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Abstract.—Reconstructing the evolutionary history of different groups of organisms provides insight into how life
originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this evolutionary history. Within
Bayesian phylogenetics a major step in estimating a tree is in choosing an appropriate model of character evolution.
While the most common character data used is molecular sequence data, morphological data remains a vital source of
information. The use of morphological characters allows for the incorporation fossil taxa, and despite advances in molecular
sequencing, continues to play a significant role in neontology. Moreover, it is the main data source that allows us to unite
extinct and extant taxa directly under the same generating process. We therefore require suitable models of morphological
character evolution, the most common being the Mk Lewis model. While it is frequently used in both palaeobiology and
neontology, it is not known whether the simple Mk substitution model, or any extensions to it, provide a sufficiently good
description of the process of morphological evolution. In this study we investigate the impact of different morphological
models on empirical tetrapod datasets. Specifically, we compare unpartitioned Mk models with those where characters are
partitioned by the number of observed states, both with and without allowing for rate variation across sites and accounting
for ascertainment bias. We show that the choice of substitution model has an impact on both topology and branch lengths,
highlighting the importance of model choice. Through simulations, we validate the use of the model adequacy approach,
posterior predictive simulations, for choosing an appropriate model. Additionally, we compare the performance of model
adequacy with Bayesian model selection. We demonstrate how model selection approaches based on marginal likelihoods
are not appropriate for choosing between models with partition schemes that vary in character state space (i.e., that vary
in Q-matrix state size). Using posterior predictive simulations, we found that current variations of the Mk model are often
performing adequately in capturing the evolutionary dynamics that generated our data. We do not find any preference
for a particular model extension across multiple datasets, indicating that there is no “one size fits all” when it comes to
morphological data and that careful consideration should be given to choosing models of discrete character evolution. By
using suitable models of character evolution, we can increase our confidence in our phylogenetic estimates, which should
in turn allow us to gain more accurate insights into the evolutionary history of both extinct and extant taxa. [Bayesian
phylogenetic analysis; model adequacy; model selection; morphological data; morphological models; palaeobiology.]

The origination and subsequent diversification of spe-
cies is a fascinating, yet complex, process. Phylogenetic
trees serve as a powerful tool to aid in our understand-
ing of this process. They provide a hypothesis of the
evolutionary history of a group, enabling us to make
inferences about the relationships, timing of events,
and patterns of evolution (Baum and Offner 2008).
While molecular data may be more commonly used
in phylogenetics (Lee and Palci 2015), morphological
data was the original source of evidence (Farris et al.
1970) and remains extremely valuable to our interpre-
tation of species diversification (L6pez-Antdnanzas et
al. 2022). As the majority of life on Earth is now extinct,
the fossil record contains a wealth of knowledge about
how species have adapted and diversified through time

(Simpson 1952). Integrating this information into phy-
logenetic analysis, either in combination with morpho-
logical and molecular data of extant species, that is, in
a total evidence approach (Pyron 2011; Ronquist et al.
2012; Gavryushkina et al. 2017; Mongiardino Koch et
al. 2021) or independently, can therefore further our
ability to resolve species relationships in deep time.
Studies have also shown that incorporating fossil data
into an analysis, even when the focus of the study is
on extant taxa, can improve the topological resolution
or even accuracy of a phylogenetic inference (Beck and
Baillie 2018; Koch and Parry 2020; Mongiardino Koch
et al. 2021). The use of morphological data in phyloge-
netics has been a topic of debate for many years, spe-
cifically, with regards to which approach should be
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applied, that is, parsimony or model-based inference
(Kolaczkowski and Thornton 2004; Wright and Hillis
2014; O’Reilly et al. 2016; Puttick et al. 2017; Goloboff et
al. 2018, 2019; Sansom et al. 2018). Due to the complex
nature of morphological data, there are doubts about
our ability to correctly model its evolution, and that any
assumptions made by the models will bias the result-
ing inference (Goloboff et al. 2019). Parsimony is often
considered to be an assumption free approach; how-
ever, this is not entirely true, as there are still implicit
assumptions about morphological evolution within a
parsimony framework (Felsenstein 1983; Tuffley and
Steel 1997; Steel and Penny 2000; Sober 2004). These 2
approaches have been compared many times through-
out the literature, amassing in a large body of work
which goes beyond the context of this study. Ultimately,
model-based approaches have many more applications
and statistical advantages, including the ability to select
among competing models and assess model adequacy
(Wright and Hillis 2014; O’Reilly et al. 2016; Puttick et
al. 2017). Amidst this debate, however, an important
question has yet to be addressed: are available mod-
els of morphological evolution in fact adequate for our
data?

Morphological data collected from fossils or extant
taxa, can be either discretized (e.g., presence/absence)
or continuous (e.g., body size measurements). Discrete
morphological data is the most widely used for phylo-
genetic inference (Lewis 2001; Wright and Hillis 2014;
Harrison and Larsson 2015; Wright 2019) and will be
the focus throughout this study. Discrete data, anal-
ogous to the format of a molecular alignment, where
each site represents a morphological trait, must be man-
ually collected. Traits are described using a character
state which is indicative of the phenotype expressed by
a given taxon. Traits can have any number of character
states depending on the complexity. Presence/absence
traits can be described by using only 0 and 1, that is,
2 character states. For complex traits, however, more
character states may be required and are then referred
to as multistate characters. An example of this could be
describing the shape of part of a skull or a shell. In this
scenario a state is assigned to a particular modification
of the trait, where a number of different variants (or
states) may be present in a group. Within a single mor-
phological matrix some traits can have binary character
states, while others require multiple states. It is import-
ant to emphasize that within a single matrix, a given
character state label does not have a fixed biological
meaning, that is, a 1 does not represent the same type
of character across a matrix. This is markedly different
when considering molecular data, where for example
an A (adenine) represents the same entity across the
matrix. For one given trait a 1 may represent the pres-
ence of that trait, for example, ornamentation, whereas
for a different trait in the same matrix a 1 may be used
to represent the type of ornamentation. See Wright
(2019) for a more in-depth review of morphological
data used in phylogenetics. The generation of this data
is a challenging and time-intensive process, requiring

an in-depth knowledge of the taxonomic group in ques-
tion. Morphological data is, in turn, extremely valuable
in helping us answer questions about the evolution of
life that molecular data alone cannot answer (Lépez-
Antonanzas et al. 2022).

Within a model-based phylogenetic analysis, the pro-
cess that gives rise to discrete character data is described
using a substitution model, (or morphological models
in morphological phylogenetics). These models aim
to capture the evolutionary dynamics resulting in the
gain, loss or modification of discrete states. Substitution
models are continuous-time Markov chain models.
They allow states to change (evolve) stochastically at
any point in time, and this change depends only on the
current state that the evolving system is in. The assump-
tions of a substitution model are mathematically rep-
resented using a Q-matrix. A Q-matrix (also called
a rate matrix) is a square matrix where each element
represents the instantaneous rate of change between
states. That is, Q[i, j] represents the rate of change
from state i to state j. The probability of change over a
given interval, or branch length v, is calculated using
the Q-matrix. Developing models that can accurately
describe the complex processes driving morphologi-
cal evolution is extremely challenging and as a result,
there is one main model that is commonly applied: the
Mk model (Felsenstein 1992; Lewis 2001). This model
is a generalization of the Jukes Cantor model (Jukes
and Cantor 1969) used for molecular data, and as such,
follows the same set of assumptions. It assumes equal
transition rates between states, that is, the rate of transi-
tioning from a state 0 to a 1 is the same as going from a
state 0 to a 2. It also assumes equal base (character state)
frequencies.

Morphological data are, needless to say, different to
molecular. Thus, there are concerns about how well a
model originally developed for molecular data can be
applied to morphological data. Additionally, given that
more complex models are often selected for molecular
data, there is doubt about how well such a simple model
can be applied to morphological data. As such, there
have been a number of extensions implemented for the
Mk model to relax these strict assumptions, and allow
the model to better describe the reality of morpholog-
ical evolution. Lewis immediately noted an important
difference between morphological and molecular data
collection (Lewis 2001). When taxonomists are creating
a matrix, (character coding), they will typically exclu-
sively choose traits which differ across species, result-
ing in a matrix where every site is variable. This is a
markedly different behavior from molecular data col-
lection, where there can be many sites where a nucle-
otide is conserved across all species. Not accounting
for this phenomenon, known as ascertainment bias,
(though referred to as acquisition bias in Lewis (2001)),
can result in inferring trees with extremely long branch
lengths. Lewis dealt with this by conditioning the like-
lihood calculation on there only being variable char-
acters, developing the MkV model. Accounting for
among-character rate variation has also been suggested
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as important when modeling morphological evolution
(Lewis 2001; Harrison and Larsson 2015). This allows
different traits to transition at different rates, as some
may be evolving faster than others. This is frequently
achieved by drawing rates from a discretized gamma
distribution and allowing a trait to transition according
to a given rate category, the same as is done for molecu-
lar data (Yang 1994). It is worth noting that many exten-
sions were suggested by Lewis (2001), however, their
implementation was not achieved until later.

When carrying out an inference, it is common to par-
tition data based on the maximum observed character
state (Nylander et al. 2004; Khakurel et al. in press). This
is the default in a number of phylogenetic software, for
example MrBayes (Ronquist et al. 2012) and BEAST2
(Bouckaert et al. 2019), and works by constructing sep-
arate Q-matrices for traits with of a given number of
observed maximum states. This ensures that traits are
in a Q-matrix of the correct size. Here, we investigate
the impact of unpartitioned and partitioned inference.
In an unpartitioned analysis, the Q-matrix will take the
size of the maximum character state in the morpholog-
ical matrix, which could be for example 5. Transitions
between binary characters will therefore also be calcu-
lated in this Q-matrix of size 5, meaning that there is
some probability given to a binary character of tran-
sitioning to states 2, 3, or 4. As these states are not
observed in this hypothetical binary trait we may be
certain that this is incorrect. Therefore, using such an
unpartitioned model would result in substantial model
misspecification. Partitioning by character states such
that all binary characters are in a Q-matrix of size 2 and
so on, avoids this issue. Partitioning data can have an
effect on branch lengths (Khakurel et al. in press) so it
is important that it is done when necessary. Similarly,
however, incorrect partitioning may lead to underesti-
mation of rates as a result of observer bias.

The impact of these different variants of the Mk
model is still not fully understood in terms of the effects
on key parameter estimates, though some studies have
looked at the impacts of using different partitioning
schemes (Casali et al. 2023; Khakurel et al. in press).
When deciding what model to use, there are 2 distinct
questions that can be asked, (1) which is the best model
for my data compared to other models? and/or (2) does
this model fit my data? The first question, which is the
more common of the 2, can be answered using model
selection. Model selection approaches are common in
molecular based studies although less frequently used
for morphological data. For morphological studies
there is a history of using substitution models that have
been used in previous studies, choosing a model based
on the structure of the dataset, or relying on software
defaults, often without providing statistical justifica-
tion for model choice. As previously stated, datasets are
manually produced, meaning they can differ from each
other depending on the taxonomist. If, for example, a
substitution model had been applied to the taxonomic
group of interest in the past, even if you are using sim-
ilar taxa, if the morphological matrix is different, using

the same substitution model as previous studies may
not be logical. That being said, there are a number of
studies where model selection has been applied to mor-
phological datasets (e.g., Bapst et al. 2018; Caldwell et
al. 2021; Riicklin et al. 2021; Wright et al. 2021). By using
a model selection approach, any subjectivity in model
choice can be reduced. One downside of model selection
approaches, however, is that they give no indication of
the absolute fit of the model to the data. Model selection
tells you which model is the relative best, but that does
not necessarily mean that the model provides a good
description of the true data generating process, simply
that it fits better than other models (Gatesy 2007). This
is where question 2 becomes important. Asking if a sin-
gle model is adequate allows you to understand how
well a model can describe your data. These approaches,
known as model adequacy, have gained popularity for
molecular data (Duchéne et al. 2017, 2018; Brown and
Thomson 2018) and have been sporadically applied to
morphological datasets (Huelsenbeck et al. 2003; Slater
and Pennell 2014) but have yet to be systematically
assessed.

In order to confidently integrate morphological data
from fossils and extant specimens into phylogenetic
approaches, it is crucial we ensure that we have appro-
priate substitution models. Knowing that the models
are behaving as expected can increase our confidence
in the results and allow us to ask increasingly complex
questions. Here we explored the impacts of different
substitution models on key parameter estimates across
a number of morphological datasets, as well as inves-
tigating the best approaches for choosing a model. We
found that the models have a notable impact on both
tree length and topology, highlighting the importance
of validating a model before using it. In our simulation
study, model adequacy performed well in predicting
which model the data was simulated under. Ultimately,
using model adequacy we found that of the 8 empirical
datasets we investigate, 5 had at least one substitution
model shown to be adequate, supporting the use of the
Mk model for morphological data.

METHODS
Data

We used a collection of previously published mor-
phological matrices from Sansom et al. (2018) (taken
from http://graemetlloyd.com/matrdino.html). This
dataset contained 166 morphological matrices of tet-
rapod taxa. The datasets vary in size in terms of taxa,
from 12 to 219, traits, from 23 to 622, and number of
different character states, from 2 to 10. They have also
been used previously to examine the use of phyloge-
netic methods and as such were an ideal dataset for
this study (Sansom et al. 2018). We removed matrices
based on 2 criteria: (i) those that contained characters
with more than 9 states or 80 taxa, as they became
too computationally expensive, and (ii) those that
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contained traits where only character state “0” and
missing characters “?” were present for any trait. This
resulted in a final dataset of 114 matrices. The datasets
varied in size, with the number of taxa ranging from
12 to 80, and the number of characters being between
23 and 477.

Empirical Comparison of Morphological Models

Initially, our focus was on investigating how substi-
tution models impact the estimation of key parame-
ters. We chose 7 variants of the Mk model (Mk, MkYV,
MKV + G, Mk +G, MkVP, MkVP +G, MKP +G, see
Table 1 for model assumptions) and compared differ-
ences in the resulting tree lengths and topologies. All
morphological characters were treated as unordered
throughout this study. Phylogenetic inference was per-
formed in a Bayesian framework using the software
RevBayes version 1.2.1 (Hohna et al. 2016). We ran an
MCMC inference under each of the 7 models for all 114
datasets. This allowed us to determine whether there
are any systematic differences in parameter estimates
that could be attributed to the substitution model. For
all models we assumed a uniform tree prior on the
topology. Tree length was drawn from an exponential
prior distribution with a rate parameter of 1. Relative
branch lengths were drawn from a Dirichlet prior dis-
tribution (Zhang et al. 2012). The branch lengths were
calculated as the product of the tree length and the rel-
ative branch lengths. Preliminary analyses were run
using an exponential prior for branch length estima-
tion, however, we found the Dirichlet tree prior to per-
form better in simulations. We used an Mk model, with
the size of the Q-matrix being determined by the maxi-
mum character state of each dataset. When allowing for
among character rate variation, ACRYV, (+ G) the shape
parameter of the gamma distribution a was estimated
as the inverse of a random variable alpha_inv drawn
from the exponential distribution with a rate parameter
of 1. We discretized the gamma distribution into 4 dis-
crete categories (Yang 1994). To account for ascertain-
ment bias (+ V), we selected the variable coding option
in RevBayes. Partitioned models (+P) split the dataset
based on the maximum observed character states. Each
grouping had its own Q matrix. That is, all binary traits
were assigned to a Q-matrix of size 2, all tertiary traits
were assigned to a Q-matrix of size 3 and so on. For

TaBLE1. The assumptions of the Mk model and its variants tested
in this study

Models and  Assumptions

extensions

Mk All transition rates are equal (Lewis 2001)

\Y Accounts for ascertainment bias (Lewis 2001)

G Allows for variation in substitution rates among
characters (Yang 1994)

P Partitions the data based on the number of character

states

this set up, we linked the gamma distribution for ACRV
across partitions.

We ran the MCMC for 20,000 iterations with 2 simul-
taneous runs, sampling every 10 generations. The
output of both chains was automatically combined
in RevBayes, resulting in a posterior sample of 4000.
Convergence was assessed using a custom R script with
the R package coda (Plummer et al. 2006) to ensure ESS
values >200 of all parameters estimated.

Posterior summaries.—Tree length was calculated as
the sum of the branch lengths averaged across the
entire posterior distribution. We calculated the per-
centage change in tree length relative to the Mk model
for each dataset to make it easier to observe any con-
sistent patterns across models. We then explored the
differences in estimated tree topologies from the dif-
ferent substitution models for each dataset. Using a
sample of 1000 trees from the posterior distribution
for each substitution model, we calculated the nor-
malized Robinson-Foulds distance between all trees.
With this resulting matrix we performed a multivari-
ate homogeneity of group dispersions analysis using
the R package vegan (Oksanen et al. 2022). This cal-
culated the distance between points and their group
centroid. Plotting this as a PCoA allowed us to visu-
alize where models were in tree space, relative to one
another. In order to quantify these differences we car-
ried out a permutation test to assess their significance
using the permutest function in the vegan package
(Oksanen et al. 2022). We could then determine if dif-
ferent variants of the Mk model inferred significantly
different tree topologies.

Assessing the Performance of Model Adequacy and Model
Selection Methods for Morphological Data

Choosing an appropriate model of evolution is an
important step in any Bayesian phylogenetic analysis.
The results from an inference will be conditioned on
the assumptions of the evolutionary model. As such,
if the model’s assumptions are markedly different
than that of the underlying process that generated the
data, the results may be inaccurate. Methods for choos-
ing an appropriate model often take a model selection
approach, relying on estimation of the marginal likeli-
hood (Brown 2014b). These methods provide the rela-
tive fit of competing models. Although a model may be
selected as the best choice, it does not necessarily mean
that the model is in any way adequate for the dataset
being analyzed. That s, it may not provide a sufficiently
realistic description of the data generating process
(Gatesy 2007; Shepherd and Klaere 2019). Therefore,
model selection provides no indication about how well
the model actually fits your data, only its relative fit
compared to other models. In contrast, model adequacy
approaches provide information on the absolute fit of
a model to a dataset. They can provide information
about a model’s ability to capture key characteristics of
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a given dataset, as well as highlight where the model
may be inadequate. Importantly, model adequacy pro-
vides the ability to reject models, even if they are iden-
tified as the “best” using a model selection approach
(Brown and Thomson 2018; Shepherd and Klaere 2019).

Posterior-predictive simulations (PPS) is a model
adequacy approach that has been applied to a variety
of data types, albeit with limited frequency in phyloge-
netics (Gelman et al. 1996; Bollback 2002; Brown 2014a;
Brown and Thomson 2018; Héhna et al. 2018; Schwery
et al. 2023). Briefly, it works by simulating data under
a given model and comparing the similarity of the
empirical data to the newly simulated data using a test
statistic. The rationale here being that if the model ade-
quately captures the underlying dynamics of the pro-
cesses generating the data, the simulated data would
be similar to the empirical (Gelman et al. 1996; Bollback
2002). To date, the use of PPS has been demonstrated
more often for molecular data, for example Brown
(2014a) and Duchéne et al. (2018), however, it has also
been suggested for models of continuous trait evolu-
tion (Slater and Pennell 2014) and discrete character
evolution (Huelsenbeck et al. 2003). Using simulations,
we investigate the use of model adequacy and model

selection for determining whether a morphological
model fits our data.

Model adequacy using posterior predictive simulations.—To
test the adequacy of morphological models we used
posterior prediction simulations (PPS) following the
workflow as described in Hohna et al. (2018) imple-
mented in RevBayes. This can be broadly broken down
into 4 mains steps. We provide a brief description of
these steps here, but for a more thorough description
see Hohna et al. (2018). (i) The first step is to analyze
the empirical data under a given model. This involves
a regular MCMC inference sampling parameter val-
ues from the posterior distribution. (ii) New datasets
are then simulated in R using the phangorn package
(Schliep 2011). Datasets are simulated under the same
model as used in step 1 with trees and parameter esti-
mates inferred in step 1. (iii) Inference under the same
model is then carried out on all the newly simulated
datasets from step 2. (iv) Test statistics are calculated
and compared between the original empirical data and
inference results, and the newly simulated data and
inference results, see Figure 1. The overarching idea
here being, the more similar the simulated data is to

Generalised Euclidean
Distances
Gower Coefficient

Empirical Data

taxal 010121 4.

taxa 2 121010 —}

taxa 3 001001

taxa 4 110101

Consistency Index
Retention Index

Tree Length

Simulated Data 1 Simulated Data 2

2. taxal 100121 taxal 110121
—} taxa2 121020 taxa2 111010
taxa 3 010111 taxa 3 011101

taxa 4 100101 taxa 4 120101

Simulated Data n
taxal 110121
taxa2 111010
taxa3 011101
Consistency Index taxa 4 120101
Retention Index

Robinson-Foulds

Ficure 1. Posterior predictive simulation workflow. Step 1. an MCMC inference is carried out under a given model. Step 2. datasets
are simulated under the same model based on parameter estimates from 1. Step 3. an MCMC inference is then carried out on the simulated
datasets. The boxes show the test statistics that are applied to determine whether or not the model is adequate. Generalized Euclidean distances
and Gower’s coefficient are used to compare the datasets. Tree length and Robinson-Foulds are used to compare the inferred trees. Consistency
index and retention index use the empirical trees and the empirical and simulated datasets to test for adequacy.

GZ0z Aeniga Q| uo Jasn ssa22y JaquidlN 9SS Aq Z881 1 8//5509eAS/010SAS/SE0L "0 L/I0p/a[01e-20UBAPR/OIqSAS/W02 dno-olwapeoe//:sdyy Wwolj papeojumoq



6 MULVEY ET AL. - ADEQUACY OF MORPHOLOGICAL MODELS

the empirical data, the better the model is at describ-
ing the underlying processes that produced your data.
This in turn indicates whether we can have confidence
in the results inferred under a given model. Note it is
practical to simulate datasets in RevBayes, and we pro-
vide instructions for doing so in the associated tutorial
(https:/ /revbayes.github.io/tutorials/pps_morpho/).
We chose to simulate data using phangorn as, at the
time, it was slightly more computationally efficient
given that our study featured an exceptionally large
number of simulations (700,000 simulations for 160
individual datasets), but this should not be a concern
for an empirical study, which would typically only con-
tain one or a few individual datasets.

Candidate test statistics for morphological data—PPS are
only as good as the test statistics used, meaning if the
test statics are not able to capture differences that result
from the underlying dynamics of the data generating
processes, it will not be possible to use PPS to under-
stand the adequacy of a given model. Using test statis-
tics allows us to convert the empirical data and output
into numerical values that we can use to summarize the
differences between empirical and simulated data. The
test statistics can then be compared using effect sizes,
which provide a way of quantifying variation in model
fit and allow us to distinguish between the fit of a given
model. Previous studies have used posterior-predictive
P-values to accept or reject a model. In this study we
chose to focus on effect sizes over P-values for 2 rea-
sons. First, given that the fit of morphological models
to empirical data had not been tested previously, we
wanted to determine how different models performed
and compare their fit to empirical data. Second, effect
sizes provide a more intuitive way of comparing the
fit of different models. By applying P-values only we
can assess whether a model is adequate or not, but not
how the models perform relative to each other (Brown
2014a; Duchéne et al. 2017). Effect sizes therefore allow
us to gain a better understanding of the impact of dif-
ferent morphological models, and ultimately address
the main questions of this study. In an empirical study,
researchers can choose either approach, and we do
include the use of P-values for our empirical analysis.
Here, the effect sizes were calculated by:

empTS — simTS
stdSimTS 1)

where empTS is the empirical value for a given test sta-
tistic, simTS is the value of the test statistic from a single
simulated replicate, and stdSimTS is the standard devia-
tion across all simulated replicates. The closer this num-
ber is to zero, the better the model is at explaining your
data. Test statistics can be divided into 3 categories: (i)
data based, (ii) inference based, and (iii) data inference
hybrid or mixed. Data based test statistics compare the
actual morphological datasets themselves, inference
based compare the inferred trees and mixed statistics
uses both the data and the trees to compare your empir-
ical and simulated values.

ES =

Data based test statistics. As the name suggests, these
test statistics focus on characterizing the matrices them-
selves, here meaning the morphological data. As PPS
studies in phylogenetics have previously focused on
molecular data, many of the data based statistics are
only suited to DNA. For example, quantifying the GC
content or number of invariant sites (Hohna et al. 2018).
Summarizing morphological datasets in a similar way
requires different metrics. To do this we explore the use
of disparity metrics. Disparity is a measure of the mor-
phological variation observed among species (Hopkins
et al. 2017). It is important to note, we are not interested
in the actual measure of disparity, we are interested
in how the value differs between the original empiri-
cal data and the simulated data. We tested 2 metrics of
disparity.

(i) Generalized Euclidean Distances (GED) (Wills 1998)
is a popular disparity metric commonly used in verte-
brate research (Brusatte et al. 2011; Lehmann et al. 2019).
This measure is similar to the basic Euclidean distances
but incorporates adjustments to accommodate missing
characters. Lloyd (2016) (modified from Wills (2001))
defines GED as:

@)
where S is the total distance between taxa i and j, v
is the total number of characters in the matrix, Wijk is
the weight of the kth character, and S, is the distance
between taxa i and j at the kth character. S, equals 0
when the ith and jth sequence match in the kth posi-
tion and 1 when there is a mismatch. To account for
missing data, a mean estimate of disparity is first
calculated across all comparisons for which we have
observations:

S > k=1 Sik Wik
o ok= Wi
T i S, Wik

where S is the maximum possible distance
between faxa i and j for the kth character, which
equals 1 for discrete characters. The term S,,k S Gikoma
is then substituted into Equation 2 for missing S,
values. In all cases, we treat characters as equally
weighted, thatis, W,, = 1.

(ii) Gower’s coeﬁflczent (GC) (Gower 1971) is commonly
used in invertebrate studies (Hopkins and Smith 2015).
This metric calculates disparity differently to the GED,
notably in regards to how it deals with missing charac-
ters. Here this is achieved by normalizing by the avail-
able data. GC can be written as (Lloyd 2016)

Zk 1 Sl]le]k

Zk:l 51]kW1]k (3)
where 6, is coded as 1 if both taxa i and j can be coded
for k (i.e., character states are observed for both taxa),

and zero if not. As above, we use assume equal weights,
that is, Wi].k =1.

Sij =
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For both the above metrics, we used the R package
Claddis (Lloyd 2016). In the calculations we set charac-
ters as unordered. The output from this gives a matrix
of the pairwise distance between taxa. We took the
average disparity across the matrix for the calculation
of the effect size, that is, for empTS and simTS.

Inference based statistics. Inference based test statistics
aim to characterize the inferred trees in the posterior
distribution.

(i) Mean Tree Length (TL) was calculated using all
trees sampled in the posterior distribution, defined as
(Hohna et al. 2018):

1 K
72 TL;
kK= @

where K is the total number of posterior samples and TL
is defined as the sum of branch lengths TL = S 5n" 5 bl;.
This calculation was done in RevBayes. We took the
mean tree lengths across the posterior distribution of
trees as the input for the effect sizes.

(ii) Mean Robinson-Foulds Distance (RF) was used to
measure the topological uncertainty within the posterior
distribution (Robinson and Foulds 1981). The RF distance
was calculated for each posterior distribution of trees,
such that we had a measure of topological uncertainty for
the empirical inference and compared this to the simu-
lated inferences. This can be defined as (Hohna et al. 2018):

2 K-1 K
RF= —— RF (U;, ¥;
K (K- 1);]-—;1 (i) 5)

where W and W, are any pair of trees from the posterior.
This value was calculated in RevBayes.

Mixed test statistics. These test statistics take both the
data and the tree into consideration. Again, we investigate
the use of 2 test statistics here. (i) Consistency Index (CI)
(Kluge and Farris 1969) is a measure of homoplasy within
the dataset. It can be calculated as (Murphy et al. 2021):

m
=5 ©)
where m is the minimum possible number of steps or
changes along a tree and s is the reconstructed num-
ber, that is, the number observed along estimated trees
(Kluge and Farris 1969). This metric has been used to
characterise datasets in paleontology (Murphy et al.
2021) and has been applied to model adequacy studies
focusing on molecular data (Duchéne et al. 2018). A CI
of 1 indicates no homoplasy and gets closer to zero as
the amount of homoplasy increases.

(ii) The retention index (RI) (Farris 1989), builds on the
consistency index to calculate the level of potential syn-
apomorphy observed along the tree and is calculated as
(Murphy et al. 2021):

Rl =385
g—m (7)

where g is the maximum number of possible steps on
a given tree. For both consistency and retention index,

we used the maximum clade credibility (MCC) tree
generated from inference of the empirical data for all
calculations. We carried out preliminary analysis where
we used the entire posterior distribution of trees for this
calculation. This increased computation time from a
number of minutes to 24 hours and produced extremely
similar results, see Supplementary Figure S2. For this
reason, we continued to use the MCC tree only for the
rest of the analyses.

Model selection using stepping stone sampling.—For
model selection, Bayes factors are computed to com-
pare between models. In order to do this, we first
have to calculate the marginal likelihood of the data.
The marginal likelihood is an important quantity in
Bayesian model selection as it provides a measure of
the goodness of fit of the model to the data, while
accounting for model complexity. The marginal prob-
ability is the probability of the data integrated over
all possible parameter values weighted by their prior
probabilities for a given model. This is tricky to calcu-
late and can be extremely computationally expensive.
As such we avoid calculating it in regular MCMC
inference using the Metropolis-Hastings algorithm
(Metropolis et al. 1953; Hastings 1970). We therefore
need to use a different approach in order to approxi-
mate this value. One such approach is stepping stone
sampling. Stepping stone sampling is a Monte Carlo
method that uses a sequence of intermediate distribu-
tions, or steps, between the prior and posterior distri-
butions to compute the marginal likelihood. Stepping
stone sampling has been demonstrated to be a reli-
able method for calculating marginal likelihoods and
therefore performing model selection with molecular
data (Xie et al. 2011; Hohna et al. 2021). Marginal like-
lihoods has also been used for model selection with
morphological data (Rosa et al. 2019; Wright et al.
2021; Casali et al. 2022), though the appropriateness
of this approach has never been explored. Further, we
wanted to determine if model adequacy and model
selection agreed on what model fit a given dataset.

Simulated data.—We based our simulation study
on 2 empirical datasets, one on Proboscideans (the
group containing elephants and their nearest extinct
relatives) (Shoshani et al. 2006) and the other on
Hyaenodontidae (Egi et al. 2005). For simplicity we
will refer to each dataset as simulated elephants and
simulated hyaenodonts, respectively. The simulated
elephant dataset is larger, having 40 taxa, 125 charac-
ters with 6 states compared to the simulated hyaeno-
donts which has 15 taxa, 65 characters and 5 states.
For each dataset, we used 20 trees from the poste-
rior distribution inferred under a given model and
simulated character data under the same model in R
using phagnorn (Schliep 2011). We did not simulate
any traits with missing data. We did this for the MkYV,
MkVP, MkV + G and MkVP + G models for each
dataset (160 simulated replicates in total).
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Analysis of simulated data.—We carried out PPS follow-
ing Section Model adequacy using posterior predictive
simulations on all simulated elephant and simulated
hyaenodont datasets. This allowed us to jointly vali-
date the candidate test statistics and determine how
well PPS can detect the correct model, as well as how it
handles incorrect models. We analyzed each of the sim-
ulated datasets under the same 7 models as in Section
Empirical Comparison of Morphological Models (Mk,
MkV, MKV + G, Mk + G, MkVP, MkVP + G, MkP + G)
and kept all model parameters the same. This resulted in
560 inferences per simulation set up (i.e., we simulated
20 datasets under 4 models and then each was analyzed
under the 7 models stated above) totaling 1200 infer-
ences across both simulated elephant and simulated
hyaenodont. The MCMC was run for 10,000 iterations,
with 2 individual chains. Convergence was assessed
by calculating the ESS values for the likelihood, prior,
posterior, tree length, and when present in the model,
the estimated alpha values using the R package coda
(Plummer et al. 2006). MCMC chains that produced ESS
values <200 were run again with an increase in the chain
length. For the simulated hyaenodont datasets, 533 con-
verged after 10,000 iterations, 24 after 50,000 iterations
and 3 after 100,000. For the simulated elephant data,
548 reached convergence after 10,000 iterations and 12
required 50,000 iterations.

The number of simulations required for PPS is
not strictly defined. Given that the number of simu-
lation replicates will increase both the computation
time and memory requirements, having more than
required should be avoided. To explore this, we used
both the simulated elephant and simulated hyaeno-
dont datasets generated under the MkV + G model.
We ran an MCMC inference as described above with
1000 simulation replicates. We calculated the cumula-
tive means for each test statistic inferred under each
model. Following Robinson et al. (2004), we plot-
ted the cumulative means, thereby taking a graphi-
cal approach that shows the point at which the line
becomes flat, indicating the required number of repli-
cates Supplementary Figure S3 (Robinson et al. 2004).
We found that after 500 replicates the lines were flat
and we determined this to be sufficient. To ensure that
this number of simulation replicates was not affecting
the calculation of the actual effect sizes, we compared
the effect sizes for each test statistic with 500 and 1000
replicates. For ~92% of the effect sizes calculated,
we found that the difference was less than 0.1 with
a median of ~0.03. The largest change in effect sizes
we saw was between 500 and 1000 replicates, ~0.5.
This was calculated for the 2 data based test statistics
both inferred under the model MkVP + G model and
for the same replicate. This result was thus considered
an outlier. All other differences were less than 0.25,
and did not change whether a model was considered
to be adequate or not. As a result of these tests, we
determined that within a PPS analysis, simulating 500
datasets is sufficient to determine the fit of a given
model. Following this, for all further analyses, at step

2 in the PPS workflow we simulated 500 datasets. We
then used stepping stone sampling to estimate the
marginal likelihoods under each of the models. We
kept all model parameters the same as above, and
used 48 stones.

Analysis of Empirical Data

We chose to analyze 8 empirical datasets here;
Agnolin (2007); Egi et al. (2005); Bourdon et al. (2009);
Shoshani et al. (2006); Archibald et al. (2001); Schoch
and Sues (2013); Bloch et al. (2001); Tomiya (2011). This
was limited by the computational costs of running the
analysis multiple times. Datasets were chosen to cover
a range of sizes, in terms of taxa, characters, and states.
We tested the same 7 models we used throughout (Mk,
MkV, MKV + G, Mk + G, MkVP, MkVP + G, MkP + G)
and kept all model parameters the same as in Section
Model adequacy using posterior predictive simulations. We
also used stepping stone sampling on each of the data-
sets in order to see how the models chosen by model
selection compared to those identified as most appro-
priate by model adequacy. Posterior P-values were
calculated in R for each of the test statistics to compare
with the results obtained using effect sizes.

REsuLTs

Empirical Comparison of Morphological Models

Assuming different models of morphological evo-
lution produced different estimates of key parameters
of interest. Figure 2A shows the percentage difference
in mean tree lengths relative to that of the Mk model
for all 114 datasets. There are some general trends that
emerged here. As expected, the MkV model produced
smaller estimates of tree length relative to the Mk model
for all but one dataset. The Mk + G model produced
longer trees for 96% of the datasets compared to the
Mk model. However, when used in combination, these
2 extensions produced the smallest trees compared to
all models in 96% of datasets. Partitioned models esti-
mated larger trees, with the MkP + G model estimating
larger trees in 100% of the datasets, consistent with the
findings of Khakurel et al. (in press). Interestingly, the
MkVP + G model generated both larger and smaller
trees compared to the Mk model, with only 35% of the
trees being larger. Figure 2B shows the tree length plot-
ted for 2 datasets, of Hyaenodontidae (Egi et al. 2005)
and Proboscideans (Shoshani et al. 2006), respectively.
This is to highlight, that while there are some general
trends, models still behave differently depending on
the dataset. It is worth noting that the Shoshani et al.
(2006) dataset (Fig. 2B (i)) is the larger of the 2, both in
terms of number of taxa and characters. The influence
of different models on tree length tended to increase
with larger datasets, both in terms of taxa and character
number, see Supplementary Figure S1.

Figure 2C shows the tree space for the same 2 data-
sets. It is clear that the different models are plotting in
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FIGURE2. Analysis from 114 datasets under the 7 different models Mk, MkV, MkV + G, Mk + G, MkVP, MkVP + G, MkP + G. a) The changes
in mean tree length of the posterior inferred using each model relative to the Mk model. b) The tree length calculated for each model for 2
different datasets from Egi et al. (2005) (Hyaenodontidae) and Shoshani et al. (2006) (Proboscideans), respectively. ¢) The tree space of the same

2 datasets as for B.

different parts of the tree space, therefore producing
different posterior distribution of trees. Using the per-
muted P-values estimated from the pairwise distances
using Robinson-Foulds, we found that for both datasets
the majority of models occupied a different tree space,
that is, differences in topology were significant. For the
dataset from Egi et al. (2005), trees inferred using MkV,
MkV + G and Mk + G models grouped in a similar tree
space, whereas all other models occupied different
spaces. For the dataset from Shoshani et al. (2006) we
found 2 clusters, one consisting of trees inferred using
Mk + G and MkV models, and the other of trees from
MkV and MkV + G models, though there was no over-
lap between Mk + G and MkV + G posteriors. These
results highlight that, not only do the substitution mod-
els have an impact on key parameter estimates but this
impact is not uniform across datasets.

Assessing the Performance of Model Adequacy and Model
Selection Methods for Morphological Data

Candidate test statistics for morphological data.—We
explored the use of 6 test statistics for morphologi-
cal models. The desired characteristic of test statics

considered here is their ability to indicate the adequacy
of a particular model while also pointing out the inad-
equacy of another, that is, we want the effect size of
the correct model to be consistently around zero, while
being larger for the incorrect models. We will focus on
the results from both hyaenodont and elephant datasets
simulated under the MkV + G and MkVP + G models.
We carried out the same investigation on datasets sim-
ulated under the MkV and MkVP models and reached
the same conclusions, see Supplementary Figure S6-8.
The data based test statistics, Gower’s coefficient and
generalized Euclidean distance, both show a similar
pattern, shown in Figure 3. For the unpartitioned mod-
els there is no discernible preference for a given model.
That is, they all fall within a similar range of effect sizes.
For data simulated under a partitioned model, there
was a stronger separation of effect sizes, where all the
partitioned models are closer to zero and fall within a
similar range. Neither of the inference based test statis-
tics, shown in Figure 4, show any strong or meaningful
separation of effect sizes, that is, there is no preference
for any of the models and it is unclear what explains
this pattern. As for the mixed test statistics, consistency
index and retention index, shown in Figure 5, there is a
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Ficure 3. Validation of the data based test statistics (Gowers's coefficient and generalised Euclidean distance). Plots show the output from
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FiGure 4. Validation of the inference based test statistics (tree length and Robinson Foulds). Plots show the output from each simulated
dataset with 20 replicates for each test statistic. Plots on the left show results of the simulated hyaenodont datasets, with 15 taxa and 65
characters, and on the right from the simulated elephant datasets with 40 taxa and 125 characters. The colored points indicate the correct model,
with the grey horizontal bar marking the range of effect sizes calculated for the correct model. + = Mk, x = Mk + G, A = MkV, ®= MKV + G, *=
MkVP, @= MkP + G, and = MkVP + G.

similar pattern to that of the data based test statistics, In order to quantify these results, we focused on 3
however, with the differences in effect sizes between key features: (i) the variance in effect sizes for the cor-
models being more pronounced. rect model, meaning the total range of effect sizes for
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Ficure 5. Validation of the mixed test statistics (consistency index and retention index). Plots show the output from each simulated dataset
with 20 replicates for each test statistic. Plots on the left show results of the simulated hyaenodont datasets, with 15 taxa and 65 characters,
and on the right from the simulated elephant datasets with 40 taxa and 125 characters. The colored points indicate the correct model, with the
grey horizontal bar marking the range of effect sizes calculated for the correct model. + = Mk, x = Mk + G, A = MkV, #=MkV + G, *= MkVDP,

®= MkP + G, and M= MkVP + G.

TaBLE 2. Validation of test statistics from the simulated hyaenodont datasets

Model Test statistic Correct ES Opverall ES Num in Correct

MkV + G GC 1.7 2.2 5.7
GED 1.7 2.2 5.6
TL 1.2 14 6
RF 29 3.1 5.9
CI 2.7 43 5
RI 1.8 2.5 5.6

MKVP + G GC 0.9 2.9 1
GED 0.9 2.8 1
TL 2.8 2.8 6
RF 3.3 5.0 4.1
CI 1.2 11.7 1.40
RI 1.1 5.3 1.6

Correct ES gives the total range of effect sizes for a given test statistic with the correct model. Overall ES gives the total range of effect sizes
for a given test statistic across all models. Num in Correct gives the number of models which fall into the Correct ES range. Num in Correct only
looks at incorrect models, which means the maximum value here can be 6. GC = Gower’s coefficient, GED = generlized Euclidean distance,
TL = tree length, RF = Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index have the larg-

est overall ES range with, on average, the fewest models falling in the same range as that of the correct model.

a given test statistic with the correct model, (ii) how
incorrect models performed, meaning the total range
of effect sizes for a given test statistic across all mod-
els, and (iii) how easily we could differentiate between
adequate and inadequate models by calculating the
number of models that fall into the correct model
effect size (ES) range. A numerical summary of these
results can be found in Tables 2 and 3. Consistency
index and retention index demonstrated the best per-
formance of these 3 aspects, with the correct models

being consistently close to zero, incorrect models hav-
ing larger ES values, and the fewest number of models
on average falling within the correct model effect size
range. While the data based test statistics seem promis-
ing, the difference in effect sizes were less than that of
the mixed test statistics. As such, in the empirical anal-
yses we relied solely on the mixed test statistics, the
consistency and retention indices. An added advantage
of using only the mixed test statistics is that we do not
need to carry out an inference on the simulated data.
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TaBLE 3. Validation of test statistics from the simulated elephant datasets

Model Test statistic Correct ES Overall ES Num in Correct

MkV + G GC 0.8 2.0 4.1
GED 0.9 1.9 4.7
TL 0.7 0.7 5.7
RF 24 2.9 5.5
CI 2.0 5.9 2.8
RI 1.8 4.3 3

MkVP + G GC 1.2 3.2 2.1
GED 1.2 4.0 2.95
TL 0.3 1.0 2.95
RF 3.7 3.7 5.95
CI 1.9 20.0 1.45
RI 1.5 13 1.6

Correct ES gives the total range of effect sizes for a given test statistic with the correct model. Overall ES gives the total range of effect sizes
for a given test statistic across all models. Num in Correct gives the number of models which fall into the Correct ES range. Num in Correct only
looks at incorrect models, which means the maximum value here can be 6. GC = Gower’s coefficient, GED = generalized Euclidean distance,
TL = tree length, RF = Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index have the larg-
est overall ES range with, on average, the fewest models falling in the same range as that of the correct model.

We used the MCC tree from the empirical inference,
therefore saving on computational time and memory
requirements.

Model adequacy versus model selection.—Here we com-
pared the use of model adequacy and model selection
using simulated datasets. To reiterate, unlike model
selection, model adequacy approaches do not rank
potential models in the same way, indicating that one
model is the best. Therefore, for any given dataset,
if multiple models are investigated, as was the case
here, several models may be adequate according to
a particular test statistic. We will focus on the same 4
datasets as in Section Candidate test statistics for mor-
phological data.

In the above section, to identify appropriate test sta-
tistics, we focused on the pattern of median ES values.
When considering individual replicates we required
more information than just the median ES value to
determine the adequacy of a model for a given dataset.
Using this value alone makes it difficult to determine
a model’s adequacy unless the median value is zero.
We explored the use of upper and lower quartiles, and
minimum and maximum limits and found the latter
to be the more informative approach for identifying a
model’s adequacy. We propose that if the minimum and
maximum limits pass through zero, this indicates that
the model is adequate using our chosen test statistics,
as shown in Figure 6. Following this criteria, we could
quantify the percentage of simulation replicates where
the model was deemed adequate/inadequate. Table 4
shows the percentage of times a model met the above
criteria using the consistency index and the retention
index.

Model selection produced surprising results. We
consistently found support for partitioned models,
regardless of the model used to simulate the data.
Table 5 shows the percentage of times a model was
chosen as the best model according to Bayes factors.
For this reason, using Bayes factors is not a reli-
able approach for deciding between partitions with

morphological data, at least not using the standard
approach we applied to partition characters, i.e.,
by the maximum observed state number (see the
Discussion for a full explanation).

Analysis of Empirical data

We then applied PPS with the newly validated test
statistics to 8 empirical datasets. This allowed us to
answer our main question: are current morpholog-
ical models adequate for empirical data? Of the 8
datasets, 5 had at least one model that was adequate.
Figure 6 shows the effect sizes from 4 datasets (see
also supplementary Fig. S9). The MkVP + G model
was found to be adequate for all 5 datasets. Of those
5 datasets, 4 also fit an MkVP model. We found the
MKP + G model to be adequate for 3 datasets. For one
of the datasets, Figure 6C, we found all models apart
from the MkP + G model to be adequate. We do not
see any clear pattern in terms of adequate models,
with respect to the size of the datasets, that is, number
of taxa, characters or state number. This suggests that
these variables are not informative when choosing a
model. For the 2 largest datasets, in terms of taxa, we
did not find any models to be adequate. These data-
sets had 40 taxa (Shoshani et al. 2006) and 50 taxa
(Tomiya 2011). However, no models were adequate
for a third dataset with only 25 taxa (Schoch and
Sues 2013). Table 6 shows the P-values calculated for
consistency index and retention index for the same
datasets as in Figure 6. See Supplementary Table S1
for P-values calculated for an additional 4 datasets.
Values below 0.025 and above 0.975 are considered
to be significant, although these thresholds can be
considered as conservative (see Fabreti et al. 2024).
This would indicate that the simulated data is sig-
nificantly different from the empirical data, and that
the model does not capture the underlying data gen-
erating processes and therefore is not adequate for
that dataset. Results using effect sizes and P-values
agree on the same models for all datasets. There is
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TaBLE 4. The percentage of times a model was found to be adequate across all simulated replicates using consistency index (CI) and reten-
tion index (RI) as tests statistics

Sim model Dataset Test Statistic Mk Mk + G MkV MkV + G MkP + G MVP MkVP + G
MkV + G Hyaenodont CI 100% 95% 100% 100% 95% 95% 95%
MkV + G Hyaenodont RI 100% 100% 100% 100% 100% 100% 100%
MkVP + G Hyaenodont CI - - - - 100% 100% 100%
MKVP + G Hyaenodont RI 50% 65% 45% 75% 100% 100% 100%
MkV + G Elephant CI 100% 100% 100% 100% 40% 85% 80%
MkV + G Elephant RI 100% 100% 100% 100% 70% 100% 100%
MkVP + G Elephant CI - - - - 100% 100% 100%
MKVP + G Elephant RI - - - - 100% 100% 100%

In order for a model to be considered adequate the effect sizes need to meet the criteria put forward here, where the range of minimum and
maximum values contain zero. The dashed lines indicate 0%.

TABLE 5:.  Models chosen using Bayes factors

Model Dataset Mk Mk + G MkV MkV + G MkP + G MVP MkVP + G
MkV + G Hyaenodont - - - - 5% 15% 80%
MkVP + G Hyaenodont - - - - 5% 30% 65%
MkV + G Elephant - - - - - - 100%
MkVP + G Elephant - - - - - - 100%

Cells show the percentage of times a model was selected across the 20 replicates from each simulation set up. The dashed line indicates the

model was never selected.

one instance when there is a disagreement using DISCUSSION

retention index. For the dataset from Egi et al. (2005),
the Mk + G model was accepted using the threshold
that we defined for effect sizes and rejected using
P-values. Both metrics rejected the model according
to consistency index, however, so the Mk + G was
ultimately rejected using both approaches.

Understanding morphological evolution is an extremely
difficult task. Within morphological phylogenetics we rely
on a small number of relatively simple models to describe
this complex process (Wright 2019). Until now, the impact
of these different substitution models on parameter esti-
mates was not well understood. Our analysis on the
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TABLE 6. Posterior P-values from the empirical analyses

Model Agnolin Egi Bourdon Shoshani
CI RI CI RI CI RI CI RI

Mk 0 0.003 0 0.005 0.8895 0.812 0 0
Mk + G 0.001 0.004 0 0.006 0.898 0.8235 0 0
MkV 0 0 0 0.005 0.019 0.011 0 0
MkV + G 0 0 0 0.006 0.033 0.01 0 0
MKP + G 0.835 0.659 0.994 0.446 1 0.999 0.001 0
MkVP 0.105 0.041 0.992 0.483 0.859 0.655 0 0
MKVP + G 0.095 0.034 0.974 0.376 0.848 0.6245 0 0

Cl refers to consistency index and RI to retention index. Values below 0.025 and above 0.975 are considered to be significant. This would indi-
cate that the simulated data is significantly different than the empirical data and that the model is not adequate for that dataset. The results here
agree with those produced using effect sizes. Agnolin (2007): 12 taxa with 51 characters, Egi et al. (2005): 12 taxa with 65 characters, Bourdon et
al. (2009): 17 taxa with 129 characters, Shoshani et al. (2006): 40 taxa with 125 characters.

influence of these models using empirical datasets, focus-
ing on tree length and topology, demonstrates that differ-
ent models can produce contrasting reconstructions of the
evolutionary history of a group, emphasizing the impor-
tance of model choice (Fig. 2). Although the impact of
models on parameter estimates is not uniform across data-
sets, the most consistent pattern we observe is whether or
not the data is partitioned by the number of states. Further,
we found using model adequacy, that partitioned models
are often a good fit to empirical datasets (for 5 out of 8
tested here), and that there can be more than one model
adequate for a given dataset.

Partitioned Models

In all the partitioned models explored here, traits
were partitioned based on the number of observed
character states. This is a reasonable approach, both in
terms of the biology of the traits being described and
the way in which the characters tend to be coded. We
found that for all but 2 datasets, the unpartitioned mod-
els produced smaller trees. To further investigate the
cause of this, we ran an analysis using a binary dataset
and increased the Q-matrix size from 2 to 5. The objec-
tive here was to mirror what happens when we have
characters with a lower number of observed states
than the maximum number of states in the matrix.
For example, placing binary characters in a partition
with a maximum of 5 character states. We show that,
as the size of the Q-matrix increases, tree length gets
smaller (Supplementary Fig. S10). The effect of parti-
tioning that we observe on empirical estimates of tree
length, is therefore a direct result of how morphological
data is typically partitioned (see also Equations 8 and
9). Characters are partitioned by the maximum num-
ber of observed states, for example, binary characters
are all together in one partition and assigned to a rate
matrix of size 2, characters with 3 states are assigned
to a rate matrix of size 3 and so on. For unpartitioned
models, however, all of the characters will be in a sin-
gle Q-matrix that is the size of the maximum num-
ber of observed states across the whole dataset. This
means that for a given branch length v, under a model
that assumes there are n states, for characters where
we observe < 1 states (e.g., a binary character in a rate

matrix of size 5), the probability of observing no change
will be underestimated. Similarly, the probability of
observing a given change will also be lower if there are
more (unobserved) possible states. Both cases will result
in shorter branch lengths. Partitioning morphological
data by character state number is a practical approach.
However, this requires making an assumption that we
know the number of states for each character, when in
reality we might not. For molecular data of course, this
is not something we need to consider, as we know there
are 4 nucleotides. By assuming we know the number
of states, based on the number of observed states, we
may be biasing our results. The effects of whether or
not a dataset is partitioned are considerable in terms
of parameter estimates. As such, it is important to con-
sider how the data is being partitioned and whether or
not it makes biological sense for your dataset to do so.

Here we focused exclusively on partitioning by the
number of character states. This is the most common parti-
tioning scheme and is even a default in some phylogenetic
software programs, for example BEAST2 (Bouckaert et al.
2019) and MrBayes (Ronquist et al. 2012). Yet this is not
the only way that data could be partitioned. A researcher
could partition the data based on different anatomical
regions, or based on subsets of anatomical, ecological or
behavioral traits (Klopfstein et al. 2015; Casali et al. 2023).
Thus, one may need to decide between various parti-
tioning schemes or no partitioning at all. To date, model
selection is regarded as the gold standard for choosing
between substitution models and partition schemes (Xie
et al. 2011). Within a Bayesian framework, comparing
marginal likelihoods has been shown to be effective for
choosing between partition schemes with molecular data.
Our results, however, show that for morphological data,
model selection consistently selects a partitioned model,
regardless of the model used to simulate the data. This
result can be explained by taking into account how parti-
tioning morphological data affects the likelihood calcula-
tion, importantly how it affects the transition probabilities
and the stationary frequencies.

For example, assume you have a tree consisting of 2
tips, one with discrete state 0 and the other with dis-
crete state 1, as shown here.

0 1

— 20—
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The tips share a common ancestor v time units in the
past. The transition probability for this scenario under
the Mk model is calculated as:

I T
Po1 (27]) = E Ee (8)
where k is the number of states. Further, the likeli-
hood of this data is:

1 1 2
P(0,1)v) = PR [1—e%] )

Here k would be set to 2 as we observe 2 states.
However, in cases where there are other traits, some of
which have a higher maximum observed state, k would
increase, as happens in unpartitioned inference. Higher
values of k would result in a lower likelihood. This
change in likelihood is a direct result of the partitioning
scheme. When partitioning molecular data, we do not
change the size of the Q-matrix (k), which is why we
do not see the same effects on the likelihood. Figure 7
shows the impact on the log likelihood of changing the
size of the Q-matrix (k) along different branch lengths
(v) for these 2 tips.

To empirically demonstrate the impact of partition-
ing by state space on the likelihood we ran 2 experi-
ments. First, using an empirical binary morphological
matrix we calculated the marginal likelihood under an
unpartitioned MkV + G model increasing the Q-matrix
size from 2 to 5. Supplementary Figure S12 shows the
decrease in marginal likelihood as we increase the
number of transition possibilities (Q-matrix size). We
then wanted to investigate the impact of adding the
“correct” partitions. Here, we used an empirical mor-
phological matrix with a maximum of 6 states. We first
calculated the marginal likelihood under an unparti-
tioned MkV + G model. We then created 2 partitions,
one partition for all binary traits and the second for all

other traits. Then we increased the number of parti-
tions to 3, with 1 for binary traits, 1 for tertiary traits,
and kept all others in the third partition. This method
of adding partitions was continued until there were 5
in total and all traits were in the appropriately sized
Q-matrix. Supplementary Figure S11 shows that the
marginal likelihood increases as partitions are added
to the model. This is expected, given Equations 8 and
9. This suggests that the results from model selection
will not be indicative of any meaningful biological
signal in this context. For this reason, using model
selection to differentiate between partitions for mor-
phological data is not appropriate when the Q-matrix
size varies.

Test Statistics

Overall, our results show that model adequacy, in
particular PPS, currently offers the most effective way
of identifying the most suitable model for morpholog-
ical data. In addition, we demonstrate that PPS can
reliably determine whether a given model is adequate
or not. Understanding the absolute fit of available
models can lend support to the use of model based
phylogenetics for the analysis of morphological data.
Here we carried out the first thorough investigation
into the use of PPS with discrete morphological sub-
stitution models.

One of the most important aspects of PPS to consider
is the choice of test statistics. As this was the first sys-
tematic application of PPS to discrete character data, we
first validated available test statistics using simulations.
We explored the use of 6 test statistics and ultimately
found consistency index and retention index to be the
most informative. Neither of the inference based test
statistics we explored, Robinson-Foulds or tree length,
were able to give a clear indication of model adequacy.

log likelihood

OO~ WN
©

I I I
2 3 4

\

Ficure 7. Log likelihoods calculated for different sizes Q-matrices (k) along as a function of branch lengths (v). The log likelihoods level off
as v increases and the transition probability approaches the stationary frequencies.
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In this context, Robinson—Foulds distance is used to
quantify variance across the posterior distribution of
trees, therefore reflecting topological uncertainty. Given
that morphological datasets tend to be small, the uncer-
tainty in topology can be high, regardless of the model
used for inference (Barido-Sottani et al. 2020). The unin-
formativeness of tree length is more puzzling, since
competing models have a clear impact on the estimated
tree length. Tree length has also previously been shown
to be a poor test statistic for molecular data (Duchéne
et al. 2018). Both Gower’s coefficient and generalized
Euclidean distance did show some potential value as
test statistics (Fig. 3), although the mixed test statistics,
the consistency index and retention indices, were sub-
stantially better (Fig. 5), Tables 2-3). Having test statis-
tics exclusively for the data would be favorable. Future
studies could focus on alternative ways of including
disparity metrics as test statistics. For example, we
used the mean pairwise distance of disparity across the
matrix, perhaps looking at the sum of the variance or
sum of the ranges could be more informative for model
adequacy (Smith et al. 2023).

Practical Considerations and Outlook

Our simulation study allowed us to identify ways
of reducing the overall computational costs. As with
many Bayesian analyses, there can be high computa-
tional costs associated with running a PPS analysis. To
mitigate any unnecessary computation, we assessed the
maximum number of simulation replicates required to
reach stability in the mean effect sizes. By doing so, we
were able to ensure that we were not running unnec-
essary replicates. Further, the most expensive part of
running a PPS analysis comes from the inference of the
simulation replicates. Based on our simulation study,
we did not find any benefit to including inference based
test statistics (tree length and Robinson-Foulds, Fig. 4),
meaning this expensive step can be skipped. Taking
both of these findings into account, the time, and mem-
ory required to run a PPS analysis becomes a lot smaller.
For example, when compared to a stepping stone analy-
sis, we found PPS to take half the time per model.

From our simulation study, relying exclusively on
the mixed test statistics, consistency index, and reten-
tion index, we found that for all replicates, more than
one model was adequate (Table 4). When interpreting
these results it is important to remember simulated data
is often “neater” than empirical data. In our simulation
set up, all characters in a given matrix were simulated
under the same model and the model extensions we
used are not proposing conflicting statements about
the underlying process. As such, it is not surprising
that we found multiple models to be adequate for our
simulated data. The choice of substitution model may
have less impact on our simulated data, as the topol-
ogy is easier to infer. For example, taking all simula-
tion replicates of the simulated hyaenodont data under
an MKV + G model, the mean variance in tree length
across the 7 different models was 0.74. In contrast, for

the empirical data used as the basis for the simulations,
the variance in tree length across models was 4.29 (Fig.
2B(i)). Our simulation study was valuable in determin-
ing which test statistics were sensitive to model choice
under exemplar conditions, but it is not alarming that
differentiating between similar models, that is, all par-
titioned models, was not possible. Future work could
investigate model adequacy when data is simulated
under more complex models, for example, generating
matrices that contain conflicting characters associated
with different models or topologies (Sansom et al. 2017;
Weisbecker et al. 2023).

The results from our empirical datasets show a larger
difference in the effect sizes for different models (Fig.
6). Based on our criteria of using the minimum and
maximum effect sizes (after removing outliers) we
determined that for 5 of the datasets, at least one of the
models tested here was adequate. This leaves the other
3 without an adequate model. While initially this result
may seem negative, in that no models were adequate,
it is actually more reasonable than not. The expectation
that all datasets would have a model available that fits
would have been unrealistic, given the complexity of
the data versus the simplicity of the models. Having a
method that allows the researcher to detect the limits
of available models is much more useful than picking
the best out of a group of models without considering
whether any of them fit. This result highlights the ben-
efit of using such an approach. In the situation where
no models are considered adequate for a dataset, it
would be up to the researcher to determine how to pro-
ceed. For instance, if the effect sizes are not markedly
far from zero one may still opt to use a model—how-
ever, appreciating its limitations would be important
before drawing any conclusions based on the inference
results. It is also encouraging to see that the most com-
plex model, the MkVP + G model, was identified as
adequate for all 5 of the datasets for which we found an
adequate model, indicating that we are moving in the
right direction in terms of our assumptions about
the data generating processes. This strongly supports
the above discussed rationale of partitioning the data
based on character state, lending confidence to our bio-
logical interpretation of the evolution of the data.

Here we have demonstrated how PPS outperforms a
model selection approach in several respects. Making
this a standard approach in morphological phyloge-
netics would be beneficial to the field in allowing for
a better appreciation of how well our models are per-
forming. In this study we explored the use of 7 exten-
sions of the Mk model, as they are the most commonly
applied. This is not an exhaustive list of available mod-
els and there are a number of alternatives that further
relax assumptions of the Mk model.

These models aim to better capture the underlying
biological processes that generated the data. For exam-
ple, Nylander et al. (2004) introduced an approach to
relax the assumption of symmetric probabilities of
change between characters through the use of priors.
Subsequent exploration by Wright et al. (2016) showed
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how this can improve model fit and phylogenetic esti-
mation. Similarly, Klopfstein et al. (2015) explored the
use of accounting for directional evolution by allow-
ing character state frequency to vary. It is also possi-
ble to incorporate ordered characters into a model. In
this scenario the model will only allow transitions in
pre-defined orders, that is, traits can go from 0 to 1 but
not 0 to 2 (Slowinski 1993; Brocklehurst and Haridy
2021). A lot of work has been carried out exploring
appropriate partitioning schemes for morphological
data. Partitioning based on biological properties, such
as anatomical region, function, or using evolutionary
rates has also been suggested (Clarke and Middleton
2008; Close et al. 2015; Simoes et al. 2020; Casali et al.
2022, 2023). For feasibility we focused our investigation
on partitioning based on maximum observed character
state. Additionally, models employed in biogeographic
probabilistic analyses may have potential applications
for discrete traits (Sanmartin et al. 2008, 2010; Lemey
et al. 2009). These models can allow for independent
stationary frequencies and independent pairwise tran-
sition rates which further relax the assumptions of the
Mk model. Alternative models and partition schemes
mentioned above can all be assessed using the work-
flow presented here, the only requirements being that
the model can be used for both simulation and inference.

There are also a number of models of continuous
character evolution that are often used in phylogenetic
comparative methods (Alvarez-Carretero et al. 2022;
Hansen et al. 2022), which previously were explored
using model adequacy (Slater and Pennell 2014). We
focused exclusively on discrete data as it remains the
most widely used for tree inference. Finally, our results
have implications for studies focused on divergence
time estimation and ancestral state reconstruction
which rely on discrete traits for inference. The same
model validation can be applied before either of these
types of analyses are carried out. Ultimately, fossils are
our only direct source of information about extinct taxa.
Collection and character coding of extinct and extant
taxa for phylogenetic analysis requires huge effort, both
in terms of time and knowledge required. Ensuring that
we are using the best available models can help provide
confidence in our results and support us in asking more
complex questions with the data.

CONCLUSIONS

As the use of morphological data in Bayesian phylo-
genetic analysis increases in popularity, it is important
that we understand the adequacy of models avail-
able for describing morphological evolution. Here we
show that substitution model choice impacts estimates
of both branch lengths and topology. By providing a
workflow for posterior predictive simulations to val-
idate the adequacy of a model, researchers can gain
insights into the absolute rather than the relative model
fit, and can have more confidence in their choice of sub-
stitution model going forward. We show that, despite

the arguably simplistic assumptions of available mor-
phological models, they are often able to approxi-
mate the underlying generating processes of discrete
morphological datasets. However, we also show that
no single model fit all datasets examined here, so we
recommend researchers use model adequacy to assess
model fit as a first step in phylogenetic inference. Given
the substantial taxonomic effort invested into collect-
ing such datasets, the importance of utilizing accurate
models cannot be overstated. Our work reinforces the
significance of these considerations, particularly as
fossil data remains the primary avenue for gaining a
comprehensive understanding of evolutionary history
in deep time.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://dx.doi.org/10.5061/dryad.4f4qrfjkq.
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