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Abstract
Motivation: Volumetric 3D object analyses are being applied in research fields such as structural bioinformatics, biophysics, and structural biol-
ogy, with potential integration of artificial intelligence/machine learning (AI/ML) techniques. One such method, 3D Zernike moments, has proven 
valuable in analyzing protein structures (e.g., protein fold classification, protein–protein interaction analysis, and molecular dynamics simula-
tions). Their compactness and efficiency make them amenable to large-scale analyses. Established methods for deriving 3D Zernike moments, 
however, can be inefficient, particularly when higher order terms are required, hindering broader applications. As the volume of experimental 
and computationally-predicted protein structure information continues to increase, structural biology has become a “big data” science requiring 
more efficient analysis tools.
Results: This application note presents a Python-based software package, ZMPY3D, to accelerate computation of 3D Zernike moments by vec-
torizing the mathematical formulae and using graphical processing units (GPUs). The package offers popular GPU-supported libraries such as 
CuPy and TensorFlow together with NumPy implementations, aiming to improve computational efficiency, adaptability, and flexibility in future 
algorithm development. The ZMPY3D package can be installed via PyPI, and the source code is available from GitHub. Volumetric-based protein 
3D structural similarity scores and transform matrix of superposition functionalities have both been implemented, creating a powerful computa-
tional tool that will allow the research community to amalgamate 3D Zernike moments with existing AI/ML tools, to advance research and edu-
cation in protein structure bioinformatics.
Availability and implementation: ZMPY3D, implemented in Python, is available on GitHub (https://github.com/tawssie/ZMPY3D) and PyPI, 
released under the GPL License.

1 Introduction
Two-dimensional (2D) Zernike moments are mathematical 
tools used to describe 2D shapes. They have been extensively 
applied in physics and computer vision (Niu and Tian 2022). 
Their properties include rotational invariance and orthogo-
nality, enabling facile retrieval of geometric information. 
Such properties make them efficient and reliable tools for pat-
tern recognition and shape analysis (Niu and Tian 2022). 3D 
Zernike moments were developed more recently, thanks 
mostly to the work of Canterakis (1999). They possess simi-
lar properties to their 2D counterparts (Novotni and 
Klein 2003).

Much of structural biology experimental data can be repre-
sented as volumetric information (e.g., electron density maps 
from macromolecular crystallography (MX); electric 
Coulomb potential maps from 3D electron microscopy 
(3DEM)). In contrast, atomic level structures are typically 

represented as point clouds. It is possible, however, to con-
vert point clouds into volumes (e.g. by using Gaussian mix-
ture models (Kawabata 2008)). Thus, most structural biology 
data are suitable for compact 3D object encoding using 3D 
Zernike moments, with descriptors independent of rotational 
pose resulting from rotational invariance.

With the ever-increasing number of experimentally- 
determined (Burley et al. 2023) and artificial intelligence/ 
machine learning (AI/ML)-based predicted structures or com-
puted structure models (CSMs) (Baek et al. 2021, Jumper 
et al. 2021), 3D Zernike moments are well-suited to applica-
tions in pattern matching and protein structure analysis. For 
example, 3D Zernike moment analyses have been proposed 
to help fold classification (Guzenko et al. 2020, Aderinwale 
et al. 2022), structural superposition (Ljung and Andr◆e 
2021), protein docking (Venkatraman et al. 2009), molecular 
dynamics simulations (Di Rienzo et al. 2020, 2022), 
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structure-based virtual screening (Shin and Kihara 2024), 
and protein–protein interacting interfaces (Daberdaku and 
Ferrari 2018, 2019).

Existing 3D Zernike moment calculation methods face chal-
lenges in terms of computational infrastructure demands for 
real-time requirements. Various researchers have focused on 
improving numerical integration and recursive formulae (Al- 
Rawi 2012, Hosny and Hafez 2012), but to the best of our 
knowledge there have been no efforts thus far to implement 
moment calculation in the popular libraries that support GPU- 
accelerated computing such as CuPy and Tensorflow. Utilizing 
GPUs for calculating 3D Zernike moments can be highly ad-
vantageous. Parallel processing capabilities can significantly 
accelerate the computational process. However, current imple-
mentations lack effective GPU integration with deep learning 
frameworks, which do not exploit parallel computing. Doing 
so should provide advantages when dealing with extremely 
large quantities of data and/or with the need to generate 
moments for an arbitrary number of 3D objects. Potentially 
this could also aid in the efficiency of AI/ML learning processes 
that utilize 3D Zernike moments.

As 3D Zernike moment calculations are related to spheri-
cal harmonics (Hosny and Hafez 2012), vectorizing such 
mathematical formulae for GPU computing is difficult be-
cause they must confront challenges of data dependency and 
nonlinear computations, including iterative integrals 
(Schaeffer 2013). Moreover, while calculating the moments, 
intermediate parameters, such as factorial calculations, must 
be carefully managed to enhance numerical precision, partic-
ularly for higher order Canterakis normalization.

This article presents a new software package, ZMPY3D 
that supports three Python-based implementations, including 
NumPy (Harris et al. 2020), CuPy (Okuta et al. 2017), and 
TensorFlow (Abadi et al. 2016). The package enhances com-
putational efficiency and flexibility, allowing research com-
munities to exploit the power of 3D Zernike moments tool 
for AI/ML applications and/or algorithm design. The Python 
package source code is accessible on PyPI and GitHub, allow-
ing installation on diverse platforms, including Google 
Colab, Linux, and Mac with or without GPU support. 
Additionally, we provide a tutorial and demonstrations as 
Jupyter notebooks in the GitHub repository.

2 Results
2.1 CPU versus GPU performance comparison
Computation times using ZMPY3D in both CPU and GPU 
environments were evaluated. The analysis was conducted on 
a personal computer (PC) and in Google Colab; and the 

testing notebook can be accessed in GitHub repository (see 
availability). The PC was a Linux system with NVIDIA 
GeForce RTX 3070 Ti, running Ubuntu 22.04.1 for x86_64 
architecture Intel® Core

TM 
i7-12700K (12 cores). Google 

Colab provides GPUs and CPUs, and we tested hardware 
that use GPUs (Tesla T4, L4, and V100) and CPU Intel® 

Xeon® E5 v4 CPU family @ 2.20 GHz (2 cores, 55 MB 
cache). TensorFlow version 2.15.0 and CuPy version 12.2.0 
were used for GPU-acceleration. A voxel cube with dimen-
sions of 100 × 100 × 100 was applied to perform 10,000 3D 
Zernike moment calculations, using two maximum orders 
(20 and 40). Results are presented in Table 1. The speed-up 
from our vectorized NumPy (CPU) implementation to our 
vectorized GPU implementation is in the range of 30× to 
100×. Speed-up versus other existing non-vectorized CPU- 
based implementations is likely to be even higher. For in-
stance, we compared the computation time against the 
BioZernike library (Guzenko et al. 2020), a publicly available 
Java-based software for calculating 3D Zernike moments. 
Since BioZernike lacks the capability to explicitly initialize a 
gridded bounding box, we used a structure, specifically PDB 
code 1HHS, chain A, with dimensions of 82 × 87 × 81. It 
should be noted that BioZernike does not facilitate normali-
zation at order 40, nor does it support dynamic loading of 
pre-calculated caches or any kind of parallel computing such 
as vectorized GPU operations and CPU multithreading.

2.2 Structural superposition
Traditional protein structure superposition methods rely on 
atomic coordinates and frequently require chain connectivity. 
In contrast, volume-based methods offer several advantages: 
first, they do not depend on the chain connectivity; second, 
they are directly applicable to quaternary structure; and 
third, they can be used for either volumetric data (e.g., 
3DEM maps), or atomic coordinates (following a trivial con-
version process). One drawback of volume approaches is the 
fact that they do not provide well-understood metrics per-
taining to atomic coordinates such as RMSD.

In ZMPY3D, we implemented volume-based structural su-
perposition, following the procedure developed by Guzenko 
et al. (2020). The procedure (shown schematically in Fig. 1) 
begins with converting atomic coordinates into voxels by 
placing a Gaussian density feature centered on each C-alpha 
atom, followed by generation of 3D Zernike moments based 
on the voxels of each protein. and then normalization of the 
3D Zernike moments (Canterakis 1996) to produce alterna-
tive moments, a process that yields rotation matrices. The fi-
nal steps involve computing dot products of all pairs of 3D 
Zernike moments, selecting moments corresponding to 

Table 1. Computation time with ZMPY3D in both CPU and GPU environments.

Tensorflow CuPy

Order T4 RX3070Ti V100 L4 T4 RX3070Ti V100 L4

20 1m1s 0m36s 0m31s 0m39s 4m45s 2m30s 1m42s 2m50s
40 24m40s 9m3s 10m54s 11m13s 35m20s 19m19s 14m45s 18m40s

NumPy BioZernike

Order CPU1 CPU2 CPU1 CPU2

20 33m20s 14m1s 426m40s 89m50s
40 951m40s 338m20s N/A N/A

CPU1 stands for Intel® Xeon® E5 v4 CPU family @ 2.20 GHz, 55MB cache; CPU2 stands for Intel® Core
TM 

i7-12700K. A 1003 voxel cube was used for 
10 000 3D Zernike moment calculations at maximum orders of 20 and 40.
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maximum values of the dot products, and using them to de-
rive the transformation matrix. The more efficient implemen-
tation introduced here offers the possibility of carrying out 
protein structure superpositions on much larger datasets.

3 Conclusion
In this application note, we present a new software tool that 
increases the efficiency of computing 3D Zernike moments 
with vectorization and GPU-computing. The tool should 
prove useful for many applications, going beyond protein 
structure bioinformatics. For example, an immediate applica-
tion is employing ZMPY3D in data loaders for deep learning 
pipelines to achieve faster data conversion allowing process-
ing of large-scale structure datasets.

More generally, 3D Zernike moments represent a highly 
versatile tool, providing an effective method for describing 
3D volumes and establishing a unified analytical framework 
for both atomic level structure information and 3D volumet-
ric data. One can transform rich information from geometry, 
shape, volume, and 3D templates (Riziotis and Thornton 
2022) into 3D Zernike moments. Furthermore, AI/ML meth-
ods can be applied directly to volumetric 3DEM experimental 
map data (Maddhuri Venkata Subramaniya et al. 2019, Giri 
et al. 2023), wherein utilization of 3D Zernike moments can 
deliver insights across the biological and biomedical sciences.

The tool presented here enables efficient combination of 
3D Zernike moments with modern robust AI/ML models, 
such as deep convolution neural networks and large language 
models and thereby deepen our understanding of protein 
structure and advance research and education in structural 
bioinformatics.
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