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Assessing the effectiveness of
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forest disturbances in the
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Amazon forests are becoming increasingly vulnerable to disturbances such as droughts, fires,
windstorms, logging, and forest fragmentation, all of which lead to forest degradation. Nevertheless,
quantifying the extent and severity of disturbances and their cumulative impact on forest degradation
remains a significant challenge. In this study, we combined multispectral data from Landsat sensors
with hyperspectral data from the Earth Observing-One (Hyperion/EO-1) sensor to evaluate the efficacy
of multiple vegetation indices in detecting forest responses to disturbances in an experimentally
burned forest in southeastern Amazonia. Our experimental area was adjacent to an agricultural field
and consisted of three 50-ha treatments — an unburned Control, a plot burned every three years, and

a plot burned annually from 2004 to 2010. All plots were monitored to assess vegetation recovery
after fire disturbance. These areas were also affected by three drought events (2007, 2010, and 2016)
over the study period. We evaluated a total of 18 Vegetation Indices (VI), one unique to Landsat, 12
unique to Hyperion/EO-1, and five commons to both satellites (i.e., 6 total from Landsat and 17 from
Hyperion). We used linear models (LM) to evaluate how changes in ground observations of forest
structure (biomass, leaf area index [LAI], and litter production) associated with fire were captured

by the two VIs most sensitive to forest degradation. Our results indicate that the Plant Senescence
Reflectance Index (PSRI) derived from Hyperion/EO-1 was the most sensitive to vegetation changes
associated with forest fires, increasing by 94% in burned vs. unburned forests. Of the Landsat-derived
VIs, we found that the Green-Red Normalized Difference (GRND) were the most sensitive to forest
degradation by fire, showing a marked decline (87%) in the burned plots compared with the unburned
Control. However, compared to PSRI, the GRND was a better predictor of changes associated with fire,
both in the forest interior or forest edge, for the three ground variables: biomass stocks (r? = 0.5-0.8),
LAI (r?=0.8-0.9), and litter production (r>=0.4-0.7). This study demonstrate that Vls can detect
forest responses to fire and other disturbances over time, highlighting the relative strengths of each
VL. In doing so, it shows how the integration of multispectral and hyperspectral data can be useful for
monitoring tropical forest degradation and recovery. Moreover, it provides valuable insights into the
limitations of existing approaches, which can inform the design of next-generation sensors for global
forest monitoring.
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Tropical regions face unprecedented exposure to disturbances from logging, fires, forest fragmentation, and
climate change, often accelerating the pace and extent of forest degradaton®. Forest degradation refers to the
decline in the ecological quality and functionality of a forest, which occurs as a result of disturbances such as
biodiversityloss, reduction in forest structure, and diminished ecosystem services?. Recent studies in southeastern
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Amazonia have shown that forest fires, fragmentation, and climate extremes have reduced the ability of forests
to store and accumulate carbon®*. As deforestation and the accumulation of atmospheric greenhouse gases
(GHGs) alter the region’s climate, such disturbances will likely affect large swaths of the Amazon. For instance,
forest fires could affect about 16% of these forests by 2050°. However, detailed mapping of forest degradation
from multiple disturbances is rare, making it difficult to quantify their effects on ecosystem processes and create
effective monitoring systems to track forest integrity®~.

Some estimates show that forest degradation in recent decades may have surpassed forest deforestation,
showing the urgency of quantifying the severity and extent of forest degradation in the Amazon. Between 1992
and 2014, forest degradation in the Brazilian Amazon associated with fire, logging, and fragmentation affected
an area of 337 thousand km?, surpassing deforestation during the same period (308 thousand km?)!°. Hence, it
is imperative to enhance the mapping and monitoring of forest degradation in the Amazon, despite the existence
of numerous technical obstacles'!. First, forest disturbances vary widely in intensity and severity, ranging from
complete loss of the forest canopy to varying degrees of forest degradation'®. Although high-severity disturbances
(e.g., deforestation) are easily detected using standard remote sensing techniques!!, mapping small-scale cryptic
disturbances is far more challenging. Moreover, Amazonian forests vary in structure, function, and diversity,
posing additional challenges for identifying disturbances that cause forest degradation!2 Despite these and other
difficulties, recent advances in satellite data represent new opportunities for mapping forest degradation over
time®’.

The Landsat time series is among the most important tools for mapping temporal and spatial patterns
of deforestation and forest degradation. Landsat sensors such as the Operational Land Imager (OLI) and
Thematic Mapper (TM) have provided images at 30-m spatial resolution since 1984, which is by far the most
comprehensive time series for monitoring tropical deforestation'®!>. However, their low temporal (16 days)
and spectral resolutions have limited ability to quantify the severity and extent of forest degradation'®. This is
partly because commonly used vegetation indices (VIs) tend to saturate as the forest canopy closes following
disturbance. Given the rapid recovery of foliage after a disturbance event, traditional multispectral indices may
not be sufficiently sensitive to monitor the impacted areas with longer recovery times®.

The need to identify finer-scale patterns of forest degradation is clear in recent literature!®'”. Achieving
this requires the use of advanced satellite technologies that improve both spatial and spectral resolutions'®. In
November 2000, the National Aeronautics and Space Administration (NASA) launched the Hyperion spaceborne
sensor onboard the Earth Observing (EO-1) satellite. Hyperion was a hyperspectral mission that obtained images
in 242 contiguous narrow bands (198 radiometrically calibrated bands) covering the 400 to 2,500 nm spectral
interval®!3, with a swath width of 7.7 km and 30 m spatial resolution. Despite being discontinued in 2017, the
archive of historical Hyperion images offers valuable insights for tracking forest degradation, which may surpass
the capabilities of current Landsat instruments'>. Moreover, the use of Hyperion data offers an opportunity
to develop studies that may help designing newer hyperspectral sensor missions, with even better technical
specifications than Hyperion!'®. Hyperspectral imagery may help improve our ability to detect disturbance-
driven changes in forest structure (e.g., leaf area index and aboveground biomass), productivity (e.g., litter and
wood increment), and diversity (e.g., species richness and composition).

Combining multispectral (Landsat TM and OLI) and hyperspectral (Hyperion) data provides an opportunity
to better quantify forest degradation in response to the understory fire resilience capacity to recover after
disturbance, which is challenging in the Amazon. Datasets from controlled burn experiments offer unique
research opportunities for tracking forest degradation caused by fires as well as the use of VIs as indicators
of forest recovery over time. One such experiment, performed over a forest fragment at Tanguro farm (Mato
Grosso state, Brazil) from 2004 to 2010, included an unburned plot Control, a plot burned every year, and a plot
burned every three years®’. Using the time series of multispectral and hyperspectral data measured over these
plots, together with field data collected throughout the experiment, enabled us to test the efficacy of VIs for
detecting forest degradation by fire.

In this study, we used multispectral data from the Landsat satellite (TM and OLI) and hyperspectral
data from the EO-1 satellite (Hyperion) to determine the VIs most sensitive to forest degradation caused by
experimental fires in the southern Amazon, which co-occurred with droughts, windstorms, and along the forest
edge. Specifically, we investigated the following questions: (1) What spectral changes in vegetation are detectable
by VlIs after a fire event? (2) How can the use of hyperspectral images improve our ability to map and quantify
forest degradation caused by fires and edge effects? (3) Which VIs best capture changes in forest structure and
productivity associated with fires and the capacity of forests to recover from this disturbance?

Materials and methods
Study area and datasets
Our study area is in the municipality of Queréncia (Mato Grosso state) in the southeastern portion of the
Amazon Basin (13°04'35.39” S, 52°23'08.85” W). The climate of the region is tropical with a dry winter (Aw),
according to the Koppen classification, with well-defined dry (May to September) and rainy (October to April)
periods?!. The experimental area was described in detail by Balch et al. (2008)?°. Briefly, the experimental area
comprised three adjacent plots of 50 ha each, each subject to different burning regimes: an unburned (Control),
a plot burned every year (B1 year), and a plot burned every three years (B3 year) from 2004 to 2010, except for
2008 (Fig. 1). During this period, the B3 year and B1 year plots were burned three and six times, respectively?2.
All plots have been monitored continuously since the last fire in 2010 to track forest recovery over time.

To calculate the aboveground biomass (AGB), we conducted forest inventories for all experimental plots
from 2004 to 2017. Leaf Area Index (LAI) was measured at multiple points in each plot from 2005 to 2017.
Litterfall production was monitored from 2004 to 2018, using 210 baskets (70 per plot). These field observations
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Fig. 1. (A) Location of experimental fire plots in southern Amazonia. (B) Green-Red Normalized Difference
(GRND), a VI calculated from Landsat data that is sensitive to greenness. The results are presented for three
periods: before the fire experiment (2004), after the last fire (2011), and after eight years of vegetation recovery
(2019). (C) Delta GRND, calculated for these three periods to quantify differences associated with repeated
fires (A 2004-2011); post-fire vegetation recovery (A 2011-2019); and the proportion of vegetation recovery
relative to the baseline (A 2004-2019).

were then used to assess correlations with satellite-based VIs. Detailed information is available in Appendix S1:
Sect. 1.

We used 45 TM/Landsat-5 and 22 OLI/Landsat-8 images from 1985 to 2019 to analyze changes in vegetation
after forest disturbance. For each year, we calculated six VIs from the available Landsat data. In addition, we used
Hyperion/EO-1 data from 2004 to 2012 to compute 17 VIs and assess their sensitivity to vegetation degradation
after the experimental fires. We used images from the dry season (June to August) to mitigate potential biases
owing to the influence of seasonal variations on our analysis. Detailed equations and references for the calculated
VIs are listed in Table 1. Both the Landsat and EO-1 images came from the USGS and underwent atmospheric
and geometric corrections. Further information regarding pre-processing and corrections for each set of satellite
images can be found in Appendix SI: Sect. 1.

Data analysis

To assess the efficacy of each VI in detecting post-fire vegetation changes, we calculated the percentage spectral
change over the study area. The efficacy of each VI in detecting fire-associated changes was calculated as
the difference between the values in the burned plots (B1 year and B3 year) and the Control plot, and then
standardized as a percentage. We then evaluated the uncertainties by calculating 95% confidence intervals based
on the Z’ distribution test to compare across the treatments. To evaluate the variability of the multispectral
VIs over time and the differences between treatments, we generated a simple model of temporal change by
employing the Loess method as implemented in the geom_smooth function of the R package ggplot2?*. We
also incorporated the standard errors (SE), calculated based on the Loess methods, to better assess the model’s
precision and improve confidence in its predictions®*. For the hyperspectral V1s, we employed the same method
to evaluate the differences between plots; however, the analysis was restricted to the indices that showed the
strongest responses to forest disturbances. To evaluate vegetation response to edge effects, we compared the
responses of multispectral and hyperspectral VIs at the forest edge (first 250 m) to the forest interior (>250 m
from the edge) of the experimental plot.

To assess how hyperspectral images improve our ability to map and understand forest degradation, we
performed Principal Component Analyses (PCA) for the entire hyperspectral time series (2004-2012) and for
individual years, allowing us to identify patterns of vegetation change throughout the fire experiment. For annual
PCAs, we compared the pre-experiment (2004) and post-experiment (2012) periods. We then used eigenvectors
to evaluate the relative contribution of each VI to the explanation of a given component. We also compared the
results of the 17 hyperspectral VIs with those of the six multispectral VIs using Pearson’s correlation coefficients
to develop a correlation matrix, which enabled us to verify which hyperspectral VIs were mostly correlated with
the multispectral VIs (>0.9).
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Vegetation index Equation Satellite

Structure

Enhanced vegetation index (EVI) 2.5%((p864nm — p660nm)/(p864nm + 6 X p660nm — 7.5 X p467nm+1)) | Landsat, Hyperion
Normalized difference vegetation index (NDVI) | (p864nm — p660nm)/(p864nm + p660nm) Landsat, Hyperion
Visible atmospherically resistant index (VARI) (p559nm — p660nm)/(p559nm + p660nm-p487nm) Hyperion

Visible index green (VIG) (p559nm — p660nm)/(p559nm + p660nm) Hyperion
Green-red normalized difference (GRND) (p560nm — p660nm)/(p560nm + p660nm) Landsat
Biochemistry

Leaf water vegetation index2 (LWVI2) (p1094nm-p1205nm)/(p1094nm + p1205nm) Hyperion
Moisture stress index (MSI) (p1598nm)/(p823nm) Hyperion
Normalized difference infrared index (NDII) (p823nm — p1649nm)/(p823nm + p1649nm) Landsat, Hyperion
Normalized difference water index (NDWT) (p854nm — p1245nm)/(p854nm + p1245nm) Hyperion

Pigment specific simple ratio (PSSR) (p803nm)/(p671nm) Hyperion

Plant senescence reflectance index (PSRI) (p681nm-p498nm)/(p752nm) Hyperion
Structure insensitive pigment index (SIPI) (p803nm — p467nm)/(p803nm + p681nm) Hyperion

Water band index (WBI) (p905nm)/(p972nm) Hyperion
Near-infrared reflectance of vegetation (NIRv) (p864nm)x((p864nm — p660nm)/(p864nm + p660nm)) Hyperion
Physiology

Photochemical reflectance index (PRI) (p529nm — p569nm)/(p529nm + p569nm) Hyperion
RedEdge NDVI (RENDVI) (p752nm — p701nm)/(p752nm + p701nm) Hyperion

Fire

Normalized burn ratio (NBR)* Ezﬁ;;?i?;gfgs;ni ;zpzl 12 ;j;?zggfgs;‘::;; 12 ;lj;r)n) Landsat, Hyperion
Normalized burn ratio2 (NBR2)* E;g’gsr;?iz(p(f 61 52 (;15:1111‘)_25 11 Séﬁigjr(l; /1(6P 51 gs;nfng 11 Séigm) Landsat, Hyperion

Table 1. Vegetation indices calculated using landsat and hyperion/EO-1 data and their respective formulas.
References for each formula are available in Appendix S1. *NBR and NBR?2 utilize distinct wavelength ranges
when measured by the Hyperion and Landsat sensors.

To evaluate the effectiveness of hyperspectral and multispectral VIs in detecting changes in forest disturbance,
we first evaluated the eight VIs most sensitive to changes associated with fire, calculated as the maximum
difference between burned (B1 year and B3 year) and the Control plot during the fire period, followed by a
Linear Model (LM). In these models, we used three variables measured in situ as response variables: biomass,
litterfall, and LAI As predictors, we selected four VIs derived from Landsat (GRND, EVI, NBR, and NDII) and
four derived from Hyperion (PRSI, VARI, MSI, and VIG) that were most responsive to changes associated with
fire. We present the results for the most sensitive VI derived from Landsat (GRND) and Hyperion (PSRI) in the
main text, and the other six VIs are presented in the supplementary information (Figs. S8, S9, and S10).

We also modeled temporal changes in field data (biomass, litterfall, and LAI), as predicted by the VIs most
sensitive to fire-related changes. To this end, we applied the loess smoothing method to visualize temporal trends
using the geom_smooth function in the ggplot2 R package?. Using the differences between the burned and
Control treatments for each VI, we estimated the time required for vegetation to recover to the pre-fire baseline
values (detailed information is available in Appendix S1: Sect. 1).

Results

Spectral changes in vegetation detected by multispectral Vis

The six Landsat-based VIs indicated a significant reduction in burned area during the prescribed fire period. In
contrast, these VIs remained relatively stable in the Control plot (Fig. 2). Prior to our prescribed burns (1985-
2004), we observed comparable values for the six VIs between the unburned and burned plots, although the
GRND varied more than the other VIs. Following the first experimental fires (2004-2005), reductions in the VIs
in the burned plots compared with the Control plots ranged between 3 and 9% for Bl year and 3 and 11% for
B3 year. The differences between the burned and Control plots increased as B1 year and B3 year were repeatedly
burned. The largest reductions in the studied VIs were observed in 2011, immediately after the least-prescribed
burns in 2010, which coincided with a drought event and resulted in high-intensity fires (Fig. 3). After this
period, the difference between burned and unburned treatments decreased over time for all VIs, reaching values
similar to those of the Control in 2019, nine years after the last fire.

All Landsat-based VIs were sensitive to changes in forest structure, showing similar responses after prescribed
burns but varying considerably in magnitude. The VIs that showed the greatest differences relative to the Control
were the GRND (87%) and NDII (48%) (Fig. 3). Other Landsat VIs also decreased in the burned plots relative
to the Control plot (22% for NBR and EVI, 19% for NBR2, and 14% for NDVTI). Confidence intervals confirmed
the significance of the observed differences between the burned and Control treatments (Appendix S1, Fig. S1).

Observed differences between the burned plots and the Control were even greater along the forest edges
compared with the forest interior for all Landsat VIs. Along the edge, GRND was 200% lower in the B3 year plot
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Fig. 2. Temporal patterns of landsat-based vegetation indices (EVI, GRND, NBR, NBR2, NDII, and NDVI)
during a fire experiment in southeast Amazonia. Points indicate average values of VIs for the three different
fire treatments (Control, B3 year, and B1 year). The dashed vertical lines indicate the period during which the
experimental fires occurred (2004 to 2010). The tendency line was generated based on the Loess method, and
shading represents the standard error (SE).

than in the Control plot, followed by NDII (102%) and NBR (62%) (Appendix S1, Fig. S2). The forest interior
at B3 year exhibited differences of 57% (GRND), 31% (NDII), and 17% (NBR). In contrast, the forest interior of
B1 year showed the highest differences, with GRND 66% lower than that of the Control, followed by NDII (32%)
and NBR (18%) (Appendix SI: Fig. S3). Although vegetation at the edges showed much higher degradation than
in the interior of the plots, the sensitivity patterns among the VIs remained consistent, with the EVI, NBR2, and
NDVI capturing smaller differences in both edge and interior vegetation.

After the last experimental fire (2010), the EVI reached values similar to those of the Control plot within
four years, recovering quickly compared to other VIs. Other indices reached similar values to the Control plot
within five (NDII and NDVI), six (NBR2), or seven years post-fire (GRND and NBR). Along the forest edge, the
recovery of VI values took at least two years longer, with EVI and NDVI taking six years to approach baseline
values (i.e., prior to the burns), followed by NBR and NDII (seven years), and NBR2 and GRND (eight years)
(Appendix SI: Fig. S2). In the case of B3 year, we also observed a recovery of VIs between experimental fires.
Between 2007 and 2010, all the VIs returned close to their initial values (Fig. 3 and Appendix S1, Fig. S1).

Efficacy of hyperspectral images for detecting forest degradation

Similar to Landsat, the Hyperion-derived VIs clearly identified forest degradation associated with the
experimental fires. The largest differences between the burned and Control plots occurred from 2007 onwards
(Fig. 4 and Appendix SI: Fig. S4). Of the 17 VIs evaluated, the greatest differences (>50%) between burned
and Control plots were captured by PSRI (94%), VIG (68%), VARI (64%), MSI (56%), and PSSR (54%), all of
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which are indices associated with vegetation pigmentation or water stress. The VIs that were the least sensitive
to degradation by fire were SIPI (15%) and WBI (3%) (Fig. 4).

The differences between the burned and Control plots were greater along the edge (<250 m) than in the
interior (>250 m) of all Hyperion VIs (Fig. 5). The VIs most responsive to differences between the burned and
Control plots showed increasing differences as those plots were burned repeatedly. Similar to the multispectral
VIs, the main reductions in hyperspectral VIs occurred between 2007 and 2008 and 2010-2011 (Fig. 5).
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Vegetation changes detected by hyperspectral vegetation indices
Through analysis of hyperspectral VIs, we identified significant changes and patterns associated with forest fires
(Appendix S1, Fig. S5). PCA enabled the identification of clusters of VIs with distinct information patterns
(Fig. 6). Although several VIs captured similar responses, others provided unique insights. We observed two
main clusters in PCI1: The first group represented closed canopies with minor biochemical changes, characterized
by NDVI (0.97) and NDII (0.96). The second group was linked to changes in the edges of burned plots, led by
PSRI (-0.90) and MSI (-0.97), indicating shifts in vegetation pigmentation and water stress (Appendix S1: Fig.
S6). These Vs effectively differentiated treatments over the entire burning period.

Over different study periods, the PCA results varied based on plot conditions, distance from the forest
edge, and progression of forest degradation. Most hyperspectral VIs convey similar information owing to their
association with similar factors (Appendix S1, Fig. S5). Before the prescribed burns, our PCA analysis indicated
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Fig. 6. Projection of the first two principal components from the 17 VIs calculated using Hyperion data

for (a) the entire time series (2004-2012); (b) the pre-fire period; (c) the first three years of the experiment
(2004-2006); and (d) the post-fire period (2012). The results reflect the Control, triennial burning (B3 year),
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analysis.
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similar characteristics among the treatments, reflecting the initial similarity of the forests during the baseline
period. However, modest separation at the treatment edges suggested structural canopy differences (as indicated
by clustering of EVI and NIRv) linked to varying vegetation water stress levels (as indicated by MSI and PSRI),
which may have predated the fire experiment (Fig. 6b).

The treatments were clearly differentiated after 2007, a year with more intense fires and higher tree mortality,
coinciding with distinct VI clusters (Fig. 6¢). PCA for each year revealed increasing differences with repeated
burns (Appendix S1, Fig. S7). Differences between treatments were primarily associated with PC1, with MSI
(-0.97) and PSRI (-0.90) associated with the forest edge, where vegetation was more water-stressed due to
prolonged drought (Figs. 4 and 5, and 6d). The NDVI (0.97) and NDII (0.97) tracked a more closed and less
stressed canopy cover, as observed in the Control plot, which was concentrated on the right side of PC1 (Fig. 6).
Changes related to water stress and vegetation photosynthesis persisted throughout the experiment, as indicated
by the PCA results for 2012 (Appendix S1: Fig. S7).

Correlation between hyperspectral and multispectral Vis

Seven of the 17 hyperspectral VIs had a high correlation (r>+0.8) with the multispectral VIs (Fig. 7). As
expected, the VIs common to the two sensors were the most correlated despite the differences in the spectral
resolution in the bands used (wide vs. narrow). These VIs are sensitive to photosynthetic activity and canopy
water content, sharing red, NIR, and SWIR spectral bands (VIG, NDWI, NDVI, NDII, NBR2, MSI, NIRv, and
EVI). In contrast, the hyperspectral VIs that were least correlated with the multispectral VIs were WBI (also
linked to canopy water) and PRI (photosynthesis efficiency). Among the VIs shared by both sensors, NBR had
a lower correlation when comparing Hyperion and Landsat (r=+0.65). This may be linked to the differences
in the formula applied for this index, as it incorporates bands positioned differently within the SWIR range
(Table 1).

The Landsat-based GRND (most fire-sensitive multispectral VI) was highly correlated with VARI (+0.91)
and VIG (+0.91) from Hyperion. Both VIs were associated with changes in the vegetation pigmentation. VIG
is the hyperspectral equivalent of GRND, which also showed a high correlation with PSRI, NIRv, NDWTI, NDII,
MSI, and EVI (> 0.85). Among the multispectral VIs, GRND had the highest correlation with PSRI (r=+0.85).
These VIs showed greater sensitivity to changes caused by fire and are associated with vegetation pigmentation.

Capacity of Vs to detect structural changes in burned forests

The experimental fires caused substantial changes in forest litter, LAI, and AGB. Prior to the prescribed fires, no
clear differences were observed between the experimental plots (Fig. 8). After the first prescribed fire, all these
variables decreased substantially compared to the Control (Fig. 8), especially along the forest edge. For litterfall
and LAJ, the largest differences between the burned areas and the Control occurred in 2011, when litterfall and
LAI were 46% and 69% lower in the burned plots than in the Control, respectively. For AGB, we observed the
greatest differences in 2014, when the biomass along the forest edge of the burned plots was 91% lower than that
of the Control plot (Fig. 8).

Two years after the end of the prescribed burns, we observed recovery of litterfall and LAI. However, LAI
only reached values similar to those of the Control in 2017 (Fig. 8), seven years after the prescribed fires ended.
Forest biomass continued to decrease in all burned treatments between 2010 and 2014, when the AGB along the
forest edge of B3 year reached 11.9 Mg ha™! (91% lower than that in 2004).

The results showed that the GRND was a better predictor of changes associated with fire than the PSRI
(Fig. 9). The capacity of the GRND to detect changes associated with fire was higher for the edge environment
than for the forest interior for the tree variables evaluated (Fig. 9). In addition, the explanatory power (R?)
tended to be higher for GRND for the three ground variables (biomass stocks=0.5-0.8; LAI=0.8-0.9;
litter production=0.4-0.7), compared to that observed for PSRI (biomass stocks=0.3-0.8; LAI=0.6; litter
production =0.3-0.6; Fig. 9).

In general, the other evaluated VIs derived from Landsat (EVI, NBR, and NDII) for the fire period (2004-
2011) were consistent with the GRND in predicting litter production, LAI, and biomass stocks (Fig. S8). During
the fire recovery period (2011-2017), GRND and NBR produced similar results in predicting biomass, LAI, and
litter production (Fig. S9). The other evaluated VIs derived from Hyperion (MSI, VARI, and VIG) for the fire
period (2004-2011) were not consistent with the PSRI (Fig. S8). VIG was the best predictor of biomass stocks
(r?=0.7-0.9), VARI and VIG produced similar results for litter production (r?=0.4-0.7) and LAI (r>=0.7-0.8;
Fig. S8).

Discussion
This study evaluated the sensitivity of hyperspectral and multispectral VIs to changes in forest canopy structure,
pigmentation, and function, following disturbances caused by fires and edge effects. The results showed that
multispectral Vs are sensitive to short-term changes in vegetation properties after a fire. The most sensitive
indices responded to changes in vegetation pigmentation or new foliage (GRND) and shifts in vegetation water
content (NDII). Of the set of narrowband VIs measured with Hyperion, the most sensitive was PSRI (followed
by NDVI, NDII, and MSI), which was calculated using the red edge at 752 nm, a wavelength outside the range
of Landsat’s multispectral sensor. Although the VIs assessed here detected most changes in canopy dynamics
(e.g., leaf production and LAI), they were less sensitive to changes in the aboveground forest biomass. This
study underscores the potential of both hyperspectral and multispectral vegetation indices in detecting forest
degradation by fire, and also indicates the hyperspectral bands and VIs that are most effective in assessing the
magnitude of changes in vegetation structure and functioning associated with forest fires.

The 17 VIs derived from Hyperion provided more detailed information on biophysical and biochemical
changes in the vegetation canopy, despite the shorter time span of sensor imagery. The time series of the Hyperion/
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Fig. 7. Pearson’s correlation coefficients for the VIs in this study were calculated using hyperion/EO-1 and
landsat data.

EO-1 data for the study area was truncated because of operational constraints and significant orbital drift after
2013%. Therefore, we were able to assess the efficacy of hyperspectral VIs in capturing forest degradation by
fire, but not the regeneration phase. Nevertheless, the Hyperion VIs associated with the ratio of chlorophyll to
carotenoids and anthocyanins (e.g., PSRI and PSSR) in vegetation stood out as the most sensitive to vegetation
associated with fire, offering an important opportunity to quantify forest degradation®. This result is relevant for
a new generation of hyperspectral sensors aboard upcoming satellite missions.
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inventories were compared with changes in GRND (Landsat) and PSRI (Hyperion/EO-1) measured along the
plot edge and forest interior, as a function of the three experimental treatments (Control, B3 year, and B1 year),
where points indicate the average of pixel values for each treatment. The tendency line was generated based on
loess method and the shades indicates the standard error (SE). The vertical dashed lines denote the period of
the prescribed fires (2004-2010).

Hyperspectral VIs calculated based on Hyperion can be classified into two broad categories. The first
includes indices that are sensitive to small biochemical changes related to photosynthesis, pigmentation (NDVI,
RENDVI, VARI, and VIG), and canopy water content (NDWI, NDII, and LWVI2). The second group (PSRI
and MSI) captures changes at the edge of burned forests and the signals associated with vegetation stress*. Our
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Fig. 9. The linear model for the period during fire events (2005-2011) using as response the three forest
structure and productivity variables measured in the field (biomass, LAI, and litterfall) as a function or GRND
(Landsat) and PSRI (Hyperion/EO-1). For this analysis, response variables and VIS were measured along the
plot edge (0-250 m; in red) and forest interior (250-1000 m; in blue), and information on the two burned areas
(B3 year and B1 year) were included in the same analysis.

PCA indicated that NDVI, NDII, PSRI, and MSI are most useful for detecting vegetation degradation. NDVI is
widely used and relates to chlorophyll content by analyzing the differences in NIR and red reflectance?®?”. NDII
is positively correlated with canopy water content by taking the normalized difference between NIR and SWIR-
128, whereas MSI is negatively correlated with canopy water, given that it is calculated by dividing SWIR-1 by
NIR. Finally, PSRI is sensitive to changes in vegetation pigmentation, particularly the chlorophyll/carotenoid
ratio, which can indicate senescence3*3!.

In general, the VIs values for the forest interior were similar across experimental plots during the pre-fire
period. However, the same VIs proved useful in detecting forest degradation caused by edge effects. PSRI and
MSI revealed different spectral signatures at the plot borders, indicating vegetation stress along forest edges
(Fig. 6a). This suggests that the more severe fire effects observed at plot borders may be linked to vegetation
stress and edge effects that predate the fire experiment. After the first experimental fires, PSRI and MSI detected
substantial changes at the forest edge in treatments B1 year and B3 year and smaller changes within the burned
forests compared to the Control.

After two consecutive fire events, LWVI2 and RENDVT detected changes in the experimental area that
were not captured by multispectral VIs, indicating their sensitivity to small changes in canopy foliage content,
canopy opening fraction, and senescence®2. These results indicate that VIs using the red-edge spectral range may
be more sensitive to degradation caused by early or low-intensity fires. Moreover, LWVI2 uses bands at 1094
and 1205 nm, which are sensitive to leaf and canopy water, respectively®>. This suggests that the first (spectral)
degradation signals may indicate increased water stress in the vegetation.

Higher changes in VIs values for the burned plots were observed after intense fires associated with more
severe drought conditions. Few VIs detected changes in forest structure and biochemistry after the first two
fire events in the B1 year plot and after one fire event in the B3 year plot (i.e., prior to 2007). PSRI (Hyperion)
and GRND (Landsat) showed modest changes (> 15%) in the treatment plots compared to the Control, but
all other VIs failed to capture significant differences. After the high-intensity fires during the 2007 drought,
when fuel loads were increased and understory humidity lower"*, the differences between burned plots and
the Control increased for all VIs. After 2007, there were large reductions in LAI and litterfall and a sharp drop
in biomass - detected by most Vs, especially those sensitive to water stress and vegetation pigmentation (e.g.,
GRND and NDII from Landsat; PSRI, VIG, VARI, MSI, and PSSR from Hyperion). These results confirm that
near-infrared and shortwave infrared bands, already known for their effectiveness, are crucial for detecting fire-
induced degradation dynamics, supporting their continued use in existing satellite-based fire indices.

Our results during the post-fire recovery period show that the signal of forest degradation disappears quickly,
even after repeated burns. All VIs in the burned plots reached values close to those observed in the Control
plot within eight years. The recovery of multispectral VIs reflects the recovery of photosynthetic capacity and
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structure (e.g., EVI, NDVI, and GRND)?, as well as canopy water conditions (NDII). These changes can be
interpreted as a decrease in water stress compared to years when forests still suffered from repeated fires. This is
consistent with previous work using eddy covariance measurements, which showed a rapid recovery of CO, and
H,O fluxes in burned plots”. The authors of that study concluded that the effects of fire extended 3.5 years into
the recovery period, which can be associated with recovery of the EVI, NDVI, and NDII signals. Regeneration
was also detected in the recovery of NBR and NBR2, which showed fire scars disappearing from the landscape
over time.

The recovery of the hydrological and carbon cycles, measured in the field and reflected by the VIs, could
lead to misinterpretation of satellite-based forest recovery metrics. Our results show that VIs reflect changes
in canopy leaf production dynamics, but are not sensitive to changes in forest biomass. The recovery of canopy
productivity is insufficient to compensate for biomass losses from the increased mortality of large trees, a process
that can take several decades®®. Moreover, the forest degradation process does not end with the last fire event
because subsequent disturbances can amplify forest degradation. Windstorms, for example, can increase the
degradation of burned forests and delay biomass recovery, particularly because fires weaken tree trunks and
make them more vulnerable to snapping under strong winds®’.

In summary, the recovery of VI values does not necessarily represent the recovery of biomass or the return
of forests to their pre-experimental ecological state. In fact, they may represent the beginning of ecological
succession led by pioneer species after forest degradation®. There was an increase in grass invasion and
recruitment of pioneers throughout the experimental area during the regeneration period”*’-3. Pioneer species
invest in rapid growth and tend to exhibit lower water-use efficiency?, which is reflected in the VIs linked to
photosynthesis, water, and greening. Although these VIs do not accurately capture the structural recovery of
forests, they do provide important information on the capacity of forests to recover critical ecosystem services
linked to carbon and hydrological cycles*!.

Final considerations

Both Landsat (TM and OLI) and Hyperion/EO-1 detected forest degradation associated with the experimental
fires. However, hyperspectral VIs provide higher sensitivity and a greater range of information regarding
degradation, thus increasing our ability to detect and characterize disturbances. PSRI accurately represents the
processes of vegetation senescence and is the VI with the highest sensitivity to edge effects. Hyperspectral VIs
associated with carotenoid/chlorophyll and multispectral indices linked to pigmentation and new foliage (e.g.,
GRND) were the first to detect water stress and vegetation degradation associated with forest fires. Further
research on indices capable of detecting early changes in these variables could advance fire-risk mapping.
Despite the recovery of multispectral VI values and litter production post-fire, there are still important legacies
of fires (e.g. AGB, vegetation structure, and composition) that are masked by the rapid growth of pioneers and
invasive grasses, reflected in increasing VI values.

Data availability
The data that supports the findings of this study are available from the corresponding author upon reasonable
request.
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