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Abstract
Evaluating the ability of large language mod-
els (LLMs) to follow complex human-written
instructions is essential for their deployment
in real-world applications. While benchmarks
like Chatbot Arena use human judges to assess
model performance, they are resource-intensive
and time-consuming. Alternative methods us-
ing LLMs as judges, such as AlpacaEval, MT
Bench, WildBench, and InFoBench offer im-
provements but still do not capture that certain
complex instruction aspects are more important
than others to follow.

To address this gap, we propose a novel evalua-
tion metric, TOWER, that incorporates human-
judged importance into the assessment of com-
plex instruction following. We show that hu-
man annotators agree with tree-based represen-
tations of these complex instructions nearly as
much as they agree with other human anno-
tators. We release tree-based annotations of
the InFoBench dataset and the corresponding
evaluation code to facilitate future research.

1 Introduction

The ability of large language models (LLMs) to fol-
low human-written instructions is crucial for real
world applications. Despite this, evaluating and
fairly comparing the ability of these LLMs to fol-
low instructions remains a significant challenge,
with many proposed approaches. For instance,
Chatbot Arena employs pairwise comparison with
crowd sourced human judges from a diverse user
base to score the performance of language models
(Chiang et al., 2024; Zheng et al., 2023). Ideally,
a model is judged purely on human feedback as
in the case of Chatbot Arena, but this is generally
expensive, takes lots of time, and is difficult to re-
produce. Further, results can differ based on the
selection of the annotators and the distribution of
instructions used for evaluation.

Some approaches such as AlpacaEval and MT
Bench use LLMs instead of humans as judges,

Figure 1: Humans prefer tree-based representations
of complex instructions aspect questions over ranking
based weighting. We distil these insights into a new
metric, TOWER, which weights each individual aspect
question based on its position within the tree representa-
tion.

which significantly reduces cost, improves repro-
ducibility, and is much faster (Dubois et al., 2024;
Zheng et al., 2023; Lin et al., 2024).

However, in practice many real-world use cases
involve instructions which are much more complex
than the ones found in many instruction follow-
ing benchmarks. Some recent promising work has
been done creating evaluation benchmarks for these
complex instructions, which contain many atomic
aspects. One such benchmark, InFoBench, breaks
500 instructions into decomposed requirements,
and propose Decomposed Requirements Following
Ratio (DRFR) as a metric for measure the percent-
age of requirements in the benchmark followed by
a language model (Qin et al., 2024).

Despite these improvements it remains unclear
how to best measure performance on complex in-
struction following, as some aspect of a complex
instruction may be more important than others.

In this work, we aim to remedy this issue by
proposing a new complex instruction following
evaluation metric, TOWER, which weights com-
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plex instruction requirements based on human
judged importance.

To summarize, our main contributions are as
follows:

1. We show humans have strong and consistent
preferences on the relative importance of dif-
ferent complex instruction aspects.

2. We show tree-based representations of com-
plex instructions align significantly better with
human preferences than ranking or direct scor-
ing, and we use these insights to analyse per-
formance of many existing models.

3. We release our tree-based annotations of
the InFoBench dataset along with the code
used to generate them to assist future work
in this direction at https://github.com/
Ziems/TOWER

2 Related Work

The development of language models capable of
following human-written instructions has seen sig-
nificant advancement in recent years. A large va-
riety of training approaches have been proposed
for training these models (Touvron et al., 2023;
Ouyang et al., 2022; Jiang et al., 2024; Wang et al.,
2023; Ivison et al., 2023; Luo et al., 2023, 2024;
Xu et al., 2024)

Significant research attention has been recently
paid to evaluating the ability of LLMs to follow
instructions. Some approaches rely on crowd sourc-
ing pairwise human feedback to allow humans to di-
rectly judge which model’s generation is preferred
(Chiang et al., 2024). Many works have aimed to
automate this process by using LLM’s instead of
humans to judge whether an instruction has been
properly followed (Chiang et al., 2024; Zheng et al.,
2023; Dubois et al., 2024). Some work has been
done to evaluate the ability of language models
to follow complex instructions which are made of
many atomic aspects (Qin et al., 2024; Lin et al.,
2024).

However, relatively little work has been done to
evaluate the importance of each aspect question
within the context of the entire instruction and how
these should be measured or evaluated.

3 Benchmark

Existing approaches for complex instruction fol-
lowing evaluation such as InFoBench rely on

prompting a language model with a complex in-
struction. Unlike many prior approaches for evalu-
ation of instruction following, a judge is then asked
a series of questions about the generated text, each
addressing one aspect of the complex instruction.
For instance, if the instruction asks for a letter from
a parent to their child that is warm and support-
ive, two aspect questions may be "Is the generated
text suitable from a parent to their child?" and "Is
the letter warm and supportive?". These aspect
questions are created by human annotators prior
to evaluation and are held constant for each model
being evaluated.

Existing metrics for complex instruction follow-
ing such as Decomposed Requirements Following
Ratio (DRFR) from InFoBench weight all instruc-
tion aspects equally (Qin et al., 2024). However,
this is not ideal. In many cases it may be important
to weight adherence to higher level aspects such as
system-level instructions stronger than adherence
to lower level aspects. To that end, we propose
a new instruction aspect weighting scheme which
aims to weight the individual aspects of a complex
instruction by their relative importance.

As manually annotating the importance of each
aspect is a lengthy and prohibitively costly process,
we instead opt to use automated annotation and
measure agreement with human evaluators. This
also gives us freedom to explore a variety of differ-
ent weighting approaches with minimal extra cost
and to ensure reproducibility. We propose three
different candidate approaches for automated label-
ing the relative importance of complex instruction
aspects: Direct Scoring, Ranking, and Tree-based
Weighting. In the end we find Tree-based impor-
tance weighting, which we refer to as TOWER,
agrees best with human evaluators. Details on our
human annotation process are found in Section 4.4.

3.1 Direct Scoring
In Direct Scoring, a LLM is directly prompted to
score the importance of each aspect on a scale of
1-5, where 5 is the most important and 1 is the
least important. The aspects are all scored in the
same generation to ensure that their importance is
relative to one another. It is important to note that,
unlike ranking, multiple aspects can have the same
score, reflecting that they are of equal importance.

3.2 Ranking
Similar to Direct Scoring, in Ranking a LLM is
prompted to rank the importance of each aspect
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Weighting Approach Annotator 1 Annotator 2 Annotator 3 Annotator 4 Avg

Human Annotators 0.78 0.70 0.70 0.80 0.74
Standard DRFR -0.06 0.01 -0.02 0.00 -0.02
Ranking 0.14 0.10 0.05 0.20 0.13
Direct Scoring 0.36 0.16 0.23 0.37 0.28
Tree-Based (Ours) 0.72 0.61 0.73 0.78 0.72

Table 1: Annotator agreement with the automated weighting approaches as well as baseline DRFR and agreement
between annotators as measured by Spearman correlation. Human annotators are the gold standard. LLM Tree-
Based weighting is significantly more aligned with human preferences, agreeing with the human annotators nearly
as much as they agree with eachother.

relative to each other. Unlike Direct Scoring, no
two aspects can have the same level of importance.

3.3 Tree-based Weighting
In Tree-Based Weighting, a tree is constructed by
an LLM based on the original complex instruction
and the provided aspect questions. At the root of
the tree are the most important aspects with the
child and grandchild nodes often being modifica-
tions to the original root aspect. For instance, the
aspect questions "Is the generated text a letter?"
may be the parent of "Is the generated letter warm
and supportive". In this setting, the weight for
an aspect question is derived from the level it oc-
curs within the labeled tree, where a parent has
higher importance than the children. Specifically
the weight is calculated by:

1

level(v)

where v is the node of the aspect question within
the tree.

A diagram of this can be found in Figure 1.

4 Experiments

Here we discuss our experiments showing that our
proposed Tree-Based weighting metric, which we
refer from here on as TOWER, strongly aligns
with human preferences and provides insight into
the complex instruction following capabilities of
various models.

4.1 Dataset
We use the instructions and aspect questions from
InFoBench, a dataset comprised of 500 instructions
and 2250 aspect questions with an average of 4.5
aspect questions per instruction. InFoBench also
proposes an evaluation metric, Decomposed Re-
quirements Following Ratio (DRFR), which mea-

sures the percentage of aspects which are correctly
addressed by a language model’s generations.

4.2 Models
Following InFoBench, we use a LLM to judge
whether a given aspect of an instruction is followed
for a particular generation. We use GPT-4-Turbo
for its strong performance, speed, and relatively
low cost compared to GPT-4.

We also use GPT-4-Turbo for our experiments
involving automated ranking, direct scoring, and
tree-based labeling of aspect questions discussed
in Section 4.4.

A number of different prompts are used to extract
the tree structure of the instruction. We find JSON
decoding with a simple example leads to the best
quality trees. Our full prompt can be found in the
project repository on GitHub.

4.3 Human Annotators
4.4 Aspect Importance Experiments
To measure the agreement between our LLM
weighted aspect importance and human-ranked as-
pect importance, we use Spearman’s rank correla-
tion as follows:

⇢ = 1� 6
P

d2i
n(n2 � 1)

where di is the difference between the ranks of
each pair of instruction aspects and n is the number
of instruction aspects.

We use 4 human annotators to independently
rank the importance of decomposed questions
within the individual instructions. The annotators
are recruited students unfamiliar with the project.
The agreement between annotators and the human
weighted aspect importance is shown in Table 1.

Our results show human annotators have an av-
erage Spearman correlation of 0.74 with each other.
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Model InFoBench DRFR TOWER (Ours) Difference

GPT-4-Turbo 83.56 84.48 +0.92
Llama-3-70b-instruct 82.68 79.25 -3.37
GPT-4-1106 81.69 84.03 +2.34
Claude 2.1 80.04 76.44 -3.60
GPT-3.5-Turbo 79.56 81.90 +2.34
Mixtral 8x7B 53.38 60.24 +6.86
WizardLM-2 7B 38.58 40.26 +1.68

Table 2: Standard InFoBench DRFR compared with our Tree-Based Weighting. Both metrics use GPT-4-turbo as a
judge. Larger differences between DRFR and Tree-Based Weighting indicate a model is much better at addressing
root aspects than leaf aspects of a complex instruction.
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(a) GPT-4-Turbo
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(b) Llama 3-70B
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(c) Mixtral 8x7B

Figure 2: Percentage of aspects correctly addressed by model by decision tree level of the individual aspects.
GPT-4-Turbo and Llama-3-70B have consistent performance until the 5th level when they begin to degrade. Mixtral
performance degrades quickly after the first decision tree level, as indicated in Table 2

Surprisingly, with an average correlation of 0.72,
Tree-Based Weighting aligns with human annota-
tors almost as closely as the annotators align with
each other. Ranking and Direct Scoring have sub-
stantially lower average correlations with human
annotators, at 0.13 and 0.28 respectively. These
results indicate humans annotators strongly prefer
Tree-based approaches to instruction aspect impor-
tance over ranking or direct scoring.

4.5 Model Evaluation Results

We test a number of language models to compare
TOWER with DRFR.

The model evaluation results show some models
are substantially better at addressing all aspects of
a complex instruction while others address only the
root instruction and struggle to address the lower
level aspects. GPT-4-Turbo has a difference of
only 0.92 between the Tree-Based Weighting met-
ric and DRFR, indicating that it addresses all as-
pects equally and does not tend to over emphasize
aspects at the root or the leaves. Mixtral 8x7B on
the other hand has a large difference of 6.86, indi-
cating that it is much better at addressing aspects at
the root of the complex instruction tree as opposed
than those at the leaves.

To further directly compare DRFR and TOWER,

we also experiment by sampling models multiple
times with a temperature of 0.8 and use both DRFR
and TOWER as the evaluation metric. We then find
the instances where DRFR and TOWER have the
largest gap and have human annotators pick which
generation has the highest quality. We find human
annotators prefer the same examples as TOWER
68% of the time, indicating that TOWER aligns
much better with human preferences than DRFR.

4.6 Tree-Based Evaluation Analysis

Shown in Figure 2, we further explore the perfor-
mance gap between DRFR and Tree-Based Weight-
ing of complex instructions. We show the per-
centage of aspects correctly addressed for GPT-
4-Turbo, Llama-3-70B, and Mixtral 8x7B at the
various levels of the complex instruction tree. GPT-
4-Turbo shows a relatively consistent performance
across all levels of the decision tree, with per-
formance degradation beginning around Level 5.
Llama-3-70B shows a similar consistent perfor-
mance, but with degradation beginning instead
around Level 4. Surprisingly, Mixtral 8x7B perfor-
mance degrades after only the first level, indicating
that it does not reliably follow instruction aspects at
the lower levels of the trees compared to the higher
level ones.
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5 Conclusion and Future Work
In this paper we explore a new metric for evaluat-
ing large language models’ ability to follow com-
plex instructions. Surprisingly, we find tree-based
representations have nearly the same Spearman cor-
relation with human annotators (0.72) that human
annotators have with themselves (0.74), indicating
that tree-based methods are a strong candidate for
representing and evaluating complex instructions.
Based on this observation our new proposed met-
ric, TOWER, provides strong insights into which
models are better at addressing the most important
aspects of complex instructions.

There are numerous exciting directions for fu-
ture work. While progress is being made on design-
ing new metrics for evaluating complex instruction
following, more benchmark datasets focused on
complex instructions are needed as few currently
exist in this domain. Additionally, finding ways
to reduce evaluation costs is crucial, as evaluat-
ing a single model in InFoBench currently costs
approximately $15.

Limitations
Despite solving many problems with existing eval-
uation metrics for complex instruction following,
our approach is not without drawbacks. First and
foremost, it is significantly more expensive than
InFoBenches DRFR, as pairwise comparison re-
quires many more tokens in the input than single
point evaluation. Further, it is more expensive than
AlpacaEval as each individual aspect question re-
quires it’s own pairwise evaluation, meaning each
instruction will need many pariwise evaluations in-
stead of just one. As with all evaluation approaches
which rely on using LLMs as judges, our approach
is susceptible to bias in the LLM, such as preferring
longer generations or preferring it’s own genera-
tions.
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A Appendix

A.1 Aspect Evaluation Prompt
For consistency of LLM evaluation we use the same
prompt used in InFoBench (Qin et al., 2024) where
an optional input is provided along with the gener-
ated text and a final aspect question used for eval-
uation. The prompt template for this is shown in
Table 3.

A.2 Tree Decomposition Prompt
For decomposing complex instructions into a tree
structure, we test many different prompts and find
the prompt shown in Table 4 with JSON decoding
works well.
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Based on the provided Input (if any) and Generated Text , answer the
ensuing Questions with either a YES or NO choice. Your selection
should be based on your judgment as well as the following rules:

- YES: Select ‘YES ’ if the generated text entirely fulfills the condition
specified in the question. However , note that even minor inaccuracies
exclude the text from receiving a ‘YES ’ rating. As an illustration ,

consider a question that asks , "Does each sentence in the generated
text use a second person ?" If even one sentence does not use the
second person , the answer should NOT be ‘YES ’. To qualify for a ‘YES ’
rating , the generated text must be entirely accurate and relevant to
the question.

- NO: Opt for ‘NO’ if the generated text fails to meet the question ’s
requirements or provides no information that could be utilized to
answer the question. For instance , if the question asks , "Is the
second sentence in the generated text a compound sentence ?" and the
generated text only has one sentence , it offers no relevant
information to answer the question. Consequently , the answer should be
‘NO ’.

Input: {input}

Generated Text: {model_generation}

Question: {aspect_question}

Table 3: Prompt template from InFoBench (Qin et al., 2024) used for evaluating whether the given model generation
follows a given aspect question.
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I’ll provide you with prompts given to a large language model along with
aspect questions about the generated output. Your task is to organize
the aspect questions into a dependency tree structure without
modifying the questions themselves.

An example of a dependency tree structure for the aspect questions is
shown below:

‘‘‘json
{

"aspect_question ": 1,
"children ": [

{
"aspect_question ": 0,
"children ": []

},
{

"aspect_question ": 3,
"children ": []

},
{

"aspect_question ": 2,
"children ": []

},
{

"aspect_question ": 4,
"children ": []

},
]

}
‘‘‘

## Instruction

{
"instruction ": """{ instruction }""",
"aspect_questions ": """{ aspect_questions }""",

}

## Task

Organize the aspect questions into a dependency tree structure without
modifying the questions themselves. The tree should be a JSON object
with the following format where ‘aspect_question ‘ is the index of the
question in the ‘aspect_questions ‘ list:

‘‘‘json
{

"aspect_question ": 0,
"children ": [

{
"aspect_question ": 1,
"children ": []

},
...

]
}
‘‘‘

## Your answer:

Table 4: Prompt template used for deconstructing an instruction and aspect questions into a tree structure.
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