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Humans selectively attend to task-relevant information in order to make accurate decisions. However,

selective attention incurs consequences if the learning environment changes unexpectedly. This trade-off has

been underscored by studies that compare learning behaviors between adults and young children: broad

sampling during learning comes with a breadth of information in memory, often allowing children to notice

details of the environment that are missed by their more selective adult counterparts. The current work extends

the exemplar-similarity account of object discrimination to consider both the intentional and consequential

aspects of selective attention when predicting choice. In a novel direct input approach, we used trial-level eye-

tracking data from training and test to replace the otherwise freely estimated attention dynamics of the model.

We demonstrate that only a model imbued with gaze correlates of memory precision in addition to decision

weights can accurately predict key behaviors associatedwith (a) selective attention to a relevant dimension, (b)

distributed attention across dimensions, and (c) flexibly shifting strategies between tasks. Although humans

engage in selective attention with the intention of being accurate in the moment, our findings suggest that its

consequences on memory constrain the information that is available for making decisions in the future.
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Humans can effortlessly integrate multiple sources of information

whenmaking everyday decisions, drawing upon their existing knowledge

and cues from the current environment. The way we balance and

prioritize information may vary based on a number of factors, including

task demands, source salience, and personal goals. Take, for instance,

the task of distinguishing between edible and poisonous berries in the

wilderness. In this scenario, it can be advantageous to learn and apply

highly reliable rules based on a single dimension, such as color (e.g.,

“White and yellow–kills a fellow. Purple and blue–good for you.”).

Conversely, when identifying the species of an unfamiliar plant that

has sprouted in one’s garden, it becomes more useful to draw upon a

broader range of information. One can consider dimensions such as

flower shape, leaf arrangement, and petal pattern andmake a category

inference based on its overall resemblance to a known type of plant.

In both examples, the process of object discrimination is influenced

by two key factors: (1) the knowledge that one has stored in memory

about how features correspond to categories, and (2) how one

strategically weights information about the current item in order to

make appropriate decisions.

Across theoretical models of human learning and categorization,

this strategic weighting of different dimensions is formalized as

attention (Mackintosh, 1975; Medin & Shaffer, 1978; Nosofsky,

1986; Pearce & Hall, 1980; Rescorla & Wagner, 1972). Under

standard assumptions, maximum accuracy may be achieved by

selectively allocating attention to dimensions that provide category-

diagnostic information (e.g., berry color) and ignoring those that may

provide irrelevant, unreliable, or conflicting information. Decades of

empirical findings have shown that humans iterate toward an optimal

distribution of attention when pursuing accuracy goals (see Weichart

et al., 2022, for review). For example, eye-tracking findings have

demonstrated that categorization accuracy is commensurate with

gaze patterns that prioritize diagnostic over irrelevant dimensions

(Blair et al., 2009; Galdo et al., 2022; Meier & Blair, 2013; Rehder &

Hoffman, 2005a, 2005b).

Despite apparent intentions to balance information in a way

that will yield high accuracy, learners often fail to adjust attention

accordingly in cases when the task environment suddenly changes.

Learners who optimize attention for categorization fail to respond

accurately when tested on item recognition (Deng& Sloutsky, 2016;
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Griffiths & Mitchell, 2008), fail to utilize other features in cases

when the prioritized dimension does not contain usable information

(Deng & Sloutsky, 2016; Kruschke et al., 2005), and fail to maintain

stable accuracy if dimension reliability shifts at some point during

the task (Blanco & Sloutsky, 2019; Blanco et al., 2023).

There are two likely interpretations of these findings. The first is

that the observer maintains inaccurate beliefs about the continued

relevance of a particular dimension despite changes in the task

environment (e.g., Rich & Gureckis, 2018). The second is that

there are “costs” of engaging selective attention during learning;

specifically, limited encoding of information that is not immediately

relevant but may become relevant in the future (Best et al., 2013;

Blanco & Sloutsky, 2019; Plebanek & Sloutsky, 2017). The

difference is theoretically significant: Do failures and biases emerge

due to one’s inaccurate beliefs about the current environment or as

an unintended consequence of storing information that was relevant

in a previous environment? Within leading mechanistic theories

of categorization, however, it is not possible to differentiate between

the extent to which features are encoded in memory and the extent

to which dimensions are prioritized during discrete decisions

(Kruschke, 1992; Medin & Shaffer, 1978; Nosofsky, 1986).

To address this gap, we present a gaze-based extension to a

standard exemplar-similarity model (generalized context model

[GCM]; Nosofsky, 1986) and investigate the independent contribu-

tions of memory for features acquired during learning and the

dimension-level weights that govern decisions about new items. Our

framework builds upon intuitions from seminal work that established

gaze measures as an analog of decision weights during categorization

(Rehder & Hoffman, 2005b), lending two important innovations.

First, we incorporated gaze measures as a direct input to the GCM

specification for attention. While the standard approach to infer a

single average distribution of attention based on a postlearning pattern

of behavioral responses, our framework uses trial-level measures of

gaze to replace these typically freely estimated dynamics. We thus

gain an advantage of detailed, data-driven insight into the feature

information that contributed to each individual choice. Second, we

constructed our framework to allow for the possibility that gaze not

only provides an analog to decision weights but memory precision as

well. Although it is often assumed that all information presented to

the participant is plausibly stored in memory, we incorporate a simple

yet critical intuition: Features can only be stored in memory to the

extent that they are fixated upon during initial learning.

By leveraging eye-tracking data within a joint modeling

framework for predicting choice, we are uniquely positioned to

investigate the hypothesis that attention does not purely represent the

observer’s moment-to-moment weighting of dimensions but rather is

subject to the constraints of previously encoded information as well.

Our goal is to reconcile traditional views of attention with modern

insights and highlight memory as a critical factor for understanding

how even well-intentioned learners can fail to make well-informed

decisions.

The Exemplar-Similarity Framework

The exemplar-similarity framework has subserved the majority of

model-based categorization accounts for the past several decades

(Estes, 1986; Galdo et al., 2022; Kruschke, 1992, 2001; Love et al.,

2004; Medin & Shaffer, 1978; Nosofsky, 1986). GCM is a prime

example of the exemplar-similarity framework, as it is one of themost

influential and widely implemented models in cognitive psychology.

Within the exemplar-similarity framework, categorizing a new

stimulus requires the observer to determine its similarity to labeled

exemplars of each available category (Figures 1A and 1B). GCM

made a significant contribution by positing that the structure of the

psychological space is modified by a latent distribution of attention

(Nosofsky, 1986). The observer assigns an attention weight αj to

each dimension j, where 0 ≤ αj ≤ 1 and
P

k αk = 1. Importantly,

however, GCM makes the simplifying assumption that the features

of all previously encountered exemplars are perfectly encoded

in memory. The attention weights therefore serve to “stretch” the

dimensions of psychological space that are attended and “shrink” those

that are unattended. The consequence is that the observer is more likely

to perceive differences between features that occur in attended as

opposed to unattended dimensions. Returning to our earlier example,

peoplewho selectively attend to the color dimensionwhen categorizing

berries as “edible” or “poisonous” would be likely to perceive minor

distinctions in the spectrum from white to blue but unlikely to notice

variability in the unattended dimension of leaf shape.

Limitations of Free Estimation

Using the mechanisms described above, exemplar-similarity

models such as GCM can take vectorized versions of stimulus

features as input and generate response probabilities as output. By

fitting a model to data, one can identify parameter values that closely

approximate the behaviors that participants actually produced. The

purpose would be to distill a set of responses collected over the

course of an experiment into mechanistic information, such as a

dimension-wise distribution of attention.

As an example, Medin and Smith (1981) designed an experiment

to investigate the impact of different strategy-targeted task

instructions on category learning. Responses differed considerably

between groups whowere instructed to respond based on a rule tied to a

specific dimension or based on overall similarity to category prototypes.

Model-based analyses revealed that the former instructions induced a

strategy of selective attention biased toward the relevant dimension,

whereas the latter instructions prompted a strategy of distributed

attention across dimensions.

According to GCM, being explicitly told which dimension was

most category-diagnostic would impose no decrements upon the

observer’s motivation to encode the features of the other dimensions.

Instead, any differences in behavior between groups in Medin

and Smith’s (1981) design would be attributed to “stretching” and

“shrinking” the dimensions of a perfectly encoded store of exemplars.

Here, we propose a more nuanced explanation whereby a latent

distribution of attention indeed describes the observer’s ongoing

weighting of information but also impacts the precision with which

features are stored in memory over the course of learning. As shown

in Figure 1E, our extension to GCM determines the psychological

similarity between the trial stimulus and past exemplars based on both

(1) the availability of exemplar features in memory and (2) the

distribution of decision weights applied to the current stimulus.

Although the standard implementation of GCM has been criticized

as being overly simplifying due to its assumption of perfect exemplar

encoding (Griffiths&Mitchell, 2008;Murphy, 2002), this assumption

has continued to be presented as a necessity for computational

constraint since the earliest introduction of the exemplar-similarity
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framework (Medin & Shaffer, 1978; Nosofsky, 1986). The current

work is the first modeling effort to investigate the independent

contributions of memory precision and decision weights within this

framework, using gaze to disentangle these component forces of

attention.

Memory and Decision Subcomponents of Attention

Several empirical findings suggest that memory and decision

weights bear dissociable impacts on object discrimination judgments.

First, a vast literature on blocking has advanced our knowledge about

the impacts of selective attention on the processing of information from

unattended dimensions (Beesley&Le Pelley, 2011; Kruschke&Blair,

2000; Le Pelley et al., 2007). In a typical blocking design, participants

are pretrained to associate a cue, A, with an outcome. In a second

phase, a compound cue AB is then associated with the same outcome.

Because participants learn to associate A with the outcome during

pretraining, they fail to learn the relationship between B and the

outcome during the second phase. Acquisition of knowledge about B is

thus said to be “blocked” by the more predictive cue A (Kamin, 1968).
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Figure 1

Exemplar-Similarity Framework

Note. (A) Labeled exemplars are stored in memory as vectors of feature information. Here,

green and orange squares represent features that were drawn from unseen prototypes of

Categories A and B, respectively. (B) The observer compares the features of a new to-be-

categorized item to those of the stored exemplars. Feature-level similarity is impacted by a

distribution of attention, such that features of highly attended (deeper hues of red) dimensions

result in better discriminability between matching and mismatching features. (C) Exemplars that

are perceived to be more similar to the new item are assigned a higher “activation” value.

Response probability is a ratio of total activation values between Categories A and B. (D) In the

proposed gaze-based extension to GCM, exemplar features are stored in memory in proportion

to how long they were fixated during learning. Gray hues represent low memory precision. (E)

When the observer processes a new item, gaze patterns are presumed to provide insight into both

which features were plausibly encoded into memory and how features were weighted during the

categorization decision. GCM = generalized context model. See the online article for the color

version of this figure.

GAZE AS A DIRECT INPUT TO ATTENTION 1047



In one relevant study, Griffiths and Mitchell (2008) tested

participants on recognition and perceived outcome causality of each

cue presented during a blocking procedure. In addition to blocking

effects (B rated less causally related to the outcome than A), the

authors noted significantly reduced recognition of B in comparison

to A, even after controlling for cue frequency. Another study

conducted by Easdale et al. (2019) administered a similar multicue

design alongside eye-tracking measures and manipulated how

reliably each cue predicted the outcome. The authors found that

by reducing causal certainty with probabilistically rather than

deterministically predictive cues, participants fixated to a wider

breadth of cues before making decisions. These findings call

simplifying assumptions of a perfectly encoded memory store into

question, instead suggesting that selective attention bears a

significant impact on the very formation of the representation itself.

Perhaps the most revealing findings on the dichotomy of memory

precision and decision weights have come from work on the

development of selective attention from young childhood to

adulthood (Best et al., 2013; Deng & Sloutsky, 2015a, 2015b,

2016; Plebanek & Sloutsky, 2017). It is well-documented that adults

optimize attention in a goal-directed manner and tend toward a

strategy of selectively attending to dimensions that most reliably

result in accurate responses (Duncan, 1984; Shepard et al., 1961;

Treisman, 1969). Young children, however, are less equipped to

ignore irrelevant information and are therefore more likely than

adults to use a strategy of distributed attention during learning

(Blanco et al., 2023; Smith & Kemler, 1977).

In a study by Deng and Sloutsky (2016), stimuli were composed

of one dimension that was perfectly deterministic of category

membership and six dimensions that were each probabilistically

predictive. The authors observed that after training, adults

systematically categorized new items according to the determin-

istic dimension and remembered its features substantially better

than features in the other dimensions. By contrast, young children

were more likely to utilize multiple dimensions to categorize new

items and showed goodmemory for all features, even outperforming

adults on recognition of features from probabilistic dimensions

(Experiment 3).

Blanco et al. (2023) further investigated the costs of selective

attention by collecting behavioral and eye-tracking data from adults

and children while they completed a two-phase learning task, using

stimuli similar to Deng and Sloutsky (2016). After learning to

categorize stimuli during Phase 1, the most- and least-informative

dimensions suddenly swapped roles to mark the onset of Phase 2.

Analyses of eye-tracking data showed that adults primarily fixated

to the deterministic dimension during Phase 1, then rapidly shifted

attention to the probabilistic dimensions at the onset of Phase 2. By

contrast, children were more likely to fixate to a broader range of

features during Phase 1 and tended to maintain this strategy during

Phase 2. Importantly, the authors identified a subset of children who

responded more consistently with the deterministic dimension than

adults in Phase 2. This finding suggests that encoding a broad range

of information may offer an advantage when determining the most

category-diagnostic dimension in a changing environment.

These developmental findings point to intriguing nuances that

are missed by the standard definition of attention (McKinley &

Nosofsky, 1996; Nosofsky, 1986, 1991). If strategic allocation of

attention occurs only after all information is already encoded, one

cannot explain why optimality-seeking adults would incur robust

costs to accuracy that children are demonstrably able to avoid (Blanco

et al., 2023; Deng & Sloutsky, 2016). It is perhaps the case that,

relative to engaging selective attention during learning, a strategy

of broad feature sampling and encoding information in memory

uniquely supports flexible adaption to a changing task environment.

Experiment

We administered an eye-tracking version of a paradigm developed

by Deng and Sloutsky (2015a, 2016). In the task, participants are first

trained to map stimulus features to categories via feedback-based

learning. Participants then complete a recognition test phase (i.e.,

“Have you seen this exact item before?”) and a categorization test

phase (i.e., “Does this item belong to [Category A] or [Category

B]?”). Importantly, feedback is not provided during the test phases, so

participants must rely on the information they learned during training

to make judgments about the new stimuli they encounter during test.

We selected this paradigm in light of robust empirical evidence that

humans naturally distribute attention differently to serve recognition

and categorization goals (Ashby& Lee, 1991; Greene&Oliva, 2009;

Little & Lewandowsky, 2009; Maddox & Ashby, 1996). In rule-

based categorization, optimal performance is achieved by selectively

attending to relevant dimensions. On the other hand, recognizing

an item among highly similar exemplars requires attention to be

broadly distributed across many or all dimensions. The inclusion of

both recognition and categorization phases in our study was therefore

meant to provoke strategic differences within subjects.

We additionally wanted to study the impacts of feature encoding

during training on subsequent strategic flexibility between subjects.

Some ways to induce sampling variability would be to include

manipulations of task instructions (Medin & Smith, 1981), feature

salience (Liu et al., 2015), predictive certainty (Beesley & Le Pelley,

2011; Easdale et al., 2019), or mode of feedback (Little &

Lewandowsky, 2009; Meier & Blair, 2013), which have been shown

to impact the extent to which adults engage selective attention during

learning. However, the benefit of variability would arguably come

at the cost of interpretability in the current work, given that these

interventions would interact with the strategies that participants

would naturally use in pursuit of optimal responding. We therefore

took an alternative approach and selected a participant population

that has demonstrated both effective learning across paradigms and

widespread strategic variability: preschool-aged children.

Previous work has shown that 4–5-year-old children are more

likely than adults to use a strategy of distributed attention when

behavioral effects are aggregated across subjects (Deng & Sloutsky,

2016; Plebanek & Sloutsky, 2017). Subject-level analyses, however,

suggest that these effects can be attributed to higher strategic

variability among children compared to adults, rather than children

being unilaterally unable to engage selective attention.

Blanco and Sloutsky (2019), for example, classified individual

adults and children in terms of attention strategies used during a

learning task. The distribution of strategy usage for adults was

66% selective, 19% distributed, and 16% intermediate. For children,

the strategy distribution was more even with 29% selective, 32%

distributed, and 38% intermediate (Experiment 1). In the present

study, we hoped that this variability among children would provide

the opportunity to identify robust strategy groups that were suitable

for between-subject comparisons of gaze patterns.
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Method

Participants

Participants were 219 children who were recruited from

preschools and childcare centers in the suburbs of Columbus,

Ohio (Mage: 52.0 months, range: 44.7–58.1 months). All research

activities were approved by the Institutional Review Board at The

Ohio State University (Protocol 2004B0422). Written informed

consent was acquired from a parent or guardian of each participant

in advance of the study, and the children themselves consented

verbally. We used a larger sample size than what is typical for the

selected paradigm (N = 25–35; Blanco & Sloutsky, 2019; Deng &

Sloutsky, 2012, 2015a, 2016). This was done in consideration of

recommended sample sizes in excess of 100 for model comparison

(Myung & Pitt, 2004) and in an effort to observe individual

differences in strategy within the population of interest.

While this study was not preregistered, we uphold transparency

and accessibility by making data and model code publicly available

on the Open Science Framework (https://osf.io/9r7k8/?view_only=

ca4010ffb8aa4cbea6b02be3ff8ad80f ).

Materials

Training stimuli were colorful drawings of trains that were

divided into categories that we denote “A” (Category A) and “B”

(Category B). As shown in Table 1, each category was represented

by an unpresented prototype. Prototypes contained seven features

that were distinct in shape and color: smoke stack, cab, wheels,

Car 1, Car 2, Car 3, and flag. A majority of the features were drawn

from the prototypes probabilistically so that they would collectively

represent the overall similarity among category exemplars (hence-

forth referred to as “P” features). One feature, however, was perfectly

deterministic of category membership (henceforth referred to as

the “D” feature). The D dimension was selected among three options

for each participant (cab, wheels, and flag), and selections were

counterbalanced between subjects.

Four stimulus types that were presented during the experiment

will be discussed.1 The stimulus structure of each item type is shown

in Table 1. Each item type configuration discussed below resulted in

30 possible stimuli, 15 from each category as determined by the D

feature (high-match, conflict, and one-new-P) or by the majority of

P features (new-D).

1. The majority of stimuli were a high-match to one of the

two category prototypes, meaning the D feature and four

out of six P features were drawn from a consistent proto-

type. The remaining two P features were drawn from the

opposite prototype. High-match items were presented both

during category training (with labels) and in subsequent

recognition and categorization test phases (without labels).

2. Conflict items contained the D feature and two out of six

P features from one category prototype, and the majority

(four out of six) of the P features from the other. These

items were only presented during tests of memory and

categorization and were never paired with labels.

3. New-D items contained a novel feature in the D dimension,

which was never explicitly paired with a label during

category training. Four out of six P features were drawn

from one category prototype, and the remaining two

features were drawn from the other. These items were only

presented during tests of memory and categorization and

were never paired with labels.

4. One-new-P items contained a novel feature in a randomly

selected P dimension. The D feature and four out of six

P features were drawn from one category prototype, and

the remaining P feature was drawn from the other. These

items were only presented during tests of memory and

categorization and were never paired with labels.

Procedure

The experiment was similar to that of Deng and Sloutsky

(2016) and was comprised of four phases: instructions, training,

recognition test, and categorization test. Instructions and prompts

that were specific to each trial were read aloud by a trained

experimenter, and participants responded verbally. The experi-

menter then pressed the corresponding key on the keyboard to log

the response. The experiment lasted approximately 20 min in total.

During the instructions, participants were told that they would

see different trains and that they would have to decide which ones

belonged to Categories A and B. Features drawn from each category

prototype were presented on the screen in isolation, and the

experimenter verbally indicated the appropriate category association.

In particular, P features were displayed alongside a message in the

form: “Most of the [A/B] trains have this type of [e.g., smoke stack/

car/cab/wheels ].” D features were accompanied by the message:

“All [A/B] trains have this type of [e.g., flag].”Across two categories,

14 features and their associated category mappings were displayed

to participants during the instructions. The experimenter read the

following message aloud before the experiment began:

There are two parts in this game. This is the first part. In this part of the

game, you will see many trains. Some of them are A trains and some are

B trains. You will tell me whether it’s an A train or a B train.

The training phase consisted of 30 high-match items (15 per

category). During each trial, a stimulus was presented in the center

of the screen, and the participant was asked, “What is this? A or B?”

After the experimenter logged the participant’s response, corrective

feedback was provided in the form of “Correct! This is a/n [A/B]

train” or “Oops! This is actually a/n [A/B] train.” Additionally,

feedback highlighted the D feature and similarity to category

prototypes with a message in the form of “It looks like a/n [A/B]

train and has the [A/B] [e.g., flag].” Feedback was presented as text

on the screen and read aloud by the experimenter. The order of

stimulus presentation was randomized across participants.

Training was followed by recognition and categorization test

phases. At the point of transition between training and test, the

experimenter read the following message aloud, “Now, it’s the

second part of the game. In this part, you will see more trains. You

saw some of them in the first part of the game, but some of the trains

are new. You did not see them in the first part. You will tell me
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1 A fifth all-new-P item type was presented to participants as well, which
contained novel features in all six P dimensions. The D feature was drawn
from one of the available category prototypes. These itemswere not related to
the effects of interest in the current study and were therefore excluded from
analysis.
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whether it’s an A train, or B train. Also, you will tell me whether you

saw exactly the same train in the first part, or if it’s new.” Each of the

two test phases contained 40 trials (20 per category). Eight items

were presented from each of the four types shown in Table 1.

During each trial of the recognition test phase, participants were

presented with a stimulus and were asked, “Did you see exactly the

same train in the first part of the game?” Participants responded

“yes” if they believed the stimulus had been presented during

training or “no” if they believed the stimulus was new. No feedback

was provided after the experimenter logged the participant’s

response; the experiment simply proceeded to the next trial. As

shown in Table 1, only high-match items were correctly considered

to be old, whereas items drawn from conflict, new-D, and one-new-

P types were new.

During the categorization test phase, participants were presented

with a stimulus and were asked, “What is this? A or B?” As in

the recognition test phase, no feedback was provided after the

experimenter logged the participant’s response.

Eye-Tracking

Throughout the experiment, monocular gaze fixations were

recorded using an EyeLink 1000 eye tracker (SR Research, Ontario,

Canada) at a sampling rate of 500 Hz with a manufacturer-reported

accuracy of 0.5°. Participants were seated 60 cm from the eye

tracker, facing a 1280 × 1024-pixel display monitor. To analyze the

data, we defined seven rectangular areas of interest (AOIs) that were

centered at the spatial location of each dimension. AOIs varied in

size from 2° × 2° (flag) to 4.3° × 4.7° (cab). When preprocessing the

data, we calculated the total time that a participant’s gaze overlapped

with a particular AOI at the level of each trial (Blanco et al., 2023).

Analysis

Deng and Sloutsky (2016) defined key behavioral effects for

evaluating how adults, 7-year-olds, and 4-year-olds allocate attention

during the task described above. Here, we conducted analyses for

identifying subgroups of participants who demonstrate these key

behaviors. Because Deng and Sloutsky’s key effects pertain to

aggregate group-level behaviors rather than individual subjects, we

first classify participants into groups using individual-level, model-

based cognitive assessment techniques (Weichart et al., 2021;Wiecki

et al., 2015). We then conduct comparisons between groups to verify

that the contrasting behavioral correlates of attention described by

Deng and Sloutsky (2016) are indeed observable within the current

participant pool, despite controlling for age.

Effects of Interest

During the recognition test, it is of particular interest to compare

correct rejections of new-D and one-new-P items. As illustrated in

Figure 2A, participants who use either a strategy of selective or

distributed attention during the recognition test should be equipped

to notice when a novel feature appears in the D dimension. Although

participants who selectively attend to D may be more sensitive to

novel D features than participants who distribute attention broadly,

all participants are expected to be plausibly adept at correctly

rejecting new-D items as “new.” Participants who selectively attend

to the D dimension, however, should fail to notice if a novel feature

appeared in one of the unattended P dimensions.

During the categorization test, it is useful to compare responses

between high-match and conflict items. While all participants who

learned the task should be expected to accurately categorize high-match

items, conflict items should yield different response profiles between

strategies (Figure 2B). Because conflict items contain a D feature from

one category prototype and the majority of P features from the other,

participants who distribute attention evenly across dimensions should

respond close to chance, while thosewho selectively attend toD should

respond consistently with the D dimension.

The key effects shown in Figure 2B will serve as an essential

benchmark for model evaluation.
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Table 1

Category Structure

Item type D P1 P2 P3 P4 P5 P6

Recognition:
Correct
response

Categorization:
Dimension-

consistent response

D P

Prototypes 0 0 0 0 0 0 0 A A
1 1 1 1 1 1 1 B B

High-match 0 0 0 0 0 1 1 Old A A
1 1 1 1 1 0 0 Old B B

Conflict 0 1 1 1 1 0 0 New A B
1 0 0 0 0 1 1 New B A

One-new-P 0 0 0 0 0 1 N New A A
1 1 1 1 1 0 N New B B

New-D N 0 0 0 0 1 1 New A
N 1 1 1 1 0 0 New B

Note. Rows provide examples of feature configurations for each type of item presented during the task. Values correspond to unique
features in each dimension. 0s correspond to an unseen prototype from Category A, and 1s correspond to a prototype from Category B.
“D” and “P” headings refer to the reliability of feature information in the corresponding dimension. The three right-most columns indicate
expected responses, considering the feature information provided by the relevant item type. D = deterministic; P = probabilistic; N =

novel.
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Identifying Strategy Groups

We applied a suite of GCM variants (Nosofsky, 1986) with

separate freely estimated distributions of α for recognition and

categorization and used a switchboard analysis to characterize

individual-level attention (Turner et al., 2018). Our approach

follows from relatively recent efforts in model-based cognitive

assessment, in which well-established cognitive models are used to

delineate participants according to the latent mechanisms that

plausibly underlie their behaviors (Darby & Sederberg, 2022;

Weichart & Sederberg, 2021; Weichart et al., 2021). Here, the

relevant mechanism for delineation is attention, and the four variants

of interest are summarized in Table 2. To instantiate selective

attention, we freely estimated the value of attention corresponding

to the D dimension (αD) with constraints 1
7
< αD < 1 and calculated

attention to each P dimension as αPn
=

1−αD
6

. For distributed

attention, αk values corresponding to all seven dimensions were

fixed to 1
7
. In both cases,

X

k

αk = 1, (1)

per convention (Nosofsky, 1986). After fitting the models to data,

we identified a preferred model for each subject via comparison of

Akaike information criterion values (AIC; Akaike, 1974). Because

comparisons via AIC favor parsimonious models, participants were

only determined to use selective attention if the addition of a free αD
parameter was justified by a sufficient improvement in model fit.

For our purposes, it was essential to identify participants who

utilized some kind of discernible strategy (as opposed to random
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Figure 2

Predictions of Key Behavioral Effects

Note. (A) During recognition, a strategy of distributed attention should result in correct rejections of both new-D and one-new-

P items as “new.” A strategy of selective attention to the D dimension should result in a reduced ability to correctly reject one-

new-P items. (B) During categorization, a strategy of selective attention should result in high proportions of responses consistent

with the D feature during both high-match and conflict items. A strategy of distributed attention should result in a lower

proportion of D-consistent responses during conflict items. D = deterministic; P = probabilistic. See the online article for the

color version of this figure.

Table 2

Comparing Models With Freely Estimated Attention

Model Recognition Categorization N free α parameters

SelR–SelC αD > αP (Selective) αD > αP (Selective) 2
SelR–DistC αD > αP (Selective) αD = αP (Distributed) 1
DistR–SelC αD = αP (Distributed) αD > αP (Selective) 1
DistR–DistC αD = αP (Distributed) αD = αP (Distributed) 0

Note. The table provides parameterizations of attention from four candidate models. Model comparison was used to
identify which attention strategies each participant used during recognition and categorization. α = freely estimated
attention parameters in the generalized context model; Sel = selective; Dist = distributed; R = recognition; C =

categorization.
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responding or making the same response on every trial) during both

recognition and categorization tests. We therefore opted to exclude

participants who appeared not to perform one or both of the tasks.

Specifically, participants were excluded if they failed to exceed a

priori criteria of 60% correct responses to high-match items during

the recognition test (failed recognition: N = 23) and categorization

test (failed categorization: N = 73; failure to meet either criteria:

N = 13). The results to follow are based on the remaining 110

participants (50.2% of the full sample). Similar criteria were

imposed in a previous dual-test study on selective attention, which

also resulted in a high exclusion rate of 32.7% (67.3% inclusion)

despite using adult participants (Griffiths & Mitchell, 2008).

By-subject model comparisons among candidate GCM variants

(Table 2) identified the following four strategy groups within our

participant pool:

1. Selective attention during both recognition and categor-

ization, henceforth denoted SelR–SelC (N = 43);

2. Selective attention during recognition, distributed atten-

tion during categorization, henceforth denoted SelR–DistC
(N = 30);

3. Distributed attention during recognition, selective atten-

tion during categorization, henceforth denoted DistR–SelC
(N = 20);

4. Distributed attention during both recognition and catego-

rization, henceforth denoted DistR–DistC (N = 17).

Analyses of behaviorwithin- and between-strategy groups replicated

the results of Deng and Sloutsky (2016) and were consistent with the

key behavioral effects shown in Figure 2. Detailed results are provided

in Appendix A.

It is important to note that according to these results, participants

did not necessarily use a consistent attention strategy across the

recognition and categorization test phases. Specifically, Groups

SelR–DistC and DistR–SelC used selective attention during one

phase and distributed attention during the other. Although adult

participants have historically shown effects consistent with selective

attention across both phases of Deng and Sloutsky’s design

(similarly to Group SelR–SelC here), the selection of young children

as our population of interest provided the opportunity to additionally

observe instances of distributed attention (Group DistR–DistC) and

strategic flexibility (Groups SelR–DistC and DistR–SelC). Given our

goal of using gaze to dissociate memory precision and decision

weight components of attention, analyzing the information sampling

behaviors of these groups will provide uniquely rigorous theoretical

constraint.

Gaze as a Direct Input for Components of Attention

As emphasized by Turner et al. (2017), developments in model-

based cognitive neuroscience have provided new opportunities to link

model mechanisms to neurophysiological measures for the purposes

of theoretical constraint, adjudication, and elaboration (Palmeri et al.,

2017; Turner, Forstmann, et al., 2019; Turner, Palestro, et al., 2019;

Turner et al., 2017). In the domain of categorization, seminal work

by Rehder and Hoffman (2005a, 2005b) noted a correspondence

between gaze and attention weights estimated by the exemplar-

similarity framework. The authors used what would be classified by

Turner et al. (2017) as a “two-stage approach” for linking behavioral

and neurophysiological data, whereby the relationship between two

independently analyzedmodalities is assessed through a second stage

of correlation or regression analyses. Here, we go a step further and

present a “direct input approach” whereby gaze itself serves as a

mechanism for feature encoding and predicting choice.

Following previous work, we assume features that are fixated

longer during training are more likely to be encoded into memory

(Foulsham & Underwood, 2008; Loftus, 1972; Peterson et al.,

2001), and features that are fixated longer during test reflect

prioritization during decisions (Blair et al., 2009; Meier & Blair,

2013; Rehder & Hoffman, 2005a, 2005b). We examine four linking

functions for converting dwell times into correlates of memory

precision and decision weights, where outputs are bound by 0

and 1 per convention (Medin & Shaffer, 1978; Nosofsky, 1986).

A conceptual overview and simulation study of our approach in

contrast to the conventional unitary view of attention (Medin &

Shaffer, 1978; Nosofsky, 1986) are provided in Appendix B.

Method

Modeling Framework

To represent the stimulus on trial n of the training phase, we

denote a vector xðnÞ = ½xn,1 xn,2 : : : xn,J � where each element

corresponds to the feature value in dimension j. After completing

all N trials of the training phase, feature information about all

exemplars is stored in matrix X = ½xð1Þ : : : xðNÞ�⊺ and associated

feedback is stored in vector F = ½ f ð1Þ : : : f ðNÞ�. During each trial i of
test, the observer is presented with a stimulus probe eðiÞ =

½ei,1 ei,2 : : : ei,J � and is expected to make an informed judgment

(i.e., recognition or categorization). The probe acts as a retrieval cue

to access information associated with similar stimuli that were

encountered during training. To this end, the observer first computes

the feature similarity between the probe and exemplar x(n) along

each dimension j:

sjðe
ðiÞ, xðnÞÞ = expð−δdjðe

ðiÞ, xðnÞÞαjÞ: (2)

Values of feature similarity range between 0 and 1, where 1 indicates

that features e
ðiÞ
j and x

ðnÞ
j are perceived to be identical. In Equation 2, δ

modulates the specificity of the similarity kernel. Separate values δR
and δC were used for recognition and categorization. dj represents the

simple distance between values corresponding to the relevant features.

Values of α represent attention, which modifies the perceived distance

between mismatching features. Although a single αj is typically

estimated across trials, we hypothesize that αj should involve

information specific to both the probe and the exemplar components

of the comparison. We therefore specified,

αj = η
ðnÞ
j ζ

ðiÞ
j , (3)

where η
ðnÞ
j represents memory precision for the feature presented in

dimension j on training trial n, and ζ
ðiÞ
j represents the decision weight

allocated to dimension j on test trial i. By using a multiplicative rule,

we ensure that usage of information during the choice is only

possible if the relevant exemplar feature had a nonzero memory

precision and the relevant probe feature had a nonzero decision

weight. The observer next computes the overall similarity between
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the probe and each exemplar, combining feature similarity across

dimensions:

aðeðiÞ, xðnÞÞ∶ =

Y

j

sjðe
ðiÞ, xðnÞÞ: (4)

Overall similarity is analogous to the activation of the relevant

exemplar in memory, given the presence of the current probe.

The choice rules used here follow iterations of GCM that

incorporated assumptions about the determinism of responding

(Ashby & Maddox, 1993; Navarro, 2007). When making a choice

during the recognition test phase, the relevant feature comparison

d in Equation 2 is:

djðe
ðiÞ, xðnÞÞ =

�

1 if e
ðiÞ
j ≠ x

ðnÞ
j ∀n ∈ f1, 2; : : : ,Ng

0 otherwise
, (5)

which determines whether or not a test feature was presented during

training. We then determine the activation of a “new” response

based on the total activation across all exemplars:

Að“new”Þ = exp

"

ϕ
X

N

n=1

ð1 − aðeðiÞ, xðnÞÞÞ

#

: (6)

The probability of making a “new” response is given by

Pð“new”Þ =
Að“new”Þ

Að“new”Þ + β
, (7)

and P(“old”) = 1 – P(“new”). Here, β represents a baseline bias for

responding “old,” and ϕ is a temperature parameter for scaling the

activations.

During categorization test, the relevant feature comparison d in

Equation 2 is:

djðe
ðiÞ, xðnÞÞ =

�

1 if e
ðiÞ
j ≠ x

ðnÞ
j

0 otherwise
: (8)

The activation of a given category l is given by

Að“l”Þ = exp

"

ϕ
X

N

n=1

aðeðiÞ, xðnÞÞIð f ðnÞ = “l”Þ

#

, (9)

where I(q) is an indicator function returning 1 if the condition q is

true and 0 otherwise.

The probability of making a response consistent with category

“A” is the ratio of activation for category “A” relative to the total

activation across all available categories (which in this case is just A

and B):

Pð“A”Þ =
Að“A”Þ

Að“A”Þ + Að“B”Þ
: (10)

Linking Functions

We selected a set of increasing functions that returned outputs

bound between 0 and 1 (inclusive) for converting feature-level dwell

times to elements of attention within our modeling framework. The

goal was to ascertain if any transformation of gaze was sufficient

for predicting strategy-relevant behaviors between groups and

whether it was necessary to account for the features that were fixated

during training to make accurate test predictions.

In the equations below, the input dwell
ðtÞ
j refers to the total time

spent looking at the feature in dimension j on Trial t, and output is

denoted v
ðtÞ
j . When a given function is applied to fixations during

training, output v
ðtÞ
j is used as η

ðnÞ
j in Equation 3 to represent memory

precision for exemplar feature x
ðnÞ
j . When a function is instead

applied to fixations during test, v
ðtÞ
j is used as ζ

ðiÞ
j in Equation 3

to represent the decision weight applied to probe feature e
ðiÞ
j .

Examples of each function are shown in Figure 3.

Binary Step Function. This function has a free threshold

parameter θ ∈ ð0,∞Þ and returns 0 or 1 according to the following

conditional:

v
ðtÞ
j =

�

0 if dwell
ðtÞ
j ≤ θ

1 otherwise
: (11)

Piecewise Linear Function. This function has a free threshold

parameter θ ∈ ð0,∞Þ and returns an attention value as a proportion

of θ. If the input exceeds the threshold, the function returns 1.

v
ðtÞ
j = min

�

dwell
ðtÞ
j

θ
, 1

�

: (12)

Softmax Function. The softmax function is often used in

multiclass classification problems, where the goal is to assign an

input to one of several mutually exclusive classes. The function

calculates the exponential of each input element and then normalizes

the results by dividing each element by the sum of all exponentials.

This normalization ensures that the output values sum to 1, forming

a valid probability distribution. This function has a free temperature

parameter θ ∈ ð0,∞Þ that scales the element-wise activations.

v
ðtÞ
j =

expðθdwell
ðtÞ
j Þ

P

k expðθdwell
ðtÞ
k Þ

: (13)

Logistic Function. The logistic function is commonly used as

an activation function in neural networks because it produces

nonlinear transformations of the input, enabling the model to learn

complex relationships between input and output variables. This

function has two free parameters θ ∈ ð0,∞Þ and ω ∈ ð0,∞Þ that

control the steepness and inflection point of the function,

respectively.

v
ðtÞ
j =

1

1 + expð−θðdwell
ðtÞ
j − ωÞÞ

: (14)

Candidate Models

For our main model comparison, we identified every pairwise

combination of functions for converting gaze to memory precision

and decision weights. This resulted in a core set of 16 candidate

models, which we refer to in the format “X – Y.” “X” refers to a

function A, B, C, or D that was applied to dwell times during

training to calculate a matrix η. “Y” similarly refers to a function

that was applied to dwell times during both test phases (recognition

and categorization) to calculate a matrix ζ. Linking parameters
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(e.g., θ and ω) were estimated independently for memory precision

and decision weights.

As specified by Equation 3, attention is calculated as the product of

memory precision ðη
ðnÞ
j Þ and decision weight elements ðζ

ðiÞ
j Þ. This

defies the GCM convention of an attention vector that sums to a

constant quantity of 1 (Nosofsky, 1986; but see Galdo et al., 2022;

Weichart et al., 2022, for contradictory arguments). We therefore

included a model variant “C–C
+
” that follows the approach of

Lamberts (1995) to ensure that attention varies from trial-to-trial but is

still constrained to sum to 1. As in Model C–C, both ηðnÞ and ζðiÞ are

softmax ratios of trial-level dwell times. Instead of calculating attention

as a product of the two vectors as in Equation 3, however,ModelC–C+

uses the specification αj = γη
ðnÞ
j + ðð1 − γÞζ

ðiÞ
j Þ where γ ∈ ½0, 1�.

Finally, we included four model variants that assumed perfect

encoding of all feature information presented during training, such

that all η
ðtÞ
j = 1. Values of ζ

ðtÞ
j for decision weights were functions

of each candidate linking function. These models are denoted 1–A,

1–B, 1–C, and 1–D in the results. In total, 21 model variants were fit

to data and evaluated. Details of the model-fitting procedures are

provided in Appendix C.

Results

Beyond comparing the fits of the candidate gaze-basedmodels via

fit statistics, we took an additional step of evaluating each model

based on its ability to predict behavioral markers of selective and

distributed attention (Figure 2). To be consistent with observed key

differences between groups (Tables 3 and 4), a successful model had

to be able to predict the following:

1. Groups SelR–SelC and SelR–DistC (selective attention during

recognition) made more false alarm “old” responses than

Groups DistR–SelC and DistR–DistC (distributed attention

during recognition) to one-new-P compared to new-D items.

2. Groups SelR–SelC and DistR–SelC (selective attention

during categorization) made more D-consistent responses

than Groups SelR–DistC and DistR–DistC (distributed

attention during categorization) to conflict compared to

high-match items.

We first identified best-fitting parameters and gaze transformation

values for each participant and model using procedures provided in

Appendix C. We then used the models to generate simulated trial-

level response probabilities for each participant, using their best-

fitting parameters, observed gaze data, and the sequence of stimuli

that the relevant participant experienced during the task. We then

determined average response proportions within item type and test

phase for each participant and model. As such, model predictions

and observed data could be subjected to identical statistical analyses.

Model Evaluation

We evaluated each model by its ability to predict the interaction

effects that were relevant to each test phase (Figure 2). For the
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Figure 3

Linking Functions

Note. (Top) Candidate linking functions used in our investigation. X values show dwell time inputs, and Y values show outputs representing memory

precision or decision weight components of attention. Colored lines illustrate changes to the function that result from modulation of free parameters θ and ω.

(Bottom) Heatmaps show examples of attention outputs (Z values; colors) when applying the candidate functions to one subject’s gaze data. The X-axis shows

stimulus dimensions. The Y-axis indexes training trials. D = deterministic; θ and ω = linking parameters. See the online article for the color version of this

figure.
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recognition test, we calculated d′ for D and P features and submitted

the values to a two (feature type: D, P) by four (group) mixed

analysis of variance (ANOVA), with feature type as a within-

subjects factor and group as a between-subjects factor. For the

categorization test, we calculated proportions of D-consistent

responses and submitted the values to an analogous two (item type:

high-match, conflict) by four (group) mixed ANOVA. Out of 21

candidate models, simulations from 7models replicated both critical

interaction effects. F statistics (df: 3, 106) and p values are reported

in Tables 3 and 4 as they pertain to recognition and categorization,

respectively. Predictions from models that predicted the appropriate

interaction effects in both phases (Models B–B, C–A,C–B, C–D,D–

B, D–D, and C–C
+) were submitted to additional post hoc

evaluation with pairwise independent samples t tests.

To summarize the observed effects of interest during recognition,

Groups SelR–SelC and SelR–DistC were less sensitive to novel P

features than Groups DistR–SelC and DistR–DistC (ps < .001*).

Groups who used a common attention strategy did not differ in

sensitivity between one another (SelR–SelC vs. SelR–DistC: p = .81;

DistR–SelC vs. DistR–DistC: p = .99). As shown in Table 3, four

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al

A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al

u
se

o
f
th
e
in
d
iv
id
u
al

u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.

Table 3

Recognition Phase: Pairwise Key Effects Predicted by Gaze-Informed Models

Model Interaction

SelR–SelC SelR–SelC SelR–DistC SelR–DistC SelR–SelC DistR–SelC

DistR–SelC DistR–DistC DistR–SelC DistR–DistC SelR–DistC DistR–DistC

Obs. F = 35.71 t = 9.61 t = 9.92 t = 7.03 t = 7.34 t = 1.18 t = 0.49
p < .001* p < .001* p < .001* p < .001* p < .001* p = .81 p = .99

B–B F = 9.76 t = 5.08 t = 7.00 t = 2.66 t = 4.10 t = 1.66 t = 2.10
p < .001* p < .001* p < .001* p = .06 p < .01* p = .47 p = .24

C–A F = 15.46 t = 6.50 t = 8.14 t = 2.94 t = 4.20 t = 2.90 t = 1.51
p < .001* p < .001* p < .001* p < .05* p < .05* p < .05* p = .61

C–B F = 17.36 t = 6.61 t = 8.72 t = 2.78 t = 4.45 t = 3.08 t = 2.23
p < .001* p < .001* p < .001* p < .05* p < .001* p = .08 p = .83

C–D F = 15.36 t = 6.51 t = 8.52 t = 2.99 t = 4.44 t = 2.36 t = 2.27
p < .001* p < .001* p < .001* p < .05* p < .01* p = .12 p = .17

D–B F = 14.85 t = 5.89 t = 7.74 t = 2.37 t = 4.14 t = 3.36 t = 1.97
p < .001* p < .001* p < .001* p = .13 p < .01* p < .01* p = .30

D–D F = 11.34 t = 5.87 t = 7.22 t = 3.45 t = 4.37 t = 1.49 t = 1.22
p < .001* p < .001* p < .001* p < .01* p < .01* p = .60 p = .80

C–C
+

F = 8.87 t = 4.53 t = 6.55 t = 2.40 t = 4.04 t = 1.73 t = 2.02
p < .001* p < .001* p < .001* p = .12 p < .01* p = .42 p = .29

Note. Statistical output from a two (feature type: D vs. P) by four (group) ANOVA and post hoc pairwise tests. Matching analyses were
performed on observed and model-generated response data. Bold text indicates significant effects among comparisons of model-generated
responses that are consistent with the observed key effects. Obs. = observed; R = recognition; C = categorization; Sel = selective; Dist =
distributed; ANOVA = analysis of variance.

Table 4

Categorization Phase: Pairwise Key Effects Predicted by Gaze-Informed Models

Model Interaction

SelR–DistC SelR–DistC DistR–DistC DistR–DistC DistR–DistC SelR–SelC

SelR–SelC DistR–SelC SelR–SelC DistR–SelC SelR–DistC DistR–SelC

Obs. F = 19.48 t = 4.03 t = 5.69 t = 4.75 t = 6.15 t = 1.22 t = 2.72
p < .001* p < .001* p < .001* p < .001* p < .001* p = .79 p = .06

B–B F = 4.36 t = 1.38 t = 3.70 t = 0.73 t = 3.23 t = −0.69 t = 2.57

p < .01* p = .68 p < .01* p = .98 p < .05* p = .98 p = .08

C–A F = 3.28 t = 2.43 t = 1.99 t = 2.34 t = 1.96 t = 0.01 t = 0.14
p < .05* p = .10 p = .28 p = .14 p = .30 p = .99 p = .99

C–B F = 6.08 t = 2.75 t = 3.19 t = 3.31 t = 3.70 t = 0.42 t = 0.75

p < .001* p < .05* p < .05* p < .05* p < .01* p = .99 p = .97

C–D F = 10.13 t = 4.01 t = 4.02 t = 3.81 t = 3.84 t = −0.26 t = 0.77
p < .001* p < .01* p < .01* p < .01* p < .01* p = .99 p = .97

D–B F = 3.19 t = 2.33 t = 2.18 t = 2.07 t = 1.92 t = −0.49 t = 0.49

p < .05* p = .13 p = .20 p = .24 p = .32 p = .99 p = .99

D–D F = 2.92 t = 1.89 t = 2.46 t = 1.41 t = 2.09 t = −0.37 t = 1.03
p < .05* p = .33 p = .11 p = .66 p = .23 p = .99 p = .89

C–C
+

F = 7.18 t = 3.89 t = 3.89 t = 0.83 t = 1.43 t = −2.22 t = 0.93

p < .001* p < .01* p < .01* p = .96 p = .64 p = .18 p = .93

Note. Statistical output from a two (item type: high-match vs. conflict) by four (group) ANOVA and post hoc pairwise tests. Matching
analyses were performed on observed and model-generated response data. Bold text indicates significant effects among comparisons of
model-generated responses that are consistent with the observed key effects. Obs. = observed; R = recognition; C = categorization; Sel =
selective; Dist = distributed; ANOVA = analysis of variance.
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gaze-informed models (indicated by bold text) appropriately

predicted all four pairwise effects of interest: Models C–A, C–B,

C–D, and D–D.

During the categorization test, analyses of observed data showed

that Groups SelR–SelC and DistR–SelC responded more consistently

with the D feature during high-match and conflict items than

Groups SelR–DistC and DistR–DistC (ps < .001*). Groups who

used a common attention strategy did not significantly differ in

D-consistent responding between one another (SelR–SelC vs. DistR–

SelC: p = .06; SelR–DistC vs. DistR–DistC: p = .79). As shown in

Table 4, only two gaze-informed models (indicated by bold text)

appropriately predicted all four pairwise effects of interest: Models

C–B and C–D.

Table 5 shows total AIC values for the selection of seven models

that effectively simulated key interaction effects for recognition

and categorization. Model C–B provided the best fits to data from

Groups SelR–SelC and SelR–DistC, andModel B–B provided the best

fits to data from Groups DistR–SelC and DistR–DistC. However,

Model B–B proved to be ineffective for predicting behavioral

differences between selective and distributed attention strategy

groups during both recognition and categorization (Tables 3 and 4).

Although Models C–B and C–D both predicted all pairwise

behavioral effects of interest, Model C–B presumably attained more

favorable AIC values on the basis of parsimony (one fewer free

parameter). Considering all results together, we selectedModelC–B

as the most effective model overall out of 21 candidates. Aggregate

predictions using each subject’s best-fitting parameters from Model

C–B are shown in Figure 4 (points).

Examining Conventions

Due to their theoretical significance (Nosofsky, 1986), statistics

for evaluating the predictions of the perfect encoding models (1–A,

1–B, 1–C, and 1–D) are provided in Table 6. None of these models

were able to predict key interaction effects during categorization,

however, and were therefore not subjected to additional post hoc

evaluation. Considering total AIC, all four perfect encoding models

performed worse than every model listed in Table 5, which included

allowances for memory precision. From these results, we note that

simply accounting for sparsity in feature encoding has profound

effects on behavioral predictions.

Within our direct input approach, we made the choice to calculate

attention at the level of each probe–exemplar comparison as a

product of memory precision and decision weights (Equation 3).

Because this specification contradicts the standard GCM constraint

where

X

k

αk = 1, (15)

we included a gaze-informedModelC–C+ that satisfies the constraint

on total attention by trial. To reiterate, Model C–C
+ calculates

attention as a mixture of softmax-transformed η and ζ, similar to how

freely estimated perceptual and decisional components of attention

are combined in the extended generalized context model (Lamberts,

1995). Although Model C–C+ predicted the item type by group

interaction effects relevant to both recognition and categorization

phases, it failed to predict several key pairwise effects for

distinguishing between selective and distributed attention strategies

(Tables 3 and 4) and was unremarkable compared to the other

candidate models in terms of AIC (Table 5). Consistent with the

findings of previous work, these results suggest that attention

allocation is highly flexible and variable within and between trials and

may not be adequately summarized with hardline summation

constraints in place (Galdo et al., 2022; Weichart et al., 2022).

Eye-Tracking

Mean proportions of raw dwell times to the D feature during

training (in sets of 10 trials), recognition test, and categorization test

are provided in Table 7. We identified a significant group difference

in proportions of gaze allocated to the D feature during the latter

trials of training, F(3, 106) = 5.03, p < .01, with Group SelR–SelC
showing longer relative dwell times to the D feature compared to

Group DistR–DistC. No other group-wise comparisons of dwell time

during training reached statistical significance.

Figure 5 shows aggregate softmax-transformed dwell times during

training, using best-fitting θtrain values from our winning model,C–B.

These transformed gaze maps serve as a way of visualizing memory

precision of the features presented during training and provide

uniquely nuanced information that is constrained by both gaze and

choices during subsequent test. Group SelR–SelC shows highmemory

precision for the D dimension in particular, while Groups SelR–DistC,

DistR–SelC, and DistR–DistC show more evenly distributed precision

among the P dimensions. Group DistR–DistC appeared to not

preferentially encode D features at all and instead slightly favored

one of the P dimensions. Extended analyses of model-transformed
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Table 5

AIC Comparison: Selected Gaze-Informed Models

Model N free parameter SelR–SelC SelR–DistC DistR–SelC DistR–DistC Total

B–B 6 2131 2012 1162 1326 6631

C–A 6 2009 2036 1196 1341 6582

C–B 6 1995 1993 1170 1335 6493

C–D 7 2056 2059 1210 1355 6680
D–B 7 2157 2075 1223 1357 6812

D–D 8 2186 2091 1233 1382 6892

C–C
+ 7 2240 2070 1215 1345 6870

Note. Values are total AICs across subjects in the indicated groups. Bold text indicates the lowest (i.e., preferred) AIC
value within each column. Sel = selective; Dist = distributed; R = recognition; C = categorization; AIC = Akaike
information criterion.
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gaze during recognition and categorization test are provided in

Appendix D.

General Discussion

This study explored the hypothesis that memory precision for

features encountered during learning influences decisions in

subsequent test contexts. To examine this relationship, we leveraged

eye-tracking data as dissociable components of attention in an

exemplar-similarity model. We found compelling evidence that the

availability of information stored in memory during training plays a

pivotal role in accurately predicting observed choices during test.

The following sections offer interpretations of these findings within

the established literature on selective attention as an indicator of the

observer’s beliefs and intentions within the task environment.

Intentions and Consequences

Our study stands apart from previous investigations on the

consequences of selective attention (Best et al., 2013; Blanco et al.,

2023; Plebanek & Sloutsky, 2017) due to its novel usage of

the exemplar-similarity framework. This framework is extremely

influential in cognitive psychology, yet has historically been

woefully noncommittal in its treatment of memory precision in

predictions of choice. We used gaze correlates of attention as direct

inputs to an exemplar-similarity model for predicting recognition

and categorization decisions. In one set of models, training features

were presumed to be perfectly encoded, and gaze during test was the

sole determinant of choice (Table 6). In another set of models, gaze

was used to constrain estimates of memory precision for features

encountered during training as well as estimates of decision weights

among features of the test stimuli (Table 5). These two sets of

models represented competing hypotheses concerning the relevant

determinants of attention: the former representing attention as

decision weights (e.g., GCM) and the latter representing attention as

decision weights constrained by memory.

The results of model evaluation and comparison favored the latter

account: models that included gaze correlates of memory precision

outperformed those that did not, as determined by AIC. In addition,

a subset of models that accounted for memory could predict nuanced

behavioral correlates of selective and distributed attention that were

defined in an independent investigation (Deng & Sloutsky, 2016).
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Figure 4

Gaze-Predicted Behavioral Correlates of Selective and Distributed Attention

Note. Green bars represent patterns of behavior consistent with a selective strategy of attention, and orange bars correspond to

distributed attention. Bold bars and significance markers denote key effects in the observed behavior. (A) Bars show mean

probabilities of making an “old” response to each item type during the recognition test phase. Points show aggregate simulations

using best-fitting parameters fromModel C–B. (B) Bars for high-match, conflict, and one-new-P items reflect mean probabilities

of responding consistently with the D feature. Bars for new-D reflect probabilities of responding consistently with the majority of

P features. Points show aggregate simulations using best-fitting parameters fromModel C–B. Sel= selective; Dist= distributed;

R = recognition; C = categorization; D = deterministic; P = probabilistic; P(X) = proportion of X; n.s.= not significant. See the

online article for the color version of this figure.
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Models that assumed perfect encoding of information presented

during training, however, failed to even predict basic interaction

effects between groups defined by contrasting attention strategies.

When considering these results, it is important to note that the

standard implementation of GCM with freely estimated attention

parameters was able to predict key behaviors perfectly well

(Appendix A). The successes of the memory-informed models

therefore do not denote an incremental improvement in model fits.

Instead, these successes redress a theoretical opacity in prior

modeling frameworks. Instead of attributing behavior to a nebulous

construct of “attention,” we find that accounting for the effects of

memory provided a significantly better approximation of freely

estimated attention parameters than if we account for decision

weights at test alone. Our results support the hypothesis that

behavioral correlates of attention reflect the strategic weighting of

the information that was encoded by the individual participant, not

of all information that was presented.

Implications for Human Learning

It is not our intention to admonish early presentations of the

exemplar-similarity framework (Medin & Shaffer, 1978; Nosofsky,

1986) for making simplifying assumptions. The assumption of

perfect encoding is clearly computationally necessary for constrain-

ing model estimates of attention when behavior alone is the output.

It has not, to our knowledge, been asserted by users of the framework

as a genuine theory that humans perfectly and equally store all

information that exists in the learning environment. Our findings

should instead be interpreted as a cause for theoretical reevaluation

of attention as it is specified in contemporary accounts of human

learning.

One influential class of adaptive attention models has built upon

the GCM framework to explore how attention updates from trial-to-

trial to support learning (e.g., Galdo et al., 2022; Kruschke, 1992;

Love et al., 2004). Within these models, the observer uses trial-level

category feedback to update their distribution of attention in a

way that is intended to reduce the probability of future errors.

Through iterative attention optimization, these models have been

shown to predict trajectories of attention and accuracy that mirror

the trajectories of dimension-level gaze preferences observed by

Rehder and Hoffman (2005a; Galdo et al., 2022; Kurz et al., 2013;

Nosofsky et al., 1994). Importantly, attention is calculated to optimally

weight all information that was presented in prior trials. This policy,

however, may not accurately reflect the information that is actually

available to participants—unless, of course, we can reasonably

conclude that humans store features equallywell whether they fixate to

them or not.

While most model instantiations of attention interpret failures

of accuracy as an inappropriate weighting of irrelevant information,

our findings suggest that failures to behave optimally can also

be attributed to sparse encoding. Recent findings from Wan and

Sloutsky (2023) provided important insight into this distinction

using a version of the same experiment presented here (Deng &

Sloutsky, 2016). All stimulus features were occluded at the onset of

each trial, and participants revealed the desired feature information

by tapping occlusion bubbles on a touch screen. By contrast to

gaze measures as an index of attention, Wan & Sloutsky’s approach

offers the advantage of providing insight into which features were

plausibly encoded into memory during training and, importantly,

which features could not have possibly entered the representation.

The results showed that adult participants tended to selectively

reveal the feature in the most category-diagnostic (D) dimension,

and behaviors at test denoted a strategy of selective attention (e.g.,

Figure 2). Interestingly, participants revealed significantly more

features when they encountered new-D items at test compared to the

other item types. This behavior is potentially indicative of an attempt

to optimally redistribute attention upon encountering unusable

information in the D position. Indeed, other eye-tracking work

demonstrated that by increasing the uncertainty of choice via

requiring reliance on probabilistic cues, participants were provoked

to sample more sources of information before making a response

(Beesley et al., 2015; Easdale et al., 2019).
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Table 7

Observed Gaze Preference for Deterministic (D) Dimension

Group Training 1–10 Training 11–20 Training 21–30 Recognition test Categorization test

SelR–SelC 0.32 (0.14) 0.37 (0.17) 0.38 (0.17) 0.26 (0.12) 0.43 (0.13)
SelR–DistC 0.25 (0.14) 0.30 (0.18) 0.30 (0.16) 0.25 (0.14) 0.30 (0.17)
DistR–SelC 0.27 (0.13) 0.26 (0.15) 0.31 (0.19) 0.18 (0.07) 0.35 (0.13)

DistR–DistC 0.17 (0.11) 0.22 (0.17) 0.20 (0.14) 0.15 (0.05) 0.23 (0.12)

Note. Table entries show proportions of fixations to the D dimension in the format: [mean]([standard deviation]). Sel = selective; Dist =
distributed; R = recognition; C = categorization

Table 6

Model Comparison: Perfect Encoding Models

Model Recognition Categorization Total AIC

C–B F = 17.36 F = 6.08 6493
p < .001* p < .001*

1–A F = 3.31 F = 1.68 7205

p < .05* p = .17

1–B F = 3.88 F = 2.12 6960
p < .05* p = .10

1–C F = 3.71 F = 0.20 6925

p < .05* p = .90

1–D F = 4.89 F = 0.22 7086
p < .01* p = .88

Note. F statistics and p values evaluate key interaction effects of item
type and group in a two by four mixed ANOVA. Bold text indicates
significant effects among comparisons of model-generated responses that
are consistent with the observed key effects. AIC = Akaike information
criterion; ANOVA = analysis of variance.
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We consider these findings to be consistent with our own:

Regardless of whether participants use strategies that can be attributed

to past or present optimality, the information stored during training

is immutable in its impact on future decisions. A participant who

manages to encode all information presented during training (in the

manner of GCM) would presumably be able to weight information

at test in a way that best serves their goals, whether characterized

by accuracy, efficiency, novelty preference, information gain, or

otherwise (Matsuka & Corter, 2008). In the more likely case of

imperfect memory storage, we posit that information that is not

encoded cannot be retrospectively reclaimed as needed.

Although most adaptive attention models propose pure accuracy

optimization as a mechanism for updating attention, the adaptive

attention representation model was developed to explore other

secondary goals that humans could plausibly pursue during learning

(Galdo et al., 2022). In one study, the authors fit model-

predicted quantities of choice probability and attention directly

to simultaneous streams of behavioral and gaze data. With the

constraint provided by gaze data, the authors were equipped to

evaluate contrasting theories about the goals that contribute to

attention allocation. Results across five experiments supported the

conclusion that the pursuit of accuracy goals alone was insufficient

for explaining observed patterns of attention during learning.

Instead, the authors advocated for efficiency considerations as well,

instantiated as active suppression of redundant information in

memory.

The findings from the present study, however, provide an

alternative explanation. It may be the case that humans indeed

proceed with the intention of being as accurate as possible, but are

constrained by the consequences of partial encoding. If one accounts

for partial encoding as a natural consequence of limited information

sampling, simple rules for updating attention in an effort to be

accurate may prevail (Kruschke, 1992, 2001). We suggest that a

complete theory of attention optimization will need to consider

information sampling and decision weights as dissociable con-

tributors to common goals.

Limitations and Future Directions

Our winningModelC–B is characterized by a softmax function to

convert gaze during training into estimates of memory precision and

a piecewise linear function to convert gaze during test into estimates

of decision weights. This difference in transformations implies that

when a participant encounters a stimulus, the way they weight feature

information when making an object discrimination judgment may be

incongruous with the contents of the memory trace that they store.

This finding is tentatively consistent with the concept of evidence

accumulation dynamics. Evidence accumulation models posit that

decisions are made by considering multiple sources of information

and allowing processes of competition and inhibition to ultimately

favor one choice over another (Ratcliff, 1978; Usher & McClelland,

2001). It may be the case that information is stored in proportion to

low-level perceptual processes (i.e., such that all information that is

fixated to some extent is plausibly stored), but additional dynamics

that occur during the decision may result in high fixations to

dimensions with conflicting information even though the choice only

reflects the “winning” source (Krajbich & Rangel, 2011). Future

work will need to investigate the plausibility of this conjecture and

determine whether the evidence accumulation dynamics that impact

choice additionally impact how the memory trace corresponding to

the stimulus is formed.

The present study took a foreseeably controversial approach by

using data from young children to investigate a general theory about

the impact of memory precision on attention strategies. We argue,

however, that the use of children in our current investigation is more

of a strength than a weakness. One can reason that the typical child-

like policy of broad information sampling during training (Blanco &

Sloutsky, 2020; Blanco et al., 2023) is consistent with the GCM

description of an unabridged memory store that is manipulated by

attention at test. It is therefore notable that a group that has an even

better chance of favoring the conventional account than adults still

favored models with encoding biases as a determinant of decision

making. We nevertheless acknowledge that vast developmental

changes to the attention, memory, and decision-making faculties of
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Figure 5

Gaze-Based Memory Precision for Training Features

Note. Heatmaps show aggregate memory precision across subjects. X-ticks indicate stimulus dimensions, where P dimensions were rank-

ordered within-subject according to gaze preference. Y-ticks show trial numbers. Subject-wise memory precision maps were calculated by

subjecting raw dwell time data to best-fitting model-based transformations. Sel = selective; Dist = distributed; R = recognition; C =

categorization; D = deterministic; P = probabilistic. See the online article for the color version of this figure.
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interest occur after age 5, and it is therefore essential to validate our

framework with data from adults as well. Although we believe it is

useful to evaluate the relationship between gaze, memory, and decision

processes within a population that naturally exhibited variability in

sampling and decision strategies, future work with adults will focus

on strategic manipulations involving uncertainty (Easdale et al., 2019)

and feedback reliability (Little & Lewandowsky, 2009).

Additional limitations to our study relate to the selection of

training stimuli and the simplicity of our model specifications for

memory precision. Given that features were repeated multiple times

during training, we cannot draw strong conclusions about which

specific features were best represented in memory. Although we were

able to effectively predict behavior using a simple transformation of

gaze data to represent memory precision, we assume that additional

forces of lag-based decay, context effects, and repetition effects are at

play as well (Kahana, 2012). Future work will, for example, utilize

paradigms that manipulate the sequence of items presented during

learning (Carvalho & Goldstone, 2017; Kim & Rehder, 2011) in the

hopes of providing more precise measurements for relating gaze to

memory for individual features.

Conclusions

There are two main takeaways from the current work: one

methodological and one theoretical. First, we provided a novel

model-based method for leveraging eye-tracking data to observe the

contents of memory, which underlie the malleable object representa-

tions that are used to make decisions. Second, we provided model

comparison results that support the theory that engaging selective

attention during learning incurs costs to the breadth of information

storage in memory, which in turn imposes unintended limitations

on future decision making.

We assert that our findings using a data-driven approach that

considers dissociable components of attention have important

implications for ongoing theoretical developments in human learning.

The field continues to push the boundaries of the exemplar-similarity

framework for unraveling the intricacies of learning, most often

instantiating dynamic mechanisms of attention as the locus of

innovation (e.g., Carvalho & Goldstone, 2022; Galdo et al., 2022;

Kruschke, 1992; Love et al., 2004). Without further scrutiny of

attention’s core principles, however, venturing into new frontiers

becomes an exercise in futility. The current article therefore takes

an important step toward understanding the component operations of

attention that are essential to contemporary theories of learning, yet

are rarely explored.
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Appendix A

Key Effects Observed Between Groups

Strategy groups were initially identified using variants of standard

generalized context model (GCM) fits to behavior alone before

involving measures of gaze (Table 2). This approach provided an

important baseline test for the appropriateness of the exemplar-

similarity framework for capturing data in the present context. If the

standard model does not fit when given the flexibility of freely

estimated attention parameters for each test phase, there would be no

point in imposing additional constraints by way of eye-tracking data.

As discussed below, however, the exemplar-similarity framework

provided an excellent account of the data and key effects

(Figure 2A).

Mean and 95% confidence intervals of best-fitting αD parameters for

recognition and categorization are shown in Figure A1. Predictions

from GCM using best-fitting parameters provide good fits to data as

determined by qualitative assessment. In the sections to follow, we

verify that our individual-level, model-based approach was effective

for identifying strategy groups that replicate Deng and Sloutsky (2016).

To analyze data from the recognition test phase, we first

calculated each participant’s sensitivity to new features that

occurred in the D and P positions via d′ (d-prime). We applied

the formula d′= ZðHitRateÞ − ZðFalseAlarmRateÞ, where Hit Rate
refers to the proportion of correct “old” responses to high-match

items, and False Alarm Rate refers to the proportion of incorrect

“old” responses to new-D and one-new-P items. To address the issue

of extreme values, we adjusted the hit rates and false alarm rates

using methods described by Snodgrass and Corwin (1988), ensuring

that no accuracy values were equal to 0 or 1. We submitted d′ values

to a two (feature type: D, P) by four (group) mixed analysis of

variance with feature type as a within-subjects factor and group as

a between-subjects factor. This analysis identified a significant

interaction, F(3, 106) = 35.71, MSE = 27.90, p < .001, η2 = 0.50.

We then performed post hoc tests to assess the differences

in sensitivity to new D and P features within each group. Sidak’s

correction was applied to control for multiple comparisons, resulting

in adjusted p values for each test (α = .05). For Group SelR–SelC,

a paired samples t test revealed higher d′ for D (μD = 4.00, αD = 1.15)

than P features during recognition ðμP = 0.95, σP = 1.16, tð42Þ =
14.49, p < .001, d = 2.62Þ. A similar effect was found for

Group SelR–DistC ðμD = 3.85,σD = 1.05, μP = 1.20, σP = 1.27,

tð29Þ = 9.88, p < .001, d = 2.23Þ. For Groups DistR–SelC and

DistR–DistC, however, participants were equally likely to identify novel

D and P features ðGroupDistR–SelC∶μD = 2.69, σD = 1.53, μP =

2.33, σP = 1.28, tð19Þ = 1.94, p = .07, d = 0.25; GroupDistR–DistC∶

μD = 1.94, σD = 1.30, μP = 1.71, σP = 1.03, tð16Þ = 1.20, p = .12,

d = 0.19Þ.
To analyze data from the categorization test, we focused

on probabilities of D-consistent responses during high-match

and conflict items. Data were analyzed with a two (item type:

high-match, conflict) by four (group) mixed analysis of vari-

ance, with item type as a within-subjects factor and group as a

between-subjects factor. After identifying a significant interaction,

F(3, 106) = 19.48, MSE = 0.22, p < .001, η2 = 0.36, we used post
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hoc paired samples t tests to explore effects within each group.

As before, we applied Sidak’s correction to control for multiple

comparisons (α = .05).

Group SelR–DistC made significantly more D-consistent responses to

high-match compared to conflict items ðμHM = 0.75, σHM = 0.12, μC =

0.58, σC = 0.18; tð29Þ = 4.82, p < .001,d = 1.08Þ. Group DistR–

DistC performed similarly, with more D-consistent responses during

high-match ðμHM = 0.72, σHM = 0.09Þ compared to conflict items

ðμC = 0.49, σC = 0.12; tð16Þ = 5.34, p < .001, d = 2.14Þ. Group

SelR–SelC did not show a difference in proportions of D-consistent

responses between the relevant item types ðμHM = 0.95, σHM =

0.09, μC = 0.94, σC = 0.09; tð42Þ = 0.48, p = .64, d = 0.10Þ, nor

did Group DistR–SelC ðμHM = 0.88, σHM = 0.13, μC = 0.95, σC =

0.08; tð19Þ = −3.04, p = .99, d = 0.67Þ. The results of addi-

tional post hoc tests to evaluate the pairwise differences in

effects between groups are presented in Tables 3 and 4.
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Figure A1

Behavioral Correlates of Selective and Distributed Attention: Model Predictions With Freely Estimated α

Note. Green bars represent patterns of behavior consistent with a selective strategy of attention, and orange bars correspond to distributed

attention. Bold bars and significance markers denote key effects in the observed behavior. (A) We identified four groups of participants via

comparison of generalized context model (GCM) variants with contrasting specifications of attention. Bars show mean and 95% confidence

intervals of best-fitting estimates of αD for each test phase. (B) Bars show mean probabilities of making an “old” response to each item type

during the recognition test phase. Points show aggregate simulations using best-fitting parameters. (C) Bars for high-match, conflict, and one-

new-P items reflect mean probabilities of responding consistently with the D feature. Bars for new-D reflect probabilities of responding

consistently with the majority of P features. D = deterministic; P = probabilistic; P(X) = proportion of X; N = number of subjects; α = attention

parameter; Recog. = recognition; Cat. = categorization; Sel = selective; Dist = distributed; R = recognition; C = categorization; n.s. = not

significant. See the online article for the color version of this figure.
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These analyses confirmed a connection between GCM parameter-

izations of selective and distributed attention and the patterns of

behavior that Deng and Sloutsky (2016) hypothesized to be indicative

of each. The reader is invited to note that the observed effects

presented in Figure A1 directly correspond to the predictions shown

in Figure 2A but are reconfigured to highlight within-group effects.

Appendix B

Modeling: Conceptual Overview

In the set of analyses described in Appendix A, attention was

freely estimated in each phase to delineate participants according to

behavior. Group SelR–SelC, for example, used a strategy of selective

attention to the D feature during both test phases of the experiment.

While this may be considered to be an effective strategy during

categorization, selective attention during recognition resulted in

an extremely high proportion of false alarm “old” responses when

stimuli contained a novel feature in one of the P dimensions (μFA =

68%). This could have happened if (1) selective sampling of D

features during training resulted in insufficient memory precision

to correctly reject one-new-P items at test or (2) participants failed

to sample sufficient information from the test stimuli themselves

and therefore were not equipped to appropriately weight the novel

P features during their decisions.

Simulations presented in Figure B1 illustrate the proposed

dissociation between memory precision (represented as η) and

decision weight (represented as ζ) components of attention. We

present this specification as an alternative to the unitary view in

Figure B1

Relating Attention to Choice Probability During Critical Items

Note. Panels depict simulated response probabilities. Most parameter values were selected arbitrarily

and fixed across simulations; only parameter values representing attention were varied. X and Y values

of each panel show the proportion of attention allocated to the deterministic dimension. The proportion

of attention allocated to the probabilistic dimensions was specified as
P

αP = 1 − αD . (A) Z values

(colors) indicate the probability of correctly rejecting a one-new-P item as “new” during the

recognition test. Attention was specified as a single vector where
P

α = 1. (B) Z values indicate the

probability of correctly rejecting a one-new-P item as “new” during the recognition test. Attention

was specified as the product of two vectors, where
P

η = 1 and
P

ζ = 1. (C) Z values indicate the

probability of making a categorization response consistent with the deterministic feature of given

conflict item. Attention was specified as a single vector, where
P

α = 1. (D) Z values indicate the

probability of making a categorization response consistent with the deterministic feature of given

conflict item. Attention was specified as the product of two vectors, where
P

η = 1 and
P

ζ = 1. See

the online article for the color version of this figure.

(Appendices continue)
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which these components are indistinguishable (represented as α).

Panels A and B depict the impacts of attention on the probability

of correctly rejecting a one-new-P item during the recognition test,

as described above. In order to correctly reject a one-new-P item

as “new,” the unitary view posits that the observer must distribute

attention across dimensions (Panel A). The proposed specification

allows for additional nuance: even if the observer aptly distributes

decision weights across all dimensions when presented with a one-

new-P item during the recognition test ðζD ≈
1
7
Þ, they will not incur an

accuracy advantage unless they also stored features in all dimensions

with sufficient precision during training (ηD ≈
1
7
; Panel B).

Panels C and D show an analogous set of simulations for critical

conflict items during the categorization test. Because conflict items

contain a D feature drawn from one category prototype and the

majority of P features from the other, modulating the proportion of

attention allocated to the D feature directly impacts how the observer

will respond.

The depictions of attention in Panels A and C of Figure B1 reflect

the original presentation of the exemplar-similarity framework

(context model; Medin & Shaffer, 1978), in which encoding

strength of exemplar features and the weighting of information from

the test probe were described interchangeably as the impetus for

observed variability in responses. Contrast this with the similarly

unitary description of attention provided by GCM in which

exemplar features are perfectly encoded (e.g., ηk = 1), and decision

weights at test are what determine response variability (Nosofsky,

1986). By freely estimating attention within either the context model

or GCM, these two accounts make identical predictions under

certain conditions, despite using incongruous language to describe

attention’s theoretical actions. The current work presents a novel

eye-tracking approach to disentangle these forces, such that

fixations during training directly correspond to encoding strength

for exemplar features, and fixations during test directly correspond

to the weighting of features for making decisions.

Appendix C

Model Fitting Procedures

We used a binomial likelihood to fit all gaze-based model variants

to recognition and categorization test response data from each

subject independently. We identified best-fitting parameter values

for each model and subject using a three-step procedure. First, we

implemented Differential Evolution (DE) using the Python package

RunDEMC (https://github.com/compmem/RunDEMC) with 50

particles for 100q iterations, where q was the number of free

parameters in the relevant model. We did this to effectively sample

the parameter space and identify reasonable initial values for each

subject (Brest et al., 2006; Storn& Price, 1997). Second, we used the

DE output values as input to the Nelder–Mead function optimization

algorithm implemented in SciPy to identify stable estimates of best-

fitting parameters. Third, in the event of failure to meet the base

convergence criterion after 10000 iterations, DE sampling

recommenced for sets of 100 iterations until convergence was

achieved. All parameter values were exponentially transformed to

achieve support ð0,∞Þ.
Model fits were assessed using AIC, which accounts for goodness-

of-fit as well as model parsimony. Within each comparison, models

were selected on the basis of lowest mean AIC across subjects.

After identifying best-fitting parameters for each model and

subject, we simulated responses using the relevant participant’s gaze

data as input. We then aggregated model-simulated responses within

participant group, test phase, and item type. This allowed us to

evaluate eachmodel by its ability to re-produce the key effects. If gaze

is indeed an effective index of latent attention, we determined a priori

that a direct input approach should predict significant differences in

responses between selective and distributed attention strategy groups.

(Appendices continue)
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Appendix D

Extended Eye-Tracking Results

A one-way analysis of variance revealed significant differences

between groups in proportions of gaze allocated to the D dimension

during the recognition test, F(3, 106) = 6.28, p < .001*. Post hoc

comparisons of means using Tukey’s honestly significant difference

revealed that Groups SelR–SelC and SelR–DistC tended to look more

at the D feature more than Groups DistR–SelC and DistR–DistC
(SelR–SelC vs. DistR–SelC: p < .05*, SelR–SelC vs. DistR–DistC: p <

.01*, 2 vs. 3: p= .08, SelR–DistC vs. DistR–DistC: p < .05*). Groups

SelR–SelC and SelR–DistC (p = .98) and Groups DistR–SelC (p =

.86) did not differ from one another.

Figure D1 shows aggregate model-predicted feature discrimina-

bility during the recognition test, which was calculated using

Equation 2 with dj = 1 and best-fitting parameters fromModel C–B.

Values therefore combine transformed gaze data from both training

and test to visualize attention as a product of η and ζ. The heatmaps

display features of the new-D and one-new-P items as a matrix,

where Y-ticks indicate the position of a novel feature. P dimensions

on the X-axis were rank-ordered within subject by gaze preference.

Gaze-informed estimates of discriminability show that Groups

SelR–SelC and SelR–DistC favor D features more than P features

when making decisions, whereas Groups DistR–SelC and DistR–

DistC do not appear to show any discriminability bias toward a

particular dimension.

A one-way analysis of variance revealed significant differences

between groups in raw proportions of gaze allocated to the D

dimension during the categorization test as well, F(3, 106) = 9.69,

p < .001*. Post hoc comparisons of means using Tukey’s honestly

significant difference revealed that Groups SelR–SelC and DistR–

SelC tended to look more at the D feature more than Groups SelR–

DistC and DistR–DistC (SelR–SelC vs. SelR–DistC: p < .01*, SelR–

SelC vs. DistR–DistC: p < .001*, SelR–DistC vs. DistR–SelC: p = .57,

DistR–SelC vs. DistR–DistC: p< .05*). Groups SelR–SelC and DistR–

SelC (p= .23) and Groups SelR–DistC and DistR–DistC (p= .33) did

not differ from one another.
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Figure D1

Recognition: Combined Gaze-Based Memory Precision and Decision Weights

Note. Heatmaps show aggregate feature discriminability across subjects. X-ticks indicate stimulus dimensions, where P dimensions

were rank-ordered within-subject according to gaze preference. Y-ticks indicate the dimension location of a novel feature within the

relevant subset of trials. Subject-wise discriminability maps were calculated by subjecting raw dwell time data to best-fitting model-

based transformations. Sel = selective; Dist = distributed; R = recognition; C = categorization; D = deterministic; P = probabilistic.

See the online article for the color version of this figure.
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Figure D2 shows aggregate model-predicted feature discrimina-

bility during the categorization test. The heatmaps indicate that

Groups SelR–SelC and DistR–SelC show higher attention to D

features than P features whenmaking categorization decisions. As in

Figure D1, values combine transformed gaze data from both training

and test to visualize attention as a product of η and ζ. Although

Groups SelR–DistC and DistR–DistC differ in overall feature

discriminability, neither group appears to show a discriminability

bias in favor of a particular dimension. These visualizations of

transformed gaze measures are consistent with the observed

behavioral effects within each group: participants whose responses

were characterized by a selective attention strategy looked more at

D; those whose responses were characterized by a distributed

attention strategy sampled feature information more evenly.

To summarize the results, Group SelR–SelC tended to fixate to

the D dimension during training, whereas Group DistR–DistC tended

to sample a broader range of features (Figure 5). These sampling

behaviors were directly reflected in the distribution of decision

strategies used at test, with Group SelR–SelC prioritizing the D

dimension during both phases and Group DistR–DistC distributing

attention across dimensions (Figure D1 and Figure D2). We note,

however, that our proposed framework could have predicted

consistently D-selective or distributed decision strategies across

phases using the same profile of fixation biases by simply selecting

linking function parameters that magnified or diffused determinism as

needed. It is therefore important to highlight that our framework was

also effective for predicting choices among participants who shifted

strategies from recognition to categorization, given that this could

only occur if gaze patterns during test shifted as well (Groups SelR–

DistC and DistR–SelC). Although these groups appeared to show

similar patterns of sampling and storage of features in aggregate

(Figure 5), combining the influences of gaze-informed memory

precision and decision weights produced the expected patterns of

behaviors during both test phases (Figure D1 and Figure D2).
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Figure D2

Categorization: Combined Gaze-Based Memory Precision and Decision Weights

Note. Heatmaps show aggregate feature discriminability across subjects. X-ticks indicate stimulus dimensions, where P dimensions

were rank-ordered within-subject according to gaze preference. Y-ticks indicate the dimension location of a novel feature within the

relevant subset of trials. Subject-wise discriminability maps were calculated by subjecting raw dwell time data to best-fitting model-

based transformations. Sel = selective; Dist = distributed; R = recognition; C = categorization; D = deterministic; P = probabilistic.

See the online article for the color version of this figure.
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