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Generative artificial intelligence
performs rudimentary structural
biology modeling

Alexander M. llle’?3, Christopher Markosian>3, Stephen K. Burley*>¢7,
Michael B. Mathews™?, Renata Pasqualini%*%! & Wadih Arap%®1°*

Natural language-based generative artificial intelligence (Al) has become increasingly prevalent in
scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language
models beyond the scope of natural language tasks have recently been identified. Here we explored
how GPT-4 might be able to perform rudimentary structural biology modeling. We prompted GPT-4
to model 3D structures for the 20 standard amino acids and an a-helical polypeptide chain, with the
latter incorporating Wolfram mathematical computation. We also used GPT-4 to perform structural
interaction analysis between the anti-viral nirmatrelvir and its target, the SARS-CoV-2 main protease.
Geometric parameters of the generated structures typically approximated close to experimental
references. However, modeling was sporadically error-prone and molecular complexity was not

well tolerated. Interaction analysis further revealed the ability of GPT-4 to identify specific amino

acid residues involved in ligand binding along with corresponding bond distances. Despite current
limitations, we show the current capacity of natural language generative Al to perform basic structural
biology modeling and interaction analysis with atomic-scale accuracy.

Keywords Artificial intelligence, GPT, Language model, Machine learning, Protein modeling, Structural
biology

Artificial intelligence (AI)-based capabilities and applications in scientific research have made remarkable pro-
gress over the past few years"?. Advances in the field of protein structure prediction have been particularly
impactful: Al-based dedicated structural biology tools such as AlphaFold2 and RoseTTAFold are capable of
modeling protein structures from only amino acid sequence input with accuracy comparable to lower-resolution
experimentally determined structures®>. AlphaFold2 and RoseTTAFold are trained on protein sequence and
structure datasets®, and rely on neural network architectures specialized for modeling protein structures. Another
category of Al-based tools for protein structure prediction are protein language models, which differ from Alpha-
Fold2 and RoseTTAFold in that they are not trained on structures but rather on protein sequences’™. Collectively,
such protein structure prediction tools have been extensively used by researchers across various disciplines in the
biological sciences and are expected to continue to add value alongside experimental structure determination'®-%,

On the other hand, generative AI language models, particularly the various generative pre-trained trans-
former (GPT) models from OpenAI'-?!, have garnered substantial interest in recent years. Unlike AlphaFold2,
RoseTTAFold, and protein language models, GPTs are trained on natural language datasets and operate by
using neural network computational architectures developed for natural language processing (NLP) rather
than structural modeling. NLP involves “learning, understanding, and producing human language content”
through computation??, and GPTs employ transformer-based architectures for this purpose!*?* 2. In essence,
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GPT architectures rely on “tokenization”, where text is broken down into smaller units referred to as tokens
(ranging in size from individual letters to multiple words), and processing, which involves attention mechanisms
and statistical distributions, allows for predicting the next token in a sequence of text'>?°. Additional specificities
about the architecture and training data are not provided in the recent GPT-4 technical report, though training
data is described to consist of a large corpus of text sourced from the internet, among other natural language
sources®. Interestingly, GPTs are able carry out tasks which require some level of reasoning, as demonstrated by
performance in various reasoning evaluations?*-%°. Furthermore, capabilities and applications of GPTs beyond
generalized NLP have been documented in various scientific disciplines, including for autonomous and predictive
chemical research??%, drug development®-*’, bioinformatic analysis®'~*?, and synthetic biology**.

Our group has recently reported how GPT-4 interprets the central dogma of molecular biology and the genetic
code®. While analogies can be made, the genetic code is not a natural language per se, yet GPT-4 seems to have
an inherent capability of processing it. In a related line of investigation, here we explore whether GPT-4 can
perform rudimentary structural biology modeling and evaluated its capabilities and limitations in this domain.
Surprisingly, we found that GPT-4 is capable of modeling the 20 standard amino acids and, with incorporation of
the Wolfram plugin, a typical a-helical secondary structure element at the atomic level—though not without spo-
radic errors. Moreover, we used GPT-4 to perform structural analysis of interaction between the anti-viral drug
nirmatrelvir and its molecular target, the main protease of SARS-CoV-2 (the coronaviral etiology of COVID-
19). More broadly, the findings reported here: (i) demonstrate the current capabilities of GPT-based Al in the
context of structural biology modeling; (ii) highlight the performance of protein-ligand structural interaction
analysis with GPT-4; and (iii) may serve as an informative reference point for comparing these capabilities as
natural language-based generative Al continues to advance. To our knowledge, this is the first report to explore
the structural biology modeling and interaction analysis capabilities of natural language-based generative Al

Results

Modeling of individual amino acid structures

Amino acid residues are the components of proteins, and their atomic composition and geometric parameters
have been well characterized*~*°, making them suitable candidates for rudimentary structure modeling. We
therefore prompted GPT-4 to model the 20 standard amino acids with minimal contextual information as
input, including instructions for output in legacy Protein Data Bank (PDB) file format (Tables 1, 2, Supplemen-
tary Table S1, and Fig. 1a). GPT-3.5 was included as a performance benchmark. Multiple iterations (n=5 for
each amino acid) were run by using the same input prompt to monitor consistency (see Methods). For each
individual amino acid, GPT-4 generated 3D structures with coordinate values for both backbone and sidechain
atoms (Fig. 1b). Generated structures contained all atoms specific to the amino acid prompted, except for a sin-
gle iteration of cysteine which lacked the backbone O atom and a single iteration of methionine which lacked
the sidechain Cy atom. Most amino acid structures (excluding achiral glycine) were modeled in L rather than
D stereochemical configuration, while some were also modeled in planar configuration (Fig. 1c). While the

(A) Amino acid structure modeling with GPT-4 and GPT-3.5

Prompt: What are the typical distances and angles between the atoms of one [amino acid] residue in a protein? Based on these values, generate a structure in PDB
file format for one [amino acid] residue. Ensure coordinate values have three decimal places and omit hydrogen atoms.

(B) a-helix structure modeling with GPT-4 running the Wolfram plugin

Initial prompt: What are the typical geometric attributes (including distances and angles) between the backbone atoms of a typical alpha-helical polypeptide chain?
Based on this information, generate a structure in PDB file format for an alpha-helical polypeptide chain 10 residues in length including only alpha carbon atoms.
Ensure coordinate values have 3 decimal places and use the Wolfram plug-in for coordinate calculations but not for PDB file formatting.

Refinement prompts

The generated structure does not resemble an alpha-helix. Try again.

The diameter of the helix is too large.

The diameter of the helix is too small.

The pitch (residues per turn) of the helix is too large.

The pitch (residues per turn) of the helix is too small.

(C) Structural drug interaction analysis with GPT-4

Ligand detection prompt:

Based on structural information, what is the ligand that is present in the
attached PDB file?

Interaction detection prompt: without importing any external libraries. List the residues and the bond

Analyze the structure to detect up to 5 amino acid residues in the protein
chain which have important bond interactions with the “4WT” ligand

distances. Based on this information, predict potential mutations in the
protein chain which would interfere with binding of the “4WT” ligand.

Table 1. Prompts used for structural modeling. (A) Prompt used for modeling the structures of each of the 20
amino acids with GPT-4 and GPT-3.5. The same prompt was used for each amino acid by replacing “[amino
acid]” with the full individual amino acid name. (B) Prompt used for modeling the a-helical polypeptide
structure with GPT-4 running with the Wolfram plugin for enhanced mathematical computation. (C) Prompts
used for structural drug interaction analysis of nirmatrelvir bound to the SARS-CoV-2 main protease (PDB
ID: 7VHS).
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(A) Output for arginine structure PDB file format (B) Output for a-helix structure PDB file format
ATOM 1N ARGA 1 0.000 0.000 0.000 ATOM 1 CA ALAA 1 2.300 0.000 0.000
ATOM 2 CA ARGA 1 1.460 0.000 0.000 ATOM 2 CA ALAA 2 -0.399 2265 1.500
ATOM 3 C ARGA 1 2.160 1.370 0.000 ATOM 3 CA ALAA 3 -2.161 -0.787 3.000
ATOM 4 O ARGA 1 2.160 2.170 -1.080 ATOM 4 CA ALAA 4 1.150 -1.992 4.500
ATOM 5 CB ARGA 1 2.090 -1.180 -0.670 ATOM 5 CA ALAA 5 1.762 1.478 6.000
ATOM 6 CG ARGA 1 2.790 -2.440 0.110 ATOM 6 CA ALAA 6 -1.762 1.478 7.500
ATOM 7 CD ARGA 1 3.420 -3.620 -0.560 ATOM 7 CA ALAA 7 -1.150 -1.992 9.000
ATOM 8 NE ARGA 1 4.120 -4.880 0.220 ATOM 8 CA ALAA 8 2161 -0.787 10.500
ATOM 9 CZ ARGA 1 4.750 -5.170 1.380 ATOM 9 CA ALAA 9 0.399 2.265 12.000
ATOM 10 NH1 ARGA 1 4.750 -4.450 2.490 ATOM 10 CA ALAA 10 -2.300 0.000 13.500
ATOM 11 NH2 ARGA 1 5.350 -6.340 1.550

Table 2. Exemplary coordinate output from GPT-4. Within responses to modeling prompts (Table 1,
Supplementary Tables S1, S2) GPT-4 provided coordinates for generated structures in PDB file format, as
shown with output examples for (A) the arginine amino acid structure and (B) the a-helix structure.

modeling favored the L-configuration, a more accurate distribution would be near exclusive L-configuration,
given that D-amino acid residues are only rarely found in naturally occurring proteins**4!.

Backbone bond lengths and angles of the modeled structures varied in accuracy, yet clustered in approxima-
tion to experimentally determined reference values®” (Fig. 1d,e). Moreover, all reference values fell within the
standard deviations of backbone bond lengths and angles of the modeled structures. Finally, sidechain bond
lengths and bond angles also varied in accuracy, yet nearly 90% of calculated bond lengths were within 0.1 A and
nearly 80% of calculated bond angles were within 10° of experimentally determined reference values®*, again
indicating remarkable precision (Fig. 1f-h, Supplementary Fig. S1-S4). Sidechain bond lengths and bond angles
outside of these ranges generally occurred at random, but were notably more prevalent in the aromatic rings of
histidine and tryptophan, along with the pyrrolidine component of proline. Although not entirely error-free, the
ring structures of phenylalanine and tyrosine were more accurate, which may be due to the reduced complexity
of their all-carbon ring composition. Across all parameters assessed, GPT-4 substantially outperformed GPT-
3.5. Collectively, these findings demonstrate that GPT-4 is capable of structurally modeling single amino acid
residues in a manner that resembles their experimentally-determined structures, though not without sporadic
errors including incorrect stereochemistry and geometric distortion, which would require—at least presently—
human operator curation or supervision to ensure fidelity.

Modeling of an a-helix structure

The a-helix is the most commonly occurring and extensively studied secondary structure element found in
proteins**~*. Thus, we next prompted GPT-4 and GPT-3.5 to model an a-helical polypeptide chain, but were
unable to obtain accurate structures with either version, despite multiple attempts with various prompts. We then
incorporated the Wolfram plugin, a mathematical computation extension developed by Wolfram-Alpha for use
with GPT-4". GPT-4 used together with the Wolfram plugin was able to model a 10-residue a-helical structure
and output the result in legacy PDB file format with minimal contextual information as input (Tables 1b, 2b,
Supplementary Table S2, and Fig. 2a,b). Multiple iterations were run by using the same input prompt to moni-
tor consistency, and up to two prompt-based refinements after the first attempt were permitted per iteration
for improved accuracy (see Methods). To reduce complexity, only Ca atoms were modeled. Notably, prior to
engaging the Wolfram plugin within the response dialog, GPT-4 often described a-helical parameters math-
ematically, for example:

Xp = rcos (6,) (1)
Yn = rsin (6,) (2)
Zy = n X rise per residue (3)

“where r is the radius of the helix, 8, is the rotation angle for the nth residue, and the rise per residue is the
linear distance along the helical axis between consecutive amino acids” (Supplementary Table S2). In this case,
Eqgs. (1)-(3), represent the x, y, and z coordinates for the nth Ca atom in the a-helix and were incorporated by
GPT-4 into the Wolfram request (Fig. 2b).

GPT-4 arbitrarily assigned all residues as alanine, which was likely done for the sake of simplicity, but nev-
ertheless aligns well with the fact that alanine has the greatest a-helix propensity of all 20 standard amino
acids*. Remarkably, accuracy of the modeled a-helix was comparable to an experimentally determined a-helical
structure consisting of 10 consecutive alanine residues (PDB ID: 1L64)* (Fig. 2c,d). More than 40% of modeled
structures had a root-mean-square deviation (RMSD) of < 0.5 A relative to the reference experimental structure
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Figure 1. Modeling the 3D structures of the 20 standard amino acids with GPT-4. (a) Procedure for structure
modeling and analysis. (b) Exemplary 3D structures of each of the 20 amino acids modeled by GPT-4. (c)

Ca stereochemistry of modeled amino acids including L and D configurations as well as nonconforming

planar; n=>5 per amino acid excluding achiral glycine and one GPT-4 iteration of cysteine (see Methods).

(d,e) Backbone bond lengths and angles of amino acids modeled by GPT-4 (blue) relative to experimentally
determined reference values (red); n=5 per amino acid, excluding one iteration of cysteine (see Methods).
Corresponding values of amino acids modeled by GPT-3.5 are shown adjacent (grey); n=>5 per amino acid. Data
shown as means £ SD. (f) Sidechain accuracy of modeled amino acid structures in terms of bond lengths (within
0.1 A) and bond angles (within 10°) relative to experimentally determined reference values; n=5 per amino
acid. See Methods for experimentally determined references. (g,h) Distributions of sidechain bond length and
angle variation relative to experimentally determined reference values for each amino acid generated by GPT-4,
excluding glycine. Bars represent the mean bond length or angle variation for each of the five iterations per
amino acid. One of the methionine iterations was excluded (see Methods).

on the first attempt, and nearly 90% had a RMSD of <0.5 A after two prompt-based refinements (Fig. 2e). The
structures generated by GPT-4 were also compared to poly-alanine a-helix structures modeled by AlphaFold2,
ChimeraX, and PyMOL, and the lowest RMSDs (i.e., greatest structural similarity) were found between the
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AlphaFold2 and ChimeraX structures (Fig. 2f). Taken together, these results demonstrate the capability of GPT-4,
with a seamless incorporation of the Wolfram plugin, to predict the atomic level structure of an a-helix.

Structural interaction analysis

Structural interaction between drugs and proteins is a key aspect of molecular biology with basic, translational
and clinical implications. For instance, binding of the Paxlovid (ritonavir-boosted nirmatrelvir) protease inhibitor
compound, nirmatrelvir, to the SARS-CoV-2 main protease is of particular clinical relevance*’, especially given
the concern that the mutation-prone SARS-CoV-2 leads to treatment resistance®’. Thus, we used GPT-4 to per-
form qualitative structural analysis of drug binding within the nirmatrelvir-SARS-CoV-2 drug-protein paradigm.
We first provided the PDB file input of a crystal structure of nirmatrelvir bound to the SARS-CoV-2 main pro-
tease (PDB ID: 7VH8) * and prompted GPT-4 to detect the nirmatrelvir ligand, followed by a subsequent prompt
for interaction detection and interaction-interfering mutation prediction (Table 1c, Supplementary Table S3, and
Fig. 3a). The dialog revealed that GPT-4 engaged Python in order to perform interaction analysis, including for
reading the PDB file, identifying the ligand, and parsing atomic coordinates (Supplementary Table S3).

GPT-4 correctly identified the nirmatrelvir ligand, which in the input PDB file is designated as “4WT” (Sup-
plementary Table S3). For interaction detection, GPT-4 listed five amino acid residues within the substrate-
binding pocket of the protein, four of which directly bind the nirmatrelvir ligand (Cys145 forms a covalent bond,
His163 and His164 each form hydrogen bonds, and Glu166 forms three separate hydrogen bonds)* (Fig. 3b).
The fifth residue (Thr190) does not form a bond with the ligand, but is located within the binding pocket*.
Moreover, the distances provided by GPT-4 for the four binding residues correspond precisely to the distances
between the interacting atoms, information which is not inherent in the input PDB file. GPT-4 also described
several mutations which may interfere with binding (Supplementary Table S3), and while most were plausible,
others would likely be inconsequential. Notably, however, the suggested mutation of Glu166 to a residue lacking
negative charge has been documented to be critically detrimental to nirmatrelvir binding®*->* and confers clini-
cal therapeutic resistance®. Altogether, this exercise reveals the ability of GPT-4 to perform basic structural
analysis of protein-ligand interaction in a manner which, in conjunction with molecular analysis software such
as ChimeraX, highlights its potential for practical utility.

Discussion

The exploratory findings reported here demonstrate the current capabilities and limitations of GPT-4, a natural
language-based generative Al for rudimentary structural biology modeling and drug interaction analysis. This
presents a unique aspect of novelty, given the inherent distinction between natural language models and other
dedicated AI tools commonly used for structural biology, including AlphaFold, RoseTTAFold, and protein
language models. While such tools are unequivocally far more sophisticated in terms of the scale of molecular
complexity that they are able to process, GPT-4 sets the stage for a broadly accessible and computationally distinct
avenue for use in structural biology. However, there are substantial improvements needed before the GPT family
of language models may reliably provide advanced practical utility in this domain. The current rudimentary mod-
eling capabilities, while notable, must evolve such that modeling of higher complexity biomolecular structures,
including unique structural motifs and tertiary structure, could be performed. Meanwhile, the rudimentary
capabilities documented here provide precedent for more complex modeling, and may serve to inform future
evaluations amidst ongoing advancements in natural language-based generative Al technology.

The performance of GPT-4 for modeling of the 20 standard amino acids was favorable in terms of atom
composition, bond lengths, and bond angles. However, stereochemical configuration propensity and modeling
of ring structures require improvement. Performance for a-helix modeling, with a seamless incorporation of
advanced mathematical computation from the Wolfram plugin, was also favorable. While the requirement of
prompt-based refinements may be viewed as a limitation, they may also serve as a means and opportunity by
which the user can optimize and modify a structure. Nonetheless, improvements will be required in the capacity
to model more complex all-atom structures, not only Ca backbone atoms. Moreover, the sporadic occurrence of
errors should not be taken lightly, as introduction of errors at even the smallest scale may be highly detrimental
to any structural model and associated biological interpretations.

These structural modeling capabilities also raise the question of modeling methodology, especially since
GPT-4 was not explicitly developed for this specialized purpose. It would be challenging to provide a precise
answer for this, and several computational methods may be involved. For instance, GPT-4 may be utilizing pre-
existing atomic coordinate information present in its broad training dataset, which includes “publicly available
data (such as internet data) and data licensed from third-party providers”®. However, this reasoning does not
adequately explain the geometric variability observed in the predicted structures, and why structural complexity
appears to be a limiting factor. The modeling may also be performed ab initio, given that the generated responses
often articulate geometric parameters (e.g., specific bond lengths and angles, number of amino acid residues per
a-helix turn, a-helix diameter, etc.) in addition to providing atomic coordinates (Supplementary Tables S1, S2).
Alternatively, the modeling methodology may involve both the use of pre-existing coordinates plus ab initio
computation.

Of note, the comparison of the a-helix model generated by GPT-4 with those generated by other computa-
tional tools was quite revealing. AlphaFold2, as mentioned above, predicts structures based on training data con-
sisting of protein sequences and 3D structures, and was developed specifically for modeling protein structures. In
addition to their dedicated molecular analysis capabilities, ChimeraX and PyMOL may be used to model basic,
idealized secondary structure elements in a manner which narrowly considers precise predefined geometries,
thus providing accurate a-helix structures. Despite not being explicitly developed to model atomic coordinates
for a-helical segments of protein chains, GPT-4 was able to generate an a-helix with accuracy comparable to
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Figure 2. Modeling the 3D structure of an a-helical polypeptide structure with GPT-4. (a) Procedure for
structure modeling and analysis. (b) Request made from GPT-4 to Wolfram and subsequent response from
Wolfram to GPT-4 from an exemplary a-helix modeling iteration (also see Supplementary Table S2). (c)
Exemplary 3D structure of a modeled a-helix (beige), an experimentally determined a-helix reference structure
(PDB ID 1L64) (teal), and their alignment (RMSD =0.147 A). () Top-down view of modeled and experimental
a-helices from panel c. (e) Accuracy of a-helix modeling as measured by number of attempts (including up to
two refinements following the first attempt) required to generate a structure with RMSD <0.5 A relative to the
experimentally determined reference structure; n=>5 rounds of 10 consecutive iterations (total n=>50 models).
(f) Comparison of RMSDs between GPT-4 a-helix structures and the experimentally determined a-helix
structure, the AlphaFold2 a-helix structure, the ChimeraX a-helix structure, and the PYMOL a-helix structure.
Only structures with RMSD < 0.5 A (dashed grey line) relative to each reference structure are included (88%
included in reference to PDB ID 1L64; 90% to AlphaFold; 90% to ChimeraX; 88% to PyMOL). Data shown as
means + range.

the structures modeled by the above tools. The requirement of adding the Wolfram plugin likely suggests that
mathematical computation is heavily relied upon by GPT-4 for a-helix modeling. Yet, a-helix structural proper-
ties and self-instruction are generated by GPT-4 prior to engaging the Wolfram plugin (Supplementary Table S2),
suggesting that some degree of intrinsic “reasoning” might perhaps be involved. So-called reasoning, in this
regard, is in reference to the documented performance of GPTs in various reasoning evaluations'>?* 4%, and it
should be noted that there is ongoing debate about what constitutes reasoning as it pertains to AI*”,

The exercise exploring the capability of GPT-4 to perform structural analysis of ligand-protein binding
showed promise, especially given the clinical relevance of the protein binding interaction between nirmatrelvir
and the SARS-CoV-2 main protease. Ligand detection was expected to be a straightforward task, as PDB files
include unique designations for various molecular entities. Interaction detection was surprisingly well-handled,
considering the complexity of locating amino acid residues with spatial proximity to the ligand and providing
precise distances between interacting atoms. Based on the generated response (Supplementary Table S3), it is
likely that proximity was the primary criterion used by GPT-4 for interaction detection. While proximity is
important, the analysis would benefit from additional criteria such as hydrophobicity, electrostatic potential,
solvent effects, etc. Moreover, if the analytical capabilities of GPTs improve such that multiple interaction criteria
are considered simultaneously and automatically (i.e., without specific user instruction), far more comprehen-
sive structural interaction analysis would likely be achievable. Finally, the prediction of interaction-interfering
mutations may become particularly useful in drug discovery and development, an area where GPT-based Al is
anticipated to be impactful®®-°1.
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Figure 3. Structural analysis of interaction between nirmatrelvir and the SARS-CoV-2 main protease. (a)
Procedure for performing ligand interaction analysis. (b) Crystal structure of nirmatrelvir bound to the
SARS-CoV-2 main protease (PDB ID: 7VH8) with bond-forming residues detected by GPT-4, and their bonds
depicted with ChimeraX (inset). Distances between interacting atom pairs were 1.81 A (Cys145 Sy- CS) 2.68 A
(His163 Ne2-01), 2.77 A (Glul166 O-N4), 3.02 A (His164 O-N1), as determined by GPT-4 and 1.814 A
(Cys145 Sy-C3), 2.676 A (His163 Ne2-01), 2.767 A (Glu166 O-N4), 2.851 A (Glul66 N-03), 3.019 A (Glul66
0¢el1-N2), 3.017 A (His164 O-N1), as determined with ChimeraX. Note that distance values corresponding to
the Glu166 N-O3 and Glul166 Og1-N2 atom pair interactions were not provided by GPT-4.

Considering both strengths and weaknesses, the structural modeling capabilities of GPT represent an intrigu-
ing aspect of the unprecedented advancement of natural language-based generative Al a transformative technol-
ogy presumably still in its infancy. While this modeling remains rudimentary and is currently of limited practical
utility, it establishes an immediate and direct precedent for applying this technology in structural biology as
generative Al natural language models undergo continued development and specialization. Concurrently, this
broadly-accessible technology presents opportunity for structural analysis of drug-protein interaction. In the
interim, further research on the capabilities and limitations of generative Al is merited, not only in structural
biology but also for other potential applications in the biological sciences.

Methods

Prompt-based modeling with GPT-4

Modeling of individual amino acid structures was performed by challenging GPT-4 through the ChatGPT
interface’™*! with a single prompt (Table 1a), one amino acid residue at a time. For each individual amino acid,
the same prompt was used for five consecutive iterations with each iteration initiated in a new dialog. GPT-4
was run in classic mode without “browser” and “analysis” features enabled, formerly known as “web browser”
and “code interpreter” plug-ins, respectively®!. Classic mode limits processing to GPT-4 with no additional
capabilities. Amino acid modeling was also performed with GPT-3.5 in the same manner. However, GPT-3.5
would frequently generate PDB file output with missing or extra atoms. In such cases, responses were regenerated
within each GPT-3.5 dialog until PDB file output contained the correct number of atoms required for analysis.
Modeling of a-helix structures was performed by challenging GPT-4 running the Wolfram plugin* through the
ChatGPT interface with an initial prompt followed by up to two refinement prompts in the same dialog, for a
total of up to three attempts (Table 1b). The same prompt was used for five rounds of ten consecutive iterations
with each iteration initiated in a new dialog.

Analysis of generated structures

Structures were analyzed by using UCSF ChimeraX*%. For amino acid structures, the “distance” and “angle” com-
mands were used for determining bond lengths and bond angles, respectively. These commands were tailored
for each amino acid type in order to account for sidechain atom specificity (Supplementary Table S5). Experi-
mentally determined reference values for backbone bond lengths (N-Ca, 1.459 A; Ca-C, 1.525 A; C-O 1.229 A)
and backbone bond angles (N-Ca-C, 111.0°% Ca-C-0O, 120.1°), as depicted in Fig. 1d,e, were previously estab-
lished by protein structure X-ray diffraction statistical analyses®. While backbone geometry is conformationally
dependent, idealized reference values were used in the current study for simplicity®®. Experimentally determined
sidechain bond lengths and angles (Supplementary Table S4) were obtained from a backbone-dependent rotamer
library built into ChimeraX, with dihedral angles set to ¢ =180°, y =180°, and w = 180° (representative of a fully
extended backbone in trans configuration)***2. For GPT-4 amino acid modeling, one iteration of cysteine lacked
the backbone O atom and one iteration of methionine lacked the sidechain Cy atom. Thus, these single iterations
(n=1) were excluded from analyses involving the missing atoms.
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For a-helix structures, the matchmaker tool within ChimeraX was used for alignment and RMSD determina-
tion. The matchmaker tool was run with default parameters for chain pairing (i.e., best-aligning pair of chains
between reference and match structure), alignment (i.e., Needleman-Wunsch sequence alignment algorithm and
BLOSUM-62 matrix), and fitting (i.e., iteration by pruning long atom pairs with an iteration cutoff distance of
2.0 A). An a-helical structure consisting of 10 consecutive alanine residues, detected within an engineered form of
bacteriophage T4 lysozyme resolved by X-ray diffraction (PDB ID 1L64)*, was used as the experimental reference
for evaluating the a-helix structures modeled by GPT-4. The AlphaFold2 a-helix structure was modeled using
ColabFold® through ChimeraX by using the built-in AlphaFold interface. An elongated polyalanine sequence
was used in order to meet the minimum input requirements and prediction was run with default parameters
(i.e., without PDB template use and without energy minimization) (Supplementary Table S6 and Supplemen-
tary Fig. S5a). The two ChimeraX and PyMOL a-helix structures, were modeled by using the build structure
command (within ChimeraX) and fab command (within PyMOL®), respectively, each by using a 10-residue
alanine sequence as input and run with default a-helix parameters (i.e., backbone dihedral angles set to ¢ =—57°
and y=-47°) (Supplementary Fig. S5b,c). The AlphaFold2, ChimeraX, and PyMOL a-helix structures were all
exported in PDB file format for comparison with GPT-4 structures. All data were analyzed by using GraphPad
Prism 10.1.0 (GraphPad Software). Statistical details are reported in the figure legends and statistical measure-
ments include mean, mean + SD, and mean * range.

Prompt-based interaction analysis with GPT-4

Structural analysis of binding interaction was performed by providing GPT-4 with an input PDB file and prompt-
ing as described (Table 1B) through the ChatGPT interface. The PDB file used as input was unmodified as
obtained from the PDB entry for PDB ID: 7VH8*. It should be noted that PDB ID: 7VHS refers to nirmatrelvir
as PF-07321332. For this exercise, GPT-4 was not limited to classic mode. Rather the “browser” and “analy-
sis” features were enabled within the ChatGPT interface to enable file input, a feature available for GPT-4 but
not GPT-3.5. Only the “analysis” feature was engaged for the responses generated by GPT-4 (Supplementary
Table S3). ChimeraX was used to analyze amino acid residues detected by GPT-4 to interact with nirmatrelvir.
The “contacts” tool was run with the five specific residues identified by GPT-4 (Supplementary Table S3) and the
nirmatrelvir molecule under selection within the 7VHS8 PDB structure. The “contacts” command was run with
default parameters (i.e., van der Waals (VDW) overlap>—0.4 A) limited to the selected residues and nirmatrelvir
in order to identify interacting atom pairs between them as well as corresponding distance values.

Data availability
All data are available from the corresponding authors upon request.
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