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Humans selectively attend to task-relevant information in order to make accurate decisions. However,
selective attention incurs consequences if the learning environment changes unexpectedly. This trade-off has
been underscored by studies that compare learning behaviors between adults and young children: broad
sampling during learning comes with a breadth of information in memory, often allowing children to notice
details of the environment that are missed by their more selective adult counterparts. The current work extends
the exemplar-similarity account of object discrimination to consider both the intentional and consequential
aspects of selective attention when predicting choice. In a novel direct input approach, we used trial-level eye-
tracking data from training and test to replace the otherwise freely estimated attention dynamics of the model.
We demonstrate that only a model imbued with gaze correlates of memory precision in addition to decision
weights can accurately predict key behaviors associated with (a) selective attention to a relevant dimension, (b)
distributed attention across dimensions, and (c) flexibly shifting strategies between tasks. Although humans
engage in selective attention with the intention of being accurate in the moment, our findings suggest that its
consequences on memory constrain the information that is available for making decisions in the future.

Keywords: attention, categorization, encoding, eye-tracking

Humans can effortlessly integrate multiple sources of information
when making everyday decisions, drawing upon their existing knowledge
and cues from the current environment. The way we balance and
prioritize information may vary based on a number of factors, including
task demands, source salience, and personal goals. Take, for instance,
the task of distinguishing between edible and poisonous berries in the
wildemess. In this scenario, it can be advantageous to learn and apply
highly reliable rules based on a single dimension, such as color (e.g.,
“White and yellow—kills a fellow. Purple and blue-good for you.”).
Conversely, when identifying the species of an unfamiliar plant that
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has sprouted in one’s garden, it becomes more useful to draw upon a
broader range of information. One can consider dimensions such as
flower shape, leaf arrangement, and petal pattern and make a category
inference based on its overall resemblance to a known type of plant.
In both examples, the process of object discrimination is influenced
by two key factors: (1) the knowledge that one has stored in memory
about how features correspond to categories, and (2) how one
strategically weights information about the current item in order to
make appropriate decisions.

Across theoretical models of human learning and categorization,
this strategic weighting of different dimensions is formalized as
attention (Mackintosh, 1975; Medin & Shaffer, 1978; Nosofsky,
1986; Pearce & Hall, 1980; Rescorla & Wagner, 1972). Under
standard assumptions, maximum accuracy may be achieved by
selectively allocating attention to dimensions that provide category-
diagnostic information (e.g., berry color) and ignoring those that may
provide irrelevant, unreliable, or conflicting information. Decades of
empirical findings have shown that humans iterate toward an optimal
distribution of attention when pursuing accuracy goals (see Weichart
et al., 2022, for review). For example, eye-tracking findings have
demonstrated that categorization accuracy is commensurate with
gaze patterns that prioritize diagnostic over irrelevant dimensions
(Blair et al., 2009; Galdo et al., 2022; Meier & Blair, 2013; Rehder &
Hoffman, 2005a, 2005b).

Despite apparent intentions to balance information in a way
that will yield high accuracy, learners often fail to adjust attention
accordingly in cases when the task environment suddenly changes.
Learners who optimize attention for categorization fail to respond
accurately when tested on item recognition (Deng & Sloutsky, 2016;
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Griffiths & Mitchell, 2008), fail to utilize other features in cases
when the prioritized dimension does not contain usable information
(Deng & Sloutsky, 2016; Kruschke et al., 2005), and fail to maintain
stable accuracy if dimension reliability shifts at some point during
the task (Blanco & Sloutsky, 2019; Blanco et al., 2023).

There are two likely interpretations of these findings. The first is
that the observer maintains inaccurate beliefs about the continued
relevance of a particular dimension despite changes in the task
environment (e.g., Rich & Gureckis, 2018). The second is that
there are “costs” of engaging selective attention during learning;
specifically, limited encoding of information that is not immediately
relevant but may become relevant in the future (Best et al., 2013;
Blanco & Sloutsky, 2019; Plebanek & Sloutsky, 2017). The
difference is theoretically significant: Do failures and biases emerge
due to one’s inaccurate beliefs about the current environment or as
an unintended consequence of storing information that was relevant
in a previous environment? Within leading mechanistic theories
of categorization, however, it is not possible to differentiate between
the extent to which features are encoded in memory and the extent
to which dimensions are prioritized during discrete decisions
(Kruschke, 1992; Medin & Shaffer, 1978; Nosofsky, 1986).

To address this gap, we present a gaze-based extension to a
standard exemplar-similarity model (generalized context model
[GCM]; Nosofsky, 1986) and investigate the independent contribu-
tions of memory for features acquired during learning and the
dimension-level weights that govern decisions about new items. Our
framework builds upon intuitions from seminal work that established
gaze measures as an analog of decision weights during categorization
(Rehder & Hoffman, 2005b), lending two important innovations.
First, we incorporated gaze measures as a direct input to the GCM
specification for attention. While the standard approach to infer a
single average distribution of attention based on a postlearning pattern
of behavioral responses, our framework uses trial-level measures of
gaze to replace these typically freely estimated dynamics. We thus
gain an advantage of detailed, data-driven insight into the feature
information that contributed to each individual choice. Second, we
constructed our framework to allow for the possibility that gaze not
only provides an analog to decision weights but memory precision as
well. Although it is often assumed that all information presented to
the participant is plausibly stored in memory, we incorporate a simple
yet critical intuition: Features can only be stored in memory to the
extent that they are fixated upon during initial learning.

By leveraging eye-tracking data within a joint modeling
framework for predicting choice, we are uniquely positioned to
investigate the hypothesis that attention does not purely represent the
observer’s moment-to-moment weighting of dimensions but rather is
subject to the constraints of previously encoded information as well.
Our goal is to reconcile traditional views of attention with modern
insights and highlight memory as a critical factor for understanding
how even well-intentioned learners can fail to make well-informed
decisions.

The Exemplar-Similarity Framework

The exemplar-similarity framework has subserved the majority of
model-based categorization accounts for the past several decades
(Estes, 1986; Galdo et al., 2022; Kruschke, 1992, 2001; Love et al.,
2004; Medin & Shaffer, 1978; Nosofsky, 1986). GCM is a prime

example of the exemplar-similarity framework, as it is one of the most
influential and widely implemented models in cognitive psychology.

Within the exemplar-similarity framework, categorizing a new
stimulus requires the observer to determine its similarity to labeled
exemplars of each available category (Figures 1A and 1B). GCM
made a significant contribution by positing that the structure of the
psychological space is modified by a latent distribution of attention
(Nosofsky, 1986). The observer assigns an attention weight a; to
each dimension j, where 0 < o; < 1 and >, o = 1. Importantly,
however, GCM makes the simplifying assumption that the features
of all previously encountered exemplars are perfectly encoded
in memory. The attention weights therefore serve to “stretch” the
dimensions of psychological space that are attended and ““shrink” those
that are unattended. The consequence is that the observer is more likely
to perceive differences between features that occur in attended as
opposed to unattended dimensions. Returning to our earlier example,
people who selectively attend to the color dimension when categorizing
berries as “edible” or “poisonous” would be likely to perceive minor
distinctions in the spectrum from white to blue but unlikely to notice
variability in the unattended dimension of leaf shape.

Limitations of Free Estimation

Using the mechanisms described above, exemplar-similarity
models such as GCM can take vectorized versions of stimulus
features as input and generate response probabilities as output. By
fitting a model to data, one can identify parameter values that closely
approximate the behaviors that participants actually produced. The
purpose would be to distill a set of responses collected over the
course of an experiment into mechanistic information, such as a
dimension-wise distribution of attention.

As an example, Medin and Smith (1981) designed an experiment
to investigate the impact of different strategy-targeted task
instructions on category learning. Responses differed considerably
between groups who were instructed to respond based on a rule tied to a
specific dimension or based on overall similarity to category prototypes.
Model-based analyses revealed that the former instructions induced a
strategy of selective attention biased toward the relevant dimension,
whereas the latter instructions prompted a strategy of distributed
attention across dimensions.

According to GCM, being explicitly told which dimension was
most category-diagnostic would impose no decrements upon the
observer’s motivation to encode the features of the other dimensions.
Instead, any differences in behavior between groups in Medin
and Smith’s (1981) design would be attributed to “stretching” and
“shrinking” the dimensions of a perfectly encoded store of exemplars.
Here, we propose a more nuanced explanation whereby a latent
distribution of attention indeed describes the observer’s ongoing
weighting of information but also impacts the precision with which
features are stored in memory over the course of learning. As shown
in Figure 1E, our extension to GCM determines the psychological
similarity between the trial stimulus and past exemplars based on both
(1) the availability of exemplar features in memory and (2) the
distribution of decision weights applied to the current stimulus.

Although the standard implementation of GCM has been criticized
as being overly simplifying due to its assumption of perfect exemplar
encoding (Griffiths & Mitchell, 2008; Murphy, 2002), this assumption
has continued to be presented as a necessity for computational
constraint since the earliest introduction of the exemplar-similarity
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Figure 1
Exemplar-Similarity Framework
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Note. (A) Labeled exemplars are stored in memory as vectors of feature information. Here,
green and orange squares represent features that were drawn from unseen prototypes of
Categories A and B, respectively. (B) The observer compares the features of a new to-be-
categorized item to those of the stored exemplars. Feature-level similarity is impacted by a
distribution of attention, such that features of highly attended (deeper hues of red) dimensions
result in better discriminability between matching and mismatching features. (C) Exemplars that
are perceived to be more similar to the new item are assigned a higher “activation” value.
Response probability is a ratio of total activation values between Categories A and B. (D) In the
proposed gaze-based extension to GCM, exemplar features are stored in memory in proportion
to how long they were fixated during learning. Gray hues represent low memory precision. (E)
When the observer processes a new item, gaze patterns are presumed to provide insight into both
which features were plausibly encoded into memory and how features were weighted during the
categorization decision. GCM = generalized context model. See the online article for the color

version of this figure.

framework (Medin & Shaffer, 1978; Nosofsky, 1986). The current
work is the first modeling effort to investigate the independent
contributions of memory precision and decision weights within this
framework, using gaze to disentangle these component forces of
attention.

Memory and Decision Subcomponents of Attention

Several empirical findings suggest that memory and decision
weights bear dissociable impacts on object discrimination judgments.

First, a vast literature on blocking has advanced our knowledge about
the impacts of selective attention on the processing of information from
unattended dimensions (Beesley & Le Pelley, 2011; Kruschke & Blair,
2000; Le Pelley et al., 2007). In a typical blocking design, participants
are pretrained to associate a cue, A, with an outcome. In a second
phase, a compound cue AB is then associated with the same outcome.
Because participants learn to associate A with the outcome during
pretraining, they fail to learn the relationship between B and the
outcome during the second phase. Acquisition of knowledge about B is
thus said to be “blocked” by the more predictive cue A (Kamin, 1968).
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In one relevant study, Griffiths and Mitchell (2008) tested
participants on recognition and perceived outcome causality of each
cue presented during a blocking procedure. In addition to blocking
effects (B rated less causally related to the outcome than A), the
authors noted significantly reduced recognition of B in comparison
to A, even after controlling for cue frequency. Another study
conducted by Easdale et al. (2019) administered a similar multicue
design alongside eye-tracking measures and manipulated how
reliably each cue predicted the outcome. The authors found that
by reducing causal certainty with probabilistically rather than
deterministically predictive cues, participants fixated to a wider
breadth of cues before making decisions. These findings call
simplifying assumptions of a perfectly encoded memory store into
question, instead suggesting that selective attention bears a
significant impact on the very formation of the representation itself.

Perhaps the most revealing findings on the dichotomy of memory
precision and decision weights have come from work on the
development of selective attention from young childhood to
adulthood (Best et al., 2013; Deng & Sloutsky, 2015a, 2015b,
2016; Plebanek & Sloutsky, 2017). It is well-documented that adults
optimize attention in a goal-directed manner and tend toward a
strategy of selectively attending to dimensions that most reliably
result in accurate responses (Duncan, 1984; Shepard et al., 1961;
Treisman, 1969). Young children, however, are less equipped to
ignore irrelevant information and are therefore more likely than
adults to use a strategy of distributed attention during learning
(Blanco et al., 2023; Smith & Kemler, 1977).

In a study by Deng and Sloutsky (2016), stimuli were composed
of one dimension that was perfectly deterministic of category
membership and six dimensions that were each probabilistically
predictive. The authors observed that after training, adults
systematically categorized new items according to the determin-
istic dimension and remembered its features substantially better
than features in the other dimensions. By contrast, young children
were more likely to utilize multiple dimensions to categorize new
items and showed good memory for all features, even outperforming
adults on recognition of features from probabilistic dimensions
(Experiment 3).

Blanco et al. (2023) further investigated the costs of selective
attention by collecting behavioral and eye-tracking data from adults
and children while they completed a two-phase learning task, using
stimuli similar to Deng and Sloutsky (2016). After learning to
categorize stimuli during Phase 1, the most- and least-informative
dimensions suddenly swapped roles to mark the onset of Phase 2.
Analyses of eye-tracking data showed that adults primarily fixated
to the deterministic dimension during Phase 1, then rapidly shifted
attention to the probabilistic dimensions at the onset of Phase 2. By
contrast, children were more likely to fixate to a broader range of
features during Phase 1 and tended to maintain this strategy during
Phase 2. Importantly, the authors identified a subset of children who
responded more consistently with the deterministic dimension than
adults in Phase 2. This finding suggests that encoding a broad range
of information may offer an advantage when determining the most
category-diagnostic dimension in a changing environment.

These developmental findings point to intriguing nuances that
are missed by the standard definition of attention (McKinley &
Nosofsky, 1996; Nosofsky, 1986, 1991). If strategic allocation of
attention occurs only after all information is already encoded, one
cannot explain why optimality-seeking adults would incur robust
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costs to accuracy that children are demonstrably able to avoid (Blanco
et al., 2023; Deng & Sloutsky, 2016). It is perhaps the case that,
relative to engaging selective attention during learning, a strategy
of broad feature sampling and encoding information in memory
uniquely supports flexible adaption to a changing task environment.

Experiment

We administered an eye-tracking version of a paradigm developed
by Deng and Sloutsky (2015a, 2016). In the task, participants are first
trained to map stimulus features to categories via feedback-based
learning. Participants then complete a recognition test phase (i.e.,
“Have you seen this exact item before?”) and a categorization test
phase (i.e., “Does this item belong to [Category A] or [Category
B]?”). Importantly, feedback is not provided during the test phases, so
participants must rely on the information they learned during training
to make judgments about the new stimuli they encounter during test.

We selected this paradigm in light of robust empirical evidence that
humans naturally distribute attention differently to serve recognition
and categorization goals (Ashby & Lee, 1991; Greene & Oliva, 2009;
Little & Lewandowsky, 2009; Maddox & Ashby, 1996). In rule-
based categorization, optimal performance is achieved by selectively
attending to relevant dimensions. On the other hand, recognizing
an item among highly similar exemplars requires attention to be
broadly distributed across many or all dimensions. The inclusion of
both recognition and categorization phases in our study was therefore
meant to provoke strategic differences within subjects.

We additionally wanted to study the impacts of feature encoding
during training on subsequent strategic flexibility between subjects.
Some ways to induce sampling variability would be to include
manipulations of task instructions (Medin & Smith, 1981), feature
salience (Liu et al., 2015), predictive certainty (Beesley & Le Pelley,
2011; Easdale et al, 2019), or mode of feedback (Little &
Lewandowsky, 2009; Meier & Blair, 2013), which have been shown
to impact the extent to which adults engage selective attention during
learning. However, the benefit of variability would arguably come
at the cost of interpretability in the current work, given that these
interventions would interact with the strategies that participants
would naturally use in pursuit of optimal responding. We therefore
took an alternative approach and selected a participant population
that has demonstrated both effective learning across paradigms and
widespread strategic variability: preschool-aged children.

Previous work has shown that 4-5-year-old children are more
likely than adults to use a strategy of distributed attention when
behavioral effects are aggregated across subjects (Deng & Sloutsky,
2016; Plebanek & Sloutsky, 2017). Subject-level analyses, however,
suggest that these effects can be attributed to higher strategic
variability among children compared to adults, rather than children
being unilaterally unable to engage selective attention.

Blanco and Sloutsky (2019), for example, classified individual
adults and children in terms of attention strategies used during a
learning task. The distribution of strategy usage for adults was
66% selective, 19% distributed, and 16% intermediate. For children,
the strategy distribution was more even with 29% selective, 32%
distributed, and 38% intermediate (Experiment 1). In the present
study, we hoped that this variability among children would provide
the opportunity to identify robust strategy groups that were suitable
for between-subject comparisons of gaze patterns.
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Method
Participants

Participants were 219 children who were recruited from
preschools and childcare centers in the suburbs of Columbus,
Ohio (M,g.: 52.0 months, range: 44.7-58.1 months). All research
activities were approved by the Institutional Review Board at The
Ohio State University (Protocol 2004B0422). Written informed
consent was acquired from a parent or guardian of each participant
in advance of the study, and the children themselves consented
verbally. We used a larger sample size than what is typical for the
selected paradigm (N = 25-35; Blanco & Sloutsky, 2019; Deng &
Sloutsky, 2012, 2015a, 2016). This was done in consideration of
recommended sample sizes in excess of 100 for model comparison
(Myung & Pitt, 2004) and in an effort to observe individual
differences in strategy within the population of interest.

While this study was not preregistered, we uphold transparency
and accessibility by making data and model code publicly available
on the Open Science Framework (https://osf.io/9r7k8/?view_only=
ca4010ffb8aa4cbeabb02be3{f8ad80f).

Materials

Training stimuli were colorful drawings of trains that were
divided into categories that we denote “A” (Category A) and “B”
(Category B). As shown in Table 1, each category was represented
by an unpresented prototype. Prototypes contained seven features
that were distinct in shape and color: smoke stack, cab, wheels,
Car 1, Car 2, Car 3, and flag. A majority of the features were drawn
from the prototypes probabilistically so that they would collectively
represent the overall similarity among category exemplars (hence-
forth referred to as “P” features). One feature, however, was perfectly
deterministic of category membership (henceforth referred to as
the “D” feature). The D dimension was selected among three options
for each participant (cab, wheels, and flag), and selections were
counterbalanced between subjects.

Four stimulus types that were presented during the experiment
will be discussed.’ The stimulus structure of each item type is shown
in Table 1. Each item type configuration discussed below resulted in
30 possible stimuli, 15 from each category as determined by the D
feature (high-match, conflict, and one-new-P) or by the majority of
P features (new-D).

1. The majority of stimuli were a high-match to one of the
two category prototypes, meaning the D feature and four
out of six P features were drawn from a consistent proto-
type. The remaining two P features were drawn from the
opposite prototype. High-match items were presented both
during category training (with labels) and in subsequent
recognition and categorization test phases (without labels).

2. Conflict items contained the D feature and two out of six
P features from one category prototype, and the majority
(four out of six) of the P features from the other. These
items were only presented during tests of memory and
categorization and were never paired with labels.

3. New-D items contained a novel feature in the D dimension,
which was never explicitly paired with a label during
category training. Four out of six P features were drawn

from one category prototype, and the remaining two
features were drawn from the other. These items were only
presented during tests of memory and categorization and
were never paired with labels.

4. One-new-P items contained a novel feature in a randomly
selected P dimension. The D feature and four out of six
P features were drawn from one category prototype, and
the remaining P feature was drawn from the other. These
items were only presented during tests of memory and
categorization and were never paired with labels.

Procedure

The experiment was similar to that of Deng and Sloutsky
(2016) and was comprised of four phases: instructions, training,
recognition test, and categorization test. Instructions and prompts
that were specific to each trial were read aloud by a trained
experimenter, and participants responded verbally. The experi-
menter then pressed the corresponding key on the keyboard to log
the response. The experiment lasted approximately 20 min in total.

During the instructions, participants were told that they would
see different trains and that they would have to decide which ones
belonged to Categories A and B. Features drawn from each category
prototype were presented on the screen in isolation, and the
experimenter verbally indicated the appropriate category association.
In particular, P features were displayed alongside a message in the
form: “Most of the [A/B] trains have this type of [e.g., smoke stack/
car/cab/wheels ].” D features were accompanied by the message:
“All [A/B] trains have this type of [e.g., flag].”” Across two categories,
14 features and their associated category mappings were displayed
to participants during the instructions. The experimenter read the
following message aloud before the experiment began:

There are two parts in this game. This is the first part. In this part of the
game, you will see many trains. Some of them are A trains and some are
B trains. You will tell me whether it’s an A train or a B train.

The training phase consisted of 30 high-match items (15 per
category). During each trial, a stimulus was presented in the center
of the screen, and the participant was asked, “What is this? A or B?”
After the experimenter logged the participant’s response, corrective
feedback was provided in the form of “Correct! This is a/n [A/B]
train” or “Oops! This is actually a/n [A/B] train.” Additionally,
feedback highlighted the D feature and similarity to category
prototypes with a message in the form of “It looks like a/n [A/B]
train and has the [A/B] [e.g., flag].” Feedback was presented as text
on the screen and read aloud by the experimenter. The order of
stimulus presentation was randomized across participants.

Training was followed by recognition and categorization test
phases. At the point of transition between training and test, the
experimenter read the following message aloud, “Now, it’s the
second part of the game. In this part, you will see more trains. You
saw some of them in the first part of the game, but some of the trains
are new. You did not see them in the first part. You will tell me

! A fifth all-new-P item type was presented to participants as well, which
contained novel features in all six P dimensions. The D feature was drawn
from one of the available category prototypes. These items were not related to
the effects of interest in the current study and were therefore excluded from
analysis.
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Table 1
Category Structure

Categorization:
Dimension-

Recognition: consistent response

Correct DA
Item type D P1 P2 P3 P4 P5 P6 response D P
Prototypes 0 0 0 0 0 A A
1 1 1 1 1 1 B B
High-match 0 0 0 0 0 1 1 Old A A
1 1 1 1 1 0 0 Old B B
Conflict 0 1 1 1 1 0 0 New A B
1 0 0 0 0 1 1 New B A
One-new-P 0 0 0 0 0 1 N New A A
1 1 1 1 1 0 N New B B
New-D N 0 0 0 0 1 1 New A
N 1 1 1 1 0 0 New B

Note. Rows provide examples of feature configurations for each type of item presented during the task. Values correspond to unique
features in each dimension. Os correspond to an unseen prototype from Category A, and 1s correspond to a prototype from Category B.
“D” and “P” headings refer to the reliability of feature information in the corresponding dimension. The three right-most columns indicate
expected responses, considering the feature information provided by the relevant item type. D = deterministic; P = probabilistic; N =

novel.

whether it’s an A train, or B train. Also, you will tell me whether you
saw exactly the same train in the first part, or if it’s new.” Each of the
two test phases contained 40 trials (20 per category). Eight items
were presented from each of the four types shown in Table 1.

During each trial of the recognition test phase, participants were
presented with a stimulus and were asked, “Did you see exactly the
same train in the first part of the game?” Participants responded
“yes” if they believed the stimulus had been presented during
training or “no” if they believed the stimulus was new. No feedback
was provided after the experimenter logged the participant’s
response; the experiment simply proceeded to the next trial. As
shown in Table 1, only high-match items were correctly considered
to be old, whereas items drawn from conflict, new-D, and one-new-
P types were new.

During the categorization test phase, participants were presented
with a stimulus and were asked, “What is this? A or B?” As in
the recognition test phase, no feedback was provided after the
experimenter logged the participant’s response.

Eye-Tracking

Throughout the experiment, monocular gaze fixations were
recorded using an EyeLink 1000 eye tracker (SR Research, Ontario,
Canada) at a sampling rate of 500 Hz with a manufacturer-reported
accuracy of 0.5°. Participants were seated 60 cm from the eye
tracker, facing a 1280 x 1024-pixel display monitor. To analyze the
data, we defined seven rectangular areas of interest (AOIs) that were
centered at the spatial location of each dimension. AQIs varied in
size from 2° X 2° (flag) to 4.3° x 4.7° (cab). When preprocessing the
data, we calculated the total time that a participant’s gaze overlapped
with a particular AOI at the level of each trial (Blanco et al., 2023).

Analysis

Deng and Sloutsky (2016) defined key behavioral effects for
evaluating how adults, 7-year-olds, and 4-year-olds allocate attention

during the task described above. Here, we conducted analyses for
identifying subgroups of participants who demonstrate these key
behaviors. Because Deng and Sloutsky’s key effects pertain to
aggregate group-level behaviors rather than individual subjects, we
first classify participants into groups using individual-level, model-
based cognitive assessment techniques (Weichart et al., 2021; Wiecki
etal., 2015). We then conduct comparisons between groups to verify
that the contrasting behavioral correlates of attention described by
Deng and Sloutsky (2016) are indeed observable within the current
participant pool, despite controlling for age.

Effects of Interest

During the recognition test, it is of particular interest to compare
correct rejections of new-D and one-new-P items. As illustrated in
Figure 2A, participants who use either a strategy of selective or
distributed attention during the recognition test should be equipped
to notice when a novel feature appears in the D dimension. Although
participants who selectively attend to D may be more sensitive to
novel D features than participants who distribute attention broadly,
all participants are expected to be plausibly adept at correctly
rejecting new-D items as “new.” Participants who selectively attend
to the D dimension, however, should fail to notice if a novel feature
appeared in one of the unattended P dimensions.

During the categorization test, it is useful to compare responses
between high-match and conflict items. While all participants who
learned the task should be expected to accurately categorize high-match
items, conflict items should yield different response profiles between
strategies (Figure 2B). Because conflict items contain a D feature from
one category prototype and the majority of P features from the other,
participants who distribute attention evenly across dimensions should
respond close to chance, while those who selectively attend to D should
respond consistently with the D dimension.

The key effects shown in Figure 2B will serve as an essential
benchmark for model evaluation.
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Figure 2
Predictions of Key Behavioral Effects
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P items as “new.” A strategy of selective attention to the D dimension should result in a reduced ability to correctly reject one-
new-P items. (B) During categorization, a strategy of selective attention should result in high proportions of responses consistent
with the D feature during both high-match and conflict items. A strategy of distributed attention should result in a lower
proportion of D-consistent responses during conflict items. D = deterministic; P = probabilistic. See the online article for the
color version of this figure.

Identifying Strategy Groups

We applied a suite of GCM variants (Nosofsky, 1986) with
separate freely estimated distributions of a for recognition and
categorization and used a switchboard analysis to characterize
individual-level attention (Turner et al., 2018). Our approach
follows from relatively recent efforts in model-based cognitive
assessment, in which well-established cognitive models are used to
delineate participants according to the latent mechanisms that
plausibly underlie their behaviors (Darby & Sederberg, 2022;
Weichart & Sederberg, 2021; Weichart et al., 2021). Here, the
relevant mechanism for delineation is attention, and the four variants
of interest are summarized in Table 2. To instantiate selective
attention, we freely estimated the value of attention corresponding
to the D dimension (ap) with constraints % < ap < 1 and calculated

Table 2

Comparing Models With Freely Estimated Attention

(A) During recognition, a strategy of distributed attention should result in correct rejections of both new-D and one-new-

attention to each P dimension as ap = 1_6“D. For distributed

attention, oy values corresponding to all seven dimensions were
fixed to 1. In both cases,

d =1, )
k

per convention (Nosofsky, 1986). After fitting the models to data,
we identified a preferred model for each subject via comparison of
Akaike information criterion values (AIC; Akaike, 1974). Because
comparisons via AIC favor parsimonious models, participants were
only determined to use selective attention if the addition of a free o
parameter was justified by a sufficient improvement in model fit.
For our purposes, it was essential to identify participants who
utilized some kind of discernible strategy (as opposed to random

Model Recognition Categorization N free a parameters
Selg-Sel¢ op > ap (Selective) ap > ap (Selective) 2
Selg-Distc op > ap (Selective) op = ap (Distributed) 1
Distg—Selc op = op (Distributed) ap > ap (Selective) 1
Distg—Distc op = ap (Distributed) op = ap (Distributed) 0
Note. The table provides parameterizations of attention from four candidate models. Model comparison was used to

identify which attention strategies each participant used during recognition and categorization. « = freely estimated
attention parameters in the generalized context model; Sel = selective; Dist = distributed; R = recognition; C =

categorization.



gical Association or one of its allied publishers.

This document is copyrighted by the American Psycholo

=
2
S
S
=
Q

is not to be diss

)
2
=
=]

[}
=
S
=
5}
2

ded solely for the persc

»
2
o
E=
»
=
=

1052

responding or making the same response on every trial) during both
recognition and categorization tests. We therefore opted to exclude
participants who appeared not to perform one or both of the tasks.
Specifically, participants were excluded if they failed to exceed a
priori criteria of 60% correct responses to high-match items during
the recognition test (failed recognition: N = 23) and categorization
test (failed categorization: N = 73; failure to meet either criteria:
N = 13). The results to follow are based on the remaining 110
participants (50.2% of the full sample). Similar criteria were
imposed in a previous dual-test study on selective attention, which
also resulted in a high exclusion rate of 32.7% (67.3% inclusion)
despite using adult participants (Griffiths & Mitchell, 2008).

By-subject model comparisons among candidate GCM variants
(Table 2) identified the following four strategy groups within our
participant pool:

1. Selective attention during both recognition and categor-
ization, henceforth denoted Selz—Selc (N = 43);

2. Selective attention during recognition, distributed atten-
tion during categorization, henceforth denoted Selg—Distc
(N = 30);

3. Distributed attention during recognition, selective atten-
tion during categorization, henceforth denoted Distz—Selc
(N = 20);

4. Distributed attention during both recognition and catego-
rization, henceforth denoted Distg—Dist- (N = 17).

Analyses of behavior within- and between-strategy groups replicated
the results of Deng and Sloutsky (2016) and were consistent with the
key behavioral effects shown in Figure 2. Detailed results are provided
in Appendix A.

It is important to note that according to these results, participants
did not necessarily use a consistent attention strategy across the
recognition and categorization test phases. Specifically, Groups
Selg—Distc and Distg—Selc used selective attention during one
phase and distributed attention during the other. Although adult
participants have historically shown effects consistent with selective
attention across both phases of Deng and Sloutsky’s design
(similarly to Group Selg—Sel¢ here), the selection of young children
as our population of interest provided the opportunity to additionally
observe instances of distributed attention (Group Distg—Distc) and
strategic flexibility (Groups Selg—Distc and Distg—Selc). Given our
goal of using gaze to dissociate memory precision and decision
weight components of attention, analyzing the information sampling
behaviors of these groups will provide uniquely rigorous theoretical
constraint.

Gaze as a Direct Input for Components of Attention

As emphasized by Turner et al. (2017), developments in model-
based cognitive neuroscience have provided new opportunities to link
model mechanisms to neurophysiological measures for the purposes
of theoretical constraint, adjudication, and elaboration (Palmeri et al.,
2017; Turner, Forstmann, et al., 2019; Turner, Palestro, et al., 2019;
Turner et al., 2017). In the domain of categorization, seminal work
by Rehder and Hoffman (2005a, 2005b) noted a correspondence
between gaze and attention weights estimated by the exemplar-
similarity framework. The authors used what would be classified by

WEICHART, UNGER, KING, SLOUTSKY, AND TURNER

Turner et al. (2017) as a “two-stage approach” for linking behavioral
and neurophysiological data, whereby the relationship between two
independently analyzed modalities is assessed through a second stage
of correlation or regression analyses. Here, we go a step further and
present a “direct input approach” whereby gaze itself serves as a
mechanism for feature encoding and predicting choice.

Following previous work, we assume features that are fixated
longer during training are more likely to be encoded into memory
(Foulsham & Underwood, 2008; Loftus, 1972; Peterson et al.,
2001), and features that are fixated longer during test reflect
prioritization during decisions (Blair et al., 2009; Meier & Blair,
2013; Rehder & Hoffman, 2005a, 2005b). We examine four linking
functions for converting dwell times into correlates of memory
precision and decision weights, where outputs are bound by 0
and 1 per convention (Medin & Shaffer, 1978; Nosofsky, 1986).
A conceptual overview and simulation study of our approach in
contrast to the conventional unitary view of attention (Medin &
Shaffer, 1978; Nosofsky, 1986) are provided in Appendix B.

Method
Modeling Framework

To represent the stimulus on trial n of the training phase, we
denote a vector x™ =[x, x,,...x,,] where each element
corresponds to the feature value in dimension j. After completing
all N trials of the training phase, feature information about all
exemplars is stored in matrix X = [x()... x™]T and associated
feedback is stored in vector F = [f(1) ... f™)]. During each trial i of
test, the observer is presented with a stimulus probe el =
lei1€in... €] and is expected to make an informed judgment
(i.e., recognition or categorization). The probe acts as a retrieval cue
to access information associated with similar stimuli that were
encountered during training. To this end, the observer first computes

the feature similarity between the probe and exemplar x™ along
each dimension j:
5;(e”,x") = exp(—8d; (e, x")ay). 2)

Values of feature similarity range between 0 and 1, where 1 indicates
that features ej@ and x;") are perceived to be identical. In Equation 2, &
modulates the specificity of the similarity kernel. Separate values dx
and 8. were used for recognition and categorization. d; represents the
simple distance between values corresponding to the relevant features.
Values of o represent attention, which modifies the perceived distance
between mismatching features. Although a single o; is typically
estimated across trials, we hypothesize that o; should involve
information specific to both the probe and the exemplar components
of the comparison. We therefore specified,

@ =n"g. )

where r];-") represents memory precision for the feature presented in
dimension j on training trial n, and Q_;’) represents the decision weight
allocated to dimension j on test trial i. By using a multiplicative rule,
we ensure that usage of information during the choice is only
possible if the relevant exemplar feature had a nonzero memory
precision and the relevant probe feature had a nonzero decision

weight. The observer next computes the overall similarity between
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the probe and each exemplar, combining feature similarity across
dimensions:

= Hsj(e(i) ,xm), 4)
J

Overall similarity is analogous to the activation of the relevant
exemplar in memory, given the presence of the current probe.

The choice rules used here follow iterations of GCM that
incorporated assumptions about the determinism of responding
(Ashby & Maddox, 1993; Navarro, 2007). When making a choice
during the recognition test phase, the relevant feature comparison
d in Equation 2 is:

te) #x"Vne {12 N} (5
0 otherwise

which determines whether or not a test feature was presented during
training. We then determine the activation of a “new” response
based on the total activation across all exemplars:

N
A(“new”) = exp[ (I—a(e )))} . (6)
n=1
The probability of making a “new” response is given by
Al “new”
P(“new”) = —( new”) , @)
A(“new”) + B

and P(“old”) = 1 — P(“new”). Here, p represents a baseline bias for
responding “old,” and ¢ is a temperature parameter for scaling the
activations.

During categorization test, the relevant feature comparison d in
Equation 2 is:

(e(i),x(”)) - {1 1fe ?éxn ) ®)

0 otherw1se

The activation of a given category [/ is given by

N
A(“l") = exp |:c]) Z (e, x()

n=1

1(f0 = “l”)}, )

where I(g) is an indicator function returning 1 if the condition ¢ is
true and O otherwise.

The probability of making a response consistent with category
“A” is the ratio of activation for category “A” relative to the total
activation across all available categories (which in this case is just A
and B):

A("A”)

P(A”) = —
("A”) A(“A™) + A(“B”)

10)

Linking Functions

We selected a set of increasing functions that returned outputs
bound between 0 and 1 (inclusive) for converting feature-level dwell
times to elements of attention within our modeling framework. The
goal was to ascertain if any transformation of gaze was sufficient

for predicting strategy-relevant behaviors between groups and
whether it was necessary to account for the features that were fixated
during training to make accurate test predictions.

In the equations below, the input dwell}t) refers to the total time
spent looking at the feature in dimension j on Trial ¢, and output is
denoted v . When a given function is applied to fixations during
training, output v< )i is used as le( " in Equation 3 to represent memory
precision for exemplar feature x( " When a functlon is instead
applied to fixations during test, v() is used as § in Equation 3
to represent the decision welght applied to probe feature ejo
Examples of each function are shown in Figure 3.

Binary Step Function. This function has a free threshold
parameter 0 € (0, 00) and returns O or 1 according to the following
conditional:

W = {0 if dwell)’ <6 an
1 otherwise

Piecewise Linear Function. This function has a free threshold
parameter 6 € (0, o0) and returns an attention value as a proportion
of 0. If the input exceeds the threshold, the function returns 1.

0
dwell;
v =min<Tf,1>. (12)

Softmax Function. The softmax function is often used in
multiclass classification problems, where the goal is to assign an
input to one of several mutually exclusive classes. The function
calculates the exponential of each input element and then normalizes
the results by dividing each element by the sum of all exponentials.
This normalization ensures that the output values sum to 1, forming
a valid probability distribution. This function has a free temperature
parameter 6 € (0, c0) that scales the element-wise activations.

O exp(@dwellj(.’))

_ (13)
> exp(@dwell,(f))

Logistic Function. The logistic function is commonly used as
an activation function in neural networks because it produces
nonlinear transformations of the input, enabling the model to learn
complex relationships between input and output variables. This
function has two free parameters 6 € (0, 0) and ® € (0, o) that
control the steepness and inflection point of the function,
respectively.

1
W = : (14)

1 + exp(-0(dwell!” — w))

Candidate Models

For our main model comparison, we identified every pairwise
combination of functions for converting gaze to memory precision
and decision weights. This resulted in a core set of 16 candidate
models, which we refer to in the format “X — Y.” “X” refers to a
function A, B, C, or D that was applied to dwell times during
training to calculate a matrix n. “Y” similarly refers to a function
that was applied to dwell times during both test phases (recognition
and categorization) to calculate a matrix {. Linking parameters



publishers.

ghted by the American Psychological Association or one of its allied

This document is copyri

This

and is not to be disseminated broadly.

article is intended solely for the personal use of the individual user

1054

Figure 3
Linking Functions

(A) Binary step function

(B) Piecewise linear function
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(C) Softmax function (D) Logistic function
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(Top) Candidate linking functions used in our investigation. X values show dwell time inputs, and Y values show outputs representing memory

precision or decision weight components of attention. Colored lines illustrate changes to the function that result from modulation of free parameters 6 and .
(Bottom) Heatmaps show examples of attention outputs (Z values; colors) when applying the candidate functions to one subject’s gaze data. The X-axis shows
stimulus dimensions. The Y-axis indexes training trials. D = deterministic; 8 and o = linking parameters. See the online article for the color version of this

figure.

(e.g., 0 and ) were estimated independently for memory precision
and decision weights.

As specified by Equation 3, attention is calculated as the product of
memory precision (nj(")) and decision weight elements (CJ@). This
defies the GCM convention of an attention vector that sums to a
constant quantity of 1 (Nosofsky, 1986; but see Galdo et al., 2022;
Weichart et al., 2022, for contradictory arguments). We therefore
included a model variant “C-C™*” that follows the approach of
Lamberts (1995) to ensure that attention varies from trial-to-trial but is
still constrained to sum to 1. As in Model C—C, both n and £ are
softmax ratios of trial-level dwell times. Instead of calculating attention
as a product of the two vectors as in Equation 3, however, Model C-C*
uses the specification o; = yn;") + ((1 - y)C,]('>) where y € [0, 1].

Finally, we included four model variants that assumed perfect
encoding of all feature information presented during training, such
that all ﬂ_,('t) = 1. Values of Qjm for decision weights were functions
of each candidate linking function. These models are denoted 1-A,
1-B, 1-C, and 1-D in the results. In total, 21 model variants were fit
to data and evaluated. Details of the model-fitting procedures are
provided in Appendix C.

Results

Beyond comparing the fits of the candidate gaze-based models via
fit statistics, we took an additional step of evaluating each model
based on its ability to predict behavioral markers of selective and
distributed attention (Figure 2). To be consistent with observed key

differences between groups (Tables 3 and 4), a successful model had
to be able to predict the following:

1. Groups Selg—Selc and Selz—Distc (selective attention during
recognition) made more false alarm “old” responses than
Groups Distg—Selc and Distg-Dists (distributed attention
during recognition) to one-new-P compared to new-D items.

2. Groups Selg—Selc and Distg—Sel- (selective attention
during categorization) made more D-consistent responses
than Groups Selg-Distc and Distg—Diste (distributed
attention during categorization) to conflict compared to
high-match items.

We first identified best-fitting parameters and gaze transformation
values for each participant and model using procedures provided in
Appendix C. We then used the models to generate simulated trial-
level response probabilities for each participant, using their best-
fitting parameters, observed gaze data, and the sequence of stimuli
that the relevant participant experienced during the task. We then
determined average response proportions within item type and test
phase for each participant and model. As such, model predictions
and observed data could be subjected to identical statistical analyses.

Model Evaluation

We evaluated each model by its ability to predict the interaction
effects that were relevant to each test phase (Figure 2). For the
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Table 3
Recognition Phase: Pairwise Key Effects Predicted by Gaze-Informed Models
Selz—Selc Selz—Selc Selz—Distc Selz—Distc Selz—Sel¢ Distz—Selc
Model Interaction Distz—Sel Distz—Distc Distgz—Selc Distgz—Distc Selg—Distc Distg—Distc
Obs. F = 3571 t=9.61 =992 r=703 t=134 r=118 t=0.49
p < .001* p < .001* p < .001* p < .001* p < .001* p=28l1 p=.99
B-B F=9.76 t=508 t=7.00 t =266 t=4.10 r=1.66 t=210
p < .001* p < .001* p < .001* p=.06 p < .01* p =47 p=.24
C-A F =15.46 t =650 t=8.14 r =294 r=4.20 t=1290 t=151
p < .001* p < .001* p < .001* p < .05% p < .05% p < .05% p=.61
C-B F=1736 t=6.61 t=872 r=278 t=445 t=3.08 t=223
p < .001* p < .001* p < .001* p < .05% p < .001% p=.08 p=.83
C-D F=15.36 t=6.51 r=852 r=299 t=4.44 t=236 t=227
p < .001* p < .001* p < .001* p < .05% p < .01% p=.12 p=.17
D-B F=1485 t=589 t="174 r=237 t=4.14 t=3.36 t=197
p < .001* p < .001* p < .001* p=.13 p < .01* p<.01* p=.30
D-D F=1134 t =587 =722 r=345 t =437 r=149 =122
p < .001* p < .001* p < .001* p < .01% p < .01% p = .60 p=.80
c-c* F =8.87 t =453 t =655 r=240 t=4.04 t=173 r=2.02
p < .001* p < .001* p < .001* p=.12 p < .01* p=.42 p=.29
Note. Statistical output from a two (feature type: D vs. P) by four (group) ANOVA and post hoc pairwise tests. Matching analyses were

performed on observed and model-generated response data. Bold text indicates significant effects among comparisons of model-generated
responses that are consistent with the observed key effects. Obs. = observed; R = recognition; C = categorization; Sel = selective; Dist =

distributed; ANOVA = analysis of variance.

recognition test, we calculated d’ for D and P features and submitted
the values to a two (feature type: D, P) by four (group) mixed
analysis of variance (ANOVA), with feature type as a within-
subjects factor and group as a between-subjects factor. For the
categorization test, we calculated proportions of D-consistent
responses and submitted the values to an analogous two (item type:
high-match, conflict) by four (group) mixed ANOVA. Out of 21
candidate models, simulations from 7 models replicated both critical
interaction effects. F statistics (df: 3, 106) and p values are reported
in Tables 3 and 4 as they pertain to recognition and categorization,

respectively. Predictions from models that predicted the appropriate
interaction effects in both phases (Models B-B, C-A, C-B, C-D, D-
B, D-D, and C—-C") were submitted to additional post hoc
evaluation with pairwise independent samples ¢ tests.

To summarize the observed effects of interest during recognition,
Groups Selg—Selc- and Selg-Distc were less sensitive to novel P
features than Groups Distg—Selc and Distg—Diste (ps < .001%).
Groups who used a common attention strategy did not differ in
sensitivity between one another (Selg—Selc vs. Selg—Distc: p = .81;
Distz—Sel¢ vs. Distg—Distc: p = .99). As shown in Table 3, four

Table 4
Categorization Phase: Pairwise Key Effects Predicted by Gaze-Informed Models
Selg—Distc Selg—Distc Distz—Distc Distz—Distc Distgz—Distc Selg-Selc
Model Interaction Selg-Sel¢ Distz—Sel ¢ Selg—Selc Distz—Sel ¢ Selg-Distc Distz—Sel ¢
Obs. F=1948 t=4.03 t=5.69 t=475 t=06.15 t=122 t=272
p < .001* p < .001* p < .001* p < .001* p < .001* p=.19 p = .06
B-B F =436 t=138 t=3.70 t=10.73 t=2323 t =—-0.69 t=257
p < .01* p=.68 p < .01* p=.98 p < .05* p=.98 p=.08
C-A F =328 t=1243 t=199 t=1234 t =196 t=0.01 t=0.14
p < .05* p=.10 p=.28 p=.14 p=.30 p=.99 p=.99
C-B F =6.08 t=275 t=3.19 t =331 t=23.70 t=042 t=0.75
p < .001* p < .05* p < .05% p < .05* p < .01* p=.99 p=.97
C-D F=10.13 t =401 t=4.02 t=3.81 t=3284 t=-0.26 t=0.77
p < .001* p < .01* p < .01* p < .01* p < .01* p=.99 p=.97
D-B F=3.19 t=1233 t=218 t=207 t=192 t=-0.49 t =049
p < .05% p=.13 p=.20 p=.24 p=.32 p=.99 p=.99
D-D F=292 t=1.89 t =246 t=141 t=209 t =-0.37 t=1.03
p < .05% p=.33 p=.11 p = .66 p=.23 p=.99 p=.89
c-Cc* F="17.18 t=3.89 t=3.89 t=10.83 t=143 t=-222 t=1093
p < .001* p < .01* p < .01* p=.96 p=.64 p=.18 p=.93
Note. Statistical output from a two (item type: high-match vs. conflict) by four (group) ANOVA and post hoc pairwise tests. Matching

analyses were performed on observed and model-generated response data. Bold text indicates significant effects among comparisons of
model-generated responses that are consistent with the observed key effects. Obs. = observed; R = recognition; C = categorization; Sel =

selective; Dist = distributed; ANOVA = analysis of variance.
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gaze-informed models (indicated by bold text) appropriately
predicted all four pairwise effects of interest: Models C-A, C-B,
C-D, and D-D.

During the categorization test, analyses of observed data showed
that Groups Selg—Sel and Distz—Sel responded more consistently
with the D feature during high-match and conflict items than
Groups Selg—Distc and Distg-Diste (ps < .001%). Groups who
used a common attention strategy did not significantly differ in
D-consistent responding between one another (Selg—Sel¢ vs. Distg—
Selc: p = .06; Selg—Distc vs. Distg—Distc: p = .79). As shown in
Table 4, only two gaze-informed models (indicated by bold text)
appropriately predicted all four pairwise effects of interest: Models
C-B and C-D.

Table 5 shows total AIC values for the selection of seven models
that effectively simulated key interaction effects for recognition
and categorization. Model C—-B provided the best fits to data from
Groups Selz—Selc and Selg—Distc, and Model B—B provided the best
fits to data from Groups Distg—Selc- and Distg—Distc. However,
Model B-B proved to be ineffective for predicting behavioral
differences between selective and distributed attention strategy
groups during both recognition and categorization (Tables 3 and 4).

Although Models C-B and C-D both predicted all pairwise
behavioral effects of interest, Model C—B presumably attained more
favorable AIC values on the basis of parsimony (one fewer free
parameter). Considering all results together, we selected Model C—-B
as the most effective model overall out of 21 candidates. Aggregate
predictions using each subject’s best-fitting parameters from Model
C-B are shown in Figure 4 (points).

Examining Conventions

Due to their theoretical significance (Nosofsky, 1986), statistics
for evaluating the predictions of the perfect encoding models (1-A,
1-B, 1-C, and 1-D) are provided in Table 6. None of these models
were able to predict key interaction effects during categorization,
however, and were therefore not subjected to additional post hoc
evaluation. Considering total AIC, all four perfect encoding models
performed worse than every model listed in Table 5, which included
allowances for memory precision. From these results, we note that
simply accounting for sparsity in feature encoding has profound
effects on behavioral predictions.

Within our direct input approach, we made the choice to calculate
attention at the level of each probe—exemplar comparison as a
product of memory precision and decision weights (Equation 3).

WEICHART, UNGER, KING, SLOUTSKY, AND TURNER

Because this specification contradicts the standard GCM constraint
where

> w=1, (15)
k

we included a gaze-informed Model C—C™ that satisfies the constraint
on total attention by trial. To reiterate, Model C-C* calculates
attention as a mixture of softmax-transformed n and £, similar to how
freely estimated perceptual and decisional components of attention
are combined in the extended generalized context model (Lamberts,
1995). Although Model C-C* predicted the item type by group
interaction effects relevant to both recognition and categorization
phases, it failed to predict several key pairwise effects for
distinguishing between selective and distributed attention strategies
(Tables 3 and 4) and was unremarkable compared to the other
candidate models in terms of AIC (Table 5). Consistent with the
findings of previous work, these results suggest that attention
allocation is highly flexible and variable within and between trials and
may not be adequately summarized with hardline summation
constraints in place (Galdo et al., 2022; Weichart et al., 2022).

Eye-Tracking

Mean proportions of raw dwell times to the D feature during
training (in sets of 10 trials), recognition test, and categorization test
are provided in Table 7. We identified a significant group difference
in proportions of gaze allocated to the D feature during the latter
trials of training, F(3, 106) = 5.03, p < .01, with Group Selz—Selc
showing longer relative dwell times to the D feature compared to
Group Distg—Distc. No other group-wise comparisons of dwell time
during training reached statistical significance.

Figure 5 shows aggregate softmax-transformed dwell times during
training, using best-fitting 6,,;, values from our winning model, C-B.
These transformed gaze maps serve as a way of visualizing memory
precision of the features presented during training and provide
uniquely nuanced information that is constrained by both gaze and
choices during subsequent test. Group Selg—Sel shows high memory
precision for the D dimension in particular, while Groups Selg-Dist,
Distg—Sel, and Distg—Distc show more evenly distributed precision
among the P dimensions. Group Distzg—Distc appeared to not
preferentially encode D features at all and instead slightly favored
one of the P dimensions. Extended analyses of model-transformed

Table 5

AIC Comparison: Selected Gaze-Informed Models

Model N free parameter Selg—Selc Selg—Distc Distg—Selc Distg—Distc Total
B-B 6 2131 2012 1162 1326 6631
C-A 6 2009 2036 1196 1341 6582
C-B 6 1995 1993 1170 1335 6493
C-D 7 2056 2059 1210 1355 6680
D-B 7 2157 2075 1223 1357 6812
D-D 8 2186 2091 1233 1382 6892
c-c* 7 2240 2070 1215 1345 6870

Note. Values are total AICs across subjects in the indicated groups. Bold text indicates the lowest (i.e., preferred) AIC
value within each column. Sel = selective; Dist = distributed; R = recognition; C = categorization; AIC = Akaike

information criterion.
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Gaze-Predicted Behavioral Correlates of Selective and Distributed Attention
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distributed attention. Bold bars and significance markers denote key effects in the observed behavior. (A) Bars show mean
probabilities of making an “old” response to each item type during the recognition test phase. Points show aggregate simulations
using best-fitting parameters from Model C-B. (B) Bars for high-match, conflict, and one-new-P items reflect mean probabilities
of responding consistently with the D feature. Bars for new-D reflect probabilities of responding consistently with the majority of
P features. Points show aggregate simulations using best-fitting parameters from Model C-B. Sel = selective; Dist = distributed;
R =recognition; C = categorization; D = deterministic; P = probabilistic; P(X) = proportion of X; n.s. = not significant. See the

online article for the color version of this figure.

gaze during recognition and categorization test are provided in
Appendix D.

General Discussion

This study explored the hypothesis that memory precision for
features encountered during learning influences decisions in
subsequent test contexts. To examine this relationship, we leveraged
eye-tracking data as dissociable components of attention in an
exemplar-similarity model. We found compelling evidence that the
availability of information stored in memory during training plays a
pivotal role in accurately predicting observed choices during test.
The following sections offer interpretations of these findings within
the established literature on selective attention as an indicator of the
observer’s beliefs and intentions within the task environment.

Intentions and Consequences

Our study stands apart from previous investigations on the
consequences of selective attention (Best et al., 2013; Blanco et al.,
2023; Plebanek & Sloutsky, 2017) due to its novel usage of

the exemplar-similarity framework. This framework is extremely
influential in cognitive psychology, yet has historically been
woefully noncommittal in its treatment of memory precision in
predictions of choice. We used gaze correlates of attention as direct
inputs to an exemplar-similarity model for predicting recognition
and categorization decisions. In one set of models, training features
were presumed to be perfectly encoded, and gaze during test was the
sole determinant of choice (Table 6). In another set of models, gaze
was used to constrain estimates of memory precision for features
encountered during training as well as estimates of decision weights
among features of the test stimuli (Table 5). These two sets of
models represented competing hypotheses concerning the relevant
determinants of attention: the former representing attention as
decision weights (e.g., GCM) and the latter representing attention as
decision weights constrained by memory.

The results of model evaluation and comparison favored the latter
account: models that included gaze correlates of memory precision
outperformed those that did not, as determined by AIC. In addition,
a subset of models that accounted for memory could predict nuanced
behavioral correlates of selective and distributed attention that were
defined in an independent investigation (Deng & Sloutsky, 2016).
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Table 6
Model Comparison: Perfect Encoding Models
Model Recognition Categorization Total AIC
C-B F=17.36 F =6.08 6493
p < .001* p < .001*
1-A F =331 F=1.68 7205
p < .05* p=.17
1-B F=3.88 F=212 6960
p < .05* p=.10
1-C F =371 F=0.20 6925
p < .05% p=.90
1-D F=4389 F =022 7086
p < .01* p=.88

Note. F statistics and p values evaluate key interaction effects of item
type and group in a two by four mixed ANOVA. Bold text indicates
significant effects among comparisons of model-generated responses that
are consistent with the observed key effects. AIC = Akaike information
criterion; ANOVA = analysis of variance.

Models that assumed perfect encoding of information presented
during training, however, failed to even predict basic interaction
effects between groups defined by contrasting attention strategies.

When considering these results, it is important to note that the
standard implementation of GCM with freely estimated attention
parameters was able to predict key behaviors perfectly well
(Appendix A). The successes of the memory-informed models
therefore do not denote an incremental improvement in model fits.
Instead, these successes redress a theoretical opacity in prior
modeling frameworks. Instead of attributing behavior to a nebulous
construct of “attention,” we find that accounting for the effects of
memory provided a significantly better approximation of freely
estimated attention parameters than if we account for decision
weights at test alone. Our results support the hypothesis that
behavioral correlates of attention reflect the strategic weighting of
the information that was encoded by the individual participant, not
of all information that was presented.

Implications for Human Learning

It is not our intention to admonish early presentations of the
exemplar-similarity framework (Medin & Shaffer, 1978; Nosofsky,
1986) for making simplifying assumptions. The assumption of
perfect encoding is clearly computationally necessary for constrain-
ing model estimates of attention when behavior alone is the output.
It has not, to our knowledge, been asserted by users of the framework

Table 7
Observed Gaze Preference for Deterministic (D) Dimension

as a genuine theory that humans perfectly and equally store all
information that exists in the learning environment. Our findings
should instead be interpreted as a cause for theoretical reevaluation
of attention as it is specified in contemporary accounts of human
learning.

One influential class of adaptive attention models has built upon
the GCM framework to explore how attention updates from trial-to-
trial to support learning (e.g., Galdo et al., 2022; Kruschke, 1992;
Love et al., 2004). Within these models, the observer uses trial-level
category feedback to update their distribution of attention in a
way that is intended to reduce the probability of future errors.
Through iterative attention optimization, these models have been
shown to predict trajectories of attention and accuracy that mirror
the trajectories of dimension-level gaze preferences observed by
Rehder and Hoffman (2005a; Galdo et al., 2022; Kurz et al., 2013;
Nosofsky et al., 1994). Importantly, attention is calculated to optimally
weight all information that was presented in prior trials. This policy,
however, may not accurately reflect the information that is actually
available to participants—unless, of course, we can reasonably
conclude that humans store features equally well whether they fixate to
them or not.

While most model instantiations of attention interpret failures
of accuracy as an inappropriate weighting of irrelevant information,
our findings suggest that failures to behave optimally can also
be attributed to sparse encoding. Recent findings from Wan and
Sloutsky (2023) provided important insight into this distinction
using a version of the same experiment presented here (Deng &
Sloutsky, 2016). All stimulus features were occluded at the onset of
each trial, and participants revealed the desired feature information
by tapping occlusion bubbles on a touch screen. By contrast to
gaze measures as an index of attention, Wan & Sloutsky’s approach
offers the advantage of providing insight into which features were
plausibly encoded into memory during training and, importantly,
which features could not have possibly entered the representation.

The results showed that adult participants tended to selectively
reveal the feature in the most category-diagnostic (D) dimension,
and behaviors at test denoted a strategy of selective attention (e.g.,
Figure 2). Interestingly, participants revealed significantly more
features when they encountered new-D items at test compared to the
other item types. This behavior is potentially indicative of an attempt
to optimally redistribute attention upon encountering unusable
information in the D position. Indeed, other eye-tracking work
demonstrated that by increasing the uncertainty of choice via
requiring reliance on probabilistic cues, participants were provoked
to sample more sources of information before making a response
(Beesley et al., 2015; Easdale et al., 2019).

Group Training 1-10 Training 11-20 Training 21-30 Recognition test Categorization test
Selg-Selc 0.32 (0.14) 0.37 (0.17) 0.38 (0.17) 0.26 (0.12) 0.43 (0.13)
Selg—Distc 0.25 (0.14) 0.30 (0.18) 0.30 (0.16) 0.25 (0.14) 0.30 (0.17)
Distg—Selc 0.27 (0.13) 0.26 (0.15) 0.31 (0.19) 0.18 (0.07) 0.35 (0.13)
Distg—Distc 0.17 (0.11) 0.22 (0.17) 0.20 (0.14) 0.15 (0.05) 0.23 (0.12)

Note. Table entries show proportions of fixations to the D dimension in the format: [mean]([standard deviation]). Sel = selective; Dist =

distributed; R = recognition; C = categorization
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Figure 5
Gaze-Based Memory Precision for Training Features
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Heatmaps show aggregate memory precision across subjects. X-ticks indicate stimulus dimensions, where P dimensions were rank-

ordered within-subject according to gaze preference. Y-ticks show trial numbers. Subject-wise memory precision maps were calculated by
subjecting raw dwell time data to best-fitting model-based transformations. Sel = selective; Dist = distributed; R = recognition; C =
categorization; D = deterministic; P = probabilistic. See the online article for the color version of this figure.

We consider these findings to be consistent with our own:
Regardless of whether participants use strategies that can be attributed
to past or present optimality, the information stored during training
is immutable in its impact on future decisions. A participant who
manages to encode all information presented during training (in the
manner of GCM) would presumably be able to weight information
at test in a way that best serves their goals, whether characterized
by accuracy, efficiency, novelty preference, information gain, or
otherwise (Matsuka & Corter, 2008). In the more likely case of
imperfect memory storage, we posit that information that is not
encoded cannot be retrospectively reclaimed as needed.

Although most adaptive attention models propose pure accuracy
optimization as a mechanism for updating attention, the adaptive
attention representation model was developed to explore other
secondary goals that humans could plausibly pursue during learning
(Galdo et al., 2022). In one study, the authors fit model-
predicted quantities of choice probability and attention directly
to simultaneous streams of behavioral and gaze data. With the
constraint provided by gaze data, the authors were equipped to
evaluate contrasting theories about the goals that contribute to
attention allocation. Results across five experiments supported the
conclusion that the pursuit of accuracy goals alone was insufficient
for explaining observed patterns of attention during learning.
Instead, the authors advocated for efficiency considerations as well,
instantiated as active suppression of redundant information in
memory.

The findings from the present study, however, provide an
alternative explanation. It may be the case that humans indeed
proceed with the intention of being as accurate as possible, but are
constrained by the consequences of partial encoding. If one accounts
for partial encoding as a natural consequence of limited information
sampling, simple rules for updating attention in an effort to be
accurate may prevail (Kruschke, 1992, 2001). We suggest that a
complete theory of attention optimization will need to consider
information sampling and decision weights as dissociable con-
tributors to common goals.

Limitations and Future Directions

Our winning Model C-B is characterized by a softmax function to
convert gaze during training into estimates of memory precision and
a piecewise linear function to convert gaze during test into estimates
of decision weights. This difference in transformations implies that
when a participant encounters a stimulus, the way they weight feature
information when making an object discrimination judgment may be
incongruous with the contents of the memory trace that they store.

This finding is tentatively consistent with the concept of evidence
accumulation dynamics. Evidence accumulation models posit that
decisions are made by considering multiple sources of information
and allowing processes of competition and inhibition to ultimately
favor one choice over another (Ratcliff, 1978; Usher & McClelland,
2001). It may be the case that information is stored in proportion to
low-level perceptual processes (i.e., such that all information that is
fixated to some extent is plausibly stored), but additional dynamics
that occur during the decision may result in high fixations to
dimensions with conflicting information even though the choice only
reflects the “winning” source (Krajbich & Rangel, 2011). Future
work will need to investigate the plausibility of this conjecture and
determine whether the evidence accumulation dynamics that impact
choice additionally impact how the memory trace corresponding to
the stimulus is formed.

The present study took a foreseeably controversial approach by
using data from young children to investigate a general theory about
the impact of memory precision on attention strategies. We argue,
however, that the use of children in our current investigation is more
of a strength than a weakness. One can reason that the typical child-
like policy of broad information sampling during training (Blanco &
Sloutsky, 2020; Blanco et al., 2023) is consistent with the GCM
description of an unabridged memory store that is manipulated by
attention at test. It is therefore notable that a group that has an even
better chance of favoring the conventional account than adults still
favored models with encoding biases as a determinant of decision
making. We nevertheless acknowledge that vast developmental
changes to the attention, memory, and decision-making faculties of
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interest occur after age 5, and it is therefore essential to validate our
framework with data from adults as well. Although we believe it is
useful to evaluate the relationship between gaze, memory, and decision
processes within a population that naturally exhibited variability in
sampling and decision strategies, future work with adults will focus
on strategic manipulations involving uncertainty (Easdale et al., 2019)
and feedback reliability (Little & Lewandowsky, 2009).

Additional limitations to our study relate to the selection of
training stimuli and the simplicity of our model specifications for
memory precision. Given that features were repeated multiple times
during training, we cannot draw strong conclusions about which
specific features were best represented in memory. Although we were
able to effectively predict behavior using a simple transformation of
gaze data to represent memory precision, we assume that additional
forces of lag-based decay, context effects, and repetition effects are at
play as well (Kahana, 2012). Future work will, for example, utilize
paradigms that manipulate the sequence of items presented during
learning (Carvalho & Goldstone, 2017; Kim & Rehder, 2011) in the
hopes of providing more precise measurements for relating gaze to
memory for individual features.

Conclusions

There are two main takeaways from the current work: one
methodological and one theoretical. First, we provided a novel
model-based method for leveraging eye-tracking data to observe the
contents of memory, which underlie the malleable object representa-
tions that are used to make decisions. Second, we provided model
comparison results that support the theory that engaging selective
attention during learning incurs costs to the breadth of information
storage in memory, which in turn imposes unintended limitations
on future decision making.

We assert that our findings using a data-driven approach that
considers dissociable components of attention have important
implications for ongoing theoretical developments in human learning.
The field continues to push the boundaries of the exemplar-similarity
framework for unraveling the intricacies of learning, most often
instantiating dynamic mechanisms of attention as the locus of
innovation (e.g., Carvalho & Goldstone, 2022; Galdo et al., 2022;
Kruschke, 1992; Love et al., 2004). Without further scrutiny of
attention’s core principles, however, venturing into new frontiers
becomes an exercise in futility. The current article therefore takes
an important step toward understanding the component operations of
attention that are essential to contemporary theories of learning, yet
are rarely explored.
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Appendix A

Key Effects Observed Between Groups

Strategy groups were initially identified using variants of standard
generalized context model (GCM) fits to behavior alone before
involving measures of gaze (Table 2). This approach provided an
important baseline test for the appropriateness of the exemplar-
similarity framework for capturing data in the present context. If the
standard model does not fit when given the flexibility of freely
estimated attention parameters for each test phase, there would be no
point in imposing additional constraints by way of eye-tracking data.
As discussed below, however, the exemplar-similarity framework
provided an excellent account of the data and key effects
(Figure 2A).

Mean and 95% confidence intervals of best-fitting oy, parameters for
recognition and categorization are shown in Figure Al. Predictions
from GCM using best-fitting parameters provide good fits to data as
determined by qualitative assessment. In the sections to follow, we
verify that our individual-level, model-based approach was effective
for identifying strategy groups that replicate Deng and Sloutsky (2016).

To analyze data from the recognition test phase, we first
calculated each participant’s sensitivity to new features that
occurred in the D and P positions via d’ (d-prime). We applied
the formula d’ = Z(HitRate) — Z(FalseAlarmRate), where Hit Rate
refers to the proportion of correct “old” responses to high-match
items, and False Alarm Rate refers to the proportion of incorrect
“old” responses to new-D and one-new-P items. To address the issue
of extreme values, we adjusted the hit rates and false alarm rates
using methods described by Snodgrass and Corwin (1988), ensuring

that no accuracy values were equal to 0 or 1. We submitted d’ values
to a two (feature type: D, P) by four (group) mixed analysis of
variance with feature type as a within-subjects factor and group as
a between-subjects factor. This analysis identified a significant
interaction, F(3, 106) = 35.71, MSE = 27.90, p < .001, n2 = 0.50.

We then performed post hoc tests to assess the differences
in sensitivity to new D and P features within each group. Sidak’s
correction was applied to control for multiple comparisons, resulting
in adjusted p values for each test (o« = .05). For Group Selg—Sel,
a paired samples ¢ test revealed higher d’ for D (up = 4.00, op = 1.15)
than P features during recognition (pp = 0.95,06p, = 1.16,1(42) =
14.49, p < .001,d =2.62). A similar effect was found for
Group Selg-Diste (pp =3.85,6p = 1.05,pp = 1.20,0p = 1.27,
1(29) =9.88, p < .001,d = 2.23). For Groups Distz—Selc and
Distg—Distc, however, participants were equally likely to identify novel
D and P features (GroupDistg—Selc:pp =2.69,6p = 1.53,pp =
2.33,0p = 1.28,#(19) = 1.94, p = .07, d = 0.25; GroupDistz—Dist :
pp =194, op =1.30,pp = 1.71,0p = 1.03,#(16) = 1.20,p = .12,
d=0.19).

To analyze data from the categorization test, we focused
on probabilities of D-consistent responses during high-match
and conflict items. Data were analyzed with a two (item type:
high-match, conflict) by four (group) mixed analysis of vari-
ance, with item type as a within-subjects factor and group as a
between-subjects factor. After identifying a significant interaction,
F(3,106) = 19.48, MSE = 0.22, p < .001, n* = 0.36, we used post

(Appendices continue)
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Figure Al
Behavioral Correlates of Selective and Distributed Attention: Model Predictions With Freely Estimated a
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Note. Green bars represent patterns of behavior consistent with a selective strategy of attention, and orange bars correspond to distributed
attention. Bold bars and significance markers denote key effects in the observed behavior. (A) We identified four groups of participants via
comparison of generalized context model (GCM) variants with contrasting specifications of attention. Bars show mean and 95% confidence
intervals of best-fitting estimates of «p, for each test phase. (B) Bars show mean probabilities of making an “old” response to each item type
during the recognition test phase. Points show aggregate simulations using best-fitting parameters. (C) Bars for high-match, conflict, and one-
new-P items reflect mean probabilities of responding consistently with the D feature. Bars for new-D reflect probabilities of responding
consistently with the majority of P features. D = deterministic; P = probabilistic; P(X) = proportion of X; N = number of subjects; o = attention
parameter; Recog. = recognition; Cat. = categorization; Sel = selective; Dist = distributed; R = recognition; C = categorization; n.s. = not
significant. See the online article for the color version of this figure.

(Be = 0.49, 6 = 0.12;1(16) = 5.34, p < .001, d = 2.14).
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Group

As before, we applied Sidak’s correction to control for multiple
comparisons (o = .05).

Group Selz—Distc made significantly more D-consistent responses to
high-match compared to conflict items (pgy = 0.75, 6y = 0.12, pe =
0.58,6¢ = 0.18;7(29) = 4.82,p < .001,d = 1.08). Group Distz—
Distc performed similarly, with more D-consistent responses during
high-match (pyy = 0.72, oy = 0.09) compared to conflict items

Selg—Sel¢ did not show a difference in proportions of D-consistent
responses between the relevant item types (pyy = 0.95, oy =
0.09, pe = 0.94, 6 = 0.09;1(42) = 0.48,p = .64, d = 0.10), nor
did Group Distg-Sel¢ (ppy = 0.88, oy = 0.13, pe = 0.95,6¢ =
0.08; #(19) = =3.04, p = .99, d = 0.67). The results of addi-
tional post hoc tests to evaluate the pairwise differences in
effects between groups are presented in Tables 3 and 4.

(Appendices continue)
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These analyses confirmed a connection between GCM parameter-

izations of selective and distributed attention and the patterns of

behavior that Deng and Sloutsky (2016) hypothesized to be indicative

WEICHART, UNGER, KING, SLOUTSKY, AND TURNER

of each. The reader is invited to note that the observed effects
presented in Figure A1 directly correspond to the predictions shown
in Figure 2A but are reconfigured to highlight within-group effects.

Appendix B

Modeling: Conceptual Overview

In the set of analyses described in Appendix A, attention was
freely estimated in each phase to delineate participants according to
behavior. Group Selz—Sel, for example, used a strategy of selective
attention to the D feature during both test phases of the experiment.
While this may be considered to be an effective strategy during
categorization, selective attention during recognition resulted in
an extremely high proportion of false alarm “old” responses when
stimuli contained a novel feature in one of the P dimensions (pgs =
68%). This could have happened if (1) selective sampling of D

Figure B1

features during training resulted in insufficient memory precision
to correctly reject one-new-P items at test or (2) participants failed
to sample sufficient information from the test stimuli themselves
and therefore were not equipped to appropriately weight the novel
P features during their decisions.

Simulations presented in Figure B1 illustrate the proposed
dissociation between memory precision (represented as 1) and
decision weight (represented as {) components of attention. We
present this specification as an alternative to the unitary view in

Relating Attention to Choice Probability During Critical Items
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Panels depict simulated response probabilities. Most parameter values were selected arbitrarily

and fixed across simulations; only parameter values representing attention were varied. X and Y values
of each panel show the proportion of attention allocated to the deterministic dimension. The proportion
of attention allocated to the probabilistic dimensions was specified as Y ap = 1 — ap . (A) Z values
(colors) indicate the probability of correctly rejecting a one-new-P item as “new” during the
recognition test. Attention was specified as a single vector where > a = 1. (B) Z values indicate the
probability of correctly rejecting a one-new-P item as “new” during the recognition test. Attention
was specified as the product of two vectors, where > 1 =1 and Y ¢ = 1. (C) Z values indicate the
probability of making a categorization response consistent with the deterministic feature of given
conflict item. Attention was specified as a single vector, where > o = 1. (D) Z values indicate the
probability of making a categorization response consistent with the deterministic feature of given
conflict item. Attention was specified as the product of two vectors, where > n =1 and (= 1. See
the online article for the color version of this figure.
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which these components are indistinguishable (represented as ).
Panels A and B depict the impacts of attention on the probability
of correctly rejecting a one-new-P item during the recognition test,
as described above. In order to correctly reject a one-new-P item
as “new,” the unitary view posits that the observer must distribute
attention across dimensions (Panel A). The proposed specification
allows for additional nuance: even if the observer aptly distributes
decision weights across all dimensions when presented with a one-
new-P item during the recognition test ({;, ~ %), they will not incur an
accuracy advantage unless they also stored features in all dimensions
with sufficient precision during training (np ~ %; Panel B).

Panels C and D show an analogous set of simulations for critical
conflict items during the categorization test. Because conflict items
contain a D feature drawn from one category prototype and the
majority of P features from the other, modulating the proportion of
attention allocated to the D feature directly impacts how the observer
will respond.

The depictions of attention in Panels A and C of Figure B1 reflect
the original presentation of the exemplar-similarity framework
(context model; Medin & Shaffer, 1978), in which encoding
strength of exemplar features and the weighting of information from
the test probe were described interchangeably as the impetus for
observed variability in responses. Contrast this with the similarly
unitary description of attention provided by GCM in which
exemplar features are perfectly encoded (e.g., n, = 1), and decision
weights at test are what determine response variability (Nosofsky,
1986). By freely estimating attention within either the context model
or GCM, these two accounts make identical predictions under
certain conditions, despite using incongruous language to describe
attention’s theoretical actions. The current work presents a novel
eye-tracking approach to disentangle these forces, such that
fixations during training directly correspond to encoding strength
for exemplar features, and fixations during test directly correspond
to the weighting of features for making decisions.

Appendix C

Model Fitting Procedures

We used a binomial likelihood to fit all gaze-based model variants
to recognition and categorization test response data from each
subject independently. We identified best-fitting parameter values
for each model and subject using a three-step procedure. First, we
implemented Differential Evolution (DE) using the Python package
RunDEMC (https://github.com/compmem/RunDEMC) with 50
particles for 100g iterations, where g was the number of free
parameters in the relevant model. We did this to effectively sample
the parameter space and identify reasonable initial values for each
subject (Brest et al., 2006; Storn & Price, 1997). Second, we used the
DE output values as input to the Nelder—Mead function optimization
algorithm implemented in SciPy to identify stable estimates of best-
fitting parameters. Third, in the event of failure to meet the base
convergence criterion after 10000 iterations, DE sampling

recommenced for sets of 100 iterations until convergence was
achieved. All parameter values were exponentially transformed to
achieve support (0, o).

Model fits were assessed using AIC, which accounts for goodness-
of-fit as well as model parsimony. Within each comparison, models
were selected on the basis of lowest mean AIC across subjects.

After identifying best-fitting parameters for each model and
subject, we simulated responses using the relevant participant’s gaze
data as input. We then aggregated model-simulated responses within
participant group, test phase, and item type. This allowed us to
evaluate each model by its ability to re-produce the key effects. If gaze
is indeed an effective index of latent attention, we determined a priori
that a direct input approach should predict significant differences in
responses between selective and distributed attention strategy groups.
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Appendix D

Extended Eye-Tracking Results

A one-way analysis of variance revealed significant differences
between groups in proportions of gaze allocated to the D dimension
during the recognition test, F(3, 106) = 6.28, p < .001*. Post hoc
comparisons of means using Tukey’s honestly significant difference
revealed that Groups Selg—Selc and Selg—Dist tended to look more
at the D feature more than Groups Distg—Selcs and Distg—Distc
(Selg—Selc vs. Distg—Sel¢: p < .05%, Selg—Selc vs. Distg—Distc: p <
.01%,2vs. 3: p = .08, Selg-Distc vs. Distg-Distc: p < .05%). Groups
Selg—Selc and Selg—Distc (p = .98) and Groups Distg—Selc (p =
.86) did not differ from one another.

Figure D1 shows aggregate model-predicted feature discrimina-
bility during the recognition test, which was calculated using
Equation 2 with d; = 1 and best-fitting parameters from Model C-B.
Values therefore combine transformed gaze data from both training
and test to visualize attention as a product of n) and {. The heatmaps
display features of the new-D and one-new-P items as a matrix,
where Y-ticks indicate the position of a novel feature. P dimensions

on the X-axis were rank-ordered within subject by gaze preference.
Gaze-informed estimates of discriminability show that Groups
Selg—Sel- and Selz—Distc favor D features more than P features
when making decisions, whereas Groups Distg—Selc and Distg—
Distc do not appear to show any discriminability bias toward a
particular dimension.

A one-way analysis of variance revealed significant differences
between groups in raw proportions of gaze allocated to the D
dimension during the categorization test as well, F(3, 106) = 9.69,
p < .001%*. Post hoc comparisons of means using Tukey’s honestly
significant difference revealed that Groups Selg—Selc and Distg—
Sel¢ tended to look more at the D feature more than Groups Selg—
Distc and Distg—Diste (Selg—Sele vs. Selg—Diste: p < .01%, Selg—
Selc vs. Distg—Distc: p < .001%, Selg—Dist¢ vs. Distg-Selc: p = .57,
Distg—Sel vs. Distg—Distc: p < .05%). Groups Selz—Sel and Dist—
Selc (p =.23) and Groups Selg—Distc and Distg—Distc (p = .33) did
not differ from one another.

Figure D1
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Heatmaps show aggregate feature discriminability across subjects. X-ticks indicate stimulus dimensions, where P dimensions

were rank-ordered within-subject according to gaze preference. Y-ticks indicate the dimension location of a novel feature within the
relevant subset of trials. Subject-wise discriminability maps were calculated by subjecting raw dwell time data to best-fitting model-
based transformations. Sel = selective; Dist = distributed; R = recognition; C = categorization; D = deterministic; P = probabilistic.

See the online article for the color version of this figure.
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Heatmaps show aggregate feature discriminability across subjects. X-ticks indicate stimulus dimensions, where P dimensions

were rank-ordered within-subject according to gaze preference. Y-ticks indicate the dimension location of a novel feature within the
relevant subset of trials. Subject-wise discriminability maps were calculated by subjecting raw dwell time data to best-fitting model-
based transformations. Sel = selective; Dist = distributed; R = recognition; C = categorization; D = deterministic; P = probabilistic.

See the online article for the color version of this figure.

Figure D2 shows aggregate model-predicted feature discrimina-
bility during the categorization test. The heatmaps indicate that
Groups Selg—Selc and Distg—Sels show higher attention to D
features than P features when making categorization decisions. As in
Figure D1, values combine transformed gaze data from both training
and test to visualize attention as a product of n and {. Although
Groups Selg-Distc and Distg—Dist- differ in overall feature
discriminability, neither group appears to show a discriminability
bias in favor of a particular dimension. These visualizations of
transformed gaze measures are consistent with the observed
behavioral effects within each group: participants whose responses
were characterized by a selective attention strategy looked more at
D; those whose responses were characterized by a distributed
attention strategy sampled feature information more evenly.

To summarize the results, Group Selg—Selc tended to fixate to
the D dimension during training, whereas Group Distg—Dist¢ tended
to sample a broader range of features (Figure 5). These sampling
behaviors were directly reflected in the distribution of decision
strategies used at test, with Group Selg—Selc prioritizing the D
dimension during both phases and Group Distg—Distc distributing

attention across dimensions (Figure D1 and Figure D2). We note,
however, that our proposed framework could have predicted
consistently D-selective or distributed decision strategies across
phases using the same profile of fixation biases by simply selecting
linking function parameters that magnified or diffused determinism as
needed. It is therefore important to highlight that our framework was
also effective for predicting choices among participants who shifted
strategies from recognition to categorization, given that this could
only occur if gaze patterns during test shifted as well (Groups Selz—
Distc and Distg—Selc). Although these groups appeared to show
similar patterns of sampling and storage of features in aggregate
(Figure 5), combining the influences of gaze-informed memory
precision and decision weights produced the expected patterns of
behaviors during both test phases (Figure D1 and Figure D2).
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