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In this paper, we propose a general numerical framework to derive structure-preserving reduced-
order models for thermodynamically consistent PDEs. Our numerical framework has two primary 
features: (a) a systematic way to extract reduced-order models for thermodynamically consistent 
PDE systems while maintaining their inherent thermodynamic principles and (b) a general process 
to derive accurate, efficient, and structure-preserving numerical algorithms to solve these reduced-
order models. The platform’s generality extends to various PDE systems governed by embedded 
thermodynamic laws, offering a unique approach from several perspectives. First, it utilizes the 
generalized Onsager principle to transform the thermodynamically consistent PDE system into an 
equivalent form, where the free energy of the transformed system takes a quadratic form in terms 
of the state variables. This transformation is known as energy quadratization (EQ). Through EQ, 
we gain a novel perspective on deriving reduced-order models that continue to respect the energy 
dissipation law. Secondly, our proposed numerical approach automatically provides algorithms 
to discretize these reduced-order models. The proposed algorithms are always linear, easy to 
implement and solve, and uniquely solvable. Furthermore, these algorithms inherently ensure the 
thermodynamic laws. Our platform offers a distinctive approach for deriving structure-preserving 
reduced-order models for a wide range of PDE systems with underlying thermodynamic principles.

 Introduction

Partial differential equation (PDE) models play an important role in modeling physical phenomena in various scientific and 
gineering fields. They have been used to model complex systems, multidimensional phenomena, and various interdisciplinary 
oblems. As a coarse-grained modeling approach, ensuring these PDE models remain consistent with underlying thermodynamic 
ws is essential, particularly when reversible and irreversible transitions occur, making the models both physically plausible and 
oviding reliable predictions. PDEs that respect the thermodynamic laws are known as thermodynamically consistent PDEs. In 
rticular, when temperature fluctuation can be ignored, the thermodynamically consistent PDE system will respect laws of free 
ergy dissipation, i.e., the free energy for the system will not increase in time. These models have numerous applications in various 
ience and engineering fields, along with interdisciplinary applications. There are many broadly used PDE models that fall into the 
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ermodynamically consistent category, to name a few: the Allen-Cahn equation [2], the Cahn-Hilliard equation [8], the phase field 
ystal equation [16,19], the Navier-Stokes equation, and the Ericksen-Leslie model for liquid crystals [6,31].
The thermodynamically consistent PDEs are usually coupled systems with nonlinearity. Analytical approaches often fall short, 
aking the numerical approach necessary. Unfortunately, they are generally hard to solve numerically due to the stiffness in nonlinear 
rms. Additionally, any numerical deviation from underlying thermodynamic laws can result in physically implausible solutions, 
ainst the purpose of the original modeling intention [18]. Therefore, the numerical analysis community has been activately deriving 
merical algorithms that preserve the thermodynamic structure, namely structure-preserving numerical algorithms. In particular, 
merical algorithms that respect the free energy dissipation laws are usually named energy-stable algorithms [17]. If numerical 
ergy stability is independent of the choices of the time step size, they are called unconditionally energy stable [19]. In this context, 
any research results have been achieved recently, including the stabilized approach [36], the convex splitting method [17,24,40,45], 
e energy quadratization method [46,48], the scalar auxiliary variable approach [26,34,35], the SVM method [20] and Lagrangian 
ultiplier approach [12].
Moreover, solving phase field models can be computationally intensive due to spatial and temporal multi scales that have to be 
solved, especially when long-time dynamics are desired. A naive way to tackle the computational complexity of thermodynamically 
nsistent models is to employ the reduced-order model (ROM) or model order reduction (MOR) techniques, which aim to reduce 
e spatial-temporal complexity. ROMs have gained significant attention in recent years for their capability to simplify complex 
E systems with reasonable approximation errors, enabling faster computational speed and more efficient simulations. The way 
r ROM to save computational cost is by projecting the problem from a high-dimensional system into a much lower-dimensional 
bspace while maintaining a small approximation error. In particular, the ROMs are usually required to conserve the properties 
d characteristics of the full-order model, i.e., the original model. The broadly used MOR techniques include proper orthogonal 
composition (POD) methods [30,43], reduced basis methods [32], balancing methods [5], and nonlinear manifold methods [13], 
 well as various projection-based reductions [9]. Among these approaches, the POD Galerkin method will be the major focus of 
is paper. The POD method computes an optimal subspace to fit the empirical data. It was first introduced to study turbulence by 
e fluid-dynamics community [30] as a way to decompose the random vector field representing turbulent fluid motion into a set 
 deterministic functions that each capture some portion of the total fluctuating kinetic energy in the flow [43]. The POD method 
s been widely used in computational fluid dynamics and structure analysis ever since. In general, the empirical data is generated, 
d POD modes are computed during the offline stage. In the online stage, the POD-ROM is solved in real time instead of the full 
odel. Some special techniques are needed to handle the nonlinearity to ensure the ROM is fully independent of the full model’s 
mension. These techniques include the trajectory piecewise linear approximation [33], missing point estimation [3], gappy POD 
4], empirical interpolation [4], and the discrete empirical interpolation method (DEIM) [10].
When it comes to developing POD-ROMs for thermodynamically consistent PDE systems, the challenge lies in not only maintain-
g the reduced computational complexity and controlled projection error to the original PDEs but also respecting their embedded 
ermodynamic laws. Unfortunately, a direct application of the classical POD-ROM strategies to the thermodynamically consistent 
Es will usually destroy the thermodynamic structure of the full-order model, which is problematic since these numerical solutions 
m the POD-ROM will violate the thermodynamic laws. Particular attention is needed to adjust the classical POD-ROM strategies 
r thermodynamically consistent PDEs. Over the years, some seminal ideas have been proposed to design structure-preserving ROMs 
r the Hamiltonian (reversible) systems, but there is still little work on dissipative (irreversible) systems. This motivates our research 
 this paper. Here, we provide a brief summary of the existing work in the literature. A general structure-preserving reduced-order 
odeling approach for gradient systems is proposed in [47]. The authors use the symmetric interior penalty discontinuous Galerkin 
IPG) method for spatial discretization and the average vector field (AVF) method for temporal discretization. The nonlinear terms 
e taken care of using the discrete empirical interpolation method (DEIM). The major drawback of this approach is that the resulting 
stem is fully implicit and nonlinear. A similar idea is applied to design structure-preserving integration and model order reduction 
 the skew-gradient reaction-diffusion systems [27]. A structure-preserving Galerkin POD reduced-order modeling for the Hamilto-
an systems is introduced in [21]. The major idea is to introduce a modified skew-symmetric operator in the reduced-order model 
ch that the Hamiltonian is preserved. A further extension introduced in [42] overcomes the high computational complexity with 
n-polynomial nonlinearities in the Hamiltonian by the discrete empirical interpolation method (DEIM). There is also some work in 
signing reduced-order models for the dissipative systems, in particular, the phase field models or gradient flow models. For instance, 
e authors introduce a reduced-order model for the Allen-Cahn equation by embracing the idea of the scalar auxiliary variable (SAV) 
ethod in [50]. An alternative approach to develop the reduced-order model for the Allen-Cahn equation is introduced in [29], where 
e authors use the stabilized semi-implicit scheme. A rigorous numerical analysis is also provided. A finite difference approach in 
ace and IMEX Runge-Kutta approach in time is introduced for developing reduced-order models of the Allen-Cahn equation in [37]. 
milar techniques of [21] are exploited to develop structure-preserving reduced-order modeling for the Korteweg-de Vries equation 
 [38]. A method is introduced for the dissipative Hamiltonian systems, but it only applies to dissipative Hamiltonian systems with a 
adratic Hamiltonian [1]. Meanwhile, there are several other research directions. The authors consider the inclusion of spatial adap-
ity for the snapshot computation in the offline phase of model order reduction [23]. Using deep learning techniques, particularly 
ep neural networks, for model order reductions has also been considered [14].
In this paper, we introduce a numerical platform that can systematically derive ROMs for reversible-irreversible thermodynami-
lly consistent PDE models by embracing several novel techniques. First of all, we utilize the energy quadratization (EQ) technique 
6,49] to reformulate the generic thermodynamically consistent PDE models into the quadratic Onsager form. By this equivalent 
odel reformulation, the reversible-irreversible thermodynamic structures of the original PDEs are fully disclosed. Then, thanks to 
2

e quadratic structure in our reformulated system, we are able to slightly modify the classical POD-ROM, which was inspired by 
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5], to derive structure-preserving POD-ROM. There are several unique advantages of our POD-ROM framework compared with 
isting results in the literature: (1) First of all, our approach is general in that the POD-ROM framework applies to many existing 
ermodynamically consistent models and respects their thermodynamic structures after model order reduction; (2) Secondly, the 
ucture-preserving numerical integration of our POD-ROM framework is linear, making it easy to implement and cheap to compute; 
) Thirdly, given the linearized nature of the POD-ROM framework, all the nonlinear terms in the ROM can be treated explicitly (us-
g many existing techniques such as DEIM) while still preserving the thermodynamic structure. These properties make our POD-ROM 
mework thermodynamically consistent and widely applicable.
The rest of this paper is structured as follows. Section 2 provides a comprehensive view of reformulating the thermodynamically 
nsistent PDE models via the generalized Onsager principle, particularly with the Onsager triplet. This allows us to reformulate 
e system using the EQ method, resulting in a system where free energy is expressed in a quadratic form in terms of the state 
riables. In Section 3, we elaborate on the procedure of designing structure-preserving reduced-order models in the context of 
e EQ reformulation. Afterward, we introduce the numerical platforms to develop structure-preserving numerical algorithms for 
e reduced-order models in Section 4. In Section 5, we present a range of numerical examples for specific thermodynamically 
nsistent PDE models, demonstrating the effectiveness of the proposed computational framework. We then wrap this paper with 
ief concluding remarks and future work in the last section.

 Thermodynamically consistent reversible-irreversible PDE models based on the generalized Onsager principle

1. Generalized Onsager principle

Consider a domain Ω, and denote the thermodynamic variable 𝜙. We recall the generalized Onsager principle. It consists of three 
y ingredients: the state or thermodynamic variable 𝜙, the free energy  , and the kinetic equation dictated by a mobility matrix (or 
erator) . In this paper, we name it

the Onsager triplet: (𝜙,,). (2.1)

e kinetic equation, deriving from the Onsager linear response theory, is given by

𝜕𝑡𝜙(𝐱, 𝑡) = − 𝛿
𝛿𝜙

in Ω, (2.2a)

(𝜙(𝐱, 𝑡)) = 𝑔(𝐱, 𝑡), on 𝜕Ω, (2.2b)

here  is an operator for the boundary condition, and  is the mobility operator that contains two parts:
 = 𝑎 + 𝑠. (2.3)

is symmetric and positive semi-definite to ensure thermodynamically consistency, 𝑎 is skew-symmetric, and 
𝛿
𝛿𝜙
is the variational 

rivative of  , known as the chemical potential. Then, the triplet (𝜙, , ) uniquely defines a thermodynamically consistent model. 
e intrinsic property of (2.2) owing to the thermodynamical consistency is the energy dissipation law

𝑑
𝑑𝑡

= ̇𝑏𝑢𝑙𝑘 + ̇𝑠𝑢𝑟𝑓 , (2.4a)

̇𝑏𝑢𝑙𝑘 = −
(

𝛿
𝛿𝜙

,𝑠

𝛿
𝛿𝜙

) ≤ 0, (2.4b)(
𝛿
𝛿𝜙

,𝑎

𝛿
𝛿𝜙

)
= 0, ̇𝑠𝑢𝑟𝑓 = ∫

𝜕Ω

𝑔𝑏𝑑𝑠, (2.4c)

here 𝑏𝑢𝑙𝑘 denotes the bulk free energy and 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 represents the surface free energy. Additionally, the inner product is defined 

(𝑓, 𝑔) = ∫
Ω

𝑓𝑔𝑑𝐱, ∀𝑓, 𝑔 ∈ 𝐿2(Ω),

d ̇𝑠𝑢𝑟𝑓 results from the boundary contribution, and 𝑔𝑏 is the boundary integrand. When 𝑎 = 0, (2.2) is a purely dissipative system. 
hen 𝑠 = 0, it is a purely dispersive system. ̇𝑠𝑢𝑟𝑓 vanishes only for suitable boundary conditions, which include periodic and certain 
ysical boundary conditions. When the mass, momentum, and total energy conservation are present in hydrodynamic models, these 
nservation laws are viewed as constraints imposed on the hydrodynamic variables. Then, the energy dissipation rate will have to 
 calculated subject to the constraints.

2. Model reformulation with the energy quadratization (EQ) method

Now, we illustrate the idea of the energy quadratization method. Denote the total energy as

(𝜙) = 𝑒𝑑𝐱, (2.5)
3

∫
Ω



Z.

w

th

w

W

“r

eq

No

ov

w

w

w

w

No

th

Re

th

Fo

fo
Journal of Computational Physics 521 (2025) 113562Zhang and J. Zhao

ith 𝑒 the energy density function. We denote 0 as a positive semi-definite linear operator that can be separated from 𝑒. Introduce 
e auxiliary variable

𝑞 =

√
2
(
𝑒− 1

2
| 1

2
0 𝜙|2 + 𝐴0|Ω| ), (2.6)

here 𝐴0 > 0 is a constant so that 𝑞 is a well-defined real variable. Then, we rewrite the energy as

(𝜙, 𝑞) = 1
2

(
𝜙,0𝜙

)
+ 1

2

(
𝑞, 𝑞

)
−𝐴0. (2.7)

ith the EQ approach above, we transform the free energy density into a quadratic one by introducing an auxiliary variable to 
emove” the nonlinear terms from the energy density. Assuming 𝑞 = 𝑞(𝜙) and denoting 𝑔(𝜙) = 𝜕𝑞

𝜕𝜙
, we reformulate (2.2) into an 

uivalent form

𝜕𝑡𝜙 = −(𝑎 + 𝑠)
(0𝜙+ 𝑞𝑔(𝜙)

)
, (2.8a)

𝜕𝑡𝑞 = 𝑔(𝜙) ∶ 𝜕𝑡𝜙, (2.8b)

𝑞|𝑡=0 =
√

2
(
𝑒− 1

2
| 1

2
0 𝜙|2 + 𝐴0|Ω| )

||||||𝑡=0 . (2.8c)

w, instead of dealing with (2.2) directly, we develop structure-preserving schemes for (2.8). The advantage of using model (2.8)
er model (2.2) is that the energy density is transformed into a quadratic form in (2.8).

Denote Ψ =
[

𝜙

𝑞

]
. We rewrite (2.8) into a vector form

𝜕𝑡Ψ=− (Ψ)Ψ, (2.9)

here  (Ψ) is the mobility operator, and  is a linear operator.

 (Ψ) =𝑠(Ψ) +𝑎(Ψ), (2.10a)

𝑎(Ψ) = ∗
0 𝑎0, (2.10b)

𝑠(Ψ) = ∗
0 𝑠0, (2.10c)

here

0 =
[
𝐈 𝑔(𝜙))

]
,  =

[0
𝐈

]
,

ith the identity matrix denoted by 𝐈, and  ∗
0 is the adjoint operator of 0. We name it the Onsager-Q form, where

𝑑(Ψ)
𝑑𝑡

=
(

𝛿
𝛿Ψ

𝜕Ψ
𝜕𝑡

,1
)
= −

( Ψ, (Ψ)Ψ) = −
(0Ψ,𝑠0Ψ

) ≤ 0, (2.11)

here the energy of (2.7) is reformulated in a vector form as

(Ψ) = 1
2

(
Ψ,Ψ)−𝐴0. (2.12)

te that the energy in (2.7) or (2.12) is quadratized so that one can easily derive linear and energy stable numerical schemes for 
e model.

mark 2.1. The EQ approach is also applicable when 𝑞 = 𝑞(𝜙, ∇𝜙) and denoting

𝑔(𝜙) = 𝜕𝑞

𝜕𝜙
, 𝐆(𝜙) = 𝜕𝑞

𝜕∇𝜙
, (2.13)

e kinetic equation (2.2) can be reformulated into an equivalent form

𝜕𝑡𝜙 = −(𝑎 + 𝑠)
(0𝜙+ 𝑞𝑔(𝜙) − ∇ ⋅ (𝑞𝐆(𝜙))

)
, (2.14a)

𝜕𝑡𝑞 = 𝑔(𝜙) ∶ 𝜕𝑡𝜙+𝐆(∇𝜙) ∶ ∇𝜕𝑡𝜙, (2.14b)

𝑞|𝑡=0 =
√

2
(
𝑒− 1

2
| 1

2
0 𝜙|2 + 𝐴0|Ω| )

||||||𝑡=0 . (2.14c)

r the simplicity of notation, the approach presented in this paper derives structure-preserving ROMs for (2.8) and it is also applicable 
4

r (2.14).
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 Structure-preserving reduced-order models (ROMs)

In this section, we present the general structure-preserving framework for deriving reduced-order models (ROMs). We emphasize 
at the transformed model (2.8) is equivalent to (2.2). Thus, we focus on designing the ROMs for (2.8), which in turn is a good 
rrogate model for (2.2).

1. Model order reduction (MOR)

Consider the solution for (2.8) as

Ψ(𝐱, 𝑡) =
∞∑

𝑘=1
𝐚𝑘(𝑡)𝜓𝑘(𝐱),

here {𝜓𝑘(𝐱)}∞𝑘=1 are the spatial modes and {𝐚𝑘(𝑡)}∞𝑘=1 are the corresponding time coefficients. For the ROM, we look for a low-
mensional projections

Ψ𝑟(𝐱, 𝑡) =
𝑟∑

𝑘=1
𝐚𝑘(𝑡)𝜓𝑘(𝐱), (3.1)

ch that it provides an accurate approximation to Ψ(𝐱, 𝑡) and 𝜓𝑘(𝐱) are the optimal basis modes when r is small. In general, we 
ould like the modes orthonormal, i.e.,

∫
Ω

𝜓𝑖(𝐱)𝜓𝑗 (𝐱)𝑑𝐱 =
{

1, 𝑖 = 𝑗,

0, 𝑖 ≠ 𝑗.

Plugging the ROM solution of (3.1) into (2.9), we have
𝑟∑

𝑘=1

𝑑

𝑑𝑡
𝐚𝑘(𝑡)𝜓𝑘(𝐱) = −( 𝑟∑

𝑘=1
𝐚𝑘(𝑡)𝜓𝑘(𝐱)

)[ 𝑟∑
𝑘=1

𝐚𝑘(𝑡)𝜓𝑘(𝐱)
]
. (3.2)

is clear that the ROM in (3.2) preserves the original structure. In fact, if we denote the reduced-order energy as

𝑟(Ψ𝑟(𝐱, 𝑡)) = 1
2

(
Ψ𝑟(𝐱, 𝑡), Ψ𝑟(𝐱, 𝑡)

)
−𝐴0, (3.3)

e can have the following energy dissipation law
𝑑𝑟(Ψ𝑟(𝐱, 𝑡))

𝑑𝑡
=
(Ψ𝑟(𝐱, 𝑡), 𝑑

𝑑𝑡
Ψ𝑟(𝐱, 𝑡)

)
=
([ 𝑟∑

𝑘=1
𝐚𝑘(𝑡)𝜓𝑘(𝐱)

]
,

𝑟∑
𝑘=1

𝑑

𝑑𝑡
𝐚𝑘(𝑡)𝜓𝑘(𝐱)

)
= −

([ 𝑟∑
𝑘=1

𝐚𝑘(𝑡)𝜓𝑘(𝐱)
]
, ( 𝑟∑

𝑘=1
𝐚𝑘(𝑡)𝜓𝑘(𝐱)

)[ 𝑟∑
𝑘=1

𝐚𝑘(𝑡)𝜓𝑘(𝐱)
])

≤ 0.

2. POD-Galerkin method

For structure-preserving spatial discretizations, either finite difference, finite elements, or spectral methods can be used. For sim-
icity, we assume periodic boundary conditions in the rest of this paper and use the pseudo-spectral method for space discretization. 
en, we focus on the proper orthogonal decomposition (POD) for the selection of optimal spatial modes and the construction of 
ucture-preserving ROMs in combination with Galerkin projection.

2.1. Pseudo-spectral spatial discretization
We consider a rectangular domain Ω = [𝑙𝑥, 𝑟𝑥] × [𝑙𝑦, 𝑟𝑦], and denote 𝐿𝑥 = 𝑟𝑥 − 𝑙𝑥 and 𝐿𝑦 = 𝑟𝑦 − 𝑙𝑦. For Fourier spectral method, 

e discretize the domain into equally distanced rectangular meshes with ℎ𝑥 = 𝐿𝑥

𝑁𝑥
and ℎ𝑦 =

𝐿𝑦

𝑁𝑦
, with 𝑁𝑥, 𝑁𝑦 the number of meshes 

 𝑥 and 𝑦 directions respectively, and ℎ𝑥, ℎ𝑦 the corresponding mesh sizes. Then, we have the discrete coordinates

(𝑥𝑚, 𝑦𝑛) = (𝑙𝑥 +𝑚ℎ𝑥, 𝑙𝑦 + 𝑛ℎ𝑦), 𝑚 = 0,1,2,⋯ ,𝑁𝑥 − 1, 𝑛 = 0,1,2,⋯ ,𝑁𝑦 − 1. (3.4)

ven the domain is periodic, we have 𝑥𝑁𝑥
= 𝑥0, 𝑦𝑁𝑦

= 𝑦0. Assume 𝑁𝑥 and 𝑁𝑦 are even numbers with 𝑁𝑥 = 2𝐾𝑥 and 𝑁𝑦 = 2𝐾𝑦.

Denote 𝜙𝑖𝑗 the numerical approximation for 𝜙(𝑥𝑖, 𝑦𝑗 ). Then, we have the discrete Fourier expansion in 2D as

𝜙 = 1
𝐾𝑥∑ 𝐾𝑦∑

𝜙̂ exp
(
2𝜋𝑖(𝑘

𝑥𝑚 + 𝑙
𝑦𝑛 )

)
(3.5)
5

𝑚𝑛
𝑁𝑥𝑁𝑦 𝑘=−𝐾𝑥+1 𝑙=−𝐾𝑦+1

𝑘𝑙
𝐿𝑥 𝐿𝑦
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d the corresponding Fourier inverse transform is given as

𝜙̂𝑘𝑙 =
𝑁𝑥−1∑
𝑚=0

𝑁𝑦−1∑
𝑛=0

𝜙𝑚𝑛 exp
(
− 2𝜋𝑖(𝑘

𝑥𝑚

𝐿𝑥

+ 𝑙
𝑦𝑛

𝐿𝑦

)
)

(3.6)

With the notations for the Fourier transform, we can calculate the first-order and second-order partial derivatives as

(𝑁𝑥
𝜙)𝑖𝑗 =

1
𝑁𝑥𝑁𝑦

𝐾𝑥∑
𝑘=−𝐾𝑥+1

𝐾𝑦∑
𝑙=−𝐾𝑦+1

2𝜋𝑘𝑖

𝐿𝑥

𝜙̂𝑘,𝑙 exp
(
2𝜋𝑖(𝑘𝑥𝑖 + 𝑙𝑦𝑗 )

)
(3.7)

d the second-order partial derivative is given as

(2
𝑁𝑥

𝜙)𝑖𝑗 =
1

𝑁𝑥𝑁𝑦

𝐾𝑥∑
𝑘=−𝐾𝑥+1

𝐾𝑦∑
𝑙=−𝐾𝑦+1

(−4𝜋2𝑘2

𝐿2
𝑥

)𝜙̂𝑘,𝑙 exp
(
2𝜋𝑖(𝑘𝑥𝑖 + 𝑙𝑦𝑗 )

)
(3.8)

milarly, we can define the differential operators for (𝑁𝑦
𝜙)𝑖𝑗 and (2

𝑁𝑦
𝜙)𝑖𝑗 . Then, we can introduce the discrete Laplacian, gradient, 

d divergence operators as

Δ𝑁𝜙 = (2
𝑁𝑥

+2
𝑁𝑦

)𝜙,

∇𝑁𝜙 =
(𝑁𝑥

𝜙

𝑁𝑦
𝜙

)
,

∇𝑁 ⋅
(

𝜙

𝜓

)
=𝑁𝑥

𝜙+𝑁𝑦
𝜓.

(3.9)

en, we finally can introduce the discrete operator

ℎ = −𝜀2Δ𝑁 +𝐶, 𝐶 > 0. (3.10)

re, 𝐶 is a positive constant. The operator −1 can be defined as

(−1
ℎ

𝜙

)
𝑚𝑛

= 1
𝑁𝑥𝑁𝑦

𝐾𝑥∑
𝑘=−𝐾𝑥+1

𝐾𝑦∑
𝑙=−𝐾𝑦+1

1
𝜀2𝜆𝑘,𝑙 +𝐶

𝜙̂𝑘𝑙 exp
(
2𝜋𝑖(𝑘

𝑥𝑚

𝐿𝑥

+ 𝑙
𝑦𝑙

𝐿𝑦

)
)
, (3.11)

ith the coefficients calculated as

𝜆𝑘,𝑙 = (2𝑘𝜋

𝐿𝑥

)2 + ( 2𝑙𝜋
𝐿𝑦

)2.

her exponential operators can be defined in a similar manner. Given the discrete functions in the 2D mesh 𝜙, 𝜓 ∈ℝ𝑁𝑥,𝑁𝑦 , we can 
fine the inner product and induced 𝑙2 norm as

‖𝜙‖2 =√
(𝜙,𝜙), (𝜙,𝜓) = ℎ𝑥ℎ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

𝜙𝑖𝑗𝜓𝑖𝑗 . (3.12)

can be easily shown that the following summation by parts formula hold

(𝜙,Δ𝑁𝜓) = −(∇𝑁𝜙,∇𝑁𝜓), (𝜙,Δ2
𝑁

𝜓) = (Δ𝑁𝜙,Δ𝑁𝜓). (3.13)

For more properties, interested readers can refer to [22]. Without loss of generality, we use the notation ℎ to denote the corre-
onding discrete operator for  and ℎ for  using the pseudo-spectral spatial discretization.

2.2. POD-Galerkin projection
To give an accurate low-dimensional approximation from a subspace spanned by a set of reduced basis of dimension 𝑟 in ℝ𝑛, we 
e the proper orthogonal decomposition (POD) to construct a set of global basis, also known as POD modes, from a singular value 
composition (SVD) of some snapshot data of the system. Then we use Galerkin projection for dimension reduction.
Suppose we have the sampling of the phase variable 𝜙(𝐱, 𝑡) as

Φ=
[
Φ1 Φ2 ⋯ Φ𝑚

]
, (3.14)

hich might be measurements from simulations or experimental data. Here Φ𝑘 is the data collected from 𝑡 = 𝑡𝑘 on the equally 
stanced rectangular meshes represented in a vector form, i.e., Φ𝑘 ∈ℝ𝑛 with 𝑛 = 𝑁𝑥 ×𝑁𝑦. Typically, 𝑛 ≫ 𝑚. Denote the full singular 
lue decomposition (SVD) of the data matrix Φ ∈ℝ𝑛,𝑚 as
6

Φ= 𝐔̂𝜙Σ̂𝜙𝐕̂𝑇
𝜙
,
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here 𝐔̂𝜙 ∈ℝ𝑛,𝑛, and 𝐕̂𝜙 ∈ℝ𝑚,𝑚 and Σ̂𝜙 ∈ℝ𝑛,𝑚. Our objective is to find 𝑟 ≪ 𝑛 optimal spatial modes that are sufficient to represent 
e spatial dynamics accurately. Given a threshold 𝜀, we can find 𝑟 such that ‖Φ −Φ𝑟‖ < 𝜀, where Φ𝑟 is from the reduced SVD for Φ

Φ≈Φ𝑟 =𝐔𝜙Σ𝜙𝐕𝑇
𝜙
,

here 𝐔𝜙 ∈ℝ𝑛,𝑟, Σ𝜙 ∈ℝ𝑟,𝑟 and 𝐕𝜙 ∈ℝ𝑚,𝑟. And we denote our optimal basis modes

𝐔𝜙 ∶= 𝐔̂𝜙[∶,1 ∶ 𝑟], (3.15)

here the truncation preserves the 𝑟 most dominant modes. The truncated 𝑟 modes for Φ are then used as the low-rank, orthogonal 
sis to represent the spatial dynamics. Similarly, for the auxiliary variable 𝑞(𝐱, 𝑡), we can obtain the data from the sampling in (3.14), 

𝐐 =
[
ℎ(Φ1) ℎ(Φ2) ⋯ ℎ(Φ𝑚)

]
, (3.16)

here ℎ(Φ𝑘) ∈ℝ𝑛 can be treated as the sampling for 𝑞(𝐱, 𝑡) at 𝑡𝑘 on the same spatial meshes. In a similar manner, we calculate the 
D for 𝐐 ∈ℝ𝑛,𝑚 as

𝐐 = 𝐔̂𝑞Σ̂𝑞𝐕̂𝑇
𝑞
,

d have the reduced SVD by picking 𝑟 ≪ 𝑛 as

𝐐𝑟 =𝐔𝑞Σ𝑞𝐕𝑇
𝑞
. (3.17)

 this approach, we obtain the truncated 𝑟 modes for 𝑞(𝐱, 𝑡) as

𝐔𝑞 ∶= 𝐔̂𝑞[∶,1 ∶ 𝑟]. (3.18)

ith (3.15) and (3.18), we have the 𝑟 modes for the general variable Ψ as

𝐔 =
[
𝐔𝜙 0
0 𝐔𝑞

]
. (3.19)

Denoting

𝐚(𝑡) =
[
𝐚𝜙(𝑡)
𝐚𝑞(𝑡)

]
, Ψ=

[
𝜙

𝑞

]
, (3.20)

here 𝐚𝜙(𝑡) ∈ℝ𝑟 and 𝐚𝑞(𝑡) ∈ℝ𝑟 are the time-dependent coefficient vectors, we approximate the solution using the POD expansion:

Ψ=𝐔𝐚(𝑡), i.e., 𝜙 =𝐔𝜙𝐚𝜙(𝑡), 𝑞 =𝐔𝑞𝐚𝑞(𝑡). (3.21)

mark 3.1. Note that the POD approach constructs a reduced basis that is optimal in the sense that a certain approximation error 
ncerning the snapshot data is minimized. The minimum 2-norm error from approximating the snapshot data using the POD modes 
given by

𝑚∑
𝑗=1

‖‖‖𝜙𝑗 −ΦΦ𝑇 𝜙𝑗
‖‖‖22 = 𝑑1∑

𝑗=𝑟+1
𝜎2

𝑗
,

𝑚∑
𝑗=1

‖‖‖ℎ(𝜙𝑗 ) −𝐐𝐐𝑇 ℎ(𝜙𝑗 )
‖‖‖22 = 𝑑2∑

𝑗=𝑟+1
𝜆2

𝑗
,

here 𝑑1 and 𝑑2 are the rank of snapshot matrix Φ and 𝐐 respectively, and 𝜎1 ≥ 𝜎2 ≥⋯ ≥ 𝜎𝑑1
> 0 and 𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑑2

> 0 are the 
nzero singular values of Φ and 𝐐 respectively. For more details on the POD basis, we refer the reader to [28].

Then, we apply POD-Galerkin projection to (3.2) and derive the POD-ROM as
𝑑𝐚(𝑡)
𝑑𝑡

= −𝐔𝑇ℎ

(
𝐔𝐚(𝑡)

)ℎ

[
𝐔𝐚(𝑡)

]
, (3.22)

hich we name POD-ROM-vanilla. By solving this system of much smaller dimensions as (3.22), the solution of a high-dimensional 
nlinear dynamical system can be approximated.
However, POD-ROM in (3.22) does not necessarily respect the energy dissipation law as the full model in (2.11). Specifically, if 

e calculate the energy dissipation rate of (3.22) with respect to the discrete energy

𝑟(𝐔𝐚(𝑡)) =
1
2

[
𝐔𝐚(𝑡)

]𝑇ℎ

[
𝐔𝐚(𝑡)

]
−𝐴0,

e have
𝑑 (𝐔𝐚(𝑡)) ( [ ])𝑇 𝑑𝐚(𝑡)
7

𝑟

𝑑𝑡
= ℎ 𝐔𝐚(𝑡) 𝐔

𝑑𝑡
(3.23a)
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= −
(ℎ

[
𝐔𝐚(𝑡)

])𝑇

𝐔𝐔𝑇ℎ

(
𝐔𝐚(𝑡)

)ℎ

[
𝐔𝐚(𝑡)

]
, (3.23b)

here 𝐔𝐔𝑇ℎ(𝐔𝐚(𝑡)) is not necessarily a positive semi-definite matrix, which might violate the energy dissipation law.

3. General POD-ROM structure-preserving framework

To address the issue above, we propose two approaches that can automatically preserve the energy dissipation structure in the 
D-ROM.

3.1. Approach I: POD-ROM-I
As a first remedy, we modify the matrix 𝐔𝐔𝑇 ℎ(𝐔𝐚(𝑡)) to make it positive semi-definite. Inspired by [21], we modify the mobility 
erator in (3.22) by assuming that there exists a mobility operator, ̂ℎ , with the same property as ℎ such that,

𝐔𝑇ℎ = ̂ℎ𝐔𝑇 . (3.24)

en, by multiplying 𝐔 on both sides of the equation, we have

̂ℎ =𝐔𝑇ℎ𝐔. (3.25)

placing the mobility operator ℎ in (3.22) with ̂ℎ, we came up with the following POD-ROM
𝑑𝐚(𝑡)
𝑑𝑡

= −̂ℎ

(
𝐔𝐚(𝑡)

)
𝐔𝑇ℎ

[
𝐔𝐚(𝑡)

]
,

.,

𝑑𝐚(𝑡)
𝑑𝑡

= −𝐔𝑇ℎ

(
𝐔𝐚(𝑡)

)
𝐔𝐔𝑇ℎ

[
𝐔𝐚(𝑡)

]
. (3.26)

e named (3.26) as POD-ROM-I.

eorem 3.1 (Energy Stability). The POD-ROM-I in (3.26) preserves the energy dissipation law
𝑑𝑟(𝐔𝐚(𝑡))

𝑑𝑡
= −

(
𝐔𝐔𝑇ℎ

[
𝐔𝐚(𝑡)

]
, ℎ

(
𝐔𝐚(𝑡)

)
𝐔𝐔𝑇ℎ

[
𝐔𝐚(𝑡)

]) ≤ 0, (3.27)

ere the discrete energy is defined as 𝑟(𝐔𝐚(𝑡)) =
1
2

[
𝐔𝐚(𝑡)

]𝑇ℎ

[
𝐔𝐚(𝑡)

]
−𝐴0.

oof. As a matter of fact, this energy dissipation law can be easily observed by performing the following calculations
𝑑𝑟(𝐔𝐚(𝑡))

𝑑𝑡
=
(ℎ

[
𝐔𝐚(𝑡)

])𝑇

𝐔𝑑𝐚(𝑡)
𝑑𝑡

(3.28a)

= −
(ℎ

[
𝐔𝐚(𝑡)

])𝑇

𝐔𝐔𝑇ℎ

(
𝐔𝐚(𝑡)

)
𝐔𝐔𝑇

(ℎ

[
𝐔𝐚(𝑡)

])
(3.28b)

= −
(
𝐔𝐔𝑇ℎ

[
𝐔𝐚(𝑡)

]
, ℎ

(
𝐔𝐚(𝑡)

)
𝐔𝐔𝑇ℎ

[
𝐔𝐚(𝑡)

])
(3.28c)

≤ 0. (3.28d)

is completes the proof. □

However, even though the approach in (3.26) respects the energy dissipation property, it has a modified energy dissipation rate, 
hich might lead to inaccurate dissipative dynamics.

3.2. Approach II: POD-ROM-II
To overcome these issues, we introduce a new approach that is inspired by [15], where the author develops energy-stable numerical 

gorithms for dissipative systems. Specifically, we reformulate the reduced order model by applying ∗
ℎ
on both sides of the equation. 

en, we obtain the following POD-ROM by Galerkin projection as

𝐔𝑇∗
ℎ
𝐔𝑑𝐚(𝑡)

𝑑𝑡
= −𝐔𝑇∗

ℎ
ℎ

(
𝐔𝐚(𝑡)

)ℎ

[
𝐔𝐚(𝑡)

]
, (3.29)

hich we name POD-ROM-II. Note that ℎ =
[0,ℎ 0

0 𝐈

]
is an invertible operator. Thus the problem (3.29) is well-posed.

eorem 3.2 (Energy Stability). The POD-ROM-II in (3.29) preserves the energy dissipation law
𝑑 (𝐔𝐚(𝑡)) ( [ ] ( ) [ ])
8

𝑟

𝑑𝑡
= − ℎ 𝐔𝐚(𝑡) , ℎ 𝐔𝐚(𝑡) ℎ 𝐔𝐚(𝑡) ≤ 0, (3.30)
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ere the discrete energy is defined as 𝑟(𝐔𝐚(𝑡)) =
1
2

[
𝐔𝐚(𝑡)

]𝑇ℎ

[
𝐔𝐚(𝑡)

]
−𝐴0.

oof. As a matter of fact, this energy dissipation law can be easily observed by performing the following calculations
𝑑𝑟(𝐔𝐚(𝑡))

𝑑𝑡
=
(ℎ

[
𝐔𝐚(𝑡)

])𝑇

𝐔𝑑𝐚(𝑡)
𝑑𝑡

(3.31a)

= 𝐚(𝑡)𝑇𝐔𝑇∗
ℎ
𝐔𝑑𝐚(𝑡)

𝑑𝑡
(3.31b)

= −
(ℎ

[
𝐔𝐚(𝑡)

])𝑇ℎ

(
𝐔𝐚(𝑡)

)(ℎ

[
𝐔𝐚(𝑡)

])
(3.31c)

= −
(ℎ

[
𝐔𝐚(𝑡)

]
, ℎ

(
𝐔𝐚(𝑡)

)ℎ

[
𝐔𝐚(𝑡)

])
(3.31d)

≤ 0. (3.31e)

is completes the proof. □

mark 3.2. Note that POD-ROM-I in (3.26) and POD-ROM-II (3.29) are generic, and they apply to the reversible-irreversible models 
at fit in the generic form. POD-ROM-II in (3.29) is superior to either POD-ROM-vanilla in (3.22) or POD-ROM-I in (3.26), since 
.29) preserves the original energy dissipation structure in (2.11).

We can also expand the notations and rewrite POD-ROM-II in matrix forms. The equation of (3.29) can be written as[
𝐔𝑇

𝜙
∗
0,ℎ𝐔𝜙

𝐔𝑇
𝑞
𝐔𝑞

]
𝑑

𝑑𝑡

[
𝐚𝜙(𝑡)
𝐚𝑞(𝑡)

]
=

[
𝐔𝑇

𝜙

𝐔𝑇
𝑞

][∗
0,ℎ 0
0 𝐈

]
ℎ

([𝐔𝜙𝐚𝜙(𝑡)
𝐔𝑞𝐚𝑞(𝑡)

])[0,ℎ 0
0 𝐈

][
𝐔𝜙𝐚𝜙(𝑡)
𝐔𝑞𝐚𝑞(𝑡)

]
.

e structure-preserving model of (3.29) reads

𝐔𝑇
𝜙
∗
0,ℎ𝐔𝜙

𝑑𝐚𝜙(𝑡)
𝑑𝑡

= −𝐔𝑇
𝜙
∗
0,ℎ

(0,ℎ𝐔𝜙𝐚𝜙(𝑡) + 𝑔(𝐔𝜙𝐚𝜙(𝑡))𝐔𝑞𝐚𝑞(𝑡)
)
, (3.32a)

𝑑𝐚𝑞(𝑡)
𝑑𝑡

= −𝐔𝑇
𝑞
𝑔(𝐔𝜙𝐚𝜙(𝑡))𝑇 

(0,ℎ𝐔𝜙𝐚𝜙(𝑡) + 𝑔(𝐔𝜙𝐚𝜙(𝑡))𝐔𝑞𝐚𝑞(𝑡)
)
. (3.32b)

Furthermore, the POD-ROM can be simplified as

𝐴0
𝑑𝐚𝜙(𝑡)

𝑑𝑡
= −𝐴1𝐚𝜙(𝑡) −𝐴2𝐚𝑞(𝑡), (3.33a)

𝑑𝐚𝑞(𝑡)
𝑑𝑡

= −𝐴3𝐚𝜙(𝑡) −𝐴4𝐚𝑞(𝑡), (3.33b)

ith the following notations for the operators

𝐴0 =𝐔𝑇
𝜙
∗
0,ℎ𝐔𝜙, (3.34a)

𝐴1 =𝐔𝑇
𝜙
∗
0,ℎ0,ℎ𝐔𝜙, (3.34b)

𝐴2(𝑡) =𝐔𝑇
𝜙
∗
0,ℎ𝑔(𝐔𝜙𝐚𝜙(𝑡))𝐔𝑞 , (3.34c)

𝐴3(𝑡) =𝐔𝑇
𝑞
𝑔(𝐔𝜙𝐚𝜙(𝑡))𝑇 0,ℎ𝐔𝜙, (3.34d)

𝐴4(𝑡) =𝐔𝑇
𝑞
𝑔(𝐔𝜙𝐚𝜙(𝑡))𝑇 𝑔(𝐔𝜙𝐚𝜙(𝑡))𝐔𝑞 . (3.34e)

e model in (3.33)-(3.34) will provide guidance on designing structure-preserving numerical algorithms for solving the POD-ROMs.

 Linear time-stepping algorithms for the POD-ROM

With our framework, the POD-ROM in (3.26) and (3.29) can be solved. Consider the time domain [0, 𝑇 ]. We discretize it into 
ually distanced intervals 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 with ℎ = 𝑇

𝑁
, i.e. 𝑡𝑖 = 𝑖ℎ. Then we denote 𝐚𝑛 as the numerical approximation of 

𝑡𝑛). The initial value can be obtained as

𝐚0
𝜙
=𝐔𝑇

𝜙
𝜙0, 𝐚0

𝑞
=𝐔𝑇

𝑞
ℎ(𝜙0).

ith these notations, we discuss the numerical integration for the POD-ROM.
To integrate the ROM in time, we need a structure-preserving time-integrator. The widely used time integration for structure-
eserving ROM is the average vector field (AVF) method. However, its drawback is obvious. It is highly nonlinear and computationally 
pensive, and some nonlinear iterative methods have to be used in each time step (which are also not easy to implement). The 
9

istence and uniqueness of the solution strongly limit the time-step size.
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1. Linear semi-implicit structure-preserving time integration

Among the advantages of this work, our proposed POD-ROMs can be easily integrated in time with linear numerical schemes. If 
e take the semi-implicit Crank-Nicolson (CN) time discretization, we will have the following schemes for the POD-ROM-II in (3.29).

heme 4.1 (CN scheme for the POD-ROM-II). After we calculated 𝐚𝑛−1 and 𝐚𝑛, we can obtain 𝐚𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚𝑛+1
𝑞

]
via the following 

ear scheme

𝐔𝑇∗
ℎ
𝐔𝐚𝑛+1 − 𝐚𝑛

𝛿𝑡
= −𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+ 1
2 )ℎ[𝐔𝐚

𝑛+ 1
2 ], (4.1)

ith the notations 𝐚𝑛+ 1
2 = 3

2𝐚
𝑛 − 1

2𝐚
𝑛−1 and 𝐚𝑛+ 1

2 = 1
2𝐚

𝑛+1 + 1
2𝐚

𝑛.

eorem 4.1. The Scheme 4.1 is linear, and it preserves the discrete energy dissipation law

𝑟(𝐔𝐚𝑛+1) − 𝑟(𝐔𝐚𝑛) = −𝛿𝑡

(ℎ[𝐔𝐚
𝑛+ 1

2 ]
)𝑇ℎ(𝐔𝐚

𝑛+ 1
2 )
(ℎ[𝐔𝐚

𝑛+ 1
2 ]
)

(4.2)

ere the discrete energy 𝑟 is defined as 𝑟(𝐔𝐚) =
1
2

(
𝐔𝐚

)𝑇ℎ

(
𝐔𝐚

)
−𝐴0.

oof. It is easy to observe that only a linear system needs to be solved at each time step in (4.1), i.e., Scheme 4.1 is linear. The 
ergy stability equality is obtained by multiplying 𝛿𝑡(𝐚𝑛+ 1

2 )𝑇 on both sides of (4.1). □

Similarly, if we use the semi-implicit second-order backward differential formula (BDF2) for the temporal discretization, we arrive 
 the following second-order linear numerical algorithm.

heme 4.2 (BDF2 scheme for the POD-ROM-II). After we calculated 𝐚𝑛−1 and 𝐚𝑛, we can obtain 𝐚𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚𝑛+1
𝑞

]
via the following 

ear scheme

𝐔𝑇∗
ℎ
𝐔3𝐚𝑛+1 − 4𝐚𝑛 + 𝐚𝑛−1

2𝛿𝑡
= −𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+1)ℎ[𝐔𝐚𝑛+1], (4.3)

ith the notation 𝐚𝑛+1 = 2𝐚𝑛 − 𝐚𝑛−1.

eorem 4.2. The Scheme 4.2 is linear, and it satisfies the following discrete energy dissipation law

̂𝑟(𝐔𝐚𝑛+1,𝐔𝐚𝑛) − ̂𝑟(𝐔𝐚𝑛,𝐔𝐚𝑛−1) ≤ −𝛿𝑡

(ℎ[𝐔𝐚𝑛+1]
)𝑇ℎ(𝐔𝐚

𝑛+1)
(ℎ[𝐔𝐚𝑛+1]

)
, (4.4)

ere the modified discrete free energy is defined as

̂𝑟(𝐔𝐚1,𝐔𝐚2) =
1
4

[
𝐔𝐚1

]𝑇ℎ

[
𝐔𝐚1

]
+ 1

4

[
𝐔(2𝐚1 − 𝐚2)

]𝑇ℎ

[
𝐔(2𝐚1 − 𝐚2)

]
−𝐴0.

oof. Notice the inequality

( 3𝑎− 4𝑏+ 𝑐

2
, 𝑎) = 1

4

[
(𝑎, 𝑎) + (2𝑎− 𝑏, 2𝑎− 𝑏) − (𝑏, 𝑏) − (2𝑏− 𝑐, 2𝑏− 𝑐) + (𝑎− 2𝑏+ 𝑐, 𝑎− 2𝑏+ 𝑐)

]
≥ 1

4

[
(𝑎, 𝑎) + (2𝑎− 𝑏, 2𝑎− 𝑏) − (𝑏, 𝑏) − (2𝑏− 𝑐, 2𝑏− 𝑐)

]
.

If we multiply 𝛿𝑡(𝐚𝑛+1)𝑇 on both sides of (4.3), the energy stability inequality is obtained. □

eorem 4.3. The Scheme 4.1 and Scheme 4.2 are both linear and uniquely solvable.

oof. Given the similarity between Scheme 4.1 and Scheme 4.2, we only show the proof for Scheme 4.1. After some basic algebraic 
lculation, we can rewrite Scheme 4.1 as[ 1

𝛿𝑡
𝐔𝑇∗

ℎ
𝐔+ 1

2
𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+ 1
2 )ℎ𝐔

]
𝐚𝑛+1 = 1

𝛿𝑡
𝐔𝑇∗

ℎ
[𝐔𝐚𝑛] − 1

2
𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+ 1
2 )ℎ[𝐔𝐚𝑛]. (4.5)

To show the existence and uniqueness of the solution for (4.1), we only need to show there is only a zero solution for
1

10

𝐴𝐚𝑛+1 = 0, where 𝐴 = 1
𝛿𝑡
𝐔𝑇∗

ℎ
𝐔+ 1

2
𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+ 2 )ℎ𝐔.
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𝐚 is a solution to 𝐴𝐚𝑛+1 = 0, we have

0 = 𝐚𝑇 𝐴𝐚 =
𝐚𝑇𝐔𝑇∗

ℎ
𝐔𝐚

𝛿𝑡
+ 1

2
𝐚𝑇

[
𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+ 1
2 )ℎ𝐔

]
𝐚 ≥ 𝐚𝑇𝐔𝑇∗

ℎ
𝐔𝐚

𝛿𝑡
,

. 𝐚 = 0, by noticing 𝐔𝑇∗
ℎ
𝐔 is a positive definite matrix. So, 𝐴 is invertible, and there is a unique solution for Scheme 4.1. 

rthermore, we have shown that 𝐴 is a positive definite matrix. □

For the POD-ROM-I in (3.26), similar numerical techniques can be applied. Specifically, we have the following time-marching 
ear numerical schemes that will also be used for comparisons in the numerical result section.

heme 4.3 (CN scheme for POD-ROM-I). The CN scheme for (3.26) reads

𝐚𝑛+1 − 𝐚𝑛

𝛿𝑡
= −𝐔𝑇ℎ(𝐔𝐚

𝑛+ 1
2 )𝐔𝐔𝑇ℎ[𝐔𝐚

𝑛+ 1
2 ]. (4.6)

heme 4.4 (BDF2 scheme for POD-ROM-I). The BDF2 scheme for (3.26) reads

3𝐚𝑛+1 − 4𝐚𝑛 + 𝐚𝑛−1

2𝛿𝑡
= −𝐔𝑇ℎ(𝐔𝐚

𝑛+1)𝐔𝐔𝑇ℎ[𝐔𝐚𝑛+1]. (4.7)

From the discussion above, we conclude that Scheme 4.1 and Scheme 4.2 are linear, uniquely solvable, and preserve the energy 
ssipation structure. However, they both have one defect. We recall the original definition for 𝑞 in (2.6), denoting 𝑞 ∶= ℎ(𝜙). After 
mporal discretization, the numerical result 𝐔𝑞𝐚𝑛+1

𝑞
from Scheme 4.1 or Scheme 4.2 is not necessarily equal to ℎ(𝐔𝜙𝐚𝑛+1

𝜙
) anymore, 

hich leads to numerical errors.

2. Relaxation technique to improve the accuracy

One remedy to fix the issue above is to utilize the relaxation technique we proposed to improve the accuracy and stability of 
 and SAV methods [26,48]. Namely, we can relax the numerical solution 𝐔𝑞𝐚𝑛+1

𝑞
from Scheme 4.1 and Scheme 4.2 such that the 

merical error ‖𝐔𝑞𝐚𝑛+1
𝑞

−ℎ(𝐔𝜙𝐚𝑛+1
𝜙

)‖ will be damped to zero gradually. Therefore, we develop the following relaxed schemes, which 
ill be used in this paper to conduct numerical simulations.

heme 4.5 (Relaxed CN scheme for the POD-ROM-II). After we calculated 𝐚𝑛−1 and 𝐚𝑛, we can obtain 𝐚𝑛+1 via the following three 
ps:

• Step 1. Obtain 𝐚̂𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚̂𝑛+1
𝑞

]
via the linear scheme

𝐔𝑇∗
ℎ
𝐔𝐚̂𝑛+1 − 𝐚𝑛

𝛿𝑡
= −𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+ 1
2 )ℎ[𝐔𝐚̂

𝑛+ 1
2 ], (4.8)

with the notations 𝐚𝑛+ 1
2 = 3

2𝐚
𝑛 − 1

2𝐚
𝑛−1 and 𝐚̂𝑛+ 1

2 = 1
2 𝐚̂

𝑛+1 + 1
2𝐚

𝑛.

• Step 2. Update 𝐔𝑞𝐚𝑛+1
𝑞

via the relaxation strategy

𝐔𝑞𝐚𝑛+1
𝑞

= 𝜉0𝐔𝑞 𝐚̂𝑛+1
𝑞

+ (1 − 𝜉0)ℎ(𝐔𝜙𝐚𝑛+1
𝜙

), 𝜉0 ∈ [0,1],

where 𝜉0 is a solution for the optimization problem:

𝜉0 = min
𝜉∈[0,1]

𝜉, s.t.
1
2
(𝐔𝑞𝐚𝑛+1

𝑞
, 𝐔𝑞𝐚𝑛+1

𝑞
) − 1

2
(𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞
) ≤ 𝛿𝑡𝜂

(ℎ[𝐔𝐚̂
𝑛+ 1

2 ], ℎ(𝐔𝐚
𝑛+ 1

2 )ℎ[𝐔𝐚̂
𝑛+ 1

2 ]
)
, (4.9)

with an artificial parameter 𝜂 ∈ [0, 1] that can be assigned.

• Step 3. Update 𝐚𝑛+1 as 𝐚𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚𝑛+1
𝑞

]
.

mark 4.1. The Scheme 4.5 relaxes the solution 𝐔𝑞 𝐚̂𝑛+1
𝑞

to get 𝐔𝑞𝐚𝑛+1
𝑞

which is closer to the original definition of 𝑞 and then we 
tain 𝐚𝑛+1

𝑞
by 𝐔𝑇

𝑞
𝐔𝑞𝐚𝑛+1

𝑞
. Since 𝐔𝑇

𝑞
𝐔𝑞 = 𝐈𝑟, the relaxation strategy in Step 2 is equivalent to relaxing the numerical solution 𝐚̂𝑛+1

𝑞
via

𝐚𝑛+1
𝑞

= 𝜉0𝐚̂𝑛+1
𝑞

+ (1 − 𝜉0)𝐔𝑇
𝑞
ℎ(𝐔𝜙𝐚𝑛+1

𝜙
).

mark 4.2 (Optimal choice for 𝜉0). The optimization problem in (4.9) can be simplified as the following algebraic optimization 
11
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𝜉0 = min
𝜉∈[0,1], 𝑎𝜉2+𝑏𝜉+𝑐≤0 𝜉,

here the coefficients are given by

𝑎 = 1
2

(
𝐔𝑞 𝐚̂𝑛+1

𝑞
− ℎ(𝐔𝜙𝐚𝑛+1

𝜙
), 𝐔𝑞 𝐚̂𝑛+1

𝑞
− ℎ(𝐔𝜙𝐚𝑛+1

𝜙
)
)
,

𝑏 =
(
ℎ(𝐔𝜙𝐚𝑛+1

𝜙
), 𝐔𝑞 𝐚̂𝑛+1

𝑞
− ℎ(𝐔𝜙𝐚𝑛+1

𝜙
)
)
,

𝑐 = 1
2

(
ℎ(𝐔𝜙𝐚𝑛+1

𝜙
), ℎ(𝐔𝜙𝐚𝑛+1

𝜙
)
)
− 1

2

(
𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞

)
− 𝛿𝑡𝜂

(ℎ[𝐔𝐚̂
𝑛+ 1

2 ], ℎ(𝐔𝐚
𝑛+ 1

2 )ℎ[𝐔𝐚̂
𝑛+ 1

2 ]
)
.

e solution set is nonempty since 𝜉 = 1 is in the feasible domain. Also, notice that 𝑎 +𝑏 +𝑐 > 0 and 𝛿𝑡𝜂

(ℎ[𝐔𝐚̂
𝑛+ 1

2 ], ℎ(𝐔𝐚
𝑛+ 1

2 )ℎ[𝐔𝐚̂
𝑛+ 1

2 ]
 With 𝑎 > 0, the optimization problem in (4.9) can be solved as

𝜉0 = max{0, −𝑏−
√

𝑏2 − 4𝑎𝑐

2𝑎
}.

eorem 4.4. The Scheme 4.5 is unconditionally energy stable.

oof. According to the Theorem 4.1, the first step of Scheme 4.5 gives us the following energy dissipation law

1
2

[(
𝐔𝜙𝐚𝑛+1

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛+1

𝜙

)
+
(
𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞

)]
− 1

2

[(
𝐔𝜙𝐚𝑛

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛

𝜙

)
+
(
𝐔𝑞𝐚𝑛

𝑞
, 𝐔𝑞𝐚𝑛

𝑞

)]
= −𝛿𝑡

(ℎ(𝐔𝐚̂
𝑛+ 1

2 )
)𝑇ℎ(𝐔𝐚

𝑛+ 1
2 )
(ℎ[𝐔𝐚̂

𝑛+ 1
2 ]
)
.

so, from (4.9), we know
1
2
(𝐔𝑞𝐚𝑛+1

𝑞
, 𝐔𝑞𝐚𝑛+1

𝑞
) − 1

2
(𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞
) ≤ 𝛿𝑡𝜂

(ℎ[𝐔𝐚̂
𝑛+ 1

2 ], ℎ(𝐔𝐚
𝑛+ 1

2 )ℎ[𝐔𝐚̂
𝑛+ 1

2 ]
)
.

ding the above two equations together gives us the following energy dissipation law

1
2

[(
𝐔𝜙𝐚𝑛+1

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛+1

𝜙

)
+
(
𝐔𝑞𝐚𝑛+1

𝑞
, 𝐔𝑞𝐚𝑛+1

𝑞

)]
− 1

2

[(
𝐔𝜙𝐚𝑛

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛

𝜙

)
+
(
𝐔𝑞𝐚𝑛

𝑞
, 𝐔𝑞𝐚𝑛

𝑞

)]
≤ −𝛿𝑡(1 − 𝜂)

(ℎ(𝐔𝐚̂
𝑛+ 1

2 )
)𝑇ℎ(𝐔𝐚

𝑛+ 1
2 )
(ℎ[𝐔𝐚̂

𝑛+ 1
2 ]
) ≤ 0. □

(4.10)

heme 4.6 (Relaxed BDF2 scheme for the POD-ROM-II). After we calculated 𝐚𝑛−1 and 𝐚𝑛, we can obtain 𝐚𝑛+1 via the following three 
ps:

• Step 1. Obtain 𝐚̂𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚̂𝑛+1
𝑞

]
via the linear scheme

𝐔𝑇∗
ℎ
𝐔3𝐚̂𝑛+1 − 4𝐚𝑛 + 𝐚𝑛−1

2𝛿𝑡
= −𝐔𝑇∗

ℎ
ℎ(𝐔𝐚

𝑛+1)ℎ[𝐔𝐚̂𝑛+1], (4.11)

with the notation 𝐚𝑛+1 = 2𝐚𝑛 − 𝐚𝑛−1.
• Step 2. Update 𝐔𝑞𝐚𝑛+1

𝑞
via the relaxation strategy

𝐔𝑞𝐚𝑛+1
𝑞

= 𝜉0𝐔𝑞 𝐚̂𝑛+1
𝑞

+ (1 − 𝜉0)ℎ(𝐔𝜙𝐚𝑛+1
𝜙

), 𝜉0 ∈ [0,1],

where 𝜉0 is a solution for the optimization problem:

𝜉0 = min
𝜉∈[0,1]

𝜉, s.t.
1
4

(
(𝐔𝑞𝐚𝑛+1

𝑞
, 𝐔𝑞𝐚𝑛+1

𝑞
) + (2𝐔𝑞𝐚𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
, 2𝐔𝑞𝐚𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
)
)

− 1
4

(
(𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞
) + (2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
, 2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
)
)

≤ 𝛿𝑡𝜂

(ℎ[𝐔𝐚̂𝑛+1], ℎ(𝐔𝐚
𝑛+1)ℎ[𝐔𝐚̂𝑛+1]

)
,

(4.12)

with an artificial parameter 𝜂 ∈ [0, 1] that can be assigned.

• Step 3. Update 𝐚𝑛+1 as 𝐚𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚𝑛+1
𝑞

]
.

mark 4.3 (Optimal choice for 𝜉0). In a similar manner, the optimization problem in (4.12) can be simplified as the following 
12

gebraic optimization problem
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𝜉0 = min
𝜉∈[0,1], 𝑎𝜉2+𝑏𝜉+𝑐≤0 𝜉,

here the coefficients are given by

𝑎 =5
4

(
𝐔𝑞 𝐚̂𝑛+1

𝑞
− ℎ(𝐔𝜙𝐚𝑛+1

𝜙
), 𝐔𝑞 𝐚̂𝑛+1

𝑞
− ℎ(𝐔𝜙𝐚𝑛+1

𝜙
)
)
,

𝑏 =1
2

(
𝐔𝑞 𝐚̂𝑛+1

𝑞
− ℎ(𝐔𝜙𝐚𝑛+1

𝜙
), 5ℎ(𝐔𝜙𝐚𝑛+1

𝜙
) − 2𝐔𝑞𝐚𝑛

𝑞

)
,

𝑐 =1
4

[(
ℎ(𝐔𝜙𝐚𝑛+1

𝜙
), ℎ(𝐔𝜙𝐚𝑛+1

𝜙
)
)
+
(
2ℎ(𝐔𝜙𝐚𝑛+1

𝜙
) −𝐔𝑞𝐚𝑛

𝑞
, 2ℎ(𝐔𝜙𝐚𝑛+1

𝜙
) −𝐔𝑞𝐚𝑛

𝑞

)
−
(
𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞

)
−
(
2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
, 2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞

)]
− 𝛿𝑡𝜂

(ℎ[𝐔𝐚̂𝑛+1], ℎ(𝐔𝐚
𝑛+1)ℎ[𝐔𝐚̂𝑛+1]

)
.

e solution set is nonempty since 𝜉 = 1 is in the feasible domain. Also, notice that 𝑎 + 𝑏 + 𝑐 > 0 and

𝛿𝑡𝜂

(ℎ[𝐔𝐚̂𝑛+1], ℎ(𝐔𝐚
𝑛+1)ℎ[𝐔𝐚̂𝑛+1]

)
> 0.

ith 𝑎 > 0, the optimization problem in (4.12) can be solved as

𝜉0 = max{0, −𝑏−
√

𝑏2 − 4𝑎𝑐

2𝑎
}.

eorem 4.5. The Scheme 4.6 is unconditionally energy stable.

oof. According to the Theorem 4.2, the first step of Scheme 4.6 gives us the following energy dissipation law

1
4

[(
𝐔𝜙𝐚𝑛+1

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛+1

𝜙

)
+
(
2𝐔𝜙𝐚𝑛+1

𝜙
−𝐔𝜙𝐚𝑛

𝑞
, 0,ℎ(2𝐔𝜙𝐚𝑛+1

𝜙
−𝐔𝜙𝐚𝑛

𝜙
)
)

+
(
𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞

)
+
(
2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
, 2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞

)]
− 1

4

[(
𝐔𝜙𝐚𝑛

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛

𝜙

)
+
(
2𝐔𝜙𝐚𝑛

𝜙
−𝐔𝜙𝐚𝑛−1

𝑞
, 0,ℎ(2𝐔𝜙𝐚𝑛

𝜙
−𝐔𝜙𝐚𝑛−1

𝜙
)
)

+
(
𝐔𝑞𝐚𝑛

𝑞
, 𝐔𝑞𝐚𝑛

𝑞

)
+
(
2𝐔𝑞𝐚𝑛

𝑞
−𝐔𝑞𝐚𝑛−1

𝑞
, 2𝐔𝑞𝐚𝑛

𝑞
−𝐔𝑞𝐚𝑛−1

𝑞

)]
≤ −𝛿𝑡

(ℎ(𝐔𝐚̂𝑛+1)
)𝑇ℎ(𝐔𝐚

𝑛+1)
(ℎ[𝐔𝐚̂𝑛+1]

)
.

so, from (4.12), we know

1
4

(
(𝐔𝑞𝐚𝑛+1

𝑞
, 𝐔𝑞𝐚𝑛+1

𝑞
) + (2𝐔𝑞𝐚𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
, 2𝐔𝑞𝐚𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
)
)

− 1
4

(
(𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞
) + (2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
, 2𝐔𝑞 𝐚̂𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
)
)

≤ 𝛿𝑡𝜂

(ℎ[𝐔𝐚̂𝑛+1], ℎ(𝐔𝐚
𝑛+1)ℎ[𝐔𝐚̂𝑛+1]

)
.

Adding the above two equations together gives us the following energy dissipation law

1
4

[(
𝐔𝜙𝐚𝑛+1

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛+1

𝜙

)
+
(
2𝐔𝜙𝐚𝑛+1

𝜙
−𝐔𝜙𝐚𝑛

𝑞
, 0,ℎ(2𝐔𝜙𝐚𝑛+1

𝜙
−𝐔𝜙𝐚𝑛

𝜙
)
)

+
(
𝐔𝑞𝐚𝑛+1

𝑞
, 𝐔𝑞𝐚𝑛+1

𝑞

)
+
(
2𝐔𝑞𝐚𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞
, 2𝐔𝑞𝐚𝑛+1

𝑞
−𝐔𝑞𝐚𝑛

𝑞

)]
− 1

4

[(
𝐔𝜙𝐚𝑛

𝜙
, 0,ℎ𝐔𝜙𝐚𝑛

𝜙

)
+
(
2𝐔𝜙𝐚𝑛

𝜙
−𝐔𝜙𝐚𝑛−1

𝑞
, 0,ℎ(2𝐔𝜙𝐚𝑛

𝜙
−𝐔𝜙𝐚𝑛−1

𝜙
)
)

+
(
𝐔𝑞𝐚𝑛

𝑞
, 𝐔𝑞𝐚𝑛

𝑞

)
+
(
2𝐔𝑞𝐚𝑛

𝑞
−𝐔𝑞𝐚𝑛−1

𝑞
, 2𝐔𝑞𝐚𝑛

𝑞
−𝐔𝑞𝐚𝑛−1

𝑞

)]
≤ −𝛿𝑡(1 − 𝜂)

(ℎ(𝐔𝐚̂𝑛+1)
)𝑇ℎ(𝐔𝐚

𝑛+1)
(ℎ[𝐔𝐚̂𝑛+1]

)
. □

(4.13)

Similar relaxation techniques can be applied to the numerical schemes for POD-ROM-I in Scheme 4.3 and Scheme 4.4. For instance, 
e can have the following relaxed CN scheme.

heme 4.7 (Relaxed CN scheme for the POD-ROM-I). After we calculated 𝐚𝑛−1 and 𝐚𝑛, we can obtain 𝐚𝑛+1 via the following three 
13
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• Step 1. Obtain 𝐚̂𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚̂𝑛+1
𝑞

]
via the linear scheme

𝐚̂𝑛+1 − 𝐚𝑛

𝛿𝑡
= −𝐔𝑇ℎ(𝐔𝐚

𝑛+ 1
2 )𝐔𝐔𝑇ℎ[𝐔𝐚̂

𝑛+ 1
2 ], (4.14)

with the notations 𝐚𝑛+ 1
2 = 3

2𝐚
𝑛 − 1

2𝐚
𝑛−1 and 𝐚̂𝑛+ 1

2 = 1
2 𝐚̂

𝑛+1 + 1
2𝐚

𝑛.

• Step 2. Update 𝐔𝑞𝐚𝑛+1
𝑞

via the relaxation strategy

𝐔𝑞𝐚𝑛+1
𝑞

= 𝜉0𝐔𝑞 𝐚̂𝑛+1
𝑞

+ (1 − 𝜉0)ℎ(𝐔𝜙𝐚𝑛+1
𝜙

), 𝜉0 ∈ [0,1],

where 𝜉0 is a solution for the optimization problem:

𝜉0 = min
𝜉∈[0,1]

𝜉, s.t.
1
2
(𝐔𝑞𝐚𝑛+1

𝑞
, 𝐔𝑞𝐚𝑛+1

𝑞
) − 1

2
(𝐔𝑞 𝐚̂𝑛+1

𝑞
, 𝐔𝑞 𝐚̂𝑛+1

𝑞
)

≤ 𝛿𝑡𝜂

(
𝐔𝐔𝑇ℎ[𝐔𝐚̂

𝑛+ 1
2 ], ℎ(𝐔𝐚

𝑛+ 1
2 )𝐔𝐔𝑇ℎ[𝐔𝐚̂

𝑛+ 1
2 ]
)
,

(4.15)

with an artificial parameter 𝜂 ∈ [0, 1] that can be assigned.

• Step 3. Update 𝐚𝑛+1 as 𝐚𝑛+1 ∶=

[
𝐚𝑛+1

𝜙

𝐚𝑛+1
𝑞

]
.

The proof for the energy stability to Scheme 4.7 is similar to the one for Scheme 4.5.

3. Discrete empirical interpolation method for nonlinear terms

For the nonlinear term, we can utilize the discrete empirical interpolation method (DEIM) [10] to reduce the computational costs. 
ainly, as we can tell from (3.29) and (2.10), the only nonlinearity comes from the discrete mobility operator ℎ(𝐔𝐚(𝑡)), which is 
e term 𝑔(𝐔𝜙𝐚𝜙(𝑡)). When a general nonlinearity is present, the cost to evaluate the nonlinear terms still depends on the dimension 
 the original system since 𝐔𝜙𝐚𝜙(𝑡) ∈ ℝ𝑛. The DEIM approach [10] provides an interpolation-based projection to approximate the 
nlinear term where the interpolation indices are selected to limit the growth of an error bound. With the data (3.14), we can have

𝐍 =
[
𝑔(𝜙1) 𝑔(𝜙2) ⋯ 𝑔(𝜙𝑚−1) 𝑔(𝜙𝑚)

]
. (4.16)

e approximation from projecting 𝑔(𝐔𝜙𝐚𝜙(𝑡)), denoted as 𝑔(𝑡), onto the subspace obtained from the POD approach is of the form

𝑔(𝑡) ≈𝐖𝐜(𝑡), (4.17)

here 𝐖 =
[
𝐰1 ⋯ 𝐰𝑘

]
∈ ℝ𝑛,𝑘 with 𝑘 ≪ 𝑛 consists of the first 𝑘 columns of the left singular matrix from SVD, and a time-

pendent coefficient vector 𝐜(𝑡) ∈ℝ𝑘. To determine 𝐜(𝑡)which is a highly overdetermined system, we can construct a basis dependent 
terpolation matrix, 𝑃 =

[
𝐞𝛾1

⋯ 𝐞𝛾𝑘

]
∈ℝ𝑛,𝑘, in an algorithmic way given in [10] where 𝐞𝛾𝑖

∈ℝ𝑛 is the 𝛾𝑖th column of the identity 
atrix 𝐈𝑛 ∈ℝ𝑛,𝑛 for 𝑖 = 1, ⋯ , 𝑘. Suppose 𝑃 𝑇𝐖 ∈ℝ𝑘,𝑘 is nonsingular, then the coefficient vector 𝐜(𝑡) is determined uniquely from

𝑃 𝑇 𝑔(𝑡) = 𝑃 𝑇𝐖𝐜(𝑡). (4.18)

nally, 𝑔(𝑡) can be approximated by

𝑔(𝑡) ≈𝐖𝐜(𝑡) =𝐖(𝑃 𝑇𝐖)−1𝑃 𝑇 𝑔(𝑡). (4.19)

𝑔 is a component-wise function, we can further have

𝑔(𝑡) ≈𝐖(𝑃 𝑇𝐖)−1𝑔(𝑃 𝑇𝐔𝜙𝐚𝜙(𝑡)). (4.20)

tice the fact 𝐖(𝑃 𝑇 𝐖)−1 ∈ℝ𝑛,𝑘 which is precomputed and 𝑃 𝑇𝐔𝜙 ∈ℝ𝑘,𝑟, which are independent of 𝑛 of the full-order system.
Here, we briefly explain how DEIM can be applied to the POD-ROM-II in (3.29) with the following nonlinear term,

ℎ(𝐔𝐚(𝑡)) = ∗
0 0

=
[

𝐈
𝑔(𝐔𝜙𝐚𝜙(𝑡))𝑇

]
 [ 𝐈 𝑔(𝐔𝜙𝐚𝜙(𝑡))

]
=
[  𝑔(𝐔𝜙𝐚𝜙(𝑡))

𝑔(𝐔𝜙𝐚𝜙(𝑡))𝑇  𝑔(𝐔𝜙𝐚𝜙(𝑡))𝑇 𝑔(𝐔𝜙𝐚𝜙(𝑡))

]
.

(4.21)

e apply DEIM to 𝑔(𝐔𝜙𝐚𝜙(𝑡)) where the nonlinearity lies and we approximate it by 𝑔(𝐔𝜙𝐚𝜙(𝑡)) ≈𝐖(𝑃 𝑇𝐖)−1𝑔(𝑃 𝑇𝐔𝜙𝐚𝜙(𝑡)), where 
14

 ∈ ℝ𝑛,𝑘 with 𝑘 ≪ 𝑛 and 𝑃 ∈ ℝ𝑛,𝑘. Then for the right-hand side term, 𝐔𝑇∗
ℎ
ℎ(𝐔𝐚(𝑡))ℎ[𝐔𝐚(𝑡)], in (3.29), we need to compute 
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.34), where 𝐔𝜙 ∈ℝ𝑛,𝑟 with 𝑟 ≪ 𝑛 and 𝐔𝑞 ∈ℝ𝑛,𝑟. Then 𝐴0 and 𝐴1 are 𝑟 × 𝑟 matrix which is pre-computed only once in the offline 
ge. As for 𝐴2, 𝐴3 and 𝐴4, we plug in the approximation of 𝑔(𝐔𝜙𝐚𝜙(𝑡)) and we can get

𝐴2(𝑡) =𝐔𝑇
𝜙
∗
0,ℎ𝑔(𝐔𝜙𝐚𝜙(𝑡))𝐔𝑞 =𝐔𝑇

𝜙
∗
0,ℎ𝐖(𝑃 𝑇𝐖)−1𝑔(𝑃 𝑇𝐔𝜙𝐚𝜙(𝑡))𝐔𝑞 ,

here 𝐔𝑇
𝜙
∗
0,ℎ𝐖(𝑃 𝑇𝐖)−1 ∈ℝ𝑟,𝑘 and 𝑃 𝑇𝐔𝜙 ∈ℝ𝑘,𝑟 can be pre-computed only once in the offline stage and 𝑔(𝑃 𝑇 𝐔𝜙𝐚𝜙(𝑡)) is computed 

 the online stage where we have a 𝑘 × 𝑟 matrix multiplied by 𝐚𝜙(𝑡) ∈ℝ𝑟,1 and 𝑔 is a function applied element-wise to a 𝑘 × 1 vector 
d finally we have 𝑔(𝑃 𝑇𝐔𝜙𝐚𝜙(𝑡)) =

[
𝑔1 𝑔2 ⋯ 𝑔𝑘

]𝑇
. Similar arguments apply to 𝐴3 and 𝐴4.

For simplicity, the DEIM is not utilized in the later numerical examples. But we emphasize that the application of DEIM doesn’t 
ect our theoretical results in the previous sections since the nonlinearity in our POD-ROM is dealt explicitly as shown in Scheme 4.5
d Scheme 4.6.

 Numerical examples

So far, we have provided a unified platform to develop structure-preserving ROMs for thermodynamically consistent PDE models 
d their structure-preserving numerical approximations. The main idea is to transform the thermodynamically consistent PDE models 
to an equivalent form using the energy quadratization approach. The free energy of the transformed system is in the quadratic form 
 the state variables, which we exploit to develop the ROMs.
To illustrate the effectiveness of our numerical platform, we present several examples in this section. Specifically, we apply the 
neral framework to several thermodynamically consistent phase field models.

1. Allen-Cahn equation

We start with the Allen-Cahn (AC) equation

𝜕𝑡𝜙 = −𝑀(−𝜀2Δ𝜙+ 𝜙3 −𝜙), (𝐱, 𝑡) ∈ Ω × (0, 𝑇 ], (5.1a)

𝜙(𝐱,0) = 𝜙0(𝐱), 𝐱 ∈Ω, (5.1b)

ith periodic boundary conditions. Here Ω is a smooth domain, 𝑀 > 0 is the mobility constant, and 𝜀 is a parameter to control the 
terfacial thickness. The Onsager triplet for the AC equation is

(𝜙, , ) ∶= (
𝜙, 𝑀, ∫

Ω

[
𝜀2

2
|∇𝜙|2 + 1

4
(𝜙2 − 1)2

]
𝑑𝐱

)
.

If we introduce the auxiliary variables

𝑞 ∶=
√
2
2

(𝜙2 − 1 − 𝛾0), 𝑔(𝜙) ∶= 𝜕𝑞

𝜕𝜙
=
√
2𝜙,

e can rewrite the equation as

𝜕𝑡𝜙 = −𝑀

(
− 𝜀2Δ𝜙+ 𝛾0𝜙+ 𝑞𝑔(𝜙)

)
, (5.2a)

𝜕𝑡𝑞 = 𝑔(𝜙)𝜕𝑡𝜙. (5.2b)

note Ψ =
[

𝜙

𝑞

]
, 𝑠 = 𝑀 , 0 = −𝜀2Δ + 𝛾0,  =

[0 0
0 1

]
and 0 =

[
𝐈 𝑔(𝜙)

]
, such that the equation is written as

𝜕𝑡Ψ=− (Ψ)Ψ, where  (Ψ) = 𝑇
0 𝑠0. (5.3)

nce, the structure-preserving POD-ROMs can be derived from the techniques introduced in previous sections. Now, we consider a 
ecific numerical example.

ample 1. We choose the model parameters 𝑀 = 1 and 𝜀 = 0.02. The domain Ω is set as [0, 1]2. The initial condition is

𝜙0(𝑥, 𝑦) = 2
[ 7∑

𝑖=1

1
2

(
1 − tanh

√
(𝑥−𝑋(𝑖))2 + (𝑦− 𝑌 (𝑖))2 −𝑅(𝑖)

𝜀

)]
− 1, (5.4)

here the parameters are

𝑋 =
[
1∕4 1∕8 1∕4 1∕2 3∕4 1∕2 3∕4

]
, (5.5a)

𝑌 =
[
1∕4 3∕8 5∕8 1∕8 1∕8 1∕2 3∕4

]
, (5.5b)[ ]
15

𝑅 = 1∕20 1∕16 1∕12 1∕12 1∕10 1∕8 1∕8 . (5.5c)
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Fig. 1. Singular value distributions for the data collected from the Allen-Cahn equation.

is represents seven disks of various sizes in different domain locations. Consider 𝑇 = 15. We first generate the data using an accurate 
merical solver. In this case, we use the Crank-Nicolson scheme based on the EQ method to solve the equation with adequate small 
e step 𝛿𝑡 = 10−4, which is used as the “accurate” solution. Then, we sample the following data 

[
Φ1 Φ2 ⋯ Φ𝑚

]
, where Φ𝑘 ∈𝐑𝑛

ith 𝑛 = 𝑁𝑥𝑁𝑦 is the numerical solution at 𝑡 = 0.1𝑘 in a vector form. We use 𝑁𝑥 = 𝑁𝑦 = 128 and 𝑚 = 150 in this example. Then, we 
llow the POD-ROM numerical framework proposed in previous sections. The numerical parameters are 𝛿𝑡 = 10−3 and 𝛾0 = 1. The 
stribution of the singular values is summarized in Fig. 1, where the percentage of each singular value relative to the total sum of 
gular values is calculated.
The numerical results using the ROM and proposed schemes are summarized in Fig. 2. The figure shows that the numerical 
proximation of the reduced-order model, even with just r=4 modes, provides a reasonably good approximation compared to 
sults from the full-order model. Moreover, the reduced-order model with r=10 modes offers an even more accurate approximation.
The energy dissipation across different modes is illustrated in Fig. 3(a), which illustrates that the reduced-order model with 𝑟 = 4
odes effectively captures the energy dissipation trends, while the one with 𝑟 = 10 modes captures the energy dissipation more 
curately. Additionally, we present the energy evolution using both approach I and approach II with 𝑟 = 10 modes, as shown in 
g. 3(b). It appears that approach II provides more accurate results. As we discussed, approach I is not as accurate as approach II 
ce it preserves an energy dissipation law with a modified energy dissipation rate. The relative energy error and error for 𝜙 under 
fferent reduced order modes are also shown in Fig. 3(c)-(d). The relative error for the energy is calculated by 𝐸𝑅𝑂𝑀 (𝑡)−𝐸𝐹𝑂𝑀 (𝑡)

𝐸𝐹𝑂𝑀 (𝑡) , 
here 𝐸𝑅𝑂𝑀 (𝑡) and 𝐸𝐹𝑂𝑀 (𝑡) represent the energy for the ROM and full order model at time 𝑡 respectively. The relative 𝑙2 error for 
is calculated by ‖𝜙𝑅𝑂𝑀−𝜙𝐹𝑂𝑀‖‖𝜙𝐹𝑂𝑀‖ . The results indicate that the error decreases with the increase in the number of modes.

2. Cahn-Hilliard equation

In the next problem, we investigate the Cahn-Hilliard (CH) equation

𝜕𝑡𝜙 = 𝑀Δ𝜇, (𝐱, 𝑡) ∈ Ω × (0, 𝑇 ], (5.6a)

𝜇 = −𝜀2Δ𝜙+𝜙3 − 𝜙, (𝐱, 𝑡) ∈ Ω × (0, 𝑇 ], (5.6b)

𝜙(𝐱,0) = 𝜙0(𝐱), 𝐱 ∈Ω, (5.6c)

ith periodic boundary conditions. The Onsager triplet for the CH equation is

(𝜙, , ) ∶= (
𝜙, −𝑀Δ, ∫

Ω

[
𝜀2

2
|∇𝜙|2 + 1

4
(𝜙2 − 1)2

]
𝑑𝐱

)
.

milarly, we can introduce

𝑞 =
√
2
2

(𝜙2 − 1 − 𝛾0), 𝑔(𝜙) ∶= 𝜕𝑞

𝜕𝜙
=
√
2𝜙.

d we will have the equation rewritten as

𝜕𝑡𝜙 = 𝑀Δ
(
− 𝜀2Δ𝜙+ 𝑞𝑔(𝜙)

)
, (5.7a)

𝜕𝑡𝑞 = 𝑔(𝜙)𝜕𝑡𝜙. (5.7b)[
𝜙
]

2
[0 0

] [ ]

16

note Ψ =
𝑞
, 𝑠 = −𝑀Δ, 0 = −𝜀 Δ + 𝛾0,  = 0 1 and 0 = 𝐈 𝑔(𝜙) , such that the equation is written as
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Fig. 2. A comparison of the numerical solutions between the full order model and the POD-ROM-II with various numbers of modes using Scheme 4.5.

𝜕𝑡Ψ=− (Ψ)Ψ, where  (Ψ) = 𝑇
0 𝑠0. (5.8)

nce, the POD-ROM method introduced in previous sections can be directly applied.

ample 2. In this example, we choose the model parameters 𝑀 = 0.01 and 𝜀 = 0.02. The domain [0, 1]2 is considered. The numerical 
rameters used are 𝛾0 = 2 and 𝑁𝑥 = 𝑁𝑦 = 128. The initial condition is chosen the same as (5.4). This represents seven disks of various 
es in different locations of the domain. Consider 𝑇 = 15, and 𝛿𝑡 = 10−3. We first generate the data using an accurate numerical 
lver. In this case, we use a classical convex splitting scheme to solve the equation with adequate time step 𝛿𝑡 = 10−3, which is used 
 the “accurate” solution. Then we collect the data 

[
Φ1 Φ2 ⋯ Φ𝑚

]
, where Φ𝑘 ∈ ℝ𝑛 with 𝑛 = 𝑁𝑥𝑁𝑦 is the numerical solution 

 𝑡 = 0.1𝑘 in a vector form. In this example, we choose 𝑁𝑥 = 𝑁𝑦 = 128 and 𝑚 = 150. The singular value distribution is summarized 
17

 Fig. 4, where the percentage of each singular value relative to the total sum of singular values is calculated.
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. 3. A comparison of the energy dissipation for the Allen-Cahn equation. (a) A comparison of the energy dissipation results between the full order model and 
D-ROM-II with various modes using Scheme 4.5; (b) A comparison of the energy dissipation results between POD-ROM-I using Scheme 4.7 and POD-ROM-II using 
heme 4.5; (c) the relative error for the energy; and (d) the relative 𝑙2 error for 𝜙. This figure illustrates the proficiency of the proposed POD-ROM approach in 
pturing the thermodynamic structures of the full-order model with only a few modes. (For interpretation of the colors in the figure(s), the reader is referred to the 
b version of this article.)

Fig. 4. Singular value distributions for the data collected from the Cahn-Hilliard equation.

Then, we follow the POD-ROM numerical framework proposed in previous sections. The numerical results are summarized in 
g. 5. It illustrates that the reduced-order model with 𝑟 = 10 modes can have an accurate approximation of the coarsening dynamics. 
e numerical results with 𝑟 = 15 modes show similar dynamics to the results from the full order model.
Furthermore, we have summarized the results of the energy dissipation for POD-ROM-II using different modes in Fig. 6(a). It 
ustrates that the reduced-order model with 𝑟 = 15 modes can accurately capture the Cahn-Hilliard equation’s energy dissipation. 
ditionally, from Fig. 6(b), we observe that POD-ROM-II provides a more accurate prediction than POD-ROM-I for energy dissipation. 
milarly as the example for the Allen-Cahn equation, we also summarize the relative energy error and the error for 𝜙 in Fig. 6(c) 
18

d 6(d). We observe that with the increase in the mode 𝑟, the error is decreasing.
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. 5. A comparison between the numerical solutions of the Cahn-Hilliard equation from the full order model and the numerical solutions from the POD-ROM-II with 
rious numbers of modes.

3. Phase field crystal equation

Next, we investigate the phase field crystal (PFC) model with our proposed reduced-order model techniques. The PFC model reads 

𝜕𝑡𝜙 = 𝑀Δ
[
(𝑎0 + Δ)2𝜙+ 𝑓 ′(𝜙)

]
, (5.9)

here 𝑓 (𝜙) = 1
4𝜙4 − 𝑏0

2 𝜙2. Here 𝑎0 and 𝑏0 are model parameters. The PFC model can also be derived from the generalized Onsager 
inciple with the Onsager triplet

(𝜙, , ) ∶= (
𝜙, −𝑀Δ, ∫

Ω

[1
2

𝜙(−𝑏0 + (𝑎0 + Δ)2)𝜙+ 1
4

𝜙4
]
𝑑𝐱

)
.

troduce the auxiliary variables

𝑞(𝐱, 𝑡) ∶=
√
2
2

(𝜙2 − 𝑏0 − 𝛾0), 𝑔(𝜙) ∶= 𝜕𝑞

𝜕𝜙
=
√
2𝜙,

e PFC model could be transformed as

𝜕𝑡𝜙 = 𝑀Δ
(
(𝑎0 + Δ)2𝜙+ 𝛾0𝜙+ 𝑔(𝜙)𝑞

)
, (5.10a)

𝜕𝑡𝑞 = 𝑔(𝜙)𝜕𝑡𝜙. (5.10b)[
𝜙
]

2
[0 0

] [ ]

19

note Ψ =
𝑞
, 𝑠 = −𝑀Δ, 0 = (𝑎0 + Δ) + 𝛾0,  = 0 𝐈 and 0 = 𝐈 𝑔(𝜙) , such that the equation is written as
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. 6. A comparison of the energy dissipation for the Cahn-Hilliard equation. (a) A comparison of the energy dissipation results between the full order model and the 
D-ROM-II with various modes using Scheme 4.5; (b) A comparison of the energy dissipation results between POD-ROM-I using Scheme 4.7 and POD-ROM-II using 
heme 4.5; (c) the relative error for the energy; and (d) the relative error for 𝜙.

Fig. 7. Singular value distributions for the data collected from the phase field crystal equation.

𝜕𝑡Ψ=− (Ψ)Ψ, where  (Ψ) = 𝑇
0 𝑠0. (5.11)

nce, the POD-ROM method introduced in previous sections can be directly applied.

ample 3. In the numerical example, we choose 𝑎0 = 1, 𝑏0 = 0.325, 𝛿𝑡 = 10−3, 𝑁𝑥 = 𝑁𝑦 = 128, 𝛾0 = 1, 𝑀 = 1, and 𝑇 = 100. We 
oose the domain Ω = [0, 100]2. We initialize three dots in the domain as the initial profile, following the strategy in [39]. The 
gular value distribution is summarized in Fig. 7, where the percentage of each singular value relative to the total sum of singular 
lues is calculated.
The results are summarized in Fig. 8. We can observe that with 𝑟 = 4 modes, the ROM is able to capture the dynamics properly. 
20

rthermore, with 𝑟 = 8 modes, the ROM model captures the dynamics accurately.
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. 8. A comparison between the numerical solutions from the full model and the numerical solutions from POD-ROM-II for the phase field crystal equations with 
rious numbers of modes.

. 9. A comparison of the energy dissipation for the phase field crystal equation. (a) A comparison of the energy dissipation results between the full order model 
d the POD-ROM-II with various numbers of modes using Scheme 4.5; (b) A comparison of the energy dissipation results between POD-ROM-I using Scheme 4.7 and 
D-ROM-II using Scheme 4.5.

Then, we compare the energy dissipation curves for POD-ROM-II with different modes, as shown in Fig. 9(a). It appears that the 
D-ROM-II can accurately predict the energy evolution with 𝑟 = 10 modes already. Furthermore, we compare the results between 
D-ROM-I and POD-ROM-II shown in Fig. 9(b), and it appears that POD-ROM-II can provide a more accurate prediction for the 
21

ergy evolution than POD-ROM-I with the same modes. This is reasonable since POD-ROM-I has a modified energy dissipation rate.
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Fig. 10. Singular value distributions for the data collected from the sine-Gordon equation.

4. Sine-Gordon equation

So far, we have applied our general framework to several dissipative (irreversible) systems to demonstrate its effectiveness. In the 
st example, we consider a dispersive (reversible) system. Namely, we consider the following sine-Gordon equation in 2D

𝜕𝑡𝑡𝑢 =Δ𝑢− sin(𝑢), (𝑥, 𝑦) ∈ Ω ⊂ ℝ2, 0 < 𝑡 ≤ 𝑇 , (5.12a)

𝑢(𝑥, 𝑦,0) = 𝑔1(𝑥, 𝑦), 𝑢𝑡(𝑥, 𝑦,0) = 𝑔2(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω ⊂ ℝ2, (5.12b)

ith periodic boundary conditions. It has the following energy conservation law

𝑑

𝑑𝑡
𝐻(𝑢) = 0, 𝐻(𝑢) = ∫

Ω

[1
2

𝑢2
𝑡
+ 1

2
|∇𝑢|2 + 1 − cos(𝑢)

]
𝑑𝐱.

If we introduce the intermediate variable 𝑣 = 𝑢𝑡, the sine-Gordon equation is rewritten as

𝜕𝑡Φ=− 𝛿𝐻(Φ)
𝛿Φ

, Φ=
[

𝑢

𝑣

]
,  =

[
0 −1
1 0

]
,

ith the energy 𝐻(Φ) ∶= 𝐻(𝑢, 𝑣) = ∫Ω
[
1
2𝑣2 + 1

2 |∇𝑢|2 + 1 − cos(𝑢)
]
𝑑𝐱. Furthermore, the sine-Gordon equation can be cast into the 

neralized Onsager form with the triplet

(𝜙,,) ∶= ([
𝑢

𝑣

]
,

[
0 −1
1 0

]
, ∫

Ω

[1
2

𝑣2 + 1
2
|∇𝑢|2 + 1 − cos(𝑢)

]
𝑑𝐱

)
.

Then, we introduce the auxiliary variables

𝑞 =
√
2
√
1 +𝐴0 − cos(𝑢), 𝑔(𝑢) ∶= 𝜕𝑞

𝜕𝑢
= 1√

2

sin(𝑢)√
1 +𝐴0 − cos(𝑢)

,

ith 𝐴0 a regularization constant [11]. The sine-Gordon equation is reformulated into the Onsager-Q form

𝜕𝑡Ψ=− (Ψ)Ψ,  (Ψ) = 𝑇
0 𝑎0,

here

𝑎 =
[
0 −1
1 0

]
,  =

⎡⎢⎢⎣
−Δ 0 0
0 𝐈 0
0 0 𝐈

⎤⎥⎥⎦ , 0 =
[
𝐈 0 𝑔(𝑢)
0 𝐈 0

]
,

ith the modified energy 𝐻(Ψ) = 1
2 (Ψ, Ψ) −𝐴0|Ω|, i.e.,

𝐻(𝑢, 𝑣, 𝑞) = 1
2 ∫

Ω

[|∇𝑢|2 + 𝑣2 + 𝑞2
]
𝑑𝐱 −𝐴0|Ω|.

erefore, the proposed structure-preserving numerical techniques can be used to solve the sine-Gordon equation. Notice that the 
laxation step only applies to the dissipative system. For dispersive systems like the sine-Gordon equation, we can directly utilize 
heme 4.1 and Scheme 4.2.

ample 4. In the numerical example, we follow the setup in [7,25,41], by considering the 2D domain Ω = [−30, 10] × [−21, 7] with 
22

e following initial conditions
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. 11. A comparison between the numerical solutions from the full model and the numerical solutions from POD-ROM-II using Scheme 4.1 for the sine-Gordon 
uation with various numbers of modes. The profile sin( 𝑢

2
) are shown at 𝑡 = 0, 2.5, 5 and 10.

𝑔1(𝑥, 𝑦) = 4arctan
[
𝑒𝑥𝑝

(4 −√
(𝑥+ 3)2 + (𝑦+ 7)2

0.436

)]
, 𝑔2(𝑥, 𝑦) = 4.13𝑠𝑒𝑐ℎ

(4 −√
(𝑥+ 3)2 + (𝑦+ 2)2

0.436

)
,

ith a symmetric extension across 𝑥 = −10 to create the two circular solutions.
We choose spatial meshes 𝑁𝑥 = 𝑁𝑦 = 256, a time step size 𝛿𝑡 = 10−4, and 𝑇 = 15. The singular value distribution is summarized 

 Fig. 10, where the percentage of each singular value relative to the total sum of singular values is calculated.
The numerical results are summarized in Fig. 11. We can observe that with 𝑟 = 20 modes, the ROM is able to capture a similar 
ttern of the dynamics. With 𝑟 = 30 modes, the ROM model captures the dynamics accurately.
To further investigate the numerical accuracy of the POD-ROM II approach, we present the relative 𝑙2 error for the numerical 
lutions 𝑢 and 𝑣 under various number of modes. As shown in Fig. 12, with the number of mode 𝑟 increasing, the error is decreasing 
23

d getting close to zero.
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Fig. 12. A comparison of the relative 𝑙2 error of the numerical solutions 𝑢 and 𝑣 under various modes: 𝑟 = 10,20,30.

 Conclusion and future work

In this paper, we introduce a general numerical framework to develop structure-preserving reduced-order models (ROMs) for 
ermodynamically consistent reversible-irreversible PDEs. Our numerical framework is general and provides a unified approach to 
velop structure-preserving reduced-order models for PDE systems with free energy dissipation laws. An extension of the current 
proach to investigate non-isothermal thermodynamic PDE models is possible. Meanwhile, there are still several open questions. For 
stance, the maximum principle for the Allen-Cahn equation is well-studied. How to derive a reduced-order model to preserve the 
aximum principle while preserving the energy dissipation law is still unclear. Additionally, for some models, mass conservation is 
sential, saying the Cahn-Hilliard equation, which is the main reason making it different from the Allen-Cahn equation. The current 
mework can’t guarantee mass conservation and energy dissipation simultaneously. These open questions are to be addressed in 
r subsequent works.
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