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Abstract.—Reconstructing the evolutionary history of different groups of organisms provides insight into how life 
originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this evolutionary history. Within 
Bayesian phylogenetics a major step in estimating a tree is in choosing an appropriate model of character evolution. 
While the most common character data used is molecular sequence data, morphological data remains a vital source of 
information. The use of morphological characters allows for the incorporation fossil taxa, and despite advances in molecular 
sequencing, continues to play a significant role in neontology. Moreover, it is the main data source that allows us to unite 
extinct and extant taxa directly under the same generating process. We therefore require suitable models of morphological 
character evolution, the most common being the Mk Lewis model. While it is frequently used in both palaeobiology and 
neontology, it is not known whether the simple Mk substitution model, or any extensions to it, provide a sufficiently good 
description of the process of morphological evolution. In this study we investigate the impact of different morphological 
models on empirical tetrapod datasets. Specifically, we compare unpartitioned Mk models with those where characters are 
partitioned by the number of observed states, both with and without allowing for rate variation across sites and accounting 
for ascertainment bias. We show that the choice of substitution model has an impact on both topology and branch lengths, 
highlighting the importance of model choice. Through simulations, we validate the use of the model adequacy approach, 
posterior predictive simulations, for choosing an appropriate model. Additionally, we compare the performance of model 
adequacy with Bayesian model selection. We demonstrate how model selection approaches based on marginal likelihoods 
are not appropriate for choosing between models with partition schemes that vary in character state space (i.e., that vary 
in Q-matrix state size). Using posterior predictive simulations, we found that current variations of the Mk model are often 
performing adequately in capturing the evolutionary dynamics that generated our data. We do not find any preference 
for a particular model extension across multiple datasets, indicating that there is no “one size fits all” when it comes to 
morphological data and that careful consideration should be given to choosing models of discrete character evolution. By 
using suitable models of character evolution, we can increase our confidence in our phylogenetic estimates, which should 
in turn allow us to gain more accurate insights into the evolutionary history of both extinct and extant taxa. [Bayesian 
phylogenetic analysis; model adequacy; model selection; morphological data; morphological models; palaeobiology.]

The origination and subsequent diversification of spe-
cies is a fascinating, yet complex, process. Phylogenetic 
trees serve as a powerful tool to aid in our understand-
ing of this process. They provide a hypothesis of the 
evolutionary history of a group, enabling us to make 
inferences about the relationships, timing of events, 
and patterns of evolution (Baum and Offner 2008). 
While molecular data may be more commonly used 
in phylogenetics (Lee and Palci 2015), morphological 
data was the original source of evidence (Farris et al. 
1970) and remains extremely valuable to our interpre-
tation of species diversification (López-Antõnanzas et 
al. 2022). As the majority of life on Earth is now extinct, 
the fossil record contains a wealth of knowledge about 
how species have adapted and diversified through time 

(Simpson 1952). Integrating this information into phy-
logenetic analysis, either in combination with morpho-
logical and molecular data of extant species, that is, in 
a total evidence approach (Pyron 2011; Ronquist et al. 
2012; Gavryushkina et al. 2017; Mongiardino Koch et 
al. 2021) or independently, can therefore further our 
ability to resolve species relationships in deep time. 
Studies have also shown that incorporating fossil data 
into an analysis, even when the focus of the study is 
on extant taxa, can improve the topological resolution 
or even accuracy of a phylogenetic inference (Beck and 
Baillie 2018; Koch and Parry 2020; Mongiardino Koch 
et al. 2021). The use of morphological data in phyloge-
netics has been a topic of debate for many years, spe-
cifically, with regards to which approach should be 
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applied, that is, parsimony or model-based inference 
(Kolaczkowski and Thornton 2004; Wright and Hillis 
2014; O’Reilly et al. 2016; Puttick et al. 2017; Goloboff et 
al. 2018, 2019; Sansom et al. 2018). Due to the complex 
nature of morphological data, there are doubts about 
our ability to correctly model its evolution, and that any 
assumptions made by the models will bias the result-
ing inference (Goloboff et al. 2019). Parsimony is often 
considered to be an assumption free approach; how-
ever, this is not entirely true, as there are still implicit 
assumptions about morphological evolution within a 
parsimony framework (Felsenstein 1983; Tuffley and 
Steel 1997; Steel and Penny 2000; Sober 2004). These 2 
approaches have been compared many times through-
out the literature, amassing in a large body of work 
which goes beyond the context of this study. Ultimately, 
model-based approaches have many more applications 
and statistical advantages, including the ability to select 
among competing models and assess model adequacy 
(Wright and Hillis 2014; O’Reilly et al. 2016; Puttick et 
al. 2017). Amidst this debate, however, an important 
question has yet to be addressed: are available mod-
els of morphological evolution in fact adequate for our 
data?

Morphological data collected from fossils or extant 
taxa, can be either discretized (e.g., presence/absence) 
or continuous (e.g., body size measurements). Discrete 
morphological data is the most widely used for phylo-
genetic inference (Lewis 2001; Wright and Hillis 2014; 
Harrison and Larsson 2015; Wright 2019) and will be 
the focus throughout this study. Discrete data, anal-
ogous to the format of a molecular alignment, where 
each site represents a morphological trait, must be man-
ually collected. Traits are described using a character 
state which is indicative of the phenotype expressed by 
a given taxon. Traits can have any number of character 
states depending on the complexity. Presence/absence 
traits can be described by using only 0 and 1, that is, 
2 character states. For complex traits, however, more 
character states may be required and are then referred 
to as multistate characters. An example of this could be 
describing the shape of part of a skull or a shell. In this 
scenario a state is assigned to a particular modification 
of the trait, where a number of different variants (or 
states) may be present in a group. Within a single mor-
phological matrix some traits can have binary character 
states, while others require multiple states. It is import-
ant to emphasize that within a single matrix, a given 
character state label does not have a fixed biological 
meaning, that is, a 1 does not represent the same type 
of character across a matrix. This is markedly different 
when considering molecular data, where for example 
an A (adenine) represents the same entity across the 
matrix. For one given trait a 1 may represent the pres-
ence of that trait, for example, ornamentation, whereas 
for a different trait in the same matrix a 1 may be used 
to represent the type of ornamentation. See Wright 
(2019) for a more in-depth review of morphological 
data used in phylogenetics. The generation of this data 
is a challenging and time-intensive process, requiring 

an in-depth knowledge of the taxonomic group in ques-
tion. Morphological data is, in turn, extremely valuable 
in helping us answer questions about the evolution of 
life that molecular data alone cannot answer (López-
Antõnanzas et al. 2022).

Within a model-based phylogenetic analysis, the pro-
cess that gives rise to discrete character data is described 
using a substitution model, (or morphological models 
in morphological phylogenetics). These models aim 
to capture the evolutionary dynamics resulting in the 
gain, loss or modification of discrete states. Substitution 
models are continuous-time Markov chain models. 
They allow states to change (evolve) stochastically at 
any point in time, and this change depends only on the 
current state that the evolving system is in. The assump-
tions of a substitution model are mathematically rep-
resented using a Q-matrix. A Q-matrix (also called 
a rate matrix) is a square matrix where each element 
represents the instantaneous rate of change between 
states. That is, Q[i, j] represents the rate of change 
from state i to state j. The probability of change over a 
given interval, or branch length v, is calculated using 
the Q-matrix. Developing models that can accurately 
describe the complex processes driving morphologi-
cal evolution is extremely challenging and as a result, 
there is one main model that is commonly applied: the 
Mk model (Felsenstein 1992; Lewis 2001). This model 
is a generalization of the Jukes Cantor model (Jukes 
and Cantor 1969) used for molecular data, and as such, 
follows the same set of assumptions. It assumes equal 
transition rates between states, that is, the rate of transi-
tioning from a state 0 to a 1 is the same as going from a 
state 0 to a 2. It also assumes equal base (character state) 
frequencies.

Morphological data are, needless to say, different to 
molecular. Thus, there are concerns about how well a 
model originally developed for molecular data can be 
applied to morphological data. Additionally, given that 
more complex models are often selected for molecular 
data, there is doubt about how well such a simple model 
can be applied to morphological data. As such, there 
have been a number of extensions implemented for the 
Mk model to relax these strict assumptions, and allow 
the model to better describe the reality of morpholog-
ical evolution. Lewis immediately noted an important 
difference between morphological and molecular data 
collection (Lewis 2001). When taxonomists are creating 
a matrix, (character coding), they will typically exclu-
sively choose traits which differ across species, result-
ing in a matrix where every site is variable. This is a 
markedly different behavior from molecular data col-
lection, where there can be many sites where a nucle-
otide is conserved across all species. Not accounting 
for this phenomenon, known as ascertainment bias, 
(though referred to as acquisition bias in Lewis (2001)), 
can result in inferring trees with extremely long branch 
lengths. Lewis dealt with this by conditioning the like-
lihood calculation on there only being variable char-
acters, developing the MkV model. Accounting for 
among-character rate variation has also been suggested 
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as important when modeling morphological evolution 
(Lewis 2001; Harrison and Larsson 2015). This allows 
different traits to transition at different rates, as some 
may be evolving faster than others. This is frequently 
achieved by drawing rates from a discretized gamma 
distribution and allowing a trait to transition according 
to a given rate category, the same as is done for molecu-
lar data (Yang 1994). It is worth noting that many exten-
sions were suggested by Lewis (2001), however, their 
implementation was not achieved until later.

When carrying out an inference, it is common to par-
tition data based on the maximum observed character 
state (Nylander et al. 2004; Khakurel et al. in press). This 
is the default in a number of phylogenetic software, for 
example MrBayes (Ronquist et al. 2012) and BEAST2 
(Bouckaert et al. 2019), and works by constructing sep-
arate Q-matrices for traits with of a given number of 
observed maximum states. This ensures that traits are 
in a Q-matrix of the correct size. Here, we investigate 
the impact of unpartitioned and partitioned inference. 
In an unpartitioned analysis, the Q-matrix will take the 
size of the maximum character state in the morpholog-
ical matrix, which could be for example 5. Transitions 
between binary characters will therefore also be calcu-
lated in this Q-matrix of size 5, meaning that there is 
some probability given to a binary character of tran-
sitioning to states 2, 3, or 4. As these states are not 
observed in this hypothetical binary trait we may be 
certain that this is incorrect. Therefore, using such an 
unpartitioned model would result in substantial model 
misspecification. Partitioning by character states such 
that all binary characters are in a Q-matrix of size 2 and 
so on, avoids this issue. Partitioning data can have an 
effect on branch lengths (Khakurel et al. in press) so it 
is important that it is done when necessary. Similarly, 
however, incorrect partitioning may lead to underesti-
mation of rates as a result of observer bias.

The impact of these different variants of the Mk 
model is still not fully understood in terms of the effects 
on key parameter estimates, though some studies have 
looked at the impacts of using different partitioning 
schemes (Casali et al. 2023; Khakurel et al. in press). 
When deciding what model to use, there are 2 distinct 
questions that can be asked, (1) which is the best model 
for my data compared to other models? and/or (2) does 
this model fit my data? The first question, which is the 
more common of the 2, can be answered using model 
selection. Model selection approaches are common in 
molecular based studies although less frequently used 
for morphological data. For morphological studies 
there is a history of using substitution models that have 
been used in previous studies, choosing a model based 
on the structure of the dataset, or relying on software 
defaults, often without providing statistical justifica-
tion for model choice. As previously stated, datasets are 
manually produced, meaning they can differ from each 
other depending on the taxonomist. If, for example, a 
substitution model had been applied to the taxonomic 
group of interest in the past, even if you are using sim-
ilar taxa, if the morphological matrix is different, using 

the same substitution model as previous studies may 
not be logical. That being said, there are a number of 
studies where model selection has been applied to mor-
phological datasets (e.g., Bapst et al. 2018; Caldwell et 
al. 2021; Rücklin et al. 2021; Wright et al. 2021). By using 
a model selection approach, any subjectivity in model 
choice can be reduced. One downside of model selection 
approaches, however, is that they give no indication of 
the absolute fit of the model to the data. Model selection 
tells you which model is the relative best, but that does 
not necessarily mean that the model provides a good 
description of the true data generating process, simply 
that it fits better than other models (Gatesy 2007). This 
is where question 2 becomes important. Asking if a sin-
gle model is adequate allows you to understand how 
well a model can describe your data. These approaches, 
known as model adequacy, have gained popularity for 
molecular data (Duchêne et al. 2017, 2018; Brown and 
Thomson 2018) and have been sporadically applied to 
morphological datasets (Huelsenbeck et al. 2003; Slater 
and Pennell 2014) but have yet to be systematically 
assessed.

In order to confidently integrate morphological data 
from fossils and extant specimens into phylogenetic 
approaches, it is crucial we ensure that we have appro-
priate substitution models. Knowing that the models 
are behaving as expected can increase our confidence 
in the results and allow us to ask increasingly complex 
questions. Here we explored the impacts of different 
substitution models on key parameter estimates across 
a number of morphological datasets, as well as inves-
tigating the best approaches for choosing a model. We 
found that the models have a notable impact on both 
tree length and topology, highlighting the importance 
of validating a model before using it. In our simulation 
study, model adequacy performed well in predicting 
which model the data was simulated under. Ultimately, 
using model adequacy we found that of the 8 empirical 
datasets we investigate, 5 had at least one substitution 
model shown to be adequate, supporting the use of the 
Mk model for morphological data.

METHODS

Data

We used a collection of previously published mor-
phological matrices from Sansom et al. (2018) (taken 
from http://graemetlloyd.com/matrdino.html). This 
dataset contained 166 morphological matrices of tet-
rapod taxa. The datasets vary in size in terms of taxa, 
from 12 to 219, traits, from 23 to 622, and number of 
different character states, from 2 to 10. They have also 
been used previously to examine the use of phyloge-
netic methods and as such were an ideal dataset for 
this study (Sansom et al. 2018). We removed matrices 
based on 2 criteria: (i) those that contained characters 
with more than 9 states or 80 taxa, as they became 
too computationally expensive, and (ii) those that 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syae055/7814882 by SSB M

em
ber Access user on 10 February 2025

http://graemetlloyd.com/matrdino.html


4 MULVEY ET AL. - ADEQUACY OF MORPHOLOGICAL MODELS

contained traits where only character state “0” and 
missing characters “?” were present for any trait. This 
resulted in a final dataset of 114 matrices. The datasets 
varied in size, with the number of taxa ranging from 
12 to 80, and the number of characters being between 
23 and 477.

Empirical Comparison of Morphological Models

Initially, our focus was on investigating how substi-
tution models impact the estimation of key parame-
ters. We chose 7 variants of the Mk model (Mk, MkV, 
MkV + G, Mk + G, MkVP, MkVP + G, MkP + G, see 
Table 1 for model assumptions) and compared differ-
ences in the resulting tree lengths and topologies. All 
morphological characters were treated as unordered 
throughout this study. Phylogenetic inference was per-
formed in a Bayesian framework using the software 
RevBayes version 1.2.1 (Höhna et al. 2016). We ran an 
MCMC inference under each of the 7 models for all 114 
datasets. This allowed us to determine whether there 
are any systematic differences in parameter estimates 
that could be attributed to the substitution model. For 
all models we assumed a uniform tree prior on the 
topology. Tree length was drawn from an exponential 
prior distribution with a rate parameter of 1. Relative 
branch lengths were drawn from a Dirichlet prior dis-
tribution (Zhang et al. 2012). The branch lengths were 
calculated as the product of the tree length and the rel-
ative branch lengths. Preliminary analyses were run 
using an exponential prior for branch length estima-
tion, however, we found the Dirichlet tree prior to per-
form better in simulations. We used an Mk model, with 
the size of the Q-matrix being determined by the maxi-
mum character state of each dataset. When allowing for 
among character rate variation, ACRV, (+ G) the shape 
parameter of the gamma distribution α was estimated 
as the inverse of a random variable alpha_inv drawn 
from the exponential distribution with a rate parameter 
of 1. We discretized the gamma distribution into 4 dis-
crete categories (Yang 1994). To account for ascertain-
ment bias (+ V), we selected the variable coding option 
in RevBayes. Partitioned models (+P) split the dataset 
based on the maximum observed character states. Each 
grouping had its own Q matrix. That is, all binary traits 
were assigned to a Q-matrix of size 2, all tertiary traits 
were assigned to a Q-matrix of size 3 and so on. For 

this set up, we linked the gamma distribution for ACRV 
across partitions.

We ran the MCMC for 20,000 iterations with 2 simul-
taneous runs, sampling every 10 generations. The 
output of both chains was automatically combined 
in RevBayes, resulting in a posterior sample of 4000. 
Convergence was assessed using a custom R script with 
the R package coda (Plummer et al. 2006) to ensure ESS 
values >200 of all parameters estimated.

Posterior summaries.—Tree length was calculated as 
the sum of the branch lengths averaged across the 
entire posterior distribution. We calculated the per-
centage change in tree length relative to the Mk model 
for each dataset to make it easier to observe any con-
sistent patterns across models. We then explored the 
differences in estimated tree topologies from the dif-
ferent substitution models for each dataset. Using a 
sample of 1000 trees from the posterior distribution 
for each substitution model, we calculated the nor-
malized Robinson–Foulds distance between all trees. 
With this resulting matrix we performed a multivari-
ate homogeneity of group dispersions analysis using 
the R package vegan (Oksanen et al. 2022). This cal-
culated the distance between points and their group 
centroid. Plotting this as a PCoA allowed us to visu-
alize where models were in tree space, relative to one 
another. In order to quantify these differences we car-
ried out a permutation test to assess their significance 
using the permutest function in the vegan package 
(Oksanen et al. 2022). We could then determine if dif-
ferent variants of the Mk model inferred significantly 
different tree topologies.

Assessing the Performance of Model Adequacy and Model 
Selection Methods for Morphological Data

Choosing an appropriate model of evolution is an 
important step in any Bayesian phylogenetic analysis. 
The results from an inference will be conditioned on 
the assumptions of the evolutionary model. As such, 
if the model’s assumptions are markedly different 
than that of the underlying process that generated the 
data, the results may be inaccurate. Methods for choos-
ing an appropriate model often take a model selection 
approach, relying on estimation of the marginal likeli-
hood (Brown 2014b). These methods provide the rela-
tive fit of competing models. Although a model may be 
selected as the best choice, it does not necessarily mean 
that the model is in any way adequate for the dataset 
being analyzed. That is, it may not provide a sufficiently 
realistic description of the data generating process 
(Gatesy 2007; Shepherd and Klaere 2019). Therefore, 
model selection provides no indication about how well 
the model actually fits your data, only its relative fit 
compared to other models. In contrast, model adequacy 
approaches provide information on the absolute fit of 
a model to a dataset. They can provide information 
about a model’s ability to capture key characteristics of 

Table 1.  The assumptions of the Mk model and its variants tested 
in this study

Models and 
extensions

Assumptions

Mk All transition rates are equal (Lewis 2001)
V Accounts for ascertainment bias (Lewis 2001)
G Allows for variation in substitution rates among 

characters (Yang 1994)
P Partitions the data based on the number of character 

states
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a given dataset, as well as highlight where the model 
may be inadequate. Importantly, model adequacy pro-
vides the ability to reject models, even if they are iden-
tified as the “best” using a model selection approach 
(Brown and Thomson 2018; Shepherd and Klaere 2019).

Posterior-predictive simulations (PPS) is a model 
adequacy approach that has been applied to a variety 
of data types, albeit with limited frequency in phyloge-
netics (Gelman et al. 1996; Bollback 2002; Brown 2014a; 
Brown and Thomson 2018; Höhna et al. 2018; Schwery 
et al. 2023). Briefly, it works by simulating data under 
a given model and comparing the similarity of the 
empirical data to the newly simulated data using a test 
statistic. The rationale here being that if the model ade-
quately captures the underlying dynamics of the pro-
cesses generating the data, the simulated data would 
be similar to the empirical (Gelman et al. 1996; Bollback 
2002). To date, the use of PPS has been demonstrated 
more often for molecular data, for example Brown 
(2014a) and Duchêne et al. (2018), however, it has also 
been suggested for models of continuous trait evolu-
tion (Slater and Pennell 2014) and discrete character 
evolution (Huelsenbeck et al. 2003). Using simulations, 
we investigate the use of model adequacy and model 

selection for determining whether a morphological 
model fits our data.

Model adequacy using posterior predictive simulations.—To 
test the adequacy of morphological models we used 
posterior prediction simulations (PPS) following the 
workflow as described in Höhna et al. (2018) imple-
mented in RevBayes. This can be broadly broken down 
into 4 mains steps. We provide a brief description of 
these steps here, but for a more thorough description 
see Höhna et al. (2018). (i) The first step is to analyze 
the empirical data under a given model. This involves 
a regular MCMC inference sampling parameter val-
ues from the posterior distribution. (ii) New datasets 
are then simulated in R using the phangorn package 
(Schliep 2011). Datasets are simulated under the same 
model as used in step 1 with trees and parameter esti-
mates inferred in step 1. (iii) Inference under the same 
model is then carried out on all the newly simulated 
datasets from step 2. (iv) Test statistics are calculated 
and compared between the original empirical data and 
inference results, and the newly simulated data and 
inference results, see Figure 1. The overarching idea 
here being, the more similar the simulated data is to 

taxa 1   010121
taxa 2   121010
taxa 3   001001 
taxa 4   110101

Empirical Data

TrTT ee LLengthe
Robinson-n Foulds

Generalised Euclidean 
Distances Di t

Gower Coefficient

3.

2.1. taxa 1   100121
taxa 2   121020
taxa 3   010111 
taxa 4   100101

Simulated Data 1

taxa 1   110121
taxa 2   111010
taxa 3   011101
taxa 4   120101

Simulated Data 2

taxa 1   110121
taxa 2   111010
taxa 3   011101
taxa 4   120101

Simulated Data n

Consistency IndConsistency Index
RRetention Indetention In ex

Consistency IndConsistency Index
Retention Indetention ex

Figure 1.  Posterior predictive simulation workflow. Step 1. an MCMC inference is carried out under a given model. Step 2. datasets 
are simulated under the same model based on parameter estimates from 1. Step 3. an MCMC inference is then carried out on the simulated 
datasets. The boxes show the test statistics that are applied to determine whether or not the model is adequate. Generalized Euclidean distances 
and Gower’s coefficient are used to compare the datasets. Tree length and Robinson–Foulds are used to compare the inferred trees. Consistency 
index and retention index use the empirical trees and the empirical and simulated datasets to test for adequacy.
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the empirical data, the better the model is at describ-
ing the underlying processes that produced your data. 
This in turn indicates whether we can have confidence 
in the results inferred under a given model. Note it is 
practical to simulate datasets in RevBayes, and we pro-
vide instructions for doing so in the associated tutorial 
(https://revbayes.github.io/tutorials/pps_morpho/). 
We chose to simulate data using phangorn as, at the 
time, it was slightly more computationally efficient 
given that our study featured an exceptionally large 
number of simulations (700,000 simulations for 160 
individual datasets), but this should not be a concern 
for an empirical study, which would typically only con-
tain one or a few individual datasets.

Candidate test statistics for morphological data.—PPS are 
only as good as the test statistics used, meaning if the 
test statics are not able to capture differences that result 
from the underlying dynamics of the data generating 
processes, it will not be possible to use PPS to under-
stand the adequacy of a given model. Using test statis-
tics allows us to convert the empirical data and output 
into numerical values that we can use to summarize the 
differences between empirical and simulated data. The 
test statistics can then be compared using effect sizes, 
which provide a way of quantifying variation in model 
fit and allow us to distinguish between the fit of a given 
model. Previous studies have used posterior-predictive 
P-values to accept or reject a model. In this study we 
chose to focus on effect sizes over P-values for 2 rea-
sons. First, given that the fit of morphological models 
to empirical data had not been tested previously, we 
wanted to determine how different models performed 
and compare their fit to empirical data. Second, effect 
sizes provide a more intuitive way of comparing the 
fit of different models. By applying P-values only we 
can assess whether a model is adequate or not, but not 
how the models perform relative to each other (Brown 
2014a; Duchêne et al. 2017). Effect sizes therefore allow 
us to gain a better understanding of the impact of dif-
ferent morphological models, and ultimately address 
the main questions of this study. In an empirical study, 
researchers can choose either approach, and we do 
include the use of P-values for our empirical analysis.

Here, the effect sizes were calculated by:

ES =
empTS− simTS

stdSimTS (1)

where empTS is the empirical value for a given test sta-
tistic, simTS is the value of the test statistic from a single 
simulated replicate, and stdSimTS is the standard devia-
tion across all simulated replicates. The closer this num-
ber is to zero, the better the model is at explaining your 
data. Test statistics can be divided into 3 categories: (i) 
data based, (ii) inference based, and (iii) data inference 
hybrid or mixed. Data based test statistics compare the 
actual morphological datasets themselves, inference 
based compare the inferred trees and mixed statistics 
uses both the data and the trees to compare your empir-
ical and simulated values.

Data based test statistics. As the name suggests, these 
test statistics focus on characterizing the matrices them-
selves, here meaning the morphological data. As PPS 
studies in phylogenetics have previously focused on 
molecular data, many of the data based statistics are 
only suited to DNA. For example, quantifying the GC 
content or number of invariant sites (Höhna et al. 2018). 
Summarizing morphological datasets in a similar way 
requires different metrics. To do this we explore the use 
of disparity metrics. Disparity is a measure of the mor-
phological variation observed among species (Hopkins 
et al. 2017). It is important to note, we are not interested 
in the actual measure of disparity, we are interested 
in how the value differs between the original empiri-
cal data and the simulated data. We tested 2 metrics of 
disparity.

(i) Generalized Euclidean Distances (GED) (Wills 1998) 
is a popular disparity metric commonly used in verte-
brate research (Brusatte et al. 2011; Lehmann et al. 2019). 
This measure is similar to the basic Euclidean distances 
but incorporates adjustments to accommodate missing 
characters. Lloyd (2016) (modified from Wills (2001)) 
defines GED as:

Sij =

Ã
v∑

k=1

S2ijkWijk

(2)

where Sij is the total distance between taxa i and j, v 
is the total number of characters in the matrix, Wijk is 
the weight of the kth character, and Sijk is the distance 
between taxa i and j at the kth character. Sijk equals 0 
when the ith and jth sequence match in the kth posi-
tion and 1 when there is a mismatch. To account for 
missing data, a mean estimate of disparity is first 
calculated across all comparisons for which we have 
observations:

S̄ijk =
∑v

k=1 SijkWijk∑v
k=1 S(ijk)max

Wijk

where S(ijk)max is the maximum possible distance 
between taxa i and j for the kth character, which 
equals 1 for discrete characters. The term S̄ ijk.S(ijk)max 
is then substituted into Equation 2 for missing Sijk 
values. In all cases, we treat characters as equally 
weighted, that is, Wijk = 1.

(ii) Gower’s coefficient (GC) (Gower 1971) is commonly 
used in invertebrate studies (Hopkins and Smith 2015). 
This metric calculates disparity differently to the GED, 
notably in regards to how it deals with missing charac-
ters. Here this is achieved by normalizing by the avail-
able data. GC can be written as (Lloyd 2016)

Sij =
∑v

k=1 SijkWijk∑v
k=1 δijkWijk (3)

where δijk is coded as 1 if both taxa i and j can be coded 
for k (i.e., character states are observed for both taxa), 
and zero if not. As above, we use assume equal weights, 
that is, Wijk = 1.
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For both the above metrics, we used the R package 
Claddis (Lloyd 2016). In the calculations we set charac-
ters as unordered. The output from this gives a matrix 
of the pairwise distance between taxa. We took the 
average disparity across the matrix for the calculation 
of the effect size, that is, for empTS and simTS.

Inference based statistics. Inference based test statistics 
aim to characterize the inferred trees in the posterior 
distribution.

(i) Mean Tree Length (TL) was calculated using all 
trees sampled in the posterior distribution, defined as 
(Höhna et al. 2018):

1
K

K∑
i=1

TLi
(4)

where K is the total number of posterior samples and TL 
is defined as the sum of branch lengths TL =

∑i=1
2N−3 bli.  

This calculation was done in RevBayes. We took the 
mean tree lengths across the posterior distribution of 
trees as the input for the effect sizes.

(ii) Mean Robinson-Foulds Distance (RF) was used to 
measure the topological uncertainty within the posterior 
distribution (Robinson and Foulds 1981). The RF distance 
was calculated for each posterior distribution of trees, 
such that we had a measure of topological uncertainty for 
the empirical inference and compared this to the simu-
lated inferences. This can be defined as (Höhna et al. 2018):

RF =
2

K (K − 1)

K−1∑
i=1

K∑
j=i+1

RF
(
Ψi,Ψj

)
(5)

where Ψi and Ψj are any pair of trees from the posterior. 
This value was calculated in RevBayes.

Mixed test statistics. These test statistics take both the 
data and the tree into consideration. Again, we investigate 
the use of 2 test statistics here. (i) Consistency Index (CI) 
(Kluge and Farris 1969) is a measure of homoplasy within 
the dataset. It can be calculated as (Murphy et al. 2021):

CI =
m
s (6)

where m is the minimum possible number of steps or 
changes along a tree and s is the reconstructed num-
ber, that is, the number observed along estimated trees 
(Kluge and Farris 1969). This metric has been used to 
characterise datasets in paleontology (Murphy et al. 
2021) and has been applied to model adequacy studies 
focusing on molecular data (Duchêne et al. 2018). A CI 
of 1 indicates no homoplasy and gets closer to zero as 
the amount of homoplasy increases.

(ii) The retention index (RI) (Farris 1989), builds on the 
consistency index to calculate the level of potential syn-
apomorphy observed along the tree and is calculated as 
(Murphy et al. 2021):

RI =
g− s
g−m (7)

where g is the maximum number of possible steps on 
a given tree. For both consistency and retention index, 

we used the maximum clade credibility (MCC) tree 
generated from inference of the empirical data for all 
calculations. We carried out preliminary analysis where 
we used the entire posterior distribution of trees for this 
calculation. This increased computation time from a 
number of minutes to 24 hours and produced extremely 
similar results, see Supplementary Figure S2. For this 
reason, we continued to use the MCC tree only for the 
rest of the analyses.

Model selection using stepping stone sampling.—For 
model selection, Bayes factors are computed to com-
pare between models. In order to do this, we first 
have to calculate the marginal likelihood of the data. 
The marginal likelihood is an important quantity in 
Bayesian model selection as it provides a measure of 
the goodness of fit of the model to the data, while 
accounting for model complexity. The marginal prob-
ability is the probability of the data integrated over 
all possible parameter values weighted by their prior 
probabilities for a given model. This is tricky to calcu-
late and can be extremely computationally expensive. 
As such we avoid calculating it in regular MCMC 
inference using the Metropolis-Hastings algorithm 
(Metropolis et al. 1953; Hastings 1970). We therefore 
need to use a different approach in order to approxi-
mate this value. One such approach is stepping stone 
sampling. Stepping stone sampling is a Monte Carlo 
method that uses a sequence of intermediate distribu-
tions, or steps, between the prior and posterior distri-
butions to compute the marginal likelihood. Stepping 
stone sampling has been demonstrated to be a reli-
able method for calculating marginal likelihoods and 
therefore performing model selection with molecular 
data (Xie et al. 2011; Höhna et al. 2021). Marginal like-
lihoods has also been used for model selection with 
morphological data (Rosa et al. 2019; Wright et al. 
2021; Casali et al. 2022), though the appropriateness 
of this approach has never been explored. Further, we 
wanted to determine if model adequacy and model 
selection agreed on what model fit a given dataset.

Simulated data.—We based our simulation study 
on 2 empirical datasets, one on Proboscideans (the 
group containing elephants and their nearest extinct 
relatives) (Shoshani et al. 2006) and the other on 
Hyaenodontidae (Egi et al. 2005). For simplicity we 
will refer to each dataset as simulated elephants and 
simulated hyaenodonts, respectively. The simulated 
elephant dataset is larger, having 40 taxa, 125 charac-
ters with 6 states compared to the simulated hyaeno-
donts which has 15 taxa, 65 characters and 5 states. 
For each dataset, we used 20 trees from the poste-
rior distribution inferred under a given model and 
simulated character data under the same model in R 
using phagnorn (Schliep 2011). We did not simulate 
any traits with missing data. We did this for the MkV, 
MkVP, MkV + G and MkVP + G models for each 
dataset (160 simulated replicates in total).
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Analysis of simulated data.—We carried out PPS follow-
ing Section Model adequacy using posterior predictive 
simulations on all simulated elephant and simulated 
hyaenodont datasets. This allowed us to jointly vali-
date the candidate test statistics and determine how 
well PPS can detect the correct model, as well as how it 
handles incorrect models. We analyzed each of the sim-
ulated datasets under the same 7 models as in Section 
Empirical Comparison of Morphological Models (Mk, 
MkV, MkV + G, Mk + G, MkVP, MkVP + G, MkP + G) 
and kept all model parameters the same. This resulted in 
560 inferences per simulation set up (i.e., we simulated 
20 datasets under 4 models and then each was analyzed 
under the 7 models stated above) totaling 1200 infer-
ences across both simulated elephant and simulated 
hyaenodont. The MCMC was run for 10,000 iterations, 
with 2 individual chains. Convergence was assessed 
by calculating the ESS values for the likelihood, prior, 
posterior, tree length, and when present in the model, 
the estimated alpha values using the R package coda 
(Plummer et al. 2006). MCMC chains that produced ESS 
values <200 were run again with an increase in the chain 
length. For the simulated hyaenodont datasets, 533 con-
verged after 10,000 iterations, 24 after 50,000 iterations 
and 3 after 100,000. For the simulated elephant data, 
548 reached convergence after 10,000 iterations and 12 
required 50,000 iterations.

The number of simulations required for PPS is 
not strictly defined. Given that the number of simu-
lation replicates will increase both the computation 
time and memory requirements, having more than 
required should be avoided. To explore this, we used 
both the simulated elephant and simulated hyaeno-
dont datasets generated under the MkV + G model. 
We ran an MCMC inference as described above with 
1000 simulation replicates. We calculated the cumula-
tive means for each test statistic inferred under each 
model. Following Robinson et al. (2004), we plot-
ted the cumulative means, thereby taking a graphi-
cal approach that shows the point at which the line 
becomes flat, indicating the required number of repli-
cates Supplementary Figure S3 (Robinson et al. 2004). 
We found that after 500 replicates the lines were flat 
and we determined this to be sufficient. To ensure that 
this number of simulation replicates was not affecting 
the calculation of the actual effect sizes, we compared 
the effect sizes for each test statistic with 500 and 1000 
replicates. For ∼92% of the effect sizes calculated, 
we found that the difference was less than 0.1 with 
a median of ∼0.03. The largest change in effect sizes 
we saw was between 500 and 1000 replicates, ∼0.5. 
This was calculated for the 2 data based test statistics 
both inferred under the model MkVP + G model and 
for the same replicate. This result was thus considered 
an outlier. All other differences were less than 0.25, 
and did not change whether a model was considered 
to be adequate or not. As a result of these tests, we 
determined that within a PPS analysis, simulating 500 
datasets is sufficient to determine the fit of a given 
model. Following this, for all further analyses, at step 

2 in the PPS workflow we simulated 500 datasets. We 
then used stepping stone sampling to estimate the 
marginal likelihoods under each of the models. We 
kept all model parameters the same as above, and 
used 48 stones.

Analysis of Empirical Data

We chose to analyze 8 empirical datasets here; 
Agnolin (2007); Egi et al. (2005); Bourdon et al. (2009); 
Shoshani et al. (2006); Archibald et al. (2001); Schoch 
and Sues (2013); Bloch et al. (2001); Tomiya (2011). This 
was limited by the computational costs of running the 
analysis multiple times. Datasets were chosen to cover 
a range of sizes, in terms of taxa, characters, and states. 
We tested the same 7 models we used throughout (Mk, 
MkV, MkV + G, Mk + G, MkVP, MkVP + G, MkP + G) 
and kept all model parameters the same as in Section 
Model adequacy using posterior predictive simulations. We 
also used stepping stone sampling on each of the data-
sets in order to see how the models chosen by model 
selection compared to those identified as most appro-
priate by model adequacy. Posterior P-values were 
calculated in R for each of the test statistics to compare 
with the results obtained using effect sizes.

Results

Empirical Comparison of Morphological Models

Assuming different models of morphological evo-
lution produced different estimates of key parameters 
of interest. Figure 2A shows the percentage difference 
in mean tree lengths relative to that of the Mk model 
for all 114 datasets. There are some general trends that 
emerged here. As expected, the MkV model produced 
smaller estimates of tree length relative to the Mk model 
for all but one dataset. The Mk + G model produced 
longer trees for 96% of the datasets compared to the 
Mk model. However, when used in combination, these 
2 extensions produced the smallest trees compared to 
all models in 96% of datasets. Partitioned models esti-
mated larger trees, with the MkP + G model estimating 
larger trees in 100% of the datasets, consistent with the 
findings of Khakurel et al. (in press). Interestingly, the 
MkVP + G model generated both larger and smaller 
trees compared to the Mk model, with only 35% of the 
trees being larger. Figure 2B shows the tree length plot-
ted for 2 datasets, of Hyaenodontidae (Egi et al. 2005) 
and Proboscideans (Shoshani et al. 2006), respectively. 
This is to highlight, that while there are some general 
trends, models still behave differently depending on 
the dataset. It is worth noting that the Shoshani et al. 
(2006) dataset (Fig. 2B (i)) is the larger of the 2, both in 
terms of number of taxa and characters. The influence 
of different models on tree length tended to increase 
with larger datasets, both in terms of taxa and character 
number, see Supplementary Figure S1.

Figure 2C shows the tree space for the same 2 data-
sets. It is clear that the different models are plotting in 
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different parts of the tree space, therefore producing 
different posterior distribution of trees. Using the per-
muted P-values estimated from the pairwise distances 
using Robinson–Foulds, we found that for both datasets 
the majority of models occupied a different tree space, 
that is, differences in topology were significant. For the 
dataset from Egi et al. (2005), trees inferred using MkV, 
MkV + G and Mk + G models grouped in a similar tree 
space, whereas all other models occupied different 
spaces. For the dataset from Shoshani et al. (2006) we 
found 2 clusters, one consisting of trees inferred using 
Mk + G and MkV models, and the other of trees from 
MkV and MkV + G models, though there was no over-
lap between Mk + G and MkV + G posteriors. These 
results highlight that, not only do the substitution mod-
els have an impact on key parameter estimates but this 
impact is not uniform across datasets.

Assessing the Performance of Model Adequacy and Model 
Selection Methods for Morphological Data

Candidate test statistics for morphological data.—We 
explored the use of 6 test statistics for morphologi-
cal models. The desired characteristic of test statics 

considered here is their ability to indicate the adequacy 
of a particular model while also pointing out the inad-
equacy of another, that is, we want the effect size of 
the correct model to be consistently around zero, while 
being larger for the incorrect models. We will focus on 
the results from both hyaenodont and elephant datasets 
simulated under the MkV + G and MkVP + G models. 
We carried out the same investigation on datasets sim-
ulated under the MkV and MkVP models and reached 
the same conclusions, see Supplementary Figure S6–8. 
The data based test statistics, Gower’s coefficient and 
generalized Euclidean distance, both show a similar 
pattern, shown in Figure 3. For the unpartitioned mod-
els there is no discernible preference for a given model. 
That is, they all fall within a similar range of effect sizes. 
For data simulated under a partitioned model, there 
was a stronger separation of effect sizes, where all the 
partitioned models are closer to zero and fall within a 
similar range. Neither of the inference based test statis-
tics, shown in Figure 4, show any strong or meaningful 
separation of effect sizes, that is, there is no preference 
for any of the models and it is unclear what explains 
this pattern. As for the mixed test statistics, consistency 
index and retention index, shown in Figure 5, there is a 
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similar pattern to that of the data based test statistics, 
however, with the differences in effect sizes between 
models being more pronounced.

In order to quantify these results, we focused on 3 
key features: (i) the variance in effect sizes for the cor-
rect model, meaning the total range of effect sizes for 
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a given test statistic with the correct model, (ii) how 
incorrect models performed, meaning the total range 
of effect sizes for a given test statistic across all mod-
els, and (iii) how easily we could differentiate between 
adequate and inadequate models by calculating the 
number of models that fall into the correct model 
effect size (ES) range. A numerical summary of these 
results can be found in Tables 2 and 3. Consistency 
index and retention index demonstrated the best per-
formance of these 3 aspects, with the correct models 

being consistently close to zero, incorrect models hav-
ing larger ES values, and the fewest number of models 
on average falling within the correct model effect size 
range. While the data based test statistics seem promis-
ing, the difference in effect sizes were less than that of 
the mixed test statistics. As such, in the empirical anal-
yses we relied solely on the mixed test statistics, the 
consistency and retention indices. An added advantage 
of using only the mixed test statistics is that we do not 
need to carry out an inference on the simulated data. 
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Figure 5.  Validation of the mixed test statistics (consistency index and retention index). Plots show the output from each simulated dataset 
with 20 replicates for each test statistic. Plots on the left show results of the simulated hyaenodont datasets, with 15 taxa and 65 characters, 
and on the right from the simulated elephant datasets with 40 taxa and 125 characters. The colored points indicate the correct model, with the 
grey horizontal bar marking the range of effect sizes calculated for the correct model. + = Mk, ✕ = Mk + G, ▲ = MkV, ◆ = MkV + G, *= MkVP, 
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Table 2.  Validation of test statistics from the simulated hyaenodont datasets

Model Test statistic Correct ES Overall ES Num in Correct

MkV + G GC 1.7 2.2 5.7
GED 1.7 2.2 5.6
TL 1.2 1.4 6
RF 2.9 3.1 5.9
CI 2.7 4.3 5
RI 1.8 2.5 5.6

MkVP + G GC 0.9 2.9 1
GED 0.9 2.8 1
TL 2.8 2.8 6
RF 3.3 5.0 4.1
CI 1.2 11.7 1.40
RI 1.1 5.3 1.6

Correct ES gives the total range of effect sizes for a given test statistic with the correct model. Overall ES gives the total range of effect sizes 
for a given test statistic across all models. Num in Correct gives the number of models which fall into the Correct ES range. Num in Correct only 
looks at incorrect models, which means the maximum value here can be 6. GC = Gower’s coefficient, GED = generlized Euclidean distance, 
TL = tree length, RF = Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index have the larg-
est overall ES range with, on average, the fewest models falling in the same range as that of the correct model.
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We used the MCC tree from the empirical inference, 
therefore saving on computational time and memory 
requirements.

Model adequacy versus model selection.—Here we com-
pared the use of model adequacy and model selection 
using simulated datasets. To reiterate, unlike model 
selection, model adequacy approaches do not rank 
potential models in the same way, indicating that one 
model is the best. Therefore, for any given dataset, 
if multiple models are investigated, as was the case 
here, several models may be adequate according to 
a particular test statistic. We will focus on the same 4 
datasets as in Section Candidate test statistics for mor-
phological data.

In the above section, to identify appropriate test sta-
tistics, we focused on the pattern of median ES values. 
When considering individual replicates we required 
more information than just the median ES value to 
determine the adequacy of a model for a given dataset. 
Using this value alone makes it difficult to determine 
a model’s adequacy unless the median value is zero. 
We explored the use of upper and lower quartiles, and 
minimum and maximum limits and found the latter 
to be the more informative approach for identifying a 
model’s adequacy. We propose that if the minimum and 
maximum limits pass through zero, this indicates that 
the model is adequate using our chosen test statistics, 
as shown in Figure 6. Following this criteria, we could 
quantify the percentage of simulation replicates where 
the model was deemed adequate/inadequate. Table 4 
shows the percentage of times a model met the above 
criteria using the consistency index and the retention 
index.

Model selection produced surprising results. We 
consistently found support for partitioned models, 
regardless of the model used to simulate the data. 
Table 5 shows the percentage of times a model was 
chosen as the best model according to Bayes factors. 
For this reason, using Bayes factors is not a reli-
able approach for deciding between partitions with 

morphological data, at least not using the standard 
approach we applied to partition characters, i.e., 
by the maximum observed state number (see the 
Discussion for a full explanation).

Analysis of Empirical data

We then applied PPS with the newly validated test 
statistics to 8 empirical datasets. This allowed us to 
answer our main question: are current morpholog-
ical models adequate for empirical data? Of the 8 
datasets, 5 had at least one model that was adequate. 
Figure 6 shows the effect sizes from 4 datasets (see 
also supplementary Fig. S9). The MkVP + G model 
was found to be adequate for all 5 datasets. Of those 
5 datasets, 4 also fit an MkVP model. We found the 
MkP + G model to be adequate for 3 datasets. For one 
of the datasets, Figure 6C, we found all models apart 
from the MkP + G model to be adequate. We do not 
see any clear pattern in terms of adequate models, 
with respect to the size of the datasets, that is, number 
of taxa, characters or state number. This suggests that 
these variables are not informative when choosing a 
model. For the 2 largest datasets, in terms of taxa, we 
did not find any models to be adequate. These data-
sets had 40 taxa (Shoshani et al. 2006) and 50 taxa 
(Tomiya 2011). However, no models were adequate 
for a third dataset with only 25 taxa (Schoch and 
Sues 2013). Table 6 shows the P-values calculated for 
consistency index and retention index for the same 
datasets as in Figure 6. See Supplementary Table S1 
for P-values calculated for an additional 4 datasets. 
Values below 0.025 and above 0.975 are considered 
to be significant, although these thresholds can be 
considered as conservative (see Fabreti et al. 2024). 
This would indicate that the simulated data is sig-
nificantly different from the empirical data, and that 
the model does not capture the underlying data gen-
erating processes and therefore is not adequate for 
that dataset. Results using effect sizes and P-values 
agree on the same models for all datasets. There is 

Table 3.  Validation of test statistics from the simulated elephant datasets

Model Test statistic Correct ES Overall ES Num in Correct

MkV + G GC 0.8 2.0 4.1
GED 0.9 1.9 4.7
TL 0.7 0.7 5.7
RF 2.4 2.9 5.5
CI 2.0 5.9 2.8
RI 1.8 4.3 3

MkVP + G GC 1.2 3.2 2.1
GED 1.2 4.0 2.95
TL 0.3 1.0 2.95
RF 3.7 3.7 5.95
CI 1.9 20.0 1.45
RI 1.5 13 1.6

Correct ES gives the total range of effect sizes for a given test statistic with the correct model. Overall ES gives the total range of effect sizes 
for a given test statistic across all models. Num in Correct gives the number of models which fall into the Correct ES range. Num in Correct only 
looks at incorrect models, which means the maximum value here can be 6. GC = Gower’s coefficient, GED = generalized Euclidean distance, 
TL = tree length, RF = Robinson Foulds, CI = consistency index, and RI = retention index. Consistency index and retention index have the larg-
est overall ES range with, on average, the fewest models falling in the same range as that of the correct model.
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one instance when there is a disagreement using 
retention index. For the dataset from Egi et al. (2005), 
the Mk + G model was accepted using the threshold 
that we defined for effect sizes and rejected using 
P-values. Both metrics rejected the model according 
to consistency index, however, so the Mk + G was 
ultimately rejected using both approaches.

DISCUSSION

Understanding morphological evolution is an extremely 
difficult task. Within morphological phylogenetics we rely 
on a small number of relatively simple models to describe 
this complex process (Wright 2019). Until now, the impact 
of these different substitution models on parameter esti-
mates was not well understood. Our analysis on the 
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Figure 6.  Effect sizes for 4 empirical datasets for the consistency index and retention index. The dashed black line is at zero is there to help 
identify adequate models. The datasets are taken from a) Agnolin (2007), b) Egi et al. (2005), c) Bourdon et al. (2009), and d) Shoshani et al. 
(2006). Silhouettes from PhyloPic (http://phylopic.org). A by Zimices (CC BY-NC 3.0), B by Margot Michaudand (CC0 1.0), and C by Gabriela 
Palomo-Munoz (CC BY-NC 3.0).

Table 4.  The percentage of times a model was found to be adequate across all simulated replicates using consistency index (CI) and reten-
tion index (RI) as tests statistics

Sim model Dataset Test Statistic Mk Mk + G MkV MkV + G MkP + G MVP MkVP + G 

MkV + G Hyaenodont CI 100% 95% 100% 100% 95% 95% 95%
MkV + G Hyaenodont RI 100% 100% 100% 100% 100% 100% 100%
MkVP + G Hyaenodont CI – – – – 100% 100% 100%
MkVP + G Hyaenodont RI 50% 65% 45% 75% 100% 100% 100%
MkV + G Elephant CI 100% 100% 100% 100% 40% 85% 80%
MkV + G Elephant RI 100% 100% 100% 100% 70% 100% 100%
MkVP + G Elephant CI – – – – 100% 100% 100%
MkVP + G Elephant RI – – – – 100% 100% 100%

In order for a model to be considered adequate the effect sizes need to meet the criteria put forward here, where the range of minimum and 
maximum values contain zero. The dashed lines indicate 0%.

Table 5:.  Models chosen using Bayes factors

Model Dataset Mk Mk + G MkV MkV + G MkP + G MVP MkVP + G

MkV + G Hyaenodont – – - – 5% 15% 80%
MkVP + G Hyaenodont – – - – 5% 30% 65%
MkV + G Elephant – – - – – – 100%
MkVP + G Elephant – – - – – – 100%

Cells show the percentage of times a model was selected across the 20 replicates from each simulation set up. The dashed line indicates the 
model was never selected.
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influence of these models using empirical datasets, focus-
ing on tree length and topology, demonstrates that differ-
ent models can produce contrasting reconstructions of the 
evolutionary history of a group, emphasizing the impor-
tance of model choice (Fig. 2). Although the impact of 
models on parameter estimates is not uniform across data-
sets, the most consistent pattern we observe is whether or 
not the data is partitioned by the number of states. Further, 
we found using model adequacy, that partitioned models 
are often a good fit to empirical datasets (for 5 out of 8 
tested here), and that there can be more than one model 
adequate for a given dataset.

Partitioned Models

In all the partitioned models explored here, traits 
were partitioned based on the number of observed 
character states. This is a reasonable approach, both in 
terms of the biology of the traits being described and 
the way in which the characters tend to be coded. We 
found that for all but 2 datasets, the unpartitioned mod-
els produced smaller trees. To further investigate the 
cause of this, we ran an analysis using a binary dataset 
and increased the Q-matrix size from 2 to 5. The objec-
tive here was to mirror what happens when we have 
characters with a lower number of observed states 
than the maximum number of states in the matrix. 
For example, placing binary characters in a partition 
with a maximum of 5 character states. We show that, 
as the size of the Q-matrix increases, tree length gets 
smaller (Supplementary Fig. S10). The effect of parti-
tioning that we observe on empirical estimates of tree 
length, is therefore a direct result of how morphological 
data is typically partitioned (see also Equations 8 and 
9). Characters are partitioned by the maximum num-
ber of observed states, for example, binary characters 
are all together in one partition and assigned to a rate 
matrix of size 2, characters with 3 states are assigned 
to a rate matrix of size 3 and so on. For unpartitioned 
models, however, all of the characters will be in a sin-
gle Q-matrix that is the size of the maximum num-
ber of observed states across the whole dataset. This 
means that for a given branch length v, under a model 
that assumes there are n states, for characters where 
we observe < n states (e.g., a binary character in a rate 

matrix of size 5), the probability of observing no change 
will be underestimated. Similarly, the probability of 
observing a given change will also be lower if there are 
more (unobserved) possible states. Both cases will result 
in shorter branch lengths. Partitioning morphological 
data by character state number is a practical approach. 
However, this requires making an assumption that we 
know the number of states for each character, when in 
reality we might not. For molecular data of course, this 
is not something we need to consider, as we know there 
are 4 nucleotides. By assuming we know the number 
of states, based on the number of observed states, we 
may be biasing our results. The effects of whether or 
not a dataset is partitioned are considerable in terms 
of parameter estimates. As such, it is important to con-
sider how the data is being partitioned and whether or 
not it makes biological sense for your dataset to do so.

Here we focused exclusively on partitioning by the 
number of character states. This is the most common parti-
tioning scheme and is even a default in some phylogenetic 
software programs, for example BEAST2 (Bouckaert et al. 
2019) and MrBayes (Ronquist et al. 2012). Yet this is not 
the only way that data could be partitioned. A researcher 
could partition the data based on different anatomical 
regions, or based on subsets of anatomical, ecological or 
behavioral traits (Klopfstein et al. 2015; Casali et al. 2023). 
Thus, one may need to decide between various parti-
tioning schemes or no partitioning at all. To date, model 
selection is regarded as the gold standard for choosing 
between substitution models and partition schemes (Xie 
et al. 2011). Within a Bayesian framework, comparing 
marginal likelihoods has been shown to be effective for 
choosing between partition schemes with molecular data. 
Our results, however, show that for morphological data, 
model selection consistently selects a partitioned model, 
regardless of the model used to simulate the data. This 
result can be explained by taking into account how parti-
tioning morphological data affects the likelihood calcula-
tion, importantly how it affects the transition probabilities 
and the stationary frequencies.

For example, assume you have a tree consisting of 2 
tips, one with discrete state 0 and the other with dis-
crete state 1, as shown here.

0 –––––––––––––––––– 1
← 2v →

Table 6.  Posterior P-values from the empirical analyses 

Model Agnolin Egi Bourdon Shoshani

CI RI CI RI CI RI CI RI

Mk 0 0.003 0 0.005 0.8895 0.812 0 0
Mk + G 0.001 0.004 0 0.006 0.898 0.8235 0 0
MkV 0 0 0 0.005 0.019 0.011 0 0
MkV + G 0 0 0 0.006 0.033 0.01 0 0
MkP + G 0.835 0.659 0.994 0.446 1 0.999 0.001 0
MkVP 0.105 0.041 0.992 0.483 0.859 0.655 0 0
MkVP + G 0.095 0.034 0.974 0.376 0.848 0.6245 0 0

CI refers to consistency index and RI to retention index. Values below 0.025 and above 0.975 are considered to be significant. This would indi-
cate that the simulated data is significantly different than the empirical data and that the model is not adequate for that dataset. The results here 
agree with those produced using effect sizes. Agnolin (2007): 12 taxa with 51 characters, Egi et al. (2005): 12 taxa with 65 characters, Bourdon et 
al. (2009): 17 taxa with 129 characters, Shoshani et al. (2006): 40 taxa with 125 characters.
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The tips share a common ancestor v time units in the 
past. The transition probability for this scenario under 
the Mk model is calculated as:

p01(2v) =
1
k
− 1

k
e−2v

(8)

where k is the number of states. Further, the likeli-
hood of this data is:

P(0, 1|v) = 1
k
x
1
k

[
1− e−2v]

(9)

Here k would be set to 2 as we observe 2 states. 
However, in cases where there are other traits, some of 
which have a higher maximum observed state, k would 
increase, as happens in unpartitioned inference. Higher 
values of k would result in a lower likelihood. This 
change in likelihood is a direct result of the partitioning 
scheme. When partitioning molecular data, we do not 
change the size of the Q-matrix (k), which is why we 
do not see the same effects on the likelihood. Figure 7 
shows the impact on the log likelihood of changing the 
size of the Q-matrix (k) along different branch lengths 
(v) for these 2 tips.

To empirically demonstrate the impact of partition-
ing by state space on the likelihood we ran 2 experi-
ments. First, using an empirical binary morphological 
matrix we calculated the marginal likelihood under an 
unpartitioned MkV + G model increasing the Q-matrix 
size from 2 to 5. Supplementary Figure S12 shows the 
decrease in marginal likelihood as we increase the 
number of transition possibilities (Q-matrix size). We 
then wanted to investigate the impact of adding the 
“correct” partitions. Here, we used an empirical mor-
phological matrix with a maximum of 6 states. We first 
calculated the marginal likelihood under an unparti-
tioned MkV + G model. We then created 2 partitions, 
one partition for all binary traits and the second for all 

other traits. Then we increased the number of parti-
tions to 3, with 1 for binary traits, 1 for tertiary traits, 
and kept all others in the third partition. This method 
of adding partitions was continued until there were 5 
in total and all traits were in the appropriately sized 
Q-matrix. Supplementary Figure S11 shows that the 
marginal likelihood increases as partitions are added 
to the model. This is expected, given Equations 8 and 
9. This suggests that the results from model selection 
will not be indicative of any meaningful biological 
signal in this context. For this reason, using model 
selection to differentiate between partitions for mor-
phological data is not appropriate when the Q-matrix 
size varies.

Test Statistics

Overall, our results show that model adequacy, in 
particular PPS, currently offers the most effective way 
of identifying the most suitable model for morpholog-
ical data. In addition, we demonstrate that PPS can 
reliably determine whether a given model is adequate 
or not. Understanding the absolute fit of available 
models can lend support to the use of model based 
phylogenetics for the analysis of morphological data. 
Here we carried out the first thorough investigation 
into the use of PPS with discrete morphological sub-
stitution models.

One of the most important aspects of PPS to consider 
is the choice of test statistics. As this was the first sys-
tematic application of PPS to discrete character data, we 
first validated available test statistics using simulations. 
We explored the use of 6 test statistics and ultimately 
found consistency index and retention index to be the 
most informative. Neither of the inference based test 
statistics we explored, Robinson–Foulds or tree length, 
were able to give a clear indication of model adequacy. 
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Figure 7.  Log likelihoods calculated for different sizes Q-matrices (k) along as a function of branch lengths (v). The log likelihoods level off 
as v increases and the transition probability approaches the stationary frequencies.
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In this context, Robinson–Foulds distance is used to 
quantify variance across the posterior distribution of 
trees, therefore reflecting topological uncertainty. Given 
that morphological datasets tend to be small, the uncer-
tainty in topology can be high, regardless of the model 
used for inference (Barido-Sottani et al. 2020). The unin-
formativeness of tree length is more puzzling, since 
competing models have a clear impact on the estimated 
tree length. Tree length has also previously been shown 
to be a poor test statistic for molecular data (Duchêne 
et al. 2018). Both Gower’s coefficient and generalized 
Euclidean distance did show some potential value as 
test statistics (Fig. 3), although the mixed test statistics, 
the consistency index and retention indices, were sub-
stantially better (Fig. 5), Tables 2–3). Having test statis-
tics exclusively for the data would be favorable. Future 
studies could focus on alternative ways of including 
disparity metrics as test statistics. For example, we 
used the mean pairwise distance of disparity across the 
matrix, perhaps looking at the sum of the variance or 
sum of the ranges could be more informative for model 
adequacy (Smith et al. 2023).

Practical Considerations and Outlook

Our simulation study allowed us to identify ways 
of reducing the overall computational costs. As with 
many Bayesian analyses, there can be high computa-
tional costs associated with running a PPS analysis. To 
mitigate any unnecessary computation, we assessed the 
maximum number of simulation replicates required to 
reach stability in the mean effect sizes. By doing so, we 
were able to ensure that we were not running unnec-
essary replicates. Further, the most expensive part of 
running a PPS analysis comes from the inference of the 
simulation replicates. Based on our simulation study, 
we did not find any benefit to including inference based 
test statistics (tree length and Robinson–Foulds, Fig. 4), 
meaning this expensive step can be skipped. Taking 
both of these findings into account, the time, and mem-
ory required to run a PPS analysis becomes a lot smaller. 
For example, when compared to a stepping stone analy-
sis, we found PPS to take half the time per model.

From our simulation study, relying exclusively on 
the mixed test statistics, consistency index, and reten-
tion index, we found that for all replicates, more than 
one model was adequate (Table 4). When interpreting 
these results it is important to remember simulated data 
is often “neater” than empirical data. In our simulation 
set up, all characters in a given matrix were simulated 
under the same model and the model extensions we 
used are not proposing conflicting statements about 
the underlying process. As such, it is not surprising 
that we found multiple models to be adequate for our 
simulated data. The choice of substitution model may 
have less impact on our simulated data, as the topol-
ogy is easier to infer. For example, taking all simula-
tion replicates of the simulated hyaenodont data under 
an MkV + G model, the mean variance in tree length 
across the 7 different models was 0.74. In contrast, for 

the empirical data used as the basis for the simulations, 
the variance in tree length across models was 4.29 (Fig. 
2B(i)). Our simulation study was valuable in determin-
ing which test statistics were sensitive to model choice 
under exemplar conditions, but it is not alarming that 
differentiating between similar models, that is, all par-
titioned models, was not possible. Future work could 
investigate model adequacy when data is simulated 
under more complex models, for example, generating 
matrices that contain conflicting characters associated 
with different models or topologies (Sansom et al. 2017; 
Weisbecker et al. 2023).

The results from our empirical datasets show a larger 
difference in the effect sizes for different models (Fig. 
6). Based on our criteria of using the minimum and 
maximum effect sizes (after removing outliers) we 
determined that for 5 of the datasets, at least one of the 
models tested here was adequate. This leaves the other 
3 without an adequate model. While initially this result 
may seem negative, in that no models were adequate, 
it is actually more reasonable than not. The expectation 
that all datasets would have a model available that fits 
would have been unrealistic, given the complexity of 
the data versus the simplicity of the models. Having a 
method that allows the researcher to detect the limits 
of available models is much more useful than picking 
the best out of a group of models without considering 
whether any of them fit. This result highlights the ben-
efit of using such an approach. In the situation where 
no models are considered adequate for a dataset, it 
would be up to the researcher to determine how to pro-
ceed. For instance, if the effect sizes are not markedly 
far from zero one may still opt to use a model—how-
ever, appreciating its limitations would be important 
before drawing any conclusions based on the inference 
results. It is also encouraging to see that the most com-
plex model, the MkVP + G model, was identified as 
adequate for all 5 of the datasets for which we found an 
adequate model, indicating that we are moving in the  
right direction in terms of our assumptions about  
the data generating processes. This strongly supports 
the above discussed rationale of partitioning the data 
based on character state, lending confidence to our bio-
logical interpretation of the evolution of the data.

Here we have demonstrated how PPS outperforms a 
model selection approach in several respects. Making 
this a standard approach in morphological phyloge-
netics would be beneficial to the field in allowing for 
a better appreciation of how well our models are per-
forming. In this study we explored the use of 7 exten-
sions of the Mk model, as they are the most commonly 
applied. This is not an exhaustive list of available mod-
els and there are a number of alternatives that further 
relax assumptions of the Mk model.

These models aim to better capture the underlying 
biological processes that generated the data. For exam-
ple, Nylander et al. (2004) introduced an approach to 
relax the assumption of symmetric probabilities of 
change between characters through the use of priors. 
Subsequent exploration by Wright et al. (2016) showed 
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how this can improve model fit and phylogenetic esti-
mation. Similarly, Klopfstein et al. (2015) explored the 
use of accounting for directional evolution by allow-
ing character state frequency to vary. It is also possi-
ble to incorporate ordered characters into a model. In 
this scenario the model will only allow transitions in 
pre-defined orders, that is, traits can go from 0 to 1 but 
not 0 to 2 (Slowinski 1993; Brocklehurst and Haridy 
2021). A lot of work has been carried out exploring 
appropriate partitioning schemes for morphological 
data. Partitioning based on biological properties, such 
as anatomical region, function, or using evolutionary 
rates has also been suggested (Clarke and Middleton 
2008; Close et al. 2015; Simões et al. 2020; Casali et al. 
2022, 2023). For feasibility we focused our investigation 
on partitioning based on maximum observed character 
state. Additionally, models employed in biogeographic 
probabilistic analyses may have potential applications 
for discrete traits (Sanmartín et al. 2008, 2010; Lemey 
et al. 2009). These models can allow for independent 
stationary frequencies and independent pairwise tran-
sition rates which further relax the assumptions of the 
Mk model. Alternative models and partition schemes 
mentioned above can all be assessed using the work-
flow presented here, the only requirements being that 
the model can be used for both simulation and inference.

There are also a number of models of continuous 
character evolution that are often used in phylogenetic 
comparative methods (Alvarez-Carretero et al. 2022; 
Hansen et al. 2022), which previously were explored 
using model adequacy (Slater and Pennell 2014). We 
focused exclusively on discrete data as it remains the 
most widely used for tree inference. Finally, our results 
have implications for studies focused on divergence 
time estimation and ancestral state reconstruction 
which rely on discrete traits for inference. The same 
model validation can be applied before either of these 
types of analyses are carried out. Ultimately, fossils are 
our only direct source of information about extinct taxa. 
Collection and character coding of extinct and extant 
taxa for phylogenetic analysis requires huge effort, both 
in terms of time and knowledge required. Ensuring that 
we are using the best available models can help provide 
confidence in our results and support us in asking more 
complex questions with the data.

Conclusions

As the use of morphological data in Bayesian phylo-
genetic analysis increases in popularity, it is important 
that we understand the adequacy of models avail-
able for describing morphological evolution. Here we 
show that substitution model choice impacts estimates 
of both branch lengths and topology. By providing a 
workflow for posterior predictive simulations to val-
idate the adequacy of a model, researchers can gain 
insights into the absolute rather than the relative model 
fit, and can have more confidence in their choice of sub-
stitution model going forward. We show that, despite 

the arguably simplistic assumptions of available mor-
phological models, they are often able to approxi-
mate the underlying generating processes of discrete 
morphological datasets. However, we also show that 
no single model fit all datasets examined here, so we 
recommend researchers use model adequacy to assess 
model fit as a first step in phylogenetic inference. Given 
the substantial taxonomic effort invested into collect-
ing such datasets, the importance of utilizing accurate 
models cannot be overstated. Our work reinforces the 
significance of these considerations, particularly as 
fossil data remains the primary avenue for gaining a 
comprehensive understanding of evolutionary history 
in deep time.

Supplementary Material

Data available from the Dryad Digital Repository: 
https://dx.doi.org/10.5061/dryad.4f4qrfjkq.
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