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Generative artificial intelligence 
performs rudimentary structural 
biology modeling
Alexander M. Ille 1,2,3, Christopher Markosian 1,2,3, Stephen K. Burley 4,5,6,7, 
Michael B. Mathews 1,8, Renata Pasqualini 2,3,10* & Wadih Arap 2,9,10*

Natural language-based generative artificial intelligence (AI) has become increasingly prevalent in 
scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language 
models beyond the scope of natural language tasks have recently been identified. Here we explored 
how GPT-4 might be able to perform rudimentary structural biology modeling. We prompted GPT-4 
to model 3D structures for the 20 standard amino acids and an α-helical polypeptide chain, with the 
latter incorporating Wolfram mathematical computation. We also used GPT-4 to perform structural 
interaction analysis between the anti-viral nirmatrelvir and its target, the SARS-CoV-2 main protease. 
Geometric parameters of the generated structures typically approximated close to experimental 
references. However, modeling was sporadically error-prone and molecular complexity was not 
well tolerated. Interaction analysis further revealed the ability of GPT-4 to identify specific amino 
acid residues involved in ligand binding along with corresponding bond distances. Despite current 
limitations, we show the current capacity of natural language generative AI to perform basic structural 
biology modeling and interaction analysis with atomic-scale accuracy.

Keywords Arti!cial intelligence, GPT, Language model, Machine learning, Protein modeling, Structural 
biology

Arti!cial intelligence (AI)-based capabilities and applications in scienti!c research have made remarkable pro-
gress over the past few  years1,2. Advances in the !eld of protein structure prediction have been particularly 
impactful: AI-based dedicated structural biology tools such as AlphaFold2 and RoseTTAFold are capable of 
modeling protein structures from only amino acid sequence input with accuracy comparable to lower-resolution 
experimentally determined  structures3–5. AlphaFold2 and RoseTTAFold are trained on protein sequence and 
structure  datasets6, and rely on neural network architectures specialized for modeling protein structures. Another 
category of AI-based tools for protein structure prediction are protein language models, which di"er from Alpha-
Fold2 and RoseTTAFold in that they are not trained on structures but rather on protein  sequences7–9. Collectively, 
such protein structure prediction tools have been extensively used by researchers across various disciplines in the 
biological sciences and are expected to continue to add value alongside experimental structure  determination10–18.

On the other hand, generative AI language models, particularly the various generative pre-trained trans-
former (GPT) models from  OpenAI19–21, have garnered substantial interest in recent years. Unlike AlphaFold2, 
RoseTTAFold, and protein language models, GPTs are trained on natural language datasets and operate by 
using neural network computational architectures developed for natural language processing (NLP) rather 
than structural modeling. NLP involves “learning, understanding, and producing human language content” 
through  computation22, and GPTs employ transformer-based architectures for this  purpose19,20, 23. In essence, 
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GPT architectures rely on “tokenization”, where text is broken down into smaller units referred to as tokens 
(ranging in size from individual letters to multiple words), and processing, which involves attention mechanisms 
and statistical distributions, allows for predicting the next token in a sequence of  text19,20. Additional speci!cities 
about the architecture and training data are not provided in the recent GPT-4 technical report, though training 
data is described to consist of a large corpus of text sourced from the internet, among other natural language 
 sources20. Interestingly, GPTs are able carry out tasks which require some level of reasoning, as demonstrated by 
performance in various reasoning  evaluations24–26. Furthermore, capabilities and applications of GPTs beyond 
generalized NLP have been documented in various scienti!c disciplines, including for autonomous and predictive 
chemical  research27,28, drug  development29,30, bioinformatic  analysis31–33, and synthetic  biology34.

Our group has recently reported how GPT-4 interprets the central dogma of molecular biology and the genetic 
 code35. While analogies can be made, the genetic code is not a natural language per se, yet GPT-4 seems to have 
an inherent capability of processing it. In a related line of investigation, here we explore whether GPT-4 can 
perform rudimentary structural biology modeling and evaluated its capabilities and limitations in this domain. 
Surprisingly, we found that GPT-4 is capable of modeling the 20 standard amino acids and, with incorporation of 
the Wolfram plugin, a typical α-helical secondary structure element at the atomic level—though not without spo-
radic errors. Moreover, we used GPT-4 to perform structural analysis of interaction between the anti-viral drug 
nirmatrelvir and its molecular target, the main protease of SARS-CoV-2 (the coronaviral etiology of COVID-
19). More broadly, the !ndings reported here: (i) demonstrate the current capabilities of GPT-based AI in the 
context of structural biology modeling; (ii) highlight the performance of protein-ligand structural interaction 
analysis with GPT-4; and (iii) may serve as an informative reference point for comparing these capabilities as 
natural language-based generative AI continues to advance. To our knowledge, this is the !rst report to explore 
the structural biology modeling and interaction analysis capabilities of natural language-based generative AI.

Results
Modeling of individual amino acid structures
Amino acid residues are the components of proteins, and their atomic composition and geometric parameters 
have been well  characterized36–39, making them suitable candidates for rudimentary structure modeling. We 
therefore prompted GPT-4 to model the 20 standard amino acids with minimal contextual information as 
input, including instructions for output in legacy Protein Data Bank (PDB) !le format (Tables 1, 2, Supplemen-
tary Table S1, and Fig. 1a). GPT-3.5 was included as a performance benchmark. Multiple iterations (n = 5 for 
each amino acid) were run by using the same input prompt to monitor consistency (see Methods). For each 
individual amino acid, GPT-4 generated 3D structures with coordinate values for both backbone and sidechain 
atoms (Fig. 1b). Generated structures contained all atoms speci!c to the amino acid prompted, except for a sin-
gle iteration of cysteine which lacked the backbone O atom and a single iteration of methionine which lacked 
the sidechain Cγ atom. Most amino acid structures (excluding achiral glycine) were modeled in L rather than 
D stereochemical con!guration, while some were also modeled in planar con!guration (Fig. 1c). While the 

Table 1.  Prompts used for structural modeling. (A) Prompt used for modeling the structures of each of the 20 
amino acids with GPT-4 and GPT-3.5. &e same prompt was used for each amino acid by replacing “[amino 
acid]” with the full individual amino acid name. (B) Prompt used for modeling the α-helical polypeptide 
structure with GPT-4 running with the Wolfram plugin for enhanced mathematical computation. (C) Prompts 
used for structural drug interaction analysis of nirmatrelvir bound to the SARS-CoV-2 main protease (PDB 
ID: 7VH8).

(A) Amino acid structure modeling with GPT-4 and GPT-3.5
 Prompt: What are the typical distances and angles between the atoms of one [amino acid] residue in a protein? Based on these values, generate a structure in PDB 
!le format for one [amino acid] residue. Ensure coordinate values have three decimal places and omit hydrogen atoms.

(B) α-helix structure modeling with GPT-4 running the Wolfram plugin
 Initial prompt: What are the typical geometric attributes (including distances and angles) between the backbone atoms of a typical alpha-helical polypeptide chain? 
Based on this information, generate a structure in PDB !le format for an alpha-helical polypeptide chain 10 residues in length including only alpha carbon atoms. 
Ensure coordinate values have 3 decimal places and use the Wolfram plug-in for coordinate calculations but not for PDB !le formatting.

 Re!nement prompts

&e generated structure does not resemble an alpha-helix. Try again.
&e diameter of the helix is too large.
&e diameter of the helix is too small.
&e pitch (residues per turn) of the helix is too large.
&e pitch (residues per turn) of the helix is too small.

(C) Structural drug interaction analysis with GPT-4

 Ligand detection prompt: Based on structural information, what is the ligand that is present in the 
attached PDB !le?

 Interaction detection prompt:

Analyze the structure to detect up to 5 amino acid residues in the protein 
chain which have important bond interactions with the “4WI” ligand 
without importing any external libraries. List the residues and the bond 
distances. Based on this information, predict potential mutations in the 
protein chain which would interfere with binding of the “4WI” ligand.
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modeling favored the L-con!guration, a more accurate distribution would be near exclusive L-con!guration, 
given that D-amino acid residues are only rarely found in naturally occurring  proteins40,41.

Backbone bond lengths and angles of the modeled structures varied in accuracy, yet clustered in approxima-
tion to experimentally determined reference  values37 (Fig. 1d,e). Moreover, all reference values fell within the 
standard deviations of backbone bond lengths and angles of the modeled structures. Finally, sidechain bond 
lengths and bond angles also varied in accuracy, yet nearly 90% of calculated bond lengths were within 0.1 Å and 
nearly 80% of calculated bond angles were within 10° of experimentally determined reference  values39,42, again 
indicating remarkable precision (Fig. 1f–h, Supplementary Fig. S1–S4). Sidechain bond lengths and bond angles 
outside of these ranges generally occurred at random, but were notably more prevalent in the aromatic rings of 
histidine and tryptophan, along with the pyrrolidine component of proline. Although not entirely error-free, the 
ring structures of phenylalanine and tyrosine were more accurate, which may be due to the reduced complexity 
of their all-carbon ring composition. Across all parameters assessed, GPT-4 substantially outperformed GPT-
3.5. Collectively, these !ndings demonstrate that GPT-4 is capable of structurally modeling single amino acid 
residues in a manner that resembles their experimentally-determined structures, though not without sporadic 
errors including incorrect stereochemistry and geometric distortion, which would require—at least presently—
human operator curation or supervision to ensure !delity.

Modeling of an α-helix structure
&e α-helix is the most commonly occurring and extensively studied secondary structure element found in 
 proteins43–46. &us, we next prompted GPT-4 and GPT-3.5 to model an α-helical polypeptide chain, but were 
unable to obtain accurate structures with either version, despite multiple attempts with various prompts. We then 
incorporated the Wolfram plugin, a mathematical computation extension developed by Wolfram-Alpha for use 
with GPT-447. GPT-4 used together with the Wolfram plugin was able to model a 10-residue α-helical structure 
and output the result in legacy PDB !le format with minimal contextual information as input (Tables 1b, 2b, 
Supplementary Table S2, and Fig. 2a,b). Multiple iterations were run by using the same input prompt to moni-
tor consistency, and up to two prompt-based re!nements a'er the !rst attempt were permitted per iteration 
for improved accuracy (see Methods). To reduce complexity, only Cα atoms were modeled. Notably, prior to 
engaging the Wolfram plugin within the response dialog, GPT-4 o'en described α-helical parameters math-
ematically, for example:

“where r is the radius of the helix, θn is the rotation angle for the nth residue, and the rise per residue is the 
linear distance along the helical axis between consecutive amino acids” (Supplementary Table S2). In this case, 
Eqs. (1)–(3), represent the x, y, and z coordinates for the n th Cα atom in the α-helix and were incorporated by 
GPT-4 into the Wolfram request (Fig. 2b).

GPT-4 arbitrarily assigned all residues as alanine, which was likely done for the sake of simplicity, but nev-
ertheless aligns well with the fact that alanine has the greatest α-helix propensity of all 20 standard amino 
 acids46. Remarkably, accuracy of the modeled α-helix was comparable to an experimentally determined α-helical 
structure consisting of 10 consecutive alanine residues (PDB ID: 1L64)48 (Fig. 2c,d). More than 40% of modeled 
structures had a root-mean-square deviation (RMSD) of < 0.5 Å relative to the reference experimental structure 

(1)xn = r cos (θn)

(2)yn = r sin (θn)

(3)zn = n × rise per residue

Table 2.  Exemplary coordinate output from GPT-4. Within responses to modeling prompts (Table 1, 
Supplementary Tables S1, S2) GPT-4 provided coordinates for generated structures in PDB !le format, as 
shown with output examples for (A) the arginine amino acid structure and (B) the α-helix structure.

(A) Output for arginine structure PDB "le format (B) Output for α-helix structure PDB "le format
ATOM      1  N   ARG A   1       0.000   0.000   0.000 ATOM      1  CA  ALA A   1       2.300   0.000   0.000
ATOM      2  CA  ARG A   1       1.460   0.000   0.000 ATOM      2  CA  ALA A   2      -0.399   2.265   1.500
ATOM      3  C   ARG A   1       2.160   1.370   0.000 ATOM      3  CA  ALA A   3      -2.161  -0.787   3.000
ATOM      4  O   ARG A   1       2.160   2.170  -1.080 ATOM      4  CA  ALA A   4       1.150  -1.992   4.500
ATOM      5  CB  ARG A   1       2.090  -1.180  -0.670 ATOM      5  CA  ALA A   5       1.762   1.478   6.000
ATOM      6  CG  ARG A   1       2.790  -2.440   0.110 ATOM      6  CA  ALA A   6      -1.762   1.478   7.500
ATOM      7  CD  ARG A   1       3.420  -3.620  -0.560 ATOM      7  CA  ALA A   7      -1.150  -1.992   9.000
ATOM      8  NE  ARG A   1       4.120  -4.880   0.220 ATOM      8  CA  ALA A   8       2.161  -0.787  10.500
ATOM      9  CZ  ARG A   1       4.750  -5.170   1.380 ATOM      9  CA  ALA A   9       0.399   2.265  12.000
ATOM     10  NH1 ARG A   1       4.750  -4.450   2.490 ATOM     10  CA  ALA A  10      -2.300   0.000  13.500
ATOM     11  NH2 ARG A   1       5.350  -6.340   1.550
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on the !rst attempt, and nearly 90% had a RMSD of < 0.5 Å a'er two prompt-based re!nements (Fig. 2e). &e 
structures generated by GPT-4 were also compared to poly-alanine α-helix structures modeled by AlphaFold2, 
ChimeraX, and PyMOL, and the lowest RMSDs (i.e., greatest structural similarity) were found between the 

Figure 1.  Modeling the 3D structures of the 20 standard amino acids with GPT-4. (a) Procedure for structure 
modeling and analysis. (b) Exemplary 3D structures of each of the 20 amino acids modeled by GPT-4. (c) 
Cα stereochemistry of modeled amino acids including L and D con!gurations as well as nonconforming 
planar; n = 5 per amino acid excluding achiral glycine and one GPT-4 iteration of cysteine (see Methods). 
(d,e) Backbone bond lengths and angles of amino acids modeled by GPT-4 (blue) relative to experimentally 
determined reference values (red); n = 5 per amino acid, excluding one iteration of cysteine (see Methods). 
Corresponding values of amino acids modeled by GPT-3.5 are shown adjacent (grey); n = 5 per amino acid. Data 
shown as means ± SD. (f) Sidechain accuracy of modeled amino acid structures in terms of bond lengths (within 
0.1 Å) and bond angles (within 10°) relative to experimentally determined reference values; n = 5 per amino 
acid. See Methods for experimentally determined references. (g,h) Distributions of sidechain bond length and 
angle variation relative to experimentally determined reference values for each amino acid generated by GPT-4, 
excluding glycine. Bars represent the mean bond length or angle variation for each of the !ve iterations per 
amino acid. One of the methionine iterations was excluded (see Methods).
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AlphaFold2 and ChimeraX structures (Fig. 2f). Taken together, these results demonstrate the capability of GPT-4, 
with a seamless incorporation of the Wolfram plugin, to predict the atomic level structure of an α-helix.

Structural interaction analysis
Structural interaction between drugs and proteins is a key aspect of molecular biology with basic, translational 
and clinical implications. For instance, binding of the Paxlovid (ritonavir-boosted nirmatrelvir) protease inhibitor 
compound, nirmatrelvir, to the SARS-CoV-2 main protease is of particular clinical  relevance49,50, especially given 
the concern that the mutation-prone SARS-CoV-2 leads to treatment  resistance51. &us, we used GPT-4 to per-
form qualitative structural analysis of drug binding within the nirmatrelvir-SARS-CoV-2 drug-protein paradigm. 
We !rst provided the PDB !le input of a crystal structure of nirmatrelvir bound to the SARS-CoV-2 main pro-
tease (PDB ID: 7VH8) 49 and prompted GPT-4 to detect the nirmatrelvir ligand, followed by a subsequent prompt 
for interaction detection and interaction-interfering mutation prediction (Table 1c, Supplementary Table S3, and 
Fig. 3a). &e dialog revealed that GPT-4 engaged Python in order to perform interaction analysis, including for 
reading the PDB !le, identifying the ligand, and parsing atomic coordinates (Supplementary Table S3).

GPT-4 correctly identi!ed the nirmatrelvir ligand, which in the input PDB !le is designated as “4WI” (Sup-
plementary Table S3). For interaction detection, GPT-4 listed !ve amino acid residues within the substrate-
binding pocket of the protein, four of which directly bind the nirmatrelvir ligand (Cys145 forms a covalent bond, 
His163 and His164 each form hydrogen bonds, and Glu166 forms three separate hydrogen bonds)49 (Fig. 3b). 
&e !'h residue (&r190) does not form a bond with the ligand, but is located within the binding  pocket49. 
Moreover, the distances provided by GPT-4 for the four binding residues correspond precisely to the distances 
between the interacting atoms, information which is not inherent in the input PDB !le. GPT-4 also described 
several mutations which may interfere with binding (Supplementary Table S3), and while most were plausible, 
others would likely be inconsequential. Notably, however, the suggested mutation of Glu166 to a residue lacking 
negative charge has been documented to be critically detrimental to nirmatrelvir  binding52–54 and confers clini-
cal therapeutic  resistance55,56. Altogether, this exercise reveals the ability of GPT-4 to perform basic structural 
analysis of protein-ligand interaction in a manner which, in conjunction with molecular analysis so'ware such 
as ChimeraX, highlights its potential for practical utility.

Discussion
&e exploratory !ndings reported here demonstrate the current capabilities and limitations of GPT-4, a natural 
language-based generative AI, for rudimentary structural biology modeling and drug interaction analysis. &is 
presents a unique aspect of novelty, given the inherent distinction between natural language models and other 
dedicated AI tools commonly used for structural biology, including AlphaFold, RoseTTAFold, and protein 
language models. While such tools are unequivocally far more sophisticated in terms of the scale of molecular 
complexity that they are able to process, GPT-4 sets the stage for a broadly accessible and computationally distinct 
avenue for use in structural biology. However, there are substantial improvements needed before the GPT family 
of language models may reliably provide advanced practical utility in this domain. &e current rudimentary mod-
eling capabilities, while notable, must evolve such that modeling of higher complexity biomolecular structures, 
including unique structural motifs and tertiary structure, could be performed. Meanwhile, the rudimentary 
capabilities documented here provide precedent for more complex modeling, and may serve to inform future 
evaluations amidst ongoing advancements in natural language-based generative AI technology.

&e performance of GPT-4 for modeling of the 20 standard amino acids was favorable in terms of atom 
composition, bond lengths, and bond angles. However, stereochemical con!guration propensity and modeling 
of ring structures require improvement. Performance for α-helix modeling, with a seamless incorporation of 
advanced mathematical computation from the Wolfram plugin, was also favorable. While the requirement of 
prompt-based re!nements may be viewed as a limitation, they may also serve as a means and opportunity by 
which the user can optimize and modify a structure. Nonetheless, improvements will be required in the capacity 
to model more complex all-atom structures, not only Cα backbone atoms. Moreover, the sporadic occurrence of 
errors should not be taken lightly, as introduction of errors at even the smallest scale may be highly detrimental 
to any structural model and associated biological interpretations.

&ese structural modeling capabilities also raise the question of modeling methodology, especially since 
GPT-4 was not explicitly developed for this specialized purpose. It would be challenging to provide a precise 
answer for this, and several computational methods may be involved. For instance, GPT-4 may be utilizing pre-
existing atomic coordinate information present in its broad training dataset, which includes “publicly available 
data (such as internet data) and data licensed from third-party providers”20. However, this reasoning does not 
adequately explain the geometric variability observed in the predicted structures, and why structural complexity 
appears to be a limiting factor. &e modeling may also be performed ab initio, given that the generated responses 
o'en articulate geometric parameters (e.g., speci!c bond lengths and angles, number of amino acid residues per 
α-helix turn, α-helix diameter, etc.) in addition to providing atomic coordinates (Supplementary Tables S1, S2). 
Alternatively, the modeling methodology may involve both the use of pre-existing coordinates plus ab initio 
computation.

Of note, the comparison of the α-helix model generated by GPT-4 with those generated by other computa-
tional tools was quite revealing. AlphaFold2, as mentioned above, predicts structures based on training data con-
sisting of protein sequences and 3D structures, and was developed speci!cally for modeling protein structures. In 
addition to their dedicated molecular analysis capabilities, ChimeraX and PyMOL may be used to model basic, 
idealized secondary structure elements in a manner which narrowly considers precise prede!ned geometries, 
thus providing accurate α-helix structures. Despite not being explicitly developed to model atomic coordinates 
for α-helical segments of protein chains, GPT-4 was able to generate an α-helix with accuracy comparable to 
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the structures modeled by the above tools. &e requirement of adding the Wolfram plugin likely suggests that 
mathematical computation is heavily relied upon by GPT-4 for α-helix modeling. Yet, α-helix structural proper-
ties and self-instruction are generated by GPT-4 prior to engaging the Wolfram plugin (Supplementary Table S2), 
suggesting that some degree of intrinsic “reasoning” might perhaps be involved. So-called reasoning, in this 
regard, is in reference to the documented performance of GPTs in various reasoning  evaluations19,20, 24–26, and it 
should be noted that there is ongoing debate about what constitutes reasoning as it pertains to  AI57,58.

&e exercise exploring the capability of GPT-4 to perform structural analysis of ligand-protein binding 
showed promise, especially given the clinical relevance of the protein binding interaction between nirmatrelvir 
and the SARS-CoV-2 main protease. Ligand detection was expected to be a straightforward task, as PDB !les 
include unique designations for various molecular entities. Interaction detection was surprisingly well-handled, 
considering the complexity of locating amino acid residues with spatial proximity to the ligand and providing 
precise distances between interacting atoms. Based on the generated response (Supplementary Table S3), it is 
likely that proximity was the primary criterion used by GPT-4 for interaction detection. While proximity is 
important, the analysis would bene!t from additional criteria such as hydrophobicity, electrostatic potential, 
solvent e"ects, etc. Moreover, if the analytical capabilities of GPTs improve such that multiple interaction criteria 
are considered simultaneously and automatically (i.e., without speci!c user instruction), far more comprehen-
sive structural interaction analysis would likely be achievable. Finally, the prediction of interaction-interfering 
mutations may become particularly useful in drug discovery and development, an area where GPT-based AI is 
anticipated to be  impactful59–61.

Figure 2.  Modeling the 3D structure of an α-helical polypeptide structure with GPT-4. (a) Procedure for 
structure modeling and analysis. (b) Request made from GPT-4 to Wolfram and subsequent response from 
Wolfram to GPT-4 from an exemplary α-helix modeling iteration (also see Supplementary Table S2). (c) 
Exemplary 3D structure of a modeled α-helix (beige), an experimentally determined α-helix reference structure 
(PDB ID 1L64) (teal), and their alignment (RMSD = 0.147 Å). (d) Top-down view of modeled and experimental 
α-helices from panel c. (e) Accuracy of α-helix modeling as measured by number of attempts (including up to 
two re!nements following the !rst attempt) required to generate a structure with RMSD < 0.5 Å relative to the 
experimentally determined reference structure; n = 5 rounds of 10 consecutive iterations (total n = 50 models). 
(f) Comparison of RMSDs between GPT-4 α-helix structures and the experimentally determined α-helix 
structure, the AlphaFold2 α-helix structure, the ChimeraX α-helix structure, and the PyMOL α-helix structure. 
Only structures with RMSD < 0.5 Å (dashed grey line) relative to each reference structure are included (88% 
included in reference to PDB ID 1L64; 90% to AlphaFold; 90% to ChimeraX; 88% to PyMOL). Data shown as 
means ± range.
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Considering both strengths and weaknesses, the structural modeling capabilities of GPT represent an intrigu-
ing aspect of the unprecedented advancement of natural language-based generative AI, a transformative technol-
ogy presumably still in its infancy. While this modeling remains rudimentary and is currently of limited practical 
utility, it establishes an immediate and direct precedent for applying this technology in structural biology as 
generative AI natural language models undergo continued development and specialization. Concurrently, this 
broadly-accessible technology presents opportunity for structural analysis of drug-protein interaction. In the 
interim, further research on the capabilities and limitations of generative AI is merited, not only in structural 
biology but also for other potential applications in the biological sciences.

Methods
Prompt-based modeling with GPT-4
Modeling of individual amino acid structures was performed by challenging GPT-4 through the ChatGPT 
 interface20,21 with a single prompt (Table 1a), one amino acid residue at a time. For each individual amino acid, 
the same prompt was used for !ve consecutive iterations with each iteration initiated in a new dialog. GPT-4 
was run in classic mode without “browser” and “analysis” features enabled, formerly known as “web browser” 
and “code interpreter” plug-ins,  respectively61. Classic mode limits processing to GPT-4 with no additional 
capabilities. Amino acid modeling was also performed with GPT-3.5 in the same manner. However, GPT-3.5 
would frequently generate PDB !le output with missing or extra atoms. In such cases, responses were regenerated 
within each GPT-3.5 dialog until PDB !le output contained the correct number of atoms required for analysis. 
Modeling of α-helix structures was performed by challenging GPT-4 running the Wolfram  plugin47 through the 
ChatGPT interface with an initial prompt followed by up to two re!nement prompts in the same dialog, for a 
total of up to three attempts (Table 1b). &e same prompt was used for !ve rounds of ten consecutive iterations 
with each iteration initiated in a new dialog.

Analysis of generated structures
Structures were analyzed by using UCSF  ChimeraX42. For amino acid structures, the “distance” and “angle” com-
mands were used for determining bond lengths and bond angles, respectively. &ese commands were tailored 
for each amino acid type in order to account for sidechain atom speci!city (Supplementary Table S5). Experi-
mentally determined reference values for backbone bond lengths (N-Cα, 1.459 Å; Cα-C, 1.525 Å; C-O 1.229 Å) 
and backbone bond angles (N-Cα-C, 111.0°; Cα-C-O, 120.1°), as depicted in Fig. 1d,e, were previously estab-
lished by protein structure X-ray di"raction statistical  analyses37. While backbone geometry is conformationally 
dependent, idealized reference values were used in the current study for  simplicity38. Experimentally determined 
sidechain bond lengths and angles (Supplementary Table S4) were obtained from a backbone-dependent rotamer 
library built into ChimeraX, with dihedral angles set to φ = 180°, ψ = 180°, and ω = 180° (representative of a fully 
extended backbone in trans con!guration)39,42. For GPT-4 amino acid modeling, one iteration of cysteine lacked 
the backbone O atom and one iteration of methionine lacked the sidechain Cγ atom. &us, these single iterations 
(n = 1) were excluded from analyses involving the missing atoms.

Figure 3.  Structural analysis of interaction between nirmatrelvir and the SARS-CoV-2 main protease. (a) 
Procedure for performing ligand interaction analysis. (b) Crystal structure of nirmatrelvir bound to the 
SARS-CoV-2 main protease (PDB ID: 7VH8) with bond-forming residues detected by GPT-4, and their bonds 
depicted with ChimeraX (inset). Distances between interacting atom pairs were 1.81 Å (Cys145 Sγ–C3), 2.68 Å 
(His163 Nε2–O1), 2.77 Å (Glu166 O–N4), 3.02 Å (His164 O–N1), as determined by GPT-4 and 1.814 Å 
(Cys145 Sγ–C3), 2.676 Å (His163 Nε2–O1), 2.767 Å (Glu166 O–N4), 2.851 Å (Glu166 N–O3), 3.019 Å (Glu166 
Oε1–N2), 3.017 Å (His164 O–N1), as determined with ChimeraX. Note that distance values corresponding to 
the Glu166 N–O3 and Glu166 Oε1–N2 atom pair interactions were not provided by GPT-4.
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For α-helix structures, the matchmaker tool within ChimeraX was used for alignment and RMSD determina-
tion. &e matchmaker tool was run with default parameters for chain pairing (i.e., best-aligning pair of chains 
between reference and match structure), alignment (i.e., Needleman-Wunsch sequence alignment algorithm and 
BLOSUM-62 matrix), and !tting (i.e., iteration by pruning long atom pairs with an iteration cuto" distance of 
2.0 Å). An α-helical structure consisting of 10 consecutive alanine residues, detected within an engineered form of 
bacteriophage T4 lysozyme resolved by X-ray di"raction (PDB ID 1L64)48, was used as the experimental reference 
for evaluating the α-helix structures modeled by GPT-4. &e AlphaFold2 α-helix structure was modeled using 
 ColabFold62 through ChimeraX by using the built-in AlphaFold interface. An elongated polyalanine sequence 
was used in order to meet the minimum input requirements and prediction was run with default parameters 
(i.e., without PDB template use and without energy minimization) (Supplementary Table S6 and Supplemen-
tary Fig. S5a). &e two ChimeraX and PyMOL α-helix structures, were modeled by using the build structure 
command (within ChimeraX) and fab command (within  PyMOL63), respectively, each by using a 10-residue 
alanine sequence as input and run with default α-helix parameters (i.e., backbone dihedral angles set to φ = −57° 
and ψ = −47°) (Supplementary Fig. S5b,c). &e AlphaFold2, ChimeraX, and PyMOL α-helix structures were all 
exported in PDB !le format for comparison with GPT-4 structures. All data were analyzed by using GraphPad 
Prism 10.1.0 (GraphPad So'ware). Statistical details are reported in the !gure legends and statistical measure-
ments include mean, mean ± SD, and mean ± range.

Prompt-based interaction analysis with GPT-4
Structural analysis of binding interaction was performed by providing GPT-4 with an input PDB !le and prompt-
ing as described (Table 1B) through the ChatGPT interface. &e PDB !le used as input was unmodi!ed as 
obtained from the PDB entry for PDB ID:  7VH849. It should be noted that PDB ID: 7VH8 refers to nirmatrelvir 
as PF-07321332. For this exercise, GPT-4 was not limited to classic mode. Rather the “browser” and “analy-
sis” features were enabled within the ChatGPT interface to enable !le input, a feature available for GPT-4 but 
not GPT-3.5. Only the “analysis” feature was engaged for the responses generated by GPT-4 (Supplementary 
Table S3). ChimeraX was used to analyze amino acid residues detected by GPT-4 to interact with nirmatrelvir. 
&e “contacts” tool was run with the !ve speci!c residues identi!ed by GPT-4 (Supplementary Table S3) and the 
nirmatrelvir molecule under selection within the 7VH8 PDB structure. &e “contacts” command was run with 
default parameters (i.e., van der Waals (VDW) overlap ≥ −0.4 Å) limited to the selected residues and nirmatrelvir 
in order to identify interacting atom pairs between them as well as corresponding distance values.

Data availability
All data are available from the corresponding authors upon request.
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