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Abstract

Natural gas at remote locations would greatly benefit from on-site processing using mod-
ular technologies, such as dehydroaromatization (DHA). This work models an intensified
dehydroaromatization process to increase product yield and methane conversion by cou-
pling the reactor with a chemical looping unit that effectively separates hydrogen through
a redox cycle and a temperature swing adsorption process to remove the aromatics and wa-
ter and recycle the unconverted methane. We postulate dynamic models and steady-state
surrogate models to analyze and optimize the production of the aromatic product. The
optimum methane conversion of 48% and the aromatic yield of 42% occurs at a recycle

ratio of 0.47 and a reactor temperature of 725 °C.



1 Introduction

The efficient design and operation of energy systems are pivotal in the reduction of global CO,

1-3 Methane, a low

emissions and in driving green, and sustainable manufacturing technologies
carbon footprint fuel, can be processed through steam/dry reforming, partial oxidation, nonoxida-
tive coupling, and oxidative coupling®®. The high temperature, pressure, energy requirements,
and capital costs of syngas motivates the exploration of direct processes. Moreover, over 30%
of natural gas wells are placed in remote areas, making transportation to centralized locations
expensive ™. In response, on-site modular dehydroaromatization (DHA) has been proposed as a

potential alternative 1011,

The DHA reaction converts methane into aromatics using a Mo/HZSM-5 catalyst at 700 °C*%12,
The equilibrium-limited nature of the DHA reaction restricts methane conversion to less than 10%
at 700 °C!31*  To address this limitation, DHA can be coupled with chemical looping (CLC)
and temperature swing adsorption (TSA), forming a reactive-separation system based on process

intensification principles!®™8.

The CLC consists of metal oxide oxygen carriers that facilitate
selective oxidation and reduction reactions, forming a redox loop®®. In a two-step reaction, the
metal oxide donates oxygen to selectively convert hydrogen and is subsequently regenerated by
exposure to steam to regenerate the hydrogen. The TSA alternates the temperature of the ad-
sorbent between the adsorption and desorption steps and removes the aromatics. The remaining
stream consisting mainly of unconverted methane is recycled to the DHA reactor. 20723, Experi-
mental studies on the integrated DHA-CLC-TSA system have demonstrated an aromatic yield of
42% over a four-hour operation, achieving nearly five times higher yields than the thermodynamic
limit of DHA at 700 °C!°. This indicates that the oxidation of hydrogen and the adsorption of

aromatics, and water are pivotal for enhanced performance!” 8.

Previous studies have examined the economic impact of modular processes®?, kinetics, and
transport properties of DHA31424  CLC?5727 and TSA212830 For DHA, Mevawala et al.'3
and Razdan et al.?* developed a multi-scale fixed bed reactor model and analyzed the impact of
diffusive length scales of methane with catalyst deactivation. Han et al.?® presented an extensive
process model for a fixed-bed chemical looping reactor, evaluating the impact of transport proper-
ties on the rates of different metal-oxide carriers. Zhou et al.3! discussed a model-driven analysis
of experimental chemical-looping reactors with nickel oxide as an oxygen carrier for scale-up stud-
ies. Thermodynamic insights on iron-oxide redox reactions were provided by Heidebrecht et al.?°,
with subsequent modeling and experimental quantification reported by Hertel et al.?’. TSA has

232 and natural gas purification?%33. Joss et al.?! developed a sim-

been studied for CO5 capture
plified equilibrium model for TSA, focusing on capturing heavy components and determining the

operating points and screening materials for CO, capture. Similarly, Panikhar et al.3* provided a



performance map for TSA, determining energy requirements, the range of product recovery, and
process capacity. Yet, the operating limits of these individual processes and their impact on the
synergistic effects observed on the conversion and productivity of the integrated DHA process

have not been investigated.

In process engineering, the integrated DHA-CLC-TSA process shares similarities with a reac-
tion separation involving recycling, as discussed in various reports3®3. Denn et al.#* and Morud
et al.3® have examined the impact of plant dynamics for activated sludge process, autothermal
process, and other arbitrary chemical processes, noting that recycling of mass or energy can be-
have like a positive feedback controller (negative gain), potentially leading to instability in plant

|35

behavior. Larsson et al.3® and Kumar et al.3® have systematically investigated operating variables

and dynamics of time-scale separation for the effective operation of processes involving reactive

.37 and Baldea and co-workers3?4044 discussed the impact

separation with recycling. Griffin et a
of selecting process units, considering reaction chemistry, trade-offs between conversion and se-
lectivity, limitations associated with integrating processes that incorporate recycling, along with
equation oriented pseudo-transient simulation method for the salicylic acid nitration, ammonia

synthesis network, and arbitrary sequence of first-order reactions.

A systems-level understanding of the operation of the entire system is important, given its
complexity1®. Despite the past progress in reactive separation processes and a stand-alone under-
standing of DHA, CLC, and TSA processes, the operating limits of complex reactive separation
systems are still unavailable. When experimental data is sparse and expensive to obtain, model-
based methods can provide valuable insights. The first objective of this work is to develop a
model for an integrated DHA-CLC-TSA process (Figure 1)1 determine the achievable aro-
matics yield and methane conversion, and understand the operation of each process. Each process
is simulated using a one-dimensional spatiotemporal model. To balance computational efficiency

and accuracy, surrogate models for all processes are developed >’

d 48,49

, integrated, and simulated

using a simultaneous modular metho The second objective is to optimize the product

3537 using Lagrange multipliers®®5!. The

yield and conversion by manipulating the recycle ratio
optimization problem is solved with operational and economic objectives resulting in an optimum
recycle ratio (Ryecycle = 0.47) and a DHA operating temperature of 725 °C to achieve an economic

trade-off between product yield and conversion of methane.



2 Materials and Methods

2.1 Process Overview

The experimental integrated modular process, investigated by Brady et al., 20211%1® consists of
three fixed beds connected in series: DHA, CLC, and TSA, as illustrated in Figure 1. Within the
DHA unit, methane undergoes selective conversion into hydrogen and aromatics over a 2 wt %
Mo/H-ZSM5 (400 mg) catalyst at 700 °C. The catalytic reaction involves three stoichiometric
steps (Eq. 1). Methane is converted to ethylene as the primary product of C-C coupling. Subse-
quently, ethylene trimerizes into benzene and hydrogen. Finally, ethylene and benzene combine

to form naphthalene and additional hydrogen.

Rl D2 CH4 = C2H4 + 2 HQ
Ry: 3 CyHy = CgHg+ 3 Hy (1)
R3 . C6H6+2 C2H4 = C10H8+3 H2

The desired overall reaction converts methane into benzene as illustrated in Eq. 2.
6 CH4 — CGHG +9 H2 (2)

Thermodynamic equilibrium severely limits the single-pass conversion of methane to be 7% to
12% with aromatics yield of 10% at 700 °C under atmospheric pressure!!>2. Hence, CLC is placed
downstream of the DHA process to remove hydrogen and recirculate unconverted methane. A

metal oxide (7 g of Fe30,) converts hydrogen into water, FeO, and Fe at 650 °C.
Fe304 + HQ = 3FeO + HQO (3)

In TSA, benzene and naphthalene from the DHA and water from the CLC are removed with
zeolite 13X (10 g) at 80 °C.

C6H6 4+ Ads = Ads- CGHG (4)
C10H8 + Ads = Ads - Clng
H,O + Ads = Ads-H,0

The unconverted methane and leftover products are recirculated at 20 SCCM into the DHA
reactor. Fresh methane is introduced from a bleed tank (BT) to replenish the methane. In terms
of gas hourly space velocity (GHSV in mL/g.h), 20 SCCM equivalent is 3000 GHSV in DHA, 180



GHSV in CLC, and 125 GHSV for the TSA. These are the nominal laboratory values.
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Figure 1: Schematic of integrated methane dehydroaromatization process flow-sheet. The se-
quence of process units and individual stream’s component information and control structure is
shown with fresh methane feed from the bleed tank (BT).

Binary process configurations, such as DHA-CLC and DHA-TSA, have been investigated
experimentally®. In the DHA-CLC configuration, an approximately 16% methane conversion
was achieved at the end of a four-hour run. Traces of aromatics were detected in DHA, yet
these were converted into CO and CO, due to a reforming reaction induced by steam generated
in the CLC bed as a result of FesO4 reduction. In the DHA-TSA configuration, the methane
conversion reached 24.6%, with aromatics captured in the molecular sieve at a yield of 10.8%. The
integration of all three processes led to a significant improvement in overall methane conversion

of 50% and aromatics yield of 42% at the end of a four-hour operation.
2.2 Process Models

We build and analyze the spatiotemporal behavior of each packed-bed unit and their collective
behavior. The approach involves four steps (Figure 2). In the randomized sampling of process
variables step, we utilize Latin hypercube (LH) sampling, a method that intelligently selects
conditions such as inlet concentration, flow rate, and temperature. The boundaries for this

16

sampling are determined based on the literature We simulate the system at the suggested

conditions.

In the unit model development step, we formulate mathematical models for the spatiotem-



poral behavior of the packed-bed units and solve them at LH-sampled initial conditions to obtain
the end concentrations. We utilize the published reaction rate and adsorption kinetic parame-

ters 27,53,54 ]

In the surrogate model construction step, we train simpler surrogate models, using
exit concentration data from numerical simulations as the output with LH samples as inputs, as
approximations of the full models. Lastly, the system'’s yield is optimized using the surrogate
models to determine optimal operational conditions in the yield optimization step. This approach
provides a foundation for understanding and optimizing integrated reactive separation process

systems.

PDE Numerical

Latin Hypercube Sampling P Model
rocess Mode

h 4 h 4

Surrogate Model for PDE End Product Concentration

v

Yield Optimization
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Figure 2: Model development workflow for the integrated DHA-CLC-TSA process. The main
workflow includes sampling operating conditions, such as concentration (C), inlet flow rate (Q),
and temperature (T), using Latin hypercube (LH) sampling, numerical and surrogate model
development using the LH samples as initial conditions, and as the inputs. Finally, yield is
optimized using the surrogate models.

Each process is described using a dimensionless convection-diffusion-reaction transport model

in one dimension

oC o(C) 1 09°C _

—_— = - — Da(C,© 5

or “oe T peogs TGO )
where C is the dimensionless concentration C = c% Pe = % is the Péclet number, Da = Ré—f)v%

is the Damkohler number, o = Z—f) is the dimensionless velocity, { = Z is the dimensionless length

of the fixed-bed, and 7 = ”Tot is the dimensionless time. C'is spatiotemporal concentration and ()
is the inlet concentration of each component. The units of concentrations are % for catalytic



kmol
kgsotid

gas-phase species formation in k’;";‘t’ls t is time in seconds (s), L is the length of the fixed bed

(m), vo and v are superficial and interstitial velocities of the gas-phase components (), and D,

reactions and for gas-solid non-catalytic reactions and separations. R(C') is net-rate of

is either the diffusivity or dispersion coefficient (mTQ)

The parabolic partial differential equations (PDE) model in Eq. 5 is solved subject to initial
and boundary conditions. The initial condition is set as C(&£,0) = 1, while Dirichlet and no
flux Neumann boundary conditions are applied at the inlet and the outlet, represented as C(¢ =

0,7) =1 and %](52177) = 0, respectively. Alternatively, mixed boundary conditions (Danckwerts
type) can be used at the inlet, expressed as C(¢ = 0,7) = C;,, + i%. The radial gradients
are neglected due to the small bed diameter-to-bed length ratio and the high particle-to-bed
diameter ratio. In standard laboratory scale reactor design practices, a ratio % > 5 ensures plug
flow behavior. The Damkadhler number (Da) in Eq. 5, describing the relationship between reaction
and transport time scales, varies for each unit. Further details are expounded upon in subsequent

sections.

The variables and parameters related to DHA, CLC, and TSA are represented with subscripts
(1)1, (+)2, and (-)3, respectively. In DHA, H-ZSM5 catalyst deactivation is taken into account.

557 " The zeolite catalyst deacti-

Each product with two or more carbons leads to deactivation
vation is modeled as second-order kinetics and the activity information is incorporated with the
DHA reaction rates as suggested in the literature®°®. The deactivation rate model information
is in the S.I. For CLC and TSA, diffusion/dispersion terms are excluded due to the high Peclet
number, transforming the parabolic PDE into a hyperbolic PDE. Additionally, model equations
for the solid phase (iron-oxide in CLC and zeolite-13x in TSA) are also included. Subsequently,
nonlinear wave theory applied to the hyperbolic PDE indicates fast mass transfer between two
phases (gas-solid), establishing local equilibrium between phases®®. The transport model for gas-

phase species in CLC is presented in the S| (Eq. 18) and the model for the solid-phase (iron

O%Fe.0 €q Ly
_resdd — —_ R— — D
o= (72 e (32) oo ©

where (r4.) (Eq. 14 in SI) represents the redox reaction kinetics for hydrogen consumption (moles

oxide) reaction is

of Fe30, per m? of solid particle), ¢, is the porosity of iron oxide bed, L, is the bed length (cm)
and vy, is superficial velocity (cm/s). In this context, Dag denotes the Damkaohler number for

the gas-solid reaction.

In TSA, the gas-phase transport model is described in SI (Eq. 20). Going beyond the

standard Langmuir adsorption isotherm, interactions among adsorbing species are considered>?.



A generic expression for the Langmuir isotherm with interactions is

bipi + Ri(bips)* + Rij(bipib;p;)
1+ 3020 (bepr, + 0.5Ry (bepr)2)) + Rij(bipid,p;)

(7)

q; = QSi(

kmol )
kgzeo /'

AH; . .
b; = (by); X e~ ®T is the Langmuir constant (atm™'), AE; and AH; are molecular energies

kJ
( kmol

Here p; = C;RT is the partial pressure (atm), ¢s, = (qo); X e~ F is the site density (

), R; is the interaction parameter between a molecule (¢) and the zeolite, R;; is the binary
interaction between molecules 7 and 7. The interaction parameters are computed using partial
pressures of the adsorbing species. The expression to compute these parameters is presented in
SI (Eg. 21 and Eq. 22). Due to the Onsager reciprocal relation, a symmetry constraint is imposed
on the cross-molecule interaction parameter as R;; = R;;. In the absence of interactions, i.e.,
when R; and R;; are 0, Eq. 7 reduces to the conventional Langmuir isotherm model. When
R; > 1, attractive forces dominate, and vice versa for R; < 1. Detailed models for CLC and TSA
are provided in the Sl sections B and C. The reaction kinetics and associated model parameters
for all processes are available in the Sl sections D to F.

The transient PDEs are discretized using the finite difference method, Method of Lines, as

00-62 \We employ upwind (for convective terms) and central finite difference

detailed in references
(for diffusive terms) for spatial discretization. Inlet and outlet boundary conditions are discretized
using a backward (mixed type) scheme and a forward difference (Neumann) scheme, respectively.
The resulting system takes the form of a set of stiff nonlinear Ordinary Differential Equations
(ODEs), organized in an input/output structure. This configuration aligns with constructing a
nonlinear state-space model within the systems and control community, as documented in%3:%4,

Concurrently, the pressure drop in the reactor is computed with Eq. 5 using Ergun’s equation
(Eq. 8)
dP 1500y(1 — €)*(Lagvg)  1.75p4(1 — €) L(agvg)?
qc 2 - (8)
dé dye; dyep

In Eq. 8, the viscosity of the gas mixture, j,, is computed using Wilke's method®®®. d, and ¢,

denote particle diameter and bed porosity, respectively.
2.3 Surrogate Process Models and Process Integration

The spatiotemporal process dynamics of DHA, CLC, and TSA across three distinct process time
scales need to be integrated and solved inexpensively. We opt for a simulation data-driven

approach to construct surrogate models*>~*". Mathematically, a surrogate model is described as:

~

Y = Fsurrogate(xa @) +e€= f(X)T@ + € (9)



Here, X € R™ represents the input for the model, Y € R™ the output and © the model param-
eters to be estimated. Y signifies the exit concentrations in the DHA, CLC, and TSA processes
at a specified operating time. The term ¢ represents model approximation error, modeled statisti-
cally as a white noise®®*’. The input X comprises the dimensionless concentration, flowrate, and

temperature ([C Q ﬂ) The input variables are subjected to simple nonlinear transformation

d
expressed as f(X) = [X VX log(X) X1| 6768 The value of d defines the polynomial order of
f(X), selected using the process knowledge. In this work, coefficient of the logarithm of the

Damkohler number is selected as the value of d.

~

Data points for Y are generated using Latin hypercube sampling in X (Figure 2). The
surrogate model, Eq. 9, is a nonlinear model with a linear-in-parameter form. Due to the linearity,

50,69-71

the parameters can be estimated using least square optimizers . An ensemble of machine

learning models was explored to predict the output, including random forest and XGBoost?,

1 non-parametric regression, like Kernel and Gaussian process

conventional linear regression’
regression with squared exponential and Matern kernel as basis functions’®, and constrained

regression methods like [, regression®7* and its convex variant LASSO %75,

All methods, except conventional linear regression, have tunable hyper-parameters. The
hyper-parameters of ensemble and non-parametric surrogate models are optimized using Bayesian
optimization, and those of constrained linear regression models, hyper-parameters are optimized
using the Akaike information criterion (AIC). The models undergo training using n-fold cross-
validation, with 70% of samples for training and the remaining for testing. The surrogate model’s
performance is evaluated using the root mean square error (RMSE) and mean absolute error

(MAE). These surrogate models are then employed for process integration and optimization.

The surrogate models are coupled, as the output of one model becomes the input of another
with a simple mixing equation for the recycle stream. The mathematical representation of the
model integration is presented in Section F of the SI. In SI, Eq. 25, Ryecyere € [0,1] is the
recycle ratio used to determine the recycle flowrate Q,coycie = Rrecyeie * Qpiow. The tearing
method is employed to solve the surrogate model equations*® (SI Eq. 25), where the value of the
recycle stream is determined using a Picard-like iteration in predictor-corrector form. The iterative
sequence is described in Eq. 26 in the SI. The model outcomes are quantitatively assessed in terms
of yield and selectivity vs methane conversion per pass and the recycle ratio. The integrated

surrogate models are effective in representing a high-dimensional system.
2.4 Process Optimization

The optimization objectives include maximizing the product yield and the methane conversion

per pass and are posed as a multi-objective problem5%7%76  Further, operational constraints are



incorporated based on experimental limitations!®

. The details of the constrained optimization
problem are presented in Section H of the SI (Eq 29 and Eq 30). The multi-objective cost and

constraints are presented as

Ju=R;p) : wdP + (1 —w)d,
g, (u,p) : in—lgo,‘v’izlznm (10)
g2(uap) : Rrecycle - Rmam S 0
gB(uap) : Rmm - Rrecycle S 0

where J(-) is a nonlinear objective function, ®; and ®, are the product yield and methane
conversion. The prices of benzene, naphthalene, and methane, po p.. Py ms and pop,. are
incorporated as coefficients in ®; and ®,. w € [0, 1] is the weight between objectives. R, ccycie is
the decision variable 337, R,,.. = 0.98 and R,;, = 0.25 are the upper and lower limits. p is a
vector accompanying the flow rate and the temperature. For every optimal guess, R*, computed
using S| Eq. 30, the system of surrogate models is solved until convergence. The optimization
problem provides the optimal temperature, yield, and w. The structure of the optimization
problem remains the same for operational and economic optimization. The major difference is
that the price of components is ignored in conventional optimization. The details of the objectives
are provided in the Sl (Eq. 31).

3 Results and Discussion

3.1 Parametric Analysis of Dehydroaromatization (DHA)

The results of the DHA parametric analysis (Figure 3A and B) show that the DHA process reaches
a quasi-steady state within the first sixty minutes of the total operating period of four hours.
Ethylene reaches a quasi-steady state first, followed by benzene and naphthalene. Spatially,
ethylene shows a non-monotonic profile with the maximum value reached near the middle of the
fixed bed; benzene and naphthalene attain a maximum value downstream. This is reflected in
the product yield and selectivity (Figure 3C). At the reactor exit, benzene achieves a maximum
carbon selectivity exceeding 60% with a yield of 7% followed by naphthalene (selectivity 5.2% and
yield 0.5%) and ethylene (selectivity 1.2% and yield under 0.2%) at 700 °C and 1 atm pressure.
Toward the end of the reactor, naphthalene yield surpasses that of ethylene. Simulated product
yields align with existing literature, with total product yields around 6 to 10%. Figure 3C also

indicates that the steady-state methane conversion of 9% is limited by thermodynamics4-16.77,

10
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Figure 3: DHA process analysis. The reactant (methane), products (ethylene, benzene, naph-
thalene, and hydrogen), and unconverted methane mole fractions at the reactor exit at different
time instants, and the corresponding spatial profiles along the fixed bed. A. Exit mole fraction of
methane and products vs. time. B. Mole fractions vs. reactor bed length at the end of four hours

at steady-state. C. Selectivity (right axis) and yield (left axis) of carbon products vs. methane
conversion.

The statistical relationship between the input-output and product yields is analyzed using
correlation analysis (S| Figure 10). Ethylene, benzene, and naphthalene in the feed positively
affect benzene yield, while hydrogen in the outlet has a negative impact on the benzene yield.

11,77

This observation agrees with the literature , Where hydrogen in the outlet limits aromatics

yield due to chemical equilibrium.

11
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Figure 4. Effect of flow rate and temperature on DHA. A. Effect of flow rate on product yields
evaluated at Ceop,in = 0.729 and CHein = 0.3% at 700°C. B. Effect of temperature on

m3

product yields evaluated at Ccp, in = 0.7’;1—%’ and 3000 mL/g.h.

The product yield decreases monotonically as the flow rate increases due to decreasing
residence time (Figure 4A and B). The product yield declines substantially above a space ve-
locity of 5000 mL/g.h due to the reaction zone moving to the reactor exit. An increase in the
methane-to-inert ratio in the feed enhances the product yield. Below 680 °C, experiments show

1152 "and above 730 °C, benzene selectivity decreases due to rapid naphthalene forma-

no activity
tion. This trend is evident in Figure 4B, where the product yield exhibits a maximum at 730 °C.

This observation suggests that operating DHA at or below 730 °C and 5000 mL/g.h is suitable.
3.2 Parametric Analysis of Chemical Looping Combustion (CLC)

In the CLC, hydrogen reacts with Fe3O, to form water. Hertel et al. and Heidebrecht et
al.?627 suggest that once equilibrium is reached between Fe;O4 and hydrogen, the reaction zone
propagates along the axial direction, generating a moving front. This is presented in Figure 5A,
displaying the progress of the equilibrium front of hydrogen and water at different times. Initially,
the equilibrium front velocity of hydrogen and water remains constant, however, as water forms,
the waterfront velocity decreases, and the equilibrium front is convected down the bed, displaying a
lag in water reaching the equilibrium conversion. This phenomenon is due to the interplay between
kinetics and transport, where the concentration of hydrogen and water governs the components’
interstitial velocity (See species velocity expression in the Sl). Figure 5A also illustrates that 20%
of the total bed (1 cm of the 5 cm) is utilized in a single-pass operation of 4 h, and indicates that
equilibrium is reached after consuming 40% of the initial hydrogen. This aligns with literature
findings based on the Bauer-Glaessner thermodynamic diagram for hydrogen-water over iron-oxide
and it indicates that the length of an iron-oxide bed could be halved without detriment or the

operation can be extended1®:26:27,

12
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Figure 5: CLC process analysis. A. Spatial response of hydrogen and water at different times
in min. B. Hydrogen conversion, and ratio of product-to-reactant of gases and solids w.r.t
temperature.

Figure 5B presents hydrogen conversion and the product-to-reactant ratio as a function of
temperature. Due to the reaction endothermicity, an increase in temperature increases the hydro-
gen conversion (Figure 5B). The variation in hydrogen conversion with temperature is relatively
small (Figure 5B). The water-to-hydrogen ratio increases with temperature. Conversely, the ratio
of FeO to Fe30,4 and Fe to Fe3O, decreases with temperature. This is also due to the presence
of Fe30, in excess compared to FeO and Fe at high temperatures?®. Given the opposing trends
in the gas phase and solid phase product-to-reactant ratios (Figure 5B), the desired operating
temperature should be between 680 and 770 °C.

3.3 Parametric Analysis of Temperature Swing Adsorption (TSA)

A Langmuir isotherm was applied to model the adsorption of an ideal ternary mixture of ben-
zene, naphthalene, and water on zeolite-13X, incorporating a linear driving force (LDF) model.
In this model, the breakthrough time and the saturating distance in the axial direction of the
equilibrium front are similar for water, naphthalene, and benzene. The experiments indicate com-
plete adsorption of benzene, naphthalene, and water by the zeolite-13X . However, considering
the non-ideal nature of the mixture and interactions with the zeolite-13X framework, additional
simulations were conducted using a competitive interaction Langmuir isotherm model (Eq. 7).
Figure 6A reveals significant variations in the saturating region of the bulk-phase concentration
profile of the adsorbing components after 4h. The relatively sharper concentration front of ben-
zene and naphthalene compared to water is due to differences in the heats of adsorption, resulting
in competitive adsorption of aromatics upstream, and water downstream. Without interactions,
only 18% of the total zeolite bed is saturated. In total, only 12% of the total bed is saturated
by benzene and naphthalene, and 24% by water (Figure 6A).

13
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Figure 6: Analysis of temperature swing adsorption process. A. Spatial response of benzene and
water at different times. B. Impact of inlet mole fraction of benzene, naphthalene, and water on
breakthrough time. Comparison of breakthrough time w.r.t naphthalene. C. Kernel density of
breakthrough time for adsorbing species and log-log HETP w.r.t interstitial velocity. D. Average
HETP and breakthrough time w.r.t flowrate.

A parametric analysis was performed by varying the inlet feed concentration and its flow
rate for 9 h to map the design space and operating limits of the bed (Figure 6B, C, and D). The
breakthrough time vs. inlet concentrations for a fixed space velocity of 125 mL/g.h is shown in
Figure 6B. The operating time of 4h is indicated by a vertical line to determine the concentrations
at which breakthrough occurs. The column saturates quickly for the inlet concentrations left of
the operating timeline (high concentration regime) and exhibits a shorter breakthrough time. For
feed concentrations, the right of the operating timeline (low concentration regime) saturation of
the bed takes sufficiently longer. The right plot in Figure 6B shows the deviation of breakthrough
time w.r.t the strongly adsorbed species (naphthalene), which indicates water breakthrough first

followed by benzene and naphthalene.

Statistical measures and process-oriented metrics, such as kernel density estimators and
the height equivalent theoretical plate (HETP), were employed to determine the average break-
through time of each species and the location of adsorbing species by characterizing the impact
of external mass transfer and convective time scales. Figure 6C indicates that naphthalene’s av-
erage breakthrough time (440 min) is greater than benzene (1.25 times) and water (2.25 times).
HETP indicates that naphthalene predominantly adsorbs at the entrance of the bed, benzene in
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the middle region, and water toward the exit. Water exits first due to its adsorption location and
can be used as an indicator of column saturation. Further, adjusting the flow rate w.r.t feed con-
centration is essential to prevent the column from reaching saturation. HETP and breakthrough
time decrease with increasing volumetric flowrate (Figure 6D), indicating insufficient residence
time for the species to adsorb. Hence, a space velocity of 125 mL/g.h or lower or a longer bed

is recommended.

8 and the Wasserstein metric’®, were also

Further, statistical tools such as KL-divergence’
used to quantify the effect of flowrate on the breakthrough time distribution of the adsorbing

species (Figures 11 and 12 in the SI).
3.4 Integrated Process Model

The surrogate models are computationally cost-effective to integrate and analyze the entire pro-
cess. The models are trained using the full models for a wide range of inlet concentrations,
temperatures, and flow rates. The surrogate model predictions of species mole fractions are
within 5% of the full model (error statistics are in Figures 13 and 14 in the SI). The findings from
the integrated surrogate models are shown in Figures 7 and 8. The methane mole fraction in the
reactor exit starts at 61% and decreases linearly to 53% with an increase in recycle ratio (Fig-
ure 7A) i.e., 40% to 60% of methane is converted for a feed with 95% methane, which is seven
times more than the stand-alone DHA process (Figure 7B). The aromatics and hydrogen mole
fractions decrease with an increase in the recycle ratio (Figure 7A). Yet, the average exit mole
fraction in the integrated process increases by 1.5 to 6 times compared to the stand-alone DHA
process (Figure 7B). When the percentage of methane in the feed decreases by 20%, methane
conversion increases by 1%. However, the aromatics mole fraction decreases proportionately
(Figure 15 in the S.1). The hydrogen conversion in CLC ranges from 32% to 45% (Figure 7C).
Thermodynamics of iron-oxide phase equilibrium establishes a conversion of 38% hydrogen. Op-

erating at a recycle ratio of 0.5 or below provides the necessary hydrogen conversion.
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Figure 7: A. Exit mole fractions vs recycle ratio in the DHA process. B. Conversion and product

mole fraction comparison between the standard and integrated DHA. C. Exit mole fractions vs
recycle ratio in the CLC process.

The yield and selectivity per pass monotonically decrease with an increase in methane con-
version per pass. Similarly, product yield decreases with an increase in the recycle ratio (Figure 8A
and B). These observations are highly correlated; at a lower recycle ratio, the number of recycle
passes is significantly lower compared to a higher recycle ratio (Figure 8B). Due to the variations
in recycle passes, residence time affects the methane conversion per pass proving that the recycle
ratio is pivotal for achieving desired process yields. The operating boundary line in Figure 8C
indicates that naphthalene formation increases until a recycle ratio of 0.55, and above that, the
rate of reaction forming naphthalene decreases. This is reflected in the benzene-to-naphthalene
ratio, which increases rapidly for R > 0.55. This result is consistent with the analysis in Figure 8A

and B and the selectivity-conversion profiles in the literature37:80:81,

16



>
o8]

10
¥ 151 ‘@ Ethylene 10 IOEtherne
NVW ‘¥Benzene '\v\v “¥Benzene
8 Naphthalene \V\v\‘ Naphthalene

£

(6]

Yield per Pass
()]

N

Yield per Pass
(o)
Selectivity per Pass
>

i

O‘EMM““ QL9e=0—0-0-—00900000000000029
20 0 0.2 04 0.6 0.8 1

Recycle Ratio

10 15 2 10
Conversion per Pass

C 30 : 4
@ Ethylene
25 ‘¥ Benzene »
2 .mNaphthalene v_f' )
—Operation Boundary v’ 13.5 g
20+ wSelectivity Ratio v [
X o
< >
|4 3 =
i) 15¢ EEEES
< =
= [&]
> 10} o
125 »
5k
0o o o 00 eo0 |

0—e
0

Recycle Ratio

Figure 8: Analysis of surrogate models. A. Yield and selectivity per pass w.r.t methane conversion
per pass. B. Yield per pass w.r.t the recycle ratio. C. Product yield and selectivity ratio w.r.t
recycle ratio.

3.5 Optimization of Product Yields

The product yields are optimized for operational and economic objectives with constraints on
the optimization variable. The objective function outlined in Eq. 10 is evaluated based on the
surrogate model (Eq. 26). The Pareto weights (w) were adjusted to account for different recycle
ratios (R). When w is set to zero, the methane conversion at every pass is optimized, while
at w = 1, the overall aromatics yield at the end of recycle is optimized. Furthermore, at a
high recycle ratio, the objective function optimizes the methane conversion, and a low recycle
ratio prioritizes optimizing yield over the methane conversion. Throughout the analysis, the DHA
temperature was fixed at 700, 725, and 745 °C. Due to the non-monotonic nature of the aromatics

yield, operating at an intermediate temperature of 725 °C is recommended.
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Figure 9: Optimization analysis of surrogate models. A. Pareto plot of the conversion and yield
cost function and optimal recycle ratio at different DHA operating temperatures. B. Optimal
recycle ratio sensitivities w.r.t DHA temperature with the threshold computed using 10% of

the maximum value of g, .. 1. C. Comparison of optimization outcomes with experimental

observation and the stand-alone DHA process.

Despite knowing the operating temperature obtained from the cost function analysis, deter-
mining the optimal recycle ratio and its corresponding operating temperature remains unresolved.
This was obtained by solving the optimization problem outlined in Eq. 10 for the operating tem-
perature and flowrates adjusted within the limits obtained from the parametric analysis of DHA,
CLC, and TSA (see Figure 9A). The left plot illustrates the economic optimum values of conver-
sion and yields at different DHA temperatures, while the plot on the right showcases the optimal
recycle ratio as a function of temperature. The range of the economic optimal recycle ratio is
between 0.45 and 0.47. The sensitivity of the optimRaI recycle ratio for the DHA reaction tem-
T o

;e.i_yde) to verify the effect of temperature

perature is computed using 5Rrecyc|e,T = (R

recycle
perturbations on the optimal solutions (Figure 9B). A maximum positive value of the sensitivity is

achieved at 725 °C, the recommended operating temperature for DHA. Since most of the optimal
recycle ratios are below the 10% threshold, it is safe to conclude that the current optimal recycle

ratio and the corresponding temperature are the most effective to operate.

The optimal recycle ratio was cross-verified with the result presented in Figure 8C. The opti-
mum solutions were compared with experiments and the stand-alone DHA process in Figure 9C.

The comparison shows that the aromatics yield of operational optimum is greater than the experi-
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mental yield. In both cases, the process is operated at R > 0.95. Accounting for economic factors
within a rigorous optimization framework, the optimal recycle ratio shifts toward 0.47 resulting
in a product yield of greater than 40%. The difference is that naphthalene formation increases

at the economic operating point compared to the conventional case illustrated in Figure 9C.

Comparing the operating conditions with the experiments, a recycle ratio above 0.55 is sug-
gested to obtain more than 40% aromatics yield by minimizing the naphthalene formation. When
compared to the experiments, aromatics yields have increased by 4% (conventional optimum) and
2% (economic optimum). Despite a 2% reduction in product yield, the economic considerations
associated with recycling costs and conversion per pass play a pivotal role in the decision-making.
Therefore, the computed optimal recycle ratio (Ryecyeie = 0.47) at 725 °C is identified as the
desired economic operating point. The notion of optimal operation has been demonstrated for
linear and nonlinear steady-state reactive separation processes®®82. The results indicate the pres-
ence of a unique optimum for a given set of operating conditions that agree with the findings in

Figure 8C of the multi-objective framework.

4 Conclusions

This study presented a spatiotemporal process model for an integrated methane dehydroaromati-
zation (DHA) process proposed in Ref. 16'°. The mathematical models governing the methane
DHA, the reduction of Fe3O, with hydrogen in chemical looping combustion (CLC), and the
adsorption of benzene-naphthalene-water on zeolite-13x in temperature swing adsorption (TSA)
processes were formulated as convection-diffusion-reaction and convection-reaction partial dif-
ferential equations. The models for gas-solid CLC and TSA processes leverage the equilibrium
theory of nonlinear waves, resulting in rapid reaction and mass transfer between the two phases.
These models delineate process operating boundaries and provide a foundation to build steady-
state surrogate models. These were subsequently integrated and solved using the simultaneous
modular method for varying recycle ratios.

Model predictions for each process and the integrated system were validated against experi-
mental datal®162"77 showing a good agreement!®. The model recommends the DHA process to
run at 725 °C and below 5000 mL/g.h, CLC between 680 and 770 °C, and TSA at 125 mL/g.h.
The integrated surrogate model recommended a recycle ratio of Riecycle = 0.47 and a temperature
of 725 °C for an optimum economic trade-off between product yield and conversion per pass.
Operating the process at the optimum point drives the process to higher aromatics yields than

experiments.

The methodology proposed is unique due to the semi-batch nature of the process operation,

as almost all the reactive separation processes are operated in continuous mode. This work
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showcases the potential to systematically optimize the semi-batch modular reactive separation
process and can be extended to other semi-batch operated reactive-separation systems with

equilibrium-limited endothermic reactions.
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