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Abstract

Natural gas at remote locations would greatly benefit from on-site processing using mod-

ular technologies, such as dehydroaromatization (DHA). This work models an intensified

dehydroaromatization process to increase product yield and methane conversion by cou-

pling the reactor with a chemical looping unit that effectively separates hydrogen through

a redox cycle and a temperature swing adsorption process to remove the aromatics and wa-

ter and recycle the unconverted methane. We postulate dynamic models and steady-state

surrogate models to analyze and optimize the production of the aromatic product. The

optimum methane conversion of 48% and the aromatic yield of 42% occurs at a recycle

ratio of 0.47 and a reactor temperature of 725 oC.
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1 Introduction

The efficient design and operation of energy systems are pivotal in the reduction of global CO2

emissions and in driving green, and sustainable manufacturing technologies1–3. Methane, a low

carbon footprint fuel, can be processed through steam/dry reforming, partial oxidation, nonoxida-

tive coupling, and oxidative coupling4–6. The high temperature, pressure, energy requirements,

and capital costs of syngas motivates the exploration of direct processes. Moreover, over 30%

of natural gas wells are placed in remote areas, making transportation to centralized locations

expensive7–9. In response, on-site modular dehydroaromatization (DHA) has been proposed as a

potential alternative7,10,11.

The DHA reaction converts methane into aromatics using a Mo/HZSM-5 catalyst at 700 ◦C11,12.

The equilibrium-limited nature of the DHA reaction restricts methane conversion to less than 10%

at 700 ◦C13,14. To address this limitation, DHA can be coupled with chemical looping (CLC)

and temperature swing adsorption (TSA), forming a reactive-separation system based on process

intensification principles15–18. The CLC consists of metal oxide oxygen carriers that facilitate

selective oxidation and reduction reactions, forming a redox loop19. In a two-step reaction, the

metal oxide donates oxygen to selectively convert hydrogen and is subsequently regenerated by

exposure to steam to regenerate the hydrogen. The TSA alternates the temperature of the ad-

sorbent between the adsorption and desorption steps and removes the aromatics. The remaining

stream consisting mainly of unconverted methane is recycled to the DHA reactor. 20–23. Experi-

mental studies on the integrated DHA-CLC-TSA system have demonstrated an aromatic yield of

42% over a four-hour operation, achieving nearly five times higher yields than the thermodynamic

limit of DHA at 700 ◦C16. This indicates that the oxidation of hydrogen and the adsorption of

aromatics, and water are pivotal for enhanced performance17,18.

Previous studies have examined the economic impact of modular processes10, kinetics, and

transport properties of DHA13,14,24, CLC25–27, and TSA21,28–30. For DHA, Mevawala et al.13

and Razdan et al.24 developed a multi-scale fixed bed reactor model and analyzed the impact of

diffusive length scales of methane with catalyst deactivation. Han et al.25 presented an extensive

process model for a fixed-bed chemical looping reactor, evaluating the impact of transport proper-

ties on the rates of different metal-oxide carriers. Zhou et al.31 discussed a model-driven analysis

of experimental chemical-looping reactors with nickel oxide as an oxygen carrier for scale-up stud-

ies. Thermodynamic insights on iron-oxide redox reactions were provided by Heidebrecht et al.26,

with subsequent modeling and experimental quantification reported by Hertel et al.27. TSA has

been studied for CO2 capture
2,32 and natural gas purification20,33. Joss et al.21 developed a sim-

plified equilibrium model for TSA, focusing on capturing heavy components and determining the

operating points and screening materials for CO2 capture. Similarly, Panikhar et al.34 provided a
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performance map for TSA, determining energy requirements, the range of product recovery, and

process capacity. Yet, the operating limits of these individual processes and their impact on the

synergistic effects observed on the conversion and productivity of the integrated DHA process

have not been investigated.

In process engineering, the integrated DHA-CLC-TSA process shares similarities with a reac-

tion separation involving recycling, as discussed in various reports35–43. Denn et al.41 and Morud

et al.36 have examined the impact of plant dynamics for activated sludge process, autothermal

process, and other arbitrary chemical processes, noting that recycling of mass or energy can be-

have like a positive feedback controller (negative gain), potentially leading to instability in plant

behavior. Larsson et al.35 and Kumar et al.38 have systematically investigated operating variables

and dynamics of time-scale separation for the effective operation of processes involving reactive

separation with recycling. Griffin et al.37 and Baldea and co-workers39,40,44 discussed the impact

of selecting process units, considering reaction chemistry, trade-offs between conversion and se-

lectivity, limitations associated with integrating processes that incorporate recycling, along with

equation oriented pseudo-transient simulation method for the salicylic acid nitration, ammonia

synthesis network, and arbitrary sequence of first-order reactions.

A systems-level understanding of the operation of the entire system is important, given its

complexity16. Despite the past progress in reactive separation processes and a stand-alone under-

standing of DHA, CLC, and TSA processes, the operating limits of complex reactive separation

systems are still unavailable. When experimental data is sparse and expensive to obtain, model-

based methods can provide valuable insights. The first objective of this work is to develop a

model for an integrated DHA-CLC-TSA process (Figure 1)15,16, determine the achievable aro-

matics yield and methane conversion, and understand the operation of each process. Each process

is simulated using a one-dimensional spatiotemporal model. To balance computational efficiency

and accuracy, surrogate models for all processes are developed45–47, integrated, and simulated

using a simultaneous modular method48,49. The second objective is to optimize the product

yield and conversion by manipulating the recycle ratio35,37 using Lagrange multipliers50,51. The

optimization problem is solved with operational and economic objectives resulting in an optimum

recycle ratio (Rrecycle = 0.47) and a DHA operating temperature of 725 oC to achieve an economic

trade-off between product yield and conversion of methane.
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2 Materials and Methods

2.1 Process Overview

The experimental integrated modular process, investigated by Brady et al., 202115,16, consists of

three fixed beds connected in series: DHA, CLC, and TSA, as illustrated in Figure 1. Within the

DHA unit, methane undergoes selective conversion into hydrogen and aromatics over a 2 wt %

Mo/H-ZSM5 (400 mg) catalyst at 700 ◦C. The catalytic reaction involves three stoichiometric

steps (Eq. 1). Methane is converted to ethylene as the primary product of C-C coupling. Subse-

quently, ethylene trimerizes into benzene and hydrogen. Finally, ethylene and benzene combine

to form naphthalene and additional hydrogen.

R1 : 2 CH4 ⇀↽ C2H4 + 2 H2

R2 : 3 C2H4 ⇀↽ C6H6 + 3 H2 (1)

R3 : C6H6 + 2 C2H4 ⇀↽ C10H8 + 3 H2

The desired overall reaction converts methane into benzene as illustrated in Eq. 2.

6 CH4 → C6H6 + 9 H2 (2)

Thermodynamic equilibrium severely limits the single-pass conversion of methane to be 7% to

12% with aromatics yield of 10% at 700 ◦C under atmospheric pressure11,52. Hence, CLC is placed

downstream of the DHA process to remove hydrogen and recirculate unconverted methane. A

metal oxide (7 g of Fe3O4) converts hydrogen into water, FeO, and Fe at 650 ◦C.

Fe3O4 + H2 ⇀↽ 3FeO+ H2O (3)

In TSA, benzene and naphthalene from the DHA and water from the CLC are removed with

zeolite 13X (10 g) at 80 ◦C.

C6H6 + Ads ⇀↽ Ads · C6H6 (4)

C10H8 + Ads ⇀↽ Ads · C10H8

H2O+ Ads ⇀↽ Ads · H2O

The unconverted methane and leftover products are recirculated at 20 SCCM into the DHA

reactor. Fresh methane is introduced from a bleed tank (BT) to replenish the methane. In terms

of gas hourly space velocity (GHSV in mL/g.h), 20 SCCM equivalent is 3000 GHSV in DHA, 180
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GHSV in CLC, and 125 GHSV for the TSA. These are the nominal laboratory values.

Figure 1: Schematic of integrated methane dehydroaromatization process flow-sheet. The se-
quence of process units and individual stream’s component information and control structure is
shown with fresh methane feed from the bleed tank (BT).

Binary process configurations, such as DHA-CLC and DHA-TSA, have been investigated

experimentally16. In the DHA-CLC configuration, an approximately 16% methane conversion

was achieved at the end of a four-hour run. Traces of aromatics were detected in DHA, yet

these were converted into CO and CO2 due to a reforming reaction induced by steam generated

in the CLC bed as a result of Fe3O4 reduction. In the DHA-TSA configuration, the methane

conversion reached 24.6%, with aromatics captured in the molecular sieve at a yield of 10.8%. The

integration of all three processes led to a significant improvement in overall methane conversion

of 50% and aromatics yield of 42% at the end of a four-hour operation.

2.2 Process Models

We build and analyze the spatiotemporal behavior of each packed-bed unit and their collective

behavior. The approach involves four steps (Figure 2). In the randomized sampling of process

variables step, we utilize Latin hypercube (LH) sampling, a method that intelligently selects

conditions such as inlet concentration, flow rate, and temperature. The boundaries for this

sampling are determined based on the literature16. We simulate the system at the suggested

conditions.

In the unit model development step, we formulate mathematical models for the spatiotem-
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poral behavior of the packed-bed units and solve them at LH-sampled initial conditions to obtain

the end concentrations. We utilize the published reaction rate and adsorption kinetic parame-

ters27,53,54. In the surrogate model construction step, we train simpler surrogate models, using

exit concentration data from numerical simulations as the output with LH samples as inputs, as

approximations of the full models. Lastly, the system’s yield is optimized using the surrogate

models to determine optimal operational conditions in the yield optimization step. This approach

provides a foundation for understanding and optimizing integrated reactive separation process

systems.

Latin Hypercube Sampling
PDE Numerical
Process Model

End Product ConcentrationSurrogate Model for PDE

Yield Optimization
with Surrogate Model

Figure 2: Model development workflow for the integrated DHA-CLC-TSA process. The main
workflow includes sampling operating conditions, such as concentration (C), inlet flow rate (Q),
and temperature (T), using Latin hypercube (LH) sampling, numerical and surrogate model
development using the LH samples as initial conditions, and as the inputs. Finally, yield is
optimized using the surrogate models.

Each process is described using a dimensionless convection-diffusion-reaction transport model

in one dimension

∂C̄

∂τ
= −αξ

∂(C̄)

∂ξ
+

1

Pe

∂2C̄

∂ξ2
+ Da(C̄,Θ) (5)

where C̄ is the dimensionless concentration C̄ = C
C0
, Pe = v0L

De
is the Péclet number, Da = R(C)

C0

L
v0

is the Damköhler number, αξ =
vξ
v0

is the dimensionless velocity, ξ = z
L
is the dimensionless length

of the fixed-bed, and τ = v0t
L

is the dimensionless time. C is spatiotemporal concentration and C0

is the inlet concentration of each component. The units of concentrations are kmol
kgcat

for catalytic
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reactions and kmol
kgsolid

for gas-solid non-catalytic reactions and separations. R(C) is net-rate of

gas-phase species formation in kmol
kgcat.s

, t is time in seconds (s), L is the length of the fixed bed

(m), v0 and v are superficial and interstitial velocities of the gas-phase components (m
s
), and De

is either the diffusivity or dispersion coefficient (m
2

s
).

The parabolic partial differential equations (PDE) model in Eq. 5 is solved subject to initial

and boundary conditions. The initial condition is set as C̄(ξ, 0) = 1, while Dirichlet and no

flux Neumann boundary conditions are applied at the inlet and the outlet, represented as C̄(ξ =

0, τ) = 1 and ∂C̄
∂ξ
|(ξ=1,τ) = 0, respectively. Alternatively, mixed boundary conditions (Danckwerts

type) can be used at the inlet, expressed as C̄(ξ = 0, τ) = C̄in + 1

Pe
dC̄
dξ
. The radial gradients

are neglected due to the small bed diameter-to-bed length ratio and the high particle-to-bed

diameter ratio. In standard laboratory scale reactor design practices, a ratio L
d
> 5 ensures plug

flow behavior. The Damköhler number (Da) in Eq. 5, describing the relationship between reaction

and transport time scales, varies for each unit. Further details are expounded upon in subsequent

sections.

The variables and parameters related to DHA, CLC, and TSA are represented with subscripts

(·)1, (·)2, and (·)3, respectively. In DHA, H-ZSM5 catalyst deactivation is taken into account.

Each product with two or more carbons leads to deactivation55–57. The zeolite catalyst deacti-

vation is modeled as second-order kinetics and the activity information is incorporated with the

DHA reaction rates as suggested in the literature55,56. The deactivation rate model information

is in the S.I. For CLC and TSA, diffusion/dispersion terms are excluded due to the high Peclet

number, transforming the parabolic PDE into a hyperbolic PDE. Additionally, model equations

for the solid phase (iron-oxide in CLC and zeolite-13x in TSA) are also included. Subsequently,

nonlinear wave theory applied to the hyperbolic PDE indicates fast mass transfer between two

phases (gas-solid), establishing local equilibrium between phases58. The transport model for gas-

phase species in CLC is presented in the SI (Eq. 18) and the model for the solid-phase (iron

oxide) reaction is
∂xFe3O4

∂τ2
=

(
ϵg

1− ϵg

)
(−rclc)

(
L2

v02

)
= Das (6)

where (rclc) (Eq. 14 in SI) represents the redox reaction kinetics for hydrogen consumption (moles

of Fe3O4 per m
3 of solid particle), ϵg is the porosity of iron oxide bed, L2 is the bed length (cm)

and v02 is superficial velocity (cm/s). In this context, Das denotes the Damköhler number for

the gas-solid reaction.

In TSA, the gas-phase transport model is described in SI (Eq. 20). Going beyond the

standard Langmuir adsorption isotherm, interactions among adsorbing species are considered59.
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A generic expression for the Langmuir isotherm with interactions is

q∗i = qsi
bipi +Ri(bipi)

2 +Rij(bipibjpj)(
1 +

∑n=3
k=1(bkpk + 0.5Rk(bkpk)2)

)
+Rij(bipibjpj)

(7)

Here pi = CiRT is the partial pressure (atm), qsi = (q0)i × e−
∆Ei
RT is the site density ( kmol

kgzeo
),

bi = (b0)i × e−
∆Hi
RT is the Langmuir constant (atm−1), ∆Ei and ∆Hi are molecular energies

( kJ
kmol

), Ri is the interaction parameter between a molecule (i) and the zeolite, Rij is the binary

interaction between molecules i and j. The interaction parameters are computed using partial

pressures of the adsorbing species. The expression to compute these parameters is presented in

SI (Eq. 21 and Eq. 22). Due to the Onsager reciprocal relation, a symmetry constraint is imposed

on the cross-molecule interaction parameter as Rij ≡ Rji. In the absence of interactions, i.e.,

when Ri and Rij are 0, Eq. 7 reduces to the conventional Langmuir isotherm model. When

Ri > 1, attractive forces dominate, and vice versa for Ri < 1. Detailed models for CLC and TSA

are provided in the SI sections B and C. The reaction kinetics and associated model parameters

for all processes are available in the SI sections D to F.

The transient PDEs are discretized using the finite difference method, Method of Lines, as

detailed in references60–62. We employ upwind (for convective terms) and central finite difference

(for diffusive terms) for spatial discretization. Inlet and outlet boundary conditions are discretized

using a backward (mixed type) scheme and a forward difference (Neumann) scheme, respectively.

The resulting system takes the form of a set of stiff nonlinear Ordinary Differential Equations

(ODEs), organized in an input/output structure. This configuration aligns with constructing a

nonlinear state-space model within the systems and control community, as documented in63,64.

Concurrently, the pressure drop in the reactor is computed with Eq. 5 using Ergun’s equation

(Eq. 8)
dP

dξ
= −150µg(1− ϵb)

2(Lαξv0)

dpϵ2b
− 1.75ρg(1− ϵb)L(αξv0)

2

dpϵb
(8)

In Eq. 8, the viscosity of the gas mixture, µg, is computed using Wilke’s method65,66. dp and ϵb

denote particle diameter and bed porosity, respectively.

2.3 Surrogate Process Models and Process Integration

The spatiotemporal process dynamics of DHA, CLC, and TSA across three distinct process time

scales need to be integrated and solved inexpensively. We opt for a simulation data-driven

approach to construct surrogate models45–47. Mathematically, a surrogate model is described as:

Ŷ = Fsurrogate(X,Θ) + ϵ = f(X)TΘ+ ϵ (9)
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Here, X ∈ Rnx represents the input for the model, Ŷ ∈ Rny the output and Θ the model param-

eters to be estimated. Ŷ signifies the exit concentrations in the DHA, CLC, and TSA processes

at a specified operating time. The term ϵ represents model approximation error, modeled statisti-

cally as a white noise45,47. The input X comprises the dimensionless concentration, flowrate, and

temperature (
[
C̄ Q̄ T̄

]
). The input variables are subjected to simple nonlinear transformation

expressed as f(X) =
[
X
√
X log(X) X−1

]d
67,68. The value of d defines the polynomial order of

f(X), selected using the process knowledge. In this work, coefficient of the logarithm of the

Damköhler number is selected as the value of d.

Data points for Ŷ are generated using Latin hypercube sampling in X (Figure 2). The

surrogate model, Eq. 9, is a nonlinear model with a linear-in-parameter form. Due to the linearity,

the parameters can be estimated using least square optimizers50,69–71. An ensemble of machine

learning models was explored to predict the output, including random forest and XGBoost72,

conventional linear regression71, non-parametric regression, like Kernel and Gaussian process

regression with squared exponential and Matern kernel as basis functions73, and constrained

regression methods like l0 regression69,74 and its convex variant LASSO71,75.

All methods, except conventional linear regression, have tunable hyper-parameters. The

hyper-parameters of ensemble and non-parametric surrogate models are optimized using Bayesian

optimization, and those of constrained linear regression models, hyper-parameters are optimized

using the Akaike information criterion (AIC). The models undergo training using n-fold cross-

validation, with 70% of samples for training and the remaining for testing. The surrogate model’s

performance is evaluated using the root mean square error (RMSE) and mean absolute error

(MAE). These surrogate models are then employed for process integration and optimization.

The surrogate models are coupled, as the output of one model becomes the input of another

with a simple mixing equation for the recycle stream. The mathematical representation of the

model integration is presented in Section F of the SI. In SI, Eq. 25, Rrecycle ∈ [0, 1] is the

recycle ratio used to determine the recycle flowrate Qrecycle = Rrecycle ∗ Qflow. The tearing

method is employed to solve the surrogate model equations48 (SI Eq. 25), where the value of the

recycle stream is determined using a Picard-like iteration in predictor-corrector form. The iterative

sequence is described in Eq. 26 in the SI. The model outcomes are quantitatively assessed in terms

of yield and selectivity vs methane conversion per pass and the recycle ratio. The integrated

surrogate models are effective in representing a high-dimensional system.

2.4 Process Optimization

The optimization objectives include maximizing the product yield and the methane conversion

per pass and are posed as a multi-objective problem50,70,76. Further, operational constraints are
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incorporated based on experimental limitations16. The details of the constrained optimization

problem are presented in Section H of the SI (Eq 29 and Eq 30). The multi-objective cost and

constraints are presented as

J(u = R, p) : ωΦ1 + (1− ω)Φ2

g1(u, p) :
∑
i

xi − 1 ≤ 0,∀ i = 1 : nx (10)

g2(u, p) : Rrecycle − Rmax ≤ 0

g3(u, p) : Rmin − Rrecycle ≤ 0

where J(·) is a nonlinear objective function, Φ1 and Φ2 are the product yield and methane

conversion. The prices of benzene, naphthalene, and methane, pC6H6
, pC10H8

and pCH4
, are

incorporated as coefficients in Φ1 and Φ2. ω ∈ [0, 1] is the weight between objectives. Rrecycle is

the decision variable 35,37. Rmax = 0.98 and Rmin = 0.25 are the upper and lower limits. p is a

vector accompanying the flow rate and the temperature. For every optimal guess, Rk, computed

using SI Eq. 30, the system of surrogate models is solved until convergence. The optimization

problem provides the optimal temperature, yield, and ω. The structure of the optimization

problem remains the same for operational and economic optimization. The major difference is

that the price of components is ignored in conventional optimization. The details of the objectives

are provided in the SI (Eq. 31).

3 Results and Discussion

3.1 Parametric Analysis of Dehydroaromatization (DHA)

The results of the DHA parametric analysis (Figure 3A and B) show that the DHA process reaches

a quasi-steady state within the first sixty minutes of the total operating period of four hours.

Ethylene reaches a quasi-steady state first, followed by benzene and naphthalene. Spatially,

ethylene shows a non-monotonic profile with the maximum value reached near the middle of the

fixed bed; benzene and naphthalene attain a maximum value downstream. This is reflected in

the product yield and selectivity (Figure 3C). At the reactor exit, benzene achieves a maximum

carbon selectivity exceeding 60% with a yield of 7% followed by naphthalene (selectivity 5.2% and

yield 0.5%) and ethylene (selectivity 1.2% and yield under 0.2%) at 700 oC and 1 atm pressure.

Toward the end of the reactor, naphthalene yield surpasses that of ethylene. Simulated product

yields align with existing literature, with total product yields around 6 to 10%. Figure 3C also

indicates that the steady-state methane conversion of 9% is limited by thermodynamics14–16,77.
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A B

C

Figure 3: DHA process analysis. The reactant (methane), products (ethylene, benzene, naph-
thalene, and hydrogen), and unconverted methane mole fractions at the reactor exit at different
time instants, and the corresponding spatial profiles along the fixed bed. A. Exit mole fraction of
methane and products vs. time. B. Mole fractions vs. reactor bed length at the end of four hours
at steady-state. C. Selectivity (right axis) and yield (left axis) of carbon products vs. methane
conversion.

The statistical relationship between the input-output and product yields is analyzed using

correlation analysis (SI Figure 10). Ethylene, benzene, and naphthalene in the feed positively

affect benzene yield, while hydrogen in the outlet has a negative impact on the benzene yield.

This observation agrees with the literature11,77, where hydrogen in the outlet limits aromatics

yield due to chemical equilibrium.

11



A B

Figure 4: Effect of flow rate and temperature on DHA. A. Effect of flow rate on product yields
evaluated at CCH4,in = 0.7mol

m3 and CHe,in = 0.3mol
m3 at 700oC. B. Effect of temperature on

product yields evaluated at CCH4,in = 0.7mol
m3 and 3000 mL/g.h.

The product yield decreases monotonically as the flow rate increases due to decreasing

residence time (Figure 4A and B). The product yield declines substantially above a space ve-

locity of 5000 mL/g.h due to the reaction zone moving to the reactor exit. An increase in the

methane-to-inert ratio in the feed enhances the product yield. Below 680 oC, experiments show

no activity11,52, and above 730 oC, benzene selectivity decreases due to rapid naphthalene forma-

tion. This trend is evident in Figure 4B, where the product yield exhibits a maximum at 730 oC.

This observation suggests that operating DHA at or below 730 oC and 5000 mL/g.h is suitable.

3.2 Parametric Analysis of Chemical Looping Combustion (CLC)

In the CLC, hydrogen reacts with Fe3O4 to form water. Hertel et al. and Heidebrecht et

al.26,27 suggest that once equilibrium is reached between Fe3O4 and hydrogen, the reaction zone

propagates along the axial direction, generating a moving front. This is presented in Figure 5A,

displaying the progress of the equilibrium front of hydrogen and water at different times. Initially,

the equilibrium front velocity of hydrogen and water remains constant, however, as water forms,

the waterfront velocity decreases, and the equilibrium front is convected down the bed, displaying a

lag in water reaching the equilibrium conversion. This phenomenon is due to the interplay between

kinetics and transport, where the concentration of hydrogen and water governs the components’

interstitial velocity (See species velocity expression in the SI). Figure 5A also illustrates that 20%

of the total bed (1 cm of the 5 cm) is utilized in a single-pass operation of 4 h, and indicates that

equilibrium is reached after consuming 40% of the initial hydrogen. This aligns with literature

findings based on the Bauer-Glaessner thermodynamic diagram for hydrogen-water over iron-oxide

and it indicates that the length of an iron-oxide bed could be halved without detriment or the

operation can be extended16,26,27.
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A B

Figure 5: CLC process analysis. A. Spatial response of hydrogen and water at different times
in min. B. Hydrogen conversion, and ratio of product-to-reactant of gases and solids w.r.t
temperature.

Figure 5B presents hydrogen conversion and the product-to-reactant ratio as a function of

temperature. Due to the reaction endothermicity, an increase in temperature increases the hydro-

gen conversion (Figure 5B). The variation in hydrogen conversion with temperature is relatively

small (Figure 5B). The water-to-hydrogen ratio increases with temperature. Conversely, the ratio

of FeO to Fe3O4 and Fe to Fe3O4 decreases with temperature. This is also due to the presence

of Fe3O4 in excess compared to FeO and Fe at high temperatures26. Given the opposing trends

in the gas phase and solid phase product-to-reactant ratios (Figure 5B), the desired operating

temperature should be between 680 and 770 oC.

3.3 Parametric Analysis of Temperature Swing Adsorption (TSA)

A Langmuir isotherm was applied to model the adsorption of an ideal ternary mixture of ben-

zene, naphthalene, and water on zeolite-13X, incorporating a linear driving force (LDF) model.

In this model, the breakthrough time and the saturating distance in the axial direction of the

equilibrium front are similar for water, naphthalene, and benzene. The experiments indicate com-

plete adsorption of benzene, naphthalene, and water by the zeolite-13X16. However, considering

the non-ideal nature of the mixture and interactions with the zeolite-13X framework, additional

simulations were conducted using a competitive interaction Langmuir isotherm model (Eq. 7).

Figure 6A reveals significant variations in the saturating region of the bulk-phase concentration

profile of the adsorbing components after 4h. The relatively sharper concentration front of ben-

zene and naphthalene compared to water is due to differences in the heats of adsorption, resulting

in competitive adsorption of aromatics upstream, and water downstream. Without interactions,

only 18% of the total zeolite bed is saturated. In total, only 12% of the total bed is saturated

by benzene and naphthalene, and 24% by water (Figure 6A).
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A B

C D

Figure 6: Analysis of temperature swing adsorption process. A. Spatial response of benzene and
water at different times. B. Impact of inlet mole fraction of benzene, naphthalene, and water on
breakthrough time. Comparison of breakthrough time w.r.t naphthalene. C. Kernel density of
breakthrough time for adsorbing species and log-log HETP w.r.t interstitial velocity. D. Average
HETP and breakthrough time w.r.t flowrate.

A parametric analysis was performed by varying the inlet feed concentration and its flow

rate for 9 h to map the design space and operating limits of the bed (Figure 6B, C, and D). The

breakthrough time vs. inlet concentrations for a fixed space velocity of 125 mL/g.h is shown in

Figure 6B. The operating time of 4h is indicated by a vertical line to determine the concentrations

at which breakthrough occurs. The column saturates quickly for the inlet concentrations left of

the operating timeline (high concentration regime) and exhibits a shorter breakthrough time. For

feed concentrations, the right of the operating timeline (low concentration regime) saturation of

the bed takes sufficiently longer. The right plot in Figure 6B shows the deviation of breakthrough

time w.r.t the strongly adsorbed species (naphthalene), which indicates water breakthrough first

followed by benzene and naphthalene.

Statistical measures and process-oriented metrics, such as kernel density estimators and

the height equivalent theoretical plate (HETP), were employed to determine the average break-

through time of each species and the location of adsorbing species by characterizing the impact

of external mass transfer and convective time scales. Figure 6C indicates that naphthalene’s av-

erage breakthrough time (440 min) is greater than benzene (1.25 times) and water (2.25 times).

HETP indicates that naphthalene predominantly adsorbs at the entrance of the bed, benzene in
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the middle region, and water toward the exit. Water exits first due to its adsorption location and

can be used as an indicator of column saturation. Further, adjusting the flow rate w.r.t feed con-

centration is essential to prevent the column from reaching saturation. HETP and breakthrough

time decrease with increasing volumetric flowrate (Figure 6D), indicating insufficient residence

time for the species to adsorb. Hence, a space velocity of 125 mL/g.h or lower or a longer bed

is recommended.

Further, statistical tools such as KL-divergence78, and the Wasserstein metric79, were also

used to quantify the effect of flowrate on the breakthrough time distribution of the adsorbing

species (Figures 11 and 12 in the SI).

3.4 Integrated Process Model

The surrogate models are computationally cost-effective to integrate and analyze the entire pro-

cess. The models are trained using the full models for a wide range of inlet concentrations,

temperatures, and flow rates. The surrogate model predictions of species mole fractions are

within 5% of the full model (error statistics are in Figures 13 and 14 in the SI). The findings from

the integrated surrogate models are shown in Figures 7 and 8. The methane mole fraction in the

reactor exit starts at 61% and decreases linearly to 53% with an increase in recycle ratio (Fig-

ure 7A) i.e., 40% to 60% of methane is converted for a feed with 95% methane, which is seven

times more than the stand-alone DHA process (Figure 7B). The aromatics and hydrogen mole

fractions decrease with an increase in the recycle ratio (Figure 7A). Yet, the average exit mole

fraction in the integrated process increases by 1.5 to 6 times compared to the stand-alone DHA

process (Figure 7B). When the percentage of methane in the feed decreases by 20%, methane

conversion increases by 1%. However, the aromatics mole fraction decreases proportionately

(Figure 15 in the S.I). The hydrogen conversion in CLC ranges from 32% to 45% (Figure 7C).

Thermodynamics of iron-oxide phase equilibrium establishes a conversion of 38% hydrogen. Op-

erating at a recycle ratio of 0.5 or below provides the necessary hydrogen conversion.
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Figure 7: A. Exit mole fractions vs recycle ratio in the DHA process. B. Conversion and product
mole fraction comparison between the standard and integrated DHA. C. Exit mole fractions vs
recycle ratio in the CLC process.

The yield and selectivity per pass monotonically decrease with an increase in methane con-

version per pass. Similarly, product yield decreases with an increase in the recycle ratio (Figure 8A

and B). These observations are highly correlated; at a lower recycle ratio, the number of recycle

passes is significantly lower compared to a higher recycle ratio (Figure 8B). Due to the variations

in recycle passes, residence time affects the methane conversion per pass proving that the recycle

ratio is pivotal for achieving desired process yields. The operating boundary line in Figure 8C

indicates that naphthalene formation increases until a recycle ratio of 0.55, and above that, the

rate of reaction forming naphthalene decreases. This is reflected in the benzene-to-naphthalene

ratio, which increases rapidly for R > 0.55. This result is consistent with the analysis in Figure 8A

and B and the selectivity-conversion profiles in the literature37,80,81.
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Figure 8: Analysis of surrogate models. A. Yield and selectivity per pass w.r.t methane conversion
per pass. B. Yield per pass w.r.t the recycle ratio. C. Product yield and selectivity ratio w.r.t
recycle ratio.

3.5 Optimization of Product Yields

The product yields are optimized for operational and economic objectives with constraints on

the optimization variable. The objective function outlined in Eq. 10 is evaluated based on the

surrogate model (Eq. 26). The Pareto weights (ω) were adjusted to account for different recycle

ratios (R). When ω is set to zero, the methane conversion at every pass is optimized, while

at ω = 1, the overall aromatics yield at the end of recycle is optimized. Furthermore, at a

high recycle ratio, the objective function optimizes the methane conversion, and a low recycle

ratio prioritizes optimizing yield over the methane conversion. Throughout the analysis, the DHA

temperature was fixed at 700, 725, and 745 oC. Due to the non-monotonic nature of the aromatics

yield, operating at an intermediate temperature of 725 oC is recommended.
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Figure 9: Optimization analysis of surrogate models. A. Pareto plot of the conversion and yield
cost function and optimal recycle ratio at different DHA operating temperatures. B. Optimal
recycle ratio sensitivities w.r.t DHA temperature with the threshold computed using 10% of
the maximum value of δRrecycle,T. C. Comparison of optimization outcomes with experimental
observation and the stand-alone DHA process.

Despite knowing the operating temperature obtained from the cost function analysis, deter-

mining the optimal recycle ratio and its corresponding operating temperature remains unresolved.

This was obtained by solving the optimization problem outlined in Eq. 10 for the operating tem-

perature and flowrates adjusted within the limits obtained from the parametric analysis of DHA,

CLC, and TSA (see Figure 9A). The left plot illustrates the economic optimum values of conver-

sion and yields at different DHA temperatures, while the plot on the right showcases the optimal

recycle ratio as a function of temperature. The range of the economic optimal recycle ratio is

between 0.45 and 0.47. The sensitivity of the optimal recycle ratio for the DHA reaction tem-

perature is computed using δRrecycle,T =

(
T

Rrecycle
· ∂Rrecycle

∂T

)
to verify the effect of temperature

perturbations on the optimal solutions (Figure 9B). A maximum positive value of the sensitivity is

achieved at 725 oC, the recommended operating temperature for DHA. Since most of the optimal

recycle ratios are below the 10% threshold, it is safe to conclude that the current optimal recycle

ratio and the corresponding temperature are the most effective to operate.

The optimal recycle ratio was cross-verified with the result presented in Figure 8C. The opti-

mum solutions were compared with experiments and the stand-alone DHA process in Figure 9C.

The comparison shows that the aromatics yield of operational optimum is greater than the experi-
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mental yield. In both cases, the process is operated at R > 0.95. Accounting for economic factors

within a rigorous optimization framework, the optimal recycle ratio shifts toward 0.47 resulting

in a product yield of greater than 40%. The difference is that naphthalene formation increases

at the economic operating point compared to the conventional case illustrated in Figure 9C.

Comparing the operating conditions with the experiments, a recycle ratio above 0.55 is sug-

gested to obtain more than 40% aromatics yield by minimizing the naphthalene formation. When

compared to the experiments, aromatics yields have increased by 4% (conventional optimum) and

2% (economic optimum). Despite a 2% reduction in product yield, the economic considerations

associated with recycling costs and conversion per pass play a pivotal role in the decision-making.

Therefore, the computed optimal recycle ratio (Rrecycle = 0.47) at 725 oC is identified as the

desired economic operating point. The notion of optimal operation has been demonstrated for

linear and nonlinear steady-state reactive separation processes80,82. The results indicate the pres-

ence of a unique optimum for a given set of operating conditions that agree with the findings in

Figure 8C of the multi-objective framework.

4 Conclusions

This study presented a spatiotemporal process model for an integrated methane dehydroaromati-

zation (DHA) process proposed in Ref. 1616. The mathematical models governing the methane

DHA, the reduction of Fe3O4 with hydrogen in chemical looping combustion (CLC), and the

adsorption of benzene-naphthalene-water on zeolite-13x in temperature swing adsorption (TSA)

processes were formulated as convection-diffusion-reaction and convection-reaction partial dif-

ferential equations. The models for gas-solid CLC and TSA processes leverage the equilibrium

theory of nonlinear waves, resulting in rapid reaction and mass transfer between the two phases.

These models delineate process operating boundaries and provide a foundation to build steady-

state surrogate models. These were subsequently integrated and solved using the simultaneous

modular method for varying recycle ratios.

Model predictions for each process and the integrated system were validated against experi-

mental data15,16,27,77, showing a good agreement16. The model recommends the DHA process to

run at 725 oC and below 5000 mL/g.h, CLC between 680 and 770 oC, and TSA at 125 mL/g.h.

The integrated surrogate model recommended a recycle ratio of Rrecycle = 0.47 and a temperature

of 725 oC for an optimum economic trade-off between product yield and conversion per pass.

Operating the process at the optimum point drives the process to higher aromatics yields than

experiments.

The methodology proposed is unique due to the semi-batch nature of the process operation,

as almost all the reactive separation processes are operated in continuous mode. This work
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showcases the potential to systematically optimize the semi-batch modular reactive separation

process and can be extended to other semi-batch operated reactive-separation systems with

equilibrium-limited endothermic reactions.
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(84) Gómez-Barea, A.; Ollero, P. An approximate method for solving gas–solid non-catalytic

reactions. Chemical Engineering Science 2006, 61, 3725–3735.

(85) Spreitzer, D.; Schenk, J. Reduction of iron oxides with hydrogen—a review. steel research

international 2019, 90, 1900108.

26



(86) Maier, J. Physical chemistry of ionic materials: ions and electrons in solids; John Wiley &

Sons, 2023.

(87) Wenzel, M.; Rihko-Struckmann, L.; Sundmacher, K. Continuous production of CO from

CO2 by RWGS chemical looping in fixed and fluidized bed reactors. Chemical Engineering

Journal 2018, 336, 278–296.

(88) Hwang, Y.-L. Wave propagation in mass-transfer processes: from chromatography to dis-

tillation. Industrial & engineering chemistry research 1995, 34, 2849–2864.

(89) Rhee, H.-K.; Aris, R.; Amundson, N. R. First-order partial differential equations; Courier

Corporation, 2014; Vol. 1.

(90) Yang, R. T. Gas separation by adsorption processes; World Scientific, 1997; Vol. 1.

(91) Son, K. N.; Richardson, T.-M. J.; Cmarik, G. E. Equilibrium adsorption isotherms for H2O

on Zeolite 13X. Journal of Chemical & Engineering Data 2019, 64, 1063–1071.

(92) Kim, K.-M.; Oh, H.-T.; Lim, S.-J.; Ho, K.; Park, Y.; Lee, C.-H. Adsorption equilibria of

water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. Journal of Chemical &

Engineering Data 2016, 61, 1547–1554.

(93) Rota, R.; Gamba, G.; Paludetto, R.; Carra, S.; Morbidelli, M. Generalized statistical model

for multicomponent adsorption equilibria on zeolites. Industrial & engineering chemistry

research 1988, 27, 848–851.

(94) Neidinger, R. D. Introduction to automatic differentiation and MATLAB object-oriented

programming. SIAM review 2010, 52, 545–563.

(95) Parikh, N.; Boyd, S. Proximal algorithms. Foundations and Trends in optimization 2014,

1, 127–239.

(96) Qu, G.; Li, N. On the exponential stability of primal-dual gradient dynamics. IEEE Control

Systems Letters 2018, 3, 43–48.

27


