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Abstract

Both the transient and limiting dynamical behavior of classical ran-
dom walks on non-abelian groups have a well-developed theory utilizing
non-commutative Fourier analysis. The success of the non-commutative
Fourier transform in the analysis of such random walks lies in the
fact that in the Fourier domain the distribution for the next step
can be determined by a multiplication instead of a convolution oper-
ation, and character theory can be used to find analytical formulas
for the distribution. In this paper, we initiate a study of using non-
commutative Fourier transform for expressing the dynamics of discrete
quantum walks in non-abelian groups. More specifically, we investi-
gate the discrete-time quantum walk model on Cayley graphs of the
symmetric group. We present the following results: 1) An expression
for the probability amplitude of the walker’s state using a recur-
rence relation in the Fourier domain; 2) A relationship between cer-
tain symmetries of the initial state, the generating set for the Cay-
ley graph, and the state of the walker; 3) An expression for the
probability amplitudes, derived for the Cayley graph with only two
generators, based on a sequence that behaves like a 1-D Walsh matrix.
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1 Introduction

The phenomenon of random walks on graphs has been widely studied and
applied to a wide variety of problems in computational sciences. In particular,
they have been instrumental in developing randomized and approximation
algorithms [1]. More recently, higher-dimensional analogues of random walks
(over simplicial complexes) have been proposed [2]. Propagation properties
of random walks can be characterized by Markov chains. Hence, the walk is
amenable to characterization using methods from spectral graph theory [3].

Unlike classical random walks, a quantum walk propagates using the princi-
ples of quantum mechanics. A few notable differences include: 1) Instead of real
probabilities, the state of the walk is specified by complex amplitudes'. 2) The
random walk coin is now replaced by a unitary transformation. The unitary
evolution ensures the walk is reversible?. 3) Propagation of the walk gener-
ates a superposition state over all possible positions available to the walker.
4) Finally, we can sample the positions by applying suitable measurements on
the state of the walker.

There are various (somewhat equivalent) models of quantum walks. The
study of quantum walks has a long history, going back to the early works
of Feynman, Meyer, Aharonov, Gutmann, and others [5-7]. The hope is that
quantum walks can emulate the success of random walks in the development
of classical algorithms for creating quantum algorithms. Quantum or classical
walks® have been primarily used as generative models for probability distri-
butions. Hence, two of the most important properties to study are the kinds
of distributions they can generate and their converging behavior. In general,
quantum walks do not converge to a stationary distribution. However, their
time-averaged distribution (introduced later) does converge. Quantum walks
have been shown to generalize Grover’s diffusion-based search on graphs. They
have been used to obtain currently best-known quantum algorithms for cer-
tain problems. Most notable among them are element distinctness, triangle
finding, faster simulation of Markov chains, expansion testing, etc. [8-10].

1.1 Results

In this paper, we focus on a discrete-time model of quantum walk. The model
we study originated in the seminal paper by Aharonov et al.[11]. The model is
also referred to as the coined discrete-time quantum walk (DTQW) . We study
DTQWs on Cayley graphs of the symmetric group with appropriate generating
sets. There have only been a few studies of DTQWs for Cayley graphs gen-
erated from non-abelian groups. As far as we are aware, no such studies have
been published for the alternating group, symmetric group, and the general

1However, in some cases, if the amplitudes are constrained to be in R, working with them
becomes slightly simpler.

2For open systems, the walk operator need not be unitary. Interspersing walking with
measurements also leads to non-unitary dynamics[4]

3Henceforth7 we will refer to classical random walks simply as classical walks.

4Even though all discrete quantum walks use some type of coin space to make the walk operator
unitary, the coin space may be implicitly constructed, such as in scattering quantum walks[12].
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linear group. This seems partly due to the fact that non-commutativity makes
the dynamical behavior, loosely speaking, information theoretically incom-
pressible. That is, to determine the state of the walker after ¢ steps, one has to
remember all the paths that lead to that state from the starting state, which
are exponentially many. However, as we show, certain properties can be deter-
mined about the walks relative to some simplifying assumptions. We present
the following results.

1. An expression derived for the probability amplitude of the walker’s state,
using a recurrence relation in the Fourier domain.

2. A relationship between certain symmetries of the initial state, the gener-
ating set for the Cayley graph, and the state of the walker. Specifically,
if the generating set is closed under conjugation, the distribution is uni-
form over the conjugacy classes when the initial state of the walker in the
coin-basis is the uniform superposition state.

3. An expression for the probability amplitudes, derived for the Cayley graph
with only two generators ((12),(1---n)), is based on a sequence that
behaves like a 1-D Walsh matrix. This graph was chosen due to: 1) its
simplicity - it is the Cayley graph with the least degree for the symmetric
group, 2) its lower expansion rate compared to graphs constructed from
other generating sets, and 3) its out-degree of 2, which allows us to use
the Hadamard coin operator. Even in this simple setting, the dynamical
behavior of the walk is highly non-trivial and somewhat validates why
not much progress has been made in studying DTQWs on non-abelian
Cayley graphs.

2 Preliminaries

2.1 Cayley Graphs

Let (G, o) be any finite group, and S be a generator of G. We take |G| = N and
|S| = d. The Cayley graph of the pair I'(G, S) is a directed graph I" defined as
follows. The vertex set V(I') = G. The edge set is defined as

E)={(g9,h),9.h G| gl ohe S}

Henceforth, we omit the “o” and simply write goh as gh, where g,h € G. If S'is
closed under inverse, that is s € § = s~ ! € S then I is undirected. We use
e to denote the identity element of G. If ¢ € S then I' does not have any self-
loops. Clearly I' is d-regular. This allows for a reversible walk operator with
a fixed-sized coin space (defined shortly), which is a requirement for unitary
quantum evolution. In this paper we associate G with the symmetric group
S, of all n-permutations. Some typical generators of G are - the set of all
transpositions, {(12), (13),...,(1n)},{(#j), (1---n)} where ged(|i — j|,n) = 2
etc. Later, we will study the Cayley graph, denoted as I';,, with respect to the
last generator (specifically {(12),(1---n)}). Figure 1 shows I'y. For n > 3, T,
is directed with in-degree and out-degree of two. The element p = (12) is of
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order 2 and hence the pair of edges (g, gu) and (gu, g) could be taken together
as an undirected edge. These edges form perfect matchings. On the other hand,
the element 0 = (1---n) creates directed n-cycles. We say S is conjugate
invariant, if it is a union of one or more conjugacy classes. For example, S =
set of all transpositions.

—
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Fig. 1: The graph I'y. Edges corresponding to the element (12) (resp. (1---n))
are colored green (resp. blue). It has 24 vertices and has a diameter of 6.

2.2 Formal Description of DTQW

Physically, a particle with some internal degrees of freedom moves in super-
position, as it propagates on the vertices of G. The state of such a particle at
any moment is described using a vector in the Hilbert space H with a basis set
{Is,g) | s € S and g € G} (standard basis). Thus we can write H = Hg @ Hs.
The space Hg describes the position of the particle over the group elements
(alternatively over the vertices of T'). Hg is the coin (chiral) space, which
describes the state of a particle’s internal degrees of freedom (sometimes
referred to as the particle’s chirality). One step of the walk consists of applying
the two unitaries C's ® I and A in succession. We first apply the coin opera-
tor C'® I which acts trivially on H¢. This transforms the chiral state of the
particle. Then, we apply the shift operator A which acts on the total space H
and performs a conditional shift of the particle’s position based on its current
chiral state in Hg. Together, each step of the walk consists of applying the
unitary W = A(C ® I) to the current state. Although there are no particular
restrictions on the unitary C, in this work, we mainly consider the case when
C is the Grover operator. This choice is made to keep our analysis tractable
and is consistent with previous studies of DTQWSs on Cayley graphs (section
3). Additionally, even when C' is restricted to the Grover coin, the walk pro-
duces highly non-trivial distributions that could prove to be useful for certain
sampling problems. We describe C' and A next.
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2.2.1 Coin operators

For d > 3 the Grover operator D (reflection about the mean) is defined as
follows D is also commonly known as the diffusion operator. It is defined as:

= 2|Y)Xv| — I, where |¢p) = f > scs |s) is the uniform superposition over
the basis states in Hg. The operator D acts only on the coin space Hg. Let
8;; be the Kronecker delta function. In the matrix notation (i, 7)** entry of D
is given by: D;; = d;;a + (1 — §;;) b where a = % —land b= %. When |S] =2

11 ;
- 1 I+iX
we consider the Hadamard operator H = 7 L _1} or the operator 75

Here X is the not gate [(1) (ﬂ . It has been shown that the propagation of the
walk on the line when C' = £ T/ZEX is symmetric [13] as opposed to H which has

a heavy tail on one side.

2.2.2 The A operator

The shift operator is defined as A = > 5 s, gs)s, g|- In literature it is
sometimes referred to as the move operator to distinguish it from some of its
extensions. The operator A sends the walker at position g along to gs if its
coin state is |s) (|s,g) — [s,¢s)). In the matrix form, A is a dn x dn block
diagonal matrix with d blocks. There is a block corresponding to each s € S.
The block corresponding to s is the n X n permutation matrix associated with
the action of s on G. A more general version of A also permutes the basis in
Hs. Specifically, A, = Zses,geG |7(s), gs)s, g|. In the case of the grid graph,
7 performing a directional flip (|1) to |}) and |+) to | =) and vice versa), gives
rise to the so-called flip-flop walk [14].

2.2.3 Initial states and evolution

We use 1) = as4(9) |$, g) to denote the state of the walker after ¢ steps. i)
is the initial state. We can write,

() = W' o)

Then the probability of observing a particle at g when measured on the
standard basis {|s, g)} is

9‘1/)0 Z'ast

Since W is unitary, |¢;) is periodic with respect to t [11] as long as [¢)g) is
not an eigenvector of W. In general P; does not converge. However the time
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averaged distribution (defined below) does.

Prlg | o] = Zptg|¢0

t=0

Pr can be interpreted as the expected value of the distribution P, when t is
selected uniformly at random from the set {0, ..., T —1}. If the amplitudes are
all real then to study the convergence of Pr it suffices to study the amplitudes
only. Let 7| | 10| be the limiting distribution of the walk starting from the
initial state |tpg). Convergence is measured via the total variation distance
| P—m ||= %Zg |Plg] — 7[g]|. Various convergence parameters have been
introduced in the literature. Notable among them is the mizing time of the
walk. The mixing time itself can be defined in several way. We use the definition
from [11] which can be thought of as the average mixing time.

Me=min{t | VT > t,]s,9) :| Pr[- [[s, )] ==l |]s,9)] | < e}

We also consider the mixing time starting from a specific state |¢) as defined
below.

M? =min{t | VT >t || Pr[||¢)] - x[|[$)] || < ¢}

When estimating the mixing time via numerical simulation it is easier to
compute M¢ than M., where the former gives a lower bound for the latter.

3 Previous Work

Over the past two decades, there has been significant research on various
aspects of DTQWs. To maintain the relevance of our review, we will first briefly
discuss the seminal paper that introduced the DTQW model under study.
This will be followed by an examination of papers that conduct analytical
investigations of DTQWSs on Cayley graphs.

Aharonov et al. [11] were the first to propose a discrete time model of quan-
tum walks using a coin operator. They characterized the convergence behavior
of walks on abelian groups. They show that the time-averaged distribution
converges to the uniform distribution whenever the eigenvalues of U are all
distinct. They also gave an O(”log") upper bound on the mixing time for 7,
(the cycle graph). Some lower bounds were also proved in terms of the graph’s
conductance.

Following their introduction, DTQWSs has been studied for several graph
families. Nayak and Vishwanath [15] gave a detailed analysis for the line using
Fourier analysis. They were able to show that the Hadamard walk mixes almost
uniformly with only O(t) steps, giving a quadratic speedup over its classical
counterpart. Moor and Russell [16] analyzed the Grover walk on the Cayley
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graph of Z% (a.k.a the hypercube). They show an instantaneous mixing time
of O(n), which again beats the classical Q(nlogn) bound. Acevedo and Gob-
ron studied quantum walks for certain Cayley graphs and, in particular, gave
several results for graphs generated by free groups [17]. D’Ariano et. al. inves-
tigated the case where the group is virtually abelian [18]. Virtual abelianity
allowed them to reduce the problem to an equivalent one on an abelian group
with a larger chiral space dimension and use the Fourier method of [15]. More
recently, DTQWs has been studied for the Dihedral group D,, by [19] Dai et.
al. Since, D,, is isomorphic to the semi-direct product Z,, x Zs; (again) the
Fourier approach introduced in [15] carries over. Using which authors gave
spectral decomposition of U for the Grover walk. A detailed survey about var-
ious types of quantum walks including DTQWs can be found in [20] and the
reference therein. A recent survey of DTQWSs on Cayley graphs can be found
n [21]°.

Finally, we mention the continuous time quantum walk model studied in
[22] by Gerhardt and Watrous. In the continuous setting the walk operator
W (t) = e'*4 is determined by the adjacency matrix of the Cayley graph. When
S is the set of transpositions, they show, the time averaged distribution is
far from the uniform distribution. They explicitly calculate the probability of
reaching a n-cycle starting from e by expressing the eigenstates of W using
the characters of S,,. Unfortunately, in the discrete time model an analogous
description of W seems elusive.

4 Results via Representation Theory

We use representation theory to express the amplitudes o :(g) using a sum
over the irreducible characters. Let |¢g) be the initial state of the walk. After
t steps the state is |1);) where,

[Y1) Zast )1s,9)

Since a1(g)’s are functions from G to C which enables us to apply the non-
commutative Fourier transformation to get their duals:

ast Zast (1)

geG

for every p € G, the set of all irreducible representations of G. Where P
G — GL(V) is a homomorphism from G to the space of linear maps on some
vector space V satisfying the following. For all g, h € G, p(g)p(h) = p(gh) and
p(e) = I. We denote by d,, the dimension of V, as the dimension of p. The

5We were unable to get complete bibliographical information for this reference.
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character of a representation p is defined as x,(g) = tr(p(g)). Here ¢r() is the
trace operator. Following properties of x, will be useful:

1. x,(e) =4d,

2. Vg,h € G: x,(gh) = x,(hg) (cyclic property)

3. Vg,h € G: x,(hgh™) = x,(g) (x, is constant over the conjugacy classes)

Additionally, we have p(g~') = p(g)T, where AT is the adjoint of the oper-

ator A. Here we assume the representations are unitary. Proof of the above
relations directly follows from the definition of x, and p. For further infor-
mation and introduction to representation theory, especially in the context of
random walks, we refer the reader to the monograph by Diaconis [23]. The
book by Terras [24] gives a comprehensive introduction to non-commutative
Fourier analysis.

A recurrence for os.(g).

Let [¢1) = (D® 1) [¢) and [¢h41) = Afeyy) so that [1hei1) = W [thy). Applying
the Grover operator D on the basis states in Hg we get,

|s) > als)+ D bls)

s'€S,s#s’
This gives |¢}) as the intermediate state just after applying the coin operator.
[0 =D asulg) [als)+ > bls) | lg)
8,9 s'€S,s#s’
After applying A we get the state after completing a full step of the walk.

) =D asalg) [ DY bls'95) +als,gs)
$,9

s'€S,s'#s

:Z acs¢(gs™ ') +b Z Oés/,t(gsil) s, g)
5,9

s'€S,s'#s

The above gives a recurrence relation for the amplitude after ¢ steps:

asi(g) = g 1(gs ) +b Y agia(gs
s'€S,s'#s

Now we expand Eq. 1, giving

dar(p) =Y asi(@plg) = Y | acss1(gs™) + 0 awi1(gs™) | plg)

9€G geG s#s!



Springer Nature 2021 BETEX template

4 RESULTS VIA REPRESENTATION THEORY 9

- Z aas,tfl(g) + b Z Oés’,tfl(g) p(gs) (2)

geG s#s!

= ads,t—l(p) + b Z 645’71&—1 (P) p(S) (3)
s#s’

Due to the dependence on p(s) the above recurrence does not have a closed
form solution. However, o, ((g) can be expressed as a sum of characters. We
derive this next.

Lemma 1 Given the Grover operator acting on Hg and the initial state |1hg) =
ﬁ >os|s,e) we have fort > 0,d > 2:

t—1

1 —k— _
as,t(g) = ﬁ Z(at F 1bk) Z dpxp(g 17") : (4)
k=0 pEé,T‘ERk,t,S

where every r € Ry, ; o has a generating sequence of the following form:

t .
s ifk=0
Ry 1,5 BT:{ Ph Pl—1 1

S Spoq 518 otherwise
satisfying - 1) Vi € {0,...,k —1},s; # Sz‘+1(80 =s)and 2) > ;pi=t—1.

Proof We prove this by induction on ¢. For the base case we take ¢ = 1. From Eq. 2
we get:

bs,1(p) = (a&s,o(p) +b> ds',o(p)) p(s)

s#s!

g'€eG s#s' g'€eG

= (“ > asol@)p(@)+0 Y > as/,o(g’)p(g')) p(s)

s s
= [aasot@)pe) +5 3 avotepe) | os) = 2 @ + (@ - 1)p) = 22
s#s!
The inverse Fourier transform of &S ¢ is given by [25]:

s t(9) =N deTT 9)as,t(p))
pEG

S

For t =1 we get:

0(0) = 1= 3 dpTr(ple )

pEG

For the inductive case, assume Eq. 2 holds upto t — 1. Let

as,t(g) = aQs t— 1 + b Z Qgr t— 1 )
/¢S

1
NVd T 3. Then,
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t—2
=8> @Y ST doxp(sg )
k=0

PrERK t—1,s
t—2
t—k—2,k+1 -1
YT Y gt
s'#s k=0 PTER 4 1 o
t—2
t—k—1,k -1
=p Z(a b") Z dpxp(g~7)
k=0 Py TERK 1,5

r=ps, PERk t—1,s

+,BZ t—k— 2bk+1 Z Z dep(g_lT)

s'#s  p, T€ERk41,1,s
r=qs, q€ER} 1 &

Where the second equality follows from the cyclic property of characters and rear-
ranging the sums in the second term. Substituting k£ + 1 for k£ in the above and
rearranging the summations in the second term we get

as.i(g BZ t—k— 1bk deXp 717”

pEG
repP

+BZ f=he lbk Z Z doxp(g 717“ (5)

s'#s pGG
TGQ ’

Where,
P={reRy;s| Ip€ Ryt_1,s " =ps} and
Qs’ = {T € Rk,t,s | 3q € kal,tfl,s’ r=gsA 5/ # S}

Since Ry 45 = P U (US¢S, Qs/) we can combine the two terms in Eq. 5 to get,

t—1
ast(@) =8> (" FT) 3T doxelgT ')
k=0 p€Q, TERK 1.
|
Theorem 2 Defining,
H#rt,s(9) = |{7’ €Rpyis|r= QH (6)
we have
=
t—k—1;k
« = — a b
st(9)= 7= I;)( V#kt,5(9)

Proof Recall,

otherwise

deXp(g) = {év g
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Substituting this in Eq. 4 we have,
t—1

1 —k—1;k -
0ule) = = ST Y dla™)
k=0 peé, rE€RE ¢, s
-1 t—1
1 t—k— 1bk d t—k— lbk N
= A @) Y Yo = o Y@ Y
k=0 r€Rk s peld k=0 TER ¢
g lr=e g r=e
1S ko
= LS, (o)
O

4.1 When S is Conjugate Invariant

Recall that a generating set S is conjugate invariant if it is a union of one or
more conjugacy classes.

Corollary 3 If the generating set S is conjugate invariant then the walk is uniform
over the congugacy classes of G. Specifically, the distribution Pi[ |y,] after t steps is
a class function.

Proof Suppose the elements g, h are from the same conjugacy class. Let h = Tg7'71

for some 7 € G. Then,
asi(h) = as(rgr ! Z A PN C L (7)

We note that for any 7 € G the functlon 7707 : § = S is an automorphism.
This implies it is also an isomorphism from Ry ; s to Ry ; -—14. To show this take

— Pk Pr—1 p1
=88, s. Then,
e = lsszT lszk 2T st = s/zkslzk:ll A e = Ryt r—16r
(8)
where s’; = 77 1s;7. The last containment follows from the fact that s; # Si41 =

s'; # 8';11. To show injectivity we note that rlrr=7"Y's = r =17'. Then,

-1 -1
#k,t,s(TgT ) = ‘{T € Rk,t,s | T =797 }‘ = |{T € Rk,t,rflsT ‘ r= g}‘ = #k,t,r*lsr(g)
Substituting the above in Eq. 7 we have,

t—1
1 e
asyt(h) = ﬁ Z(at b 1bk)#k,t,‘r_1s‘r(g) = aT—lsT,t(g)
k=0
Finally,
_ 2
Pilrgr Myl = D0 o] =D lose(9)® = Pilg |-

T-1ls7eS ses
O

Remark 1 From the above it follows that the time average distribution P[| o] is
also a class function.
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4.2 When |1¢) is a Basis State

In order to determine the mixing time we want to know the distribution
starting from a basis state; that is [g) = |S«, g«). Rs, be the set of gener-
ating sequences beginning with s,. We define Ry ;s 15, = Rits N Rs, and

Rits,—s. = Rit,s \ R t.s,+s.- Analogous to Eq. 6 we define,

50,5,

Hhot,s s, (9) = {r e Ry t,s,+s. | r = g}| and H#hts,—s.(9) = Hr e R t,s,—s. | 7= g}l

Theorem 4 Starting at |1pg) = |s«, gx) we have,

t—1
—k—1;k —1 —1
ast(9) = D0 a' T (attn s va (951 0) + btk s s (051 9))
k=0

Proof The proof is similar to Theorem 2 except the initial step which leads to a
dependency on g«, Sx. O

Taken together, the following two lemmas show that, up to a permutation
of G, the distribution does not depend on the initial state |s,g«), if S is
conjugate invariant.

Lemma 5

—1
Pt[g ||s*,7rg*>] = Pt[ﬂ- g ‘|s*,g*)]

-1

Proof Since #4145, (79:) 7' 9) = #k.t.sxs. (95 7 9)- U

Lemma 6 If the generating set S is conjugate invariant and s« # s%, then

Pt[g |‘S;>g*>] = Pt[ﬂ-g |‘3*>9*>}

for some w acting on G.

Proof Every generator has the same order and creates cycles of the same length
in T (if g = th7—! and g* = e then h* = ¢). Thus I is symmetric with respect
to its generators. Specifically, the chirality of the initial state |s;, g*> specifies the
initial “direction” of the walk. Previous argument implies that these directions are
symmetric. Hence, the distribution of the walk is same as when starting from |s«, g«)
up to a permutation on the vertices of I'. More formally, using an argument similar
to that in Corollary 3 we can show # ¢ s +47 (9) = #i,t,5,+5. (Tgrfl), where s, =
-1
TS«T .

O
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Remark 2 Unfortunately, a result analogous to Corollary 3 does not hold in this case
even if we relax our definition of a class function as follows. We say, f is a class
function up to some permutation iff there exists some fixed permutation 7 acting on
G such that: f(wrg) = f(h) whenever g and h belong to the same conjugacy class.
The following graph serves as a counterexample. Let G = S4 and S = set of all
transpositions of G. G has 5 conjugacy classes. However, the probability distribution
after the first two steps of the walk starting from |(1,2),e) has 6 distinct values:

Pil|(1,2),0)] =
4 2 2 2 1 2 1 1 1 5 2 2
(5,070707070707E,EvE7E7E757575,070707070707a,aya>
() T=0 (b) T =6 ()T =24

Fig. 2: Time averaged distribution (Pr[ |jge)]) of the Hadamard walk on
I'4. Vertices are sized proportional to the probability of observing the particle
there.

5 The Hadamard Walk on I',,

In this section we study the case when the size of the generating set is 2.
Theorem 1 does not apply here directly. In fact we consider a specific case when
S={u=(12),0 =(1---n)} and C = H is the Hadamard operator. However,
the principle techniques used here apply to any arbitrary C' and any S with
|S] = 2. In what follows we identify the basis vector corresponding to p (resp.
o) as |0) (resp. |1)). We can represent a generating sequence pPto? ... uPlo? |
where each p;, ¢;’s are non-negative integers, as a L = ), (p; + ¢;) bit number
k € [2F]5. For example p?ou3o? is represented as 00100011 = 35. By u?
we represent the sequence g ---pu, where p is applied p times and not the
corresponding group element, which is either y or e. Henceforth we identify u
(resp. o) with O (resp. 1). We use k to denote the group element corresponding
to the generating sequence k. We define a sequence W, of length 2™ over the

62l ={o,...,2F — 1}
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alphabet {1, —1}. Let W, and W,, be the first and last half of W,, respectively.
Let —W,, be the negation of W,, (Vi — W, (i) = (—=1)W,(4)). Then,

w1 ith=1
"W W, — W] otherwise

Loosely speaking, W,,’s can be thought of as a vector analogue of the cor-
responding Walsh matrix. Here we take W,, (k) to denote the k" element of
W,.

Theorem 7 IfS = {0,1} and C = H then starting from the initial state |1)g) = |0, €)
the amplitude after t > 1 steps is given by,

1
s = — 6A kj
« ,t(g) \/27 ke§[2t] k,g”t( )

k=851 mod 2

Proof First we show for ¢t > 1,

1 - .
)= %qu Wilk) |0. k) + kgﬁ} Wak) |1.k)

k=0 mod 2 k=1 mod 2
The proof is via induction. The base case t = 1 is trivial. Applying the Hadamard
walk operator to |¢¢) yields,

1 N .
W)= —== > (Welk)[0,50) + Wa(k) |1, k1))
2% ke[2!]
k=0 mod 2
+ \/% S Wik o, ko) — Witk [1, i)
ke[2t]
k=1 mod 2
= 7% S Wik ’07/%> + > Win(k) ‘17 iﬂ> 9)
ke[2tt!) ke[2tt!)
k=0 mod 2 k=1 mod 2

Where the last equality follows from the definition of W¢. The terms in Equation 9
that contribute towards s ¢(g) are those for which k£ = g. This immediately implies
the theorem. |

Remark 3 (Spectra of W) A brief remark about the spectrum of W = A(H ® I),
where H is the Hadamard operator. The case with C' = L(I + X)) is similar. Let

V2
P, and P, be the permutation matrices corresponding to p and o respectively. It
. . P, P .
is an easy exercise to show that W = = |"#* ¥ | Unfortunately, the eigenvalues
V2 |Py —Ps

of U are not all distinct. Hence the minimum eigenvalue gap is zero and we cannot
directly use Theorem 6.1 in [11] to bound the mixing time.
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5.1 Simulation Results

As demonstrated in the previous section, the amplitude at any vertex depends
on the path sums over generating sequences. It appears that there are no
closed-form expressions for the amplitudes, and it is unclear how to derive
such expressions for the mixing time either. Given these challenges, we turned
to numerical simulations for further insights.

Our goal was to estimate the mixing time in order to generate a plausible
hypothesis of its growth rate. We consider both the standard mixing time M,
and state-dependent mixing time M?, where we take ¢ = i, a value often used
in mixing time computation [26]. Figure 3 summarizes our simulation results.
Based on the simulation results, we conjecture that the Hadamard walk on I';,
mixes in O(n?) steps for a fixed e.

140- ~° M 55, 7= Ppy 145~ ‘/-D
—0— Mo2s V4
120 - O M35, =Pnijo ./'/.
Random Walk 7
o 100 -
£
-t 80 -
[®)]
£
X 60-
=
40 -
20 -
0 -

Number of vertices (n!)

Fig. 3: The graph for various mixing times. In the figure, MQ,- denotes the
mixing time starting from basis state |u,e). We estimate the time averaged
limiting distribution 7 with P,,. However, for n = 7 the graph has 5040 nodes
and due to hardware limitations we could only simulate it for T = %. This
gives us a loose lower bound for the mixing time. Hence, for I'7, we show both
the mixing time obtained from simulation as well as its estimated value (145)
using a quadratic fit. We also plot a lower bound for MY, by estimating 7
with P,, /10- For the value of n up to 5 we also compute the worst case mixing
time independent of the starting basis state. Lastly, for sake of completeness
the corresponding mixing times (with e = 0.25) for the uniform random walk
is given. Since I',, is bipartite when n is even the random walk on these graphs
do not converge to a limiting distribution.
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6 Conclusion

In this paper, using character sums of the group representation we derive
expressions for the amplitudes of the state after ¢ steps of the quantum walk.
Even though this expression is not fully analytical, we can use it to infer
certain properties of the generated distribution, in particular, whether they
are uniform over the conjugacy classes. We also give an expression for the
amplitudes, for the Cayley graph with only two generators, using a “vector”
form of the Walsh matrix. However, many important questions remain open
with respect to the transient behavior of the discrete quantum walks on the
symmetric group. In particular , we were not able to derive a result similar
to [22] on the spread of the probabilities to large cycles, as is known for the
continuous case. The extra coin space of the discrete coined quantum walk
creates additional challenges. This makes deriving a spectral decomposition
based the irreducible representations, as was done in [22] for the continuous
case, especially difficult.
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