(1,2),e⟩] =  
4 
9 
, 0, 0, 0, 0, 0, 0, 2 

27 
, 2 
27 
, 2 
27
, 1 
27 
, 2 
27 
, 1 
27 
, 1 
27 
, 1 
27 
, 0, 0, 0, 0, 0, 0, 5 

81 
, 2 
81 
, 2 
81 

 

(a) T = 0 (b) T = 6 (c) T = 24 

Fig. 2: Time averaged distribution (PT [ ||0,e⟩]) of the Hadamard walk on 
Γ4. Vertices are sized proportional to the probability of observing the particle 
there. 

5 The Hadamard Walk on Γn 

In this section we study the case when the size of the generating set is 2. 
Theorem 1 does not apply here directly. In fact we consider a specific case when 
S = {µ = (12), σ = (1 · · · n)} and C = H is the Hadamard operator. However, 
the principle techniques used here apply to any arbitrary C and any S with 
|S| = 2. In what follows we identify the basis vector corresponding to µ (resp. 
σ) as |0⟩ (resp. |1⟩). We can represent a generating sequence µp1 σq1 . . . µpl σql ,
where each pi, qi’s are non-negative integers, as a L = 

 
i (pi + qi) bit number 

k ∈ [2L]6 . For example µ2σµ3σ2 is represented as 00100011 = 35. By µp 

we represent the sequence µ · · · µ, where µ is applied p times and not the 
corresponding group element, which is either µ or e. Henceforth we identify µ 
(resp. σ) with 0 (resp. 1). We use ˆ k to denote the group element corresponding 
to the generating sequence k. We define a sequence Wn of length 2n over the 

6 [2 L ] = {0, . . . , 2 L − 1} 
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alphabet {1, −1}. Let W n and W n be the first and last half of Wn respectively. 
Let −Wn be the negation of Wn (∀i − Wn(i) = (−1)Wn(i)). Then, 

Wn = 

 
[1, 1] if n = 1 
[Wn−1 W n−1 − W n−1] otherwise 

Loosely speaking, Wn’s can be thought of as a vector analogue of the cor-
responding Walsh matrix. Here we take Wn(k) to denote the kth element of 
Wn. 

Theorem 7 If S = {0, 1} and C = H then starting from the initial state |ψ0⟩ = |0, e⟩ 
the amplitude after t ≥ 1 steps is given by, 

αs,t(g) = 1 √ 
2t 

 

k∈[2 t ] 
k=δs1 mod 2 

δ
k̂,g Wt(k) 

Proof First we show for t ≥ 1, 

|ψt⟩ = 1 √ 
2t 

  
 

k∈[2 t] 
k=0 mod 2 

Wt(k) 
0, ̂k 

+ 
 

k∈[2 t] 
k=1 mod 2 

Wt(k) 
1, ̂k 

  

The proof is via induction. The base case t = 1 is trivial. Applying the Hadamard 
walk operator to |ψ t ⟩ yields,

|ψt+1⟩ = 1 √ 
2t+1 

 

k∈[2 t] 
k=0 mod 2 

(Wt(k) 
0, ̂k0 

 
+ Wt(k) 

1, ̂k1 
 
) 

+
1 √ 
2t+1 

 

k∈[2 t] 
k=1 mod 2 

(Wt(k) 
 0, ̂k0 

 
− Wt(k) 

 1, ̂k1 
 
) 

= 1 √ 
2t+1 

  
 

k∈[2 t+1] 
k=0 mod 2 

Wt+1(k) 
 0, ̂k 

 
+ 

 

k∈[2 t+1] 
k=1 mod 2 

Wt+1(k) 
 1, ̂k 

 
  (9) 

Where the last equality follows from the definition of Wt. The terms in Equation 9 
that contribute towards αs,t(g) are those for which ˆ k = g. This immediately implies 
the theorem. □ 

Remark 3 (Spectra of WWW ) A brief remark about the spectrum of WWW = Λ(H ⊗ I), 
where H is the Hadamard operator. The case with C = 1 √

2 
(I + iX) is similar. Let 

Pµ and Pσ be the permutation matrices corresponding to µ and σ respectively. It 

is an easy exercise to show that WWW = 1 √
2 

 
Pµ Pµ 
Pσ −Pσ 

 
. Unfortunately, the eigenvalues 

of U are not all distinct. Hence the minimum eigenvalue gap is zero and we cannot 
directly use Theorem 6.1 in [11] to bound the mixing time. 
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5.1 Simulation Results 
As demonstrated in the previous section, the amplitude at any vertex depends 
on the path sums over generating sequences. It appears that there are no 
closed-form expressions for the amplitudes, and it is unclear how to derive 
such expressions for the mixing time either. Given these challenges, we turned 
to numerical simulations for further insights. 

Our goal was to estimate the mixing time in order to generate a plausible 
hypothesis of its growth rate. We consider both the standard mixing time Mϵ 
and state-dependent mixing time Mϕ 

ϵ , where we take ϵ = 14 , a value often used 
in mixing time computation [26]. Figure 3 summarizes our simulation results. 
Based on the simulation results, we conjecture that the Hadamard walk on Γn 
mixes in O(n2) steps for a fixed ϵ. 

n=3 n=4 n=5 n=6 n=7 

Number of vertices (n! ) 

0 

20 

40 

60 

80 

100 

120 

140 

M
ix

in
g 

tim
e 

145 

*  

0 

0.25 

, �=  n! 

 0.25 

 

0 

0.25 

, �=  n! /10 

Random Walk 

Fig. 3: The graph for various mixing times. In the figure, M0
0.25 denotes the 

mixing time starting from basis state |µ, e⟩. We estimate the time averaged 
limiting distribution π with P n!. However, for n = 7 the graph has 5040 nodes 
and due to hardware limitations we could only simulate it for T = 7! 

10 . This 
gives us a loose lower bound for the mixing time. Hence, for Γ7, we show both 
the mixing time obtained from simulation as well as its estimated value (145) 
using a quadratic fit. We also plot a lower bound for M0

0.25, by estimating π 
with P n!/10. For the value of n up to 5 we also compute the worst case mixing 
time independent of the starting basis state. Lastly, for sake of completeness 
the corresponding mixing times (with ϵ = 0.25) for the uniform random walk 
is given. Since Γn is bipartite when n is even the random walk on these graphs 
do not converge to a limiting distribution. 
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6 Conclusion 
In this paper, using character sums of the group representation we derive 
expressions for the amplitudes of the state after t steps of the quantum walk. 
Even though this expression is not fully analytical, we can use it to infer 
certain properties of the generated distribution, in particular, whether they 
are uniform over the conjugacy classes. We also give an expression for the 
amplitudes, for the Cayley graph with only two generators, using a “vector” 
form of the Walsh matrix. However, many important questions remain open 
with respect to the transient behavior of the discrete quantum walks on the 
symmetric group. In particular , we were not able to derive a result similar 
to [22] on the spread of the probabilities to large cycles, as is known for the 
continuous case. The extra coin space of the discrete coined quantum walk 
creates additional challenges. This makes deriving a spectral decomposition 
based the irreducible representations, as was done in [22] for the continuous 
case, especially difficult. 
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