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Abstract

Visual Programming has recently emerged as
an alternative to end-to-end black-box visual
reasoning models. This type of method lever-
ages Large Language Models (LLMs) to gener-
ate the source code for an executable computer
program that solves a given problem. This
strategy has the advantage of offering an in-
terpretable reasoning pathand does not require
finetuning a model with task-specific data. We
propose PropTest, a general strategy that im-
proves visual programming by further using an
LIM to generate code that tests for visual prop-
erties in an initial round of proposed solutions.
Our method generates tests for data-type consis-
tency, output syntax, and semantic properties.
PropTest achieves comparable results to state-
of-the-art methods while using publicly avail-
able LLMs. This is demonstrated across differ-
ent benchmarks on visual question answering
and referring expression comprehension. Par-
ticularly, PropTest improves ViperGPT by ob-
taining 46.1% accuracy (+6.0%) on GQA using
Llama3-8B and 59.5% (+8.1%) on RefCOCO+
using CodeLlama-34B.

1 Introduction

Visual reasoning tasks often require multi-hop rea-
soning that goes beyond surface-level observations.
This type or reasoning typically involves complex
multi-step processes, external knowledge, or under-
standing of compositional relationships between
objects or entities. End-to-end vision and language
models based on deep neural networks trained
with huge amounts of data are used to tackle these
tasks (Li et al., 2023; Alayrac et al., 2022; Yuet al.,
2022; Driess et al., 2023; Li et al., 2022a; Wang
et al., 2023). However, these methods often fail
at multi-hop compositional reasoning as they aim
to solve a wide array of reasoning tasks in a sin-
gle forward pass. Recent work has proposed Vi-
sual Programming as a principled way to tackle
visual reasoning (Gao et al., 2023; Suris et al.,

2023; Gupta and Kembhavi, 2023; Subramanian
etal., 2023). These techniques work by leveraging
a Large Language Model (LLM) to generate the
logic of a program in the form of its source code
that can be used to solve the problem. These meth-
ods can combine various tools in complex ways
and offer interpretability and the opportunity to
diagnose failures in their predicted logic.

Visual programming methods that rely on code
generation and program execution to solve a task
still rely on end-to-end pre-trained Vision Lan-
guage Models (VLMs) either as tools that can be
invoked by the program or as a fullback option
when the generated code contains syntax or run-
time errors. In other words, if the generated code
contains errors, then a default end-to-end VLM is
invoked. For these methods to be effective, the
generated source code should produce solutions
that lead to correct results on average more often
than their fallback VLLM. However, there are still
many instances where a generated source code con-
tains no syntax or runtime errors, but the logic of
the program produces results that contain incorrect
logic to solve the problem. Some of these are easier
to spot, such as instances where the code returns
the wrong data type, or the wrong type of answer
for the given problem (e.g. answering with a lo-
cation when the question is about a quantity). We
posit that code testing and assertion error checking
which are established practices in software devel-
opment, should also help these types of methods in
guiding them toward better solutions.

We introduce PropTest, a visual programming
framework that generates autonatic property test
cases to guide code generation and identify logic
that is likely to contain errors. Fig. 1 showcases
a motivating example for our proposed method.
PropTest first generates property test cases using
an LLM which probes for data type inconsisten-
cies, syntactic errors, and semantic properties of
the results. For instance, in the showcased question
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Question: What appliance is
above the bananas?

| | Generated Code
image_patch = ImagePatch{imagse)
if ien({banana_patohes) == 0:

banana_patch = banana_patches[(]

Baseline

| def execute_command{image, my_fig, time_wait_bstwssn_lines, syntax):
banana_patches = image_patch.find{banana™)

| retumn image_patch. zimple_guery("Wnat appliancs iz above the bananas?")

appliance_patches = image_patch.find( applianca™)

if len(appliance_patches) == [:
retum “no’
for i _patch in

[ Baseline: yes 1%
Qutputs whether there is an
~" appliance above the bananas
/ r
| PropTest: microwave | o

return “yeg'
return ‘no’

if appliance_patch.vertical_center -~ banana_patch vertical_center:

Finds the appliance that |;
above the bananas and returns
aname

PropTest
Generated Code

Generated Property Test Case
def sxecute_test{imags):
result = sxscute_command{image, my_fig. time_wait_bstwssn_lines. syntax)
assert isinstance({result, str), ‘Expectsd ouiput to be sting.”

essert len(result.split()) in [1, 2], "Expectad output to be one or two worde”

Flsalcgeed

assert [Im_guery(flz resull an appliancs?”, long_answer = Falea) == 'ves',
“Expected output to be an applisnce’

return result \

Provides extra check signaling that
the answer should be an appliance

def executs_command(image, my_fig, ime_wait_betwesen_lines, syntax}:
image_patch = ImagePatch(image)
banana_patches = image_patch.find{ banana”)
if len{banana_patches) == [:
return image_pateh_simple_guerny("What appliance is above me panana??)

for banana_patch in banana_patches:
appliance_patches = image_patch find({"appliance™)
for appliance_patch in appliance_patches:
if appliance_patch vertical_center -~ banana_patch.vertical_center:
WO nclude the appliancs so ki it in the query
e name of the appliance??)

ume of the appliance?)

Figure 1: Visual programming methods generate code for a program to solve a vision-and-language task such as
VQA. PropTest improves on these methods by automatically generating testing code that probes for several output
properties. This is used as additional information when generating code and checking the correctness of the output
solutions. As a baseline we use ViperGPT under CodeLlama-7B for this example.

What appliance is above the bananas?, the gener-
ated test code anticipates that the answer should be
a Python string data type, that it should be limited
to one or two words, and that the output should be
a type of appliance. We find that this type of tests
consistently help the LLM generate code for the
program that is less likely to contain errors.

PropTest can filter out incorrect outputs result-
ing from errors in logic or failures in dependent
modules and redirect these cases when appropri-
ate to the fallback VLLM. Moreover, PropTest pro-
vides additional information about failure cases
and in characterizing the type of errors. Addi-
tionally, previous visual programming methods
rely on closed-source models, making it hard to
reproduce results due to continuous version up-
dates, deprecation of older models (e.g., Codex),
and usage costs (Gupta and Kembhavi, 2023; Suris
et al., 2023; Subramanian et al., 2023). Our main
experiments rely exclusively on public models,
such as CODELLAMA (Roziere et al., 2023) and
LLAMA3 (Al@Meta, 2024), which we expect to
serve as stable baselines for future work on this
area. We evaluate PropTest on three different
tasks: Compositional visual question answering
(GQA (Hudson and Manning, 2019)), External
knowledge-dependent image question answering
(A-OKVQA (Schwenk et al., 2022)), and Visual

grounding (RefCOCO and RefCOCO+ (Yu et al.,
2016)). Our experiments show that property tests
significantly enhance performance across these
benchmarks. We also analyze detailed errors from
a software engineering perspective (assertion, run-
time, and syntax).

Our contributions can be summarized as follows:

* We propose PropTest, a novel framework that
uses automatic property test case generation
for detecting logic, syntax, and runtime errors,
which are used to guide code generation.

* PropTest improves interpretability when er-
rors occur, bridging the gap between LLMs
and VLMs on code generation.

* Our proposed method obtains superior results
on four benchmarks compared to a baseline
model conditioned on four different publicly
available LLMs and one proprietary LLM.

2 Method

We introduce PropTest, a framework for leveraging
property test code generation. A commonly rec-
ommended practice in software development is to
write tests first and then write the code for the logic
of the program so that it passes the tests. This is the
responsible programmer approach to software de-
velopment. We emulate this approach in PropTest
by first generating testing code and then generating
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Figure 2: An overview of PropTest. Given an image and a question, the goal is to generate Python code that can be
executed to get an answer. PropTest first calls an LLM to generate test cases based on the inferred properties of the
answer. Then, the generated test cases are used to improve the quality of Python code.

code to solve the task conditioned on the testing
code. Fig. 2 shows an overview of our method.

Let us consider a question such as What kind of
toy is the boy playing with?, we can easily infer
that the answer should be a type of roy. We utilize
this insight to provide information to the code gen-
eration model, narrowing down the search space
rather than only relying on single-step prompt op-
timization. Additionally, generating property test
cases is generally simpler than generating code
because test cases are shorter and more straight-
forward. Creating an easier test case first sets a
baseline to generate more complex code. Property
test cases guide the code generation process and
increase the likelihood of generating accurate and
effective code solutions.

Our framework first generates property test cases
using an LLLM by providing a problem statement
as a prompt, e.g., a question, or a referring expres-
sion. The source code for these generated tests
is then added to the prompt of the LLM, along
with the original problem statement and detailed
API documentation of the available tools or mod-
ules. We employ the same API and tools used in
ViperGPT (Suris et al., 2023), which also relies on
generic functions from the Python programming
language. The code generation model then out-
puts the code solution that addresses the problem
statement and returns a plausible result.

We concatenate the generated property test case
and the code solution and apply an execution en-
gine where we also provide the visual input. There
can be a syntax or runtime error inside the gener-
ated main code. An assertion error will occur if
the code output does not pass any of the property
test cases. If execution proceeds without errors,
including syntax, runtime, or assertion errors, the

result is returned, and the process concludes. In
the event of an error, we default to a task-specific
fallback VLM and return.

3 Property Test Case Generation

The purpose of using a property tests is to verify
whether a generated code works as expected and
guide an LLM to generate better code that meets
basic properties. The design of property test cases
varies based on the data type of the answer due to
the different tools (APIs) available for each type.
In this section, we explain in detail the design pro-
cess for prompts used to generate property tests
for visual question answering tasks, where the task
answer is text (section 3.1) and for visual ground-
ing tasks, where the task answer is an image with
bounding boxes (section 3.2).

3.1 Property Tests for Visual Question
Answering

Visual question answering tasks contain queries
that require multi-hop reasoning or external knowl-
edge. To solve these tasks, we propose two prop-
erty test case generation strategies along with cor-
responding in-context prompts to guide the LLM
toward the generation of property tests with similar
logic. We include our prompts in Appendix A.3.

Basic Property Test Case Generation. This type
of test only relies on basic Python functions without
using external APIs or tools. As shown in Fig. 3a,
this approach is effective when the question men-
tions several candidates. Furthermore, this strategy
can be applied to yes-or-no questions, where it
checks the type of the property.

Advanced Property Test Case Generation. For
this type of test cases, we also allow the use of tools
through an API specification, specifically the use
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(a) Basle VQA Property Test Case

(b) Advanced VQA Property Test Case

(e) Visual Grounding Property Test Case

Is the soccer player that is to the left
of the ball female or male?

def sxeouts_tesi{mags):

def execuis_test{image):
ndimags) renuit = exsouls_comn
# Teat cans 1
assert |sing

reaull = exsau
# Toat cass 1
asmert

return ¢

& Test case

mssert [=n(recuft.eplit()) in [1,2],

# Tost case 3
saeert (Im_gqusn(i

What kind of cuisine is this?

_sammand{imags) resuit = sxe

The player facing right with hand up

def exsouts_test{imags):
. "

# Teat cass 1
assart ‘yea’ in reauf

# Test cass 2
assert b

# Tosat cass 3
aswert bool

meturn reauft

Figure 3: Three different examples of property test cases generated for visual question answering and for visual
grounding. The execute_command() is the generic name of the generated program code routine and result is the

output from executing it.

of an LLM that can check the output result through
various properties. Particularly, our generated test
code can use an 11m_query () function to construct
more advanced assertion statements. Fig. 3b shows
an example where given the question What kind of
cuisine is this?, the first test case checks the return
data type, which should be a Python string. Then
a second assertion checks that the output is just
one or two words in length. The third test case
checks the semantic property of the returned result.
Knowing that the expected answer should be a type
of cuisine, we use LLM queries in the test case
to verify whether the result correctly identifies a
cuisine type. This effectively narrows the expected
result space for the code generation model, helping
it produce more accurate solutions.

3.2 Property Tests for Visual Grounding

Visual grounding tasks require returning a bound-
ing box in an image that corresponds to an input
text query. To construct property test cases for such
tasks, we utilize a set of tools that take images as
inputs. Particularly, our test code can use functions
such as simple_query(), verify_property(),
and bool_to_yesno(). The simple_query()
function is used to answer straightforward ques-
tions about the image, verify_property()
checks whether an object has a given attribute as a
property, and bool_to_yesno() converts boolean
values into "yes" or "no" responses. As shown in
Fig. 3c, given the input referring expression the
player facing right with hand up, our test case be-

gins by confirming if a player is inside the result
bounding box. It then proceeds to verify, in se-
quence, whether the identified player is facing right
with hand up, thus checking whether the given out-
put is likely to reflect the given query.

4 Experiments

We introduce the experimental setup (section 4.1),
and results on different LLMs (section 4.2)

4.1 Experimental Setup

Tasks and Metrics. We validate PropTest on
the Visual Question Answering (VQA) and Vi-
sual Grounding tasks. For VQA, we evaluate
on GQA (Hudson and Manning, 2019), and A-
OKVQA (Schwenk et al., 2022), which contain
complex multi-hop questions that require composi-
tional reasoning. We use exact matching accuracy
as our metric for GQA, where answers must cor-
respond to a single ground truth answer. We use
soft accuracy (SAcc) (Antol et al., 2015) for A-
OKVQA. For Visual Grounding, we use standard
benchmarks, including testA split on RefCOCO
and RefCOCO+ (Yu et al., 2016). The evaluation
metric is the intersection over union (IoU) score.

Model Comparison. Similar to prior work, for
VQA we use BLIP-2 (Li et al., 2023) as our fall-
back VLM, and GLIP (Li et al., 2022a) for Visual
Grounding. The tools and API specifications for
PropTest are consistent with those employed by
ViperGPT (Suris et al., 2023), ensuring a standard-
ized basis for comparison. Therefore, for our exper-
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(d) Results on RefCOCO+ using different LLMs

Figure 4: Comparison of our method against visual programming methods with different LLMs across two tasks,
four benchmarks. We report Accuracy on two visual question answering benchmarks, and IoU on two visual
grounding benchmarks. GPT-40* results are only tested on 500 subsamples.

imental comparisons, we compare PropTest with
other code generation models - ViperGPT (Suris
et al., 2023), and end-to-end models including
BLIP-2 (Liet al., 2023) and GLIP (Liet al., 2022a).
The only other publicly available neuro-symbolic
method is the concurrent work from Wang et al.
(2024), which uses CODELLAMA-7B.
Implementation Details. We implement PropTest
using the open-source LL.Ms including CODEL-
LAMA (7B, 34B) (Roziere et al., 2023) and
LLAMA3 (8B, 70B) (Al@Meta, 2024) for code
generation. The specific implementation details are
described in Appendix A.

4.2 Results

Quantitative Results. One common concern with
previous work is that evaluations performed with
API-based black-box models (e.g. GPT-3.5, GPT-
4) are hard to reproduce and track as there are many
different upgrades on these models. They can also
be discontinued (e.g. Codex), making past work
non-reproducible. Our main experiments are con-
ducted using CODELLAMA and LLAMA3, which
are publicly available and free to use for research
purposes. As part of our work, we will also release

an API-free implementation of ViperGPT. Addi-
tionally, we evaluate PropTest using GPT-40 to
contextualize our work. We limit our evaluation to
500 randomly sampled subsets for each data split,
specifically for GPT-40.

Our main results are shown in Fig. 4. Over-
all, PropTest shows improvements over ViperGPT
in all settings. The model that provides the most
gain varies by dataset, smaller models such as
CodeLlama-7B and Llama3-8B tend to benefit
more with PropTest (e.g., +6.0% on GQA with
Llama3-8B, +4.9% on A-OKVQA with both LLMs
and +7.1% on RefCOCO+ with Llama3-8B) but
even larger models also show gains, including
GPT-40. Notably, CodelLlama-34B outperforms or
shows greater improvement over ViperGPT com-
pared to Llama3-70B across all datasets. This is
due to Codel.lama-34B’s training with code, mak-
ing it superior in code generation despite its smaller
size relative to Llama3-70B. We also noticed that
GPT-40 shows the best results on all datasets.

Moreover, PropTest outperforms the fallback
VLMs we rely on, while also providing enhanced
interpretability in all settings. The fallback VLM
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Question: Are there either Generated Test
any chairs or televisions that
are black?

def sxscute_tesi{imags):

synEax)
# Tast page 1
assert result in [ yss7,
returm result

reault = sxecute_command{image, my_fig, time_wait_bstwesen_lines,

'no’], "Expected ouipu 10 be Yes or ng”
¥

Questlon: What is the largest Generated Test
city in the nation where this
plane is headquarterad?

def exscute_test{image):

12T Bn[l-'ssl.rlt_vpl i)} m{ st &

“Expeoted output o bs one or two words"

aezert im_guery(fiz rezult] a oiy?",
“Expeotsd outf

reault = sxecute_command{image, my_fig, time_wait_between_iines,
ey

Generated Code

def sxsoute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagsPatoh{image)
ohaira_patohes = image_patoh.find{"chai
tedavizions_patohes = image_pateh fino( tslevizions")
black_chairz = ]
black_televizgions = []
for ohalr_pamh in ulhalra_pawhes

it ohair_patch. propery(tohair”, “black™):

black_chairs nuu-enﬁ(uhalr_pawh)
for televizion_pateh in televizions_patohes:
if television_patoh.ven®y_propertyelevizion”,"black™):
black_televizsions.appenditeievizion_patch)
returmn tool sencflen{black_chaire} = [ or len(black_tslevizions) = [}

Generated Code

def exsous_command{imags, my_fig, fims_wait_betwsen_linee, ayntax):
image_patch = ImagsFPatch{image)
gueszes =[]
plane_location= image_patch.cimpls, ql.sw(‘
external_knowlsdge._guery = "What iz ths Ia

headguartered™. Dr'na‘tplsnaJoosuon)
atep_by_step_guese = |Im_gusny{sxemal_knowledge_guery)
guesses.append(whers iz thiz plans hesdguartersd izf]” format{plane_location) +
" =0 " + step_by_step_gusss)

direct_guees = image_cimple_gusry{ What W largeet oty :ns I"EIC"| where

. return rezult thiz pl headquarts,
Baseline: new york 3¢ guess.appsnd(direct gusss
£ retum procaze_guesess (W the largest oty in the nation where thie plane iz
PI'DDTESL tﬂkyb W headquarersd?, guessss)
Generated Test Generated Code
Flefe_rrlng pression: def sxsoute_tectlimags): del swsoute_command{imags, my_fig, time_wait_betwsen_lines, syntax):
guy in suit regutt = Execins_oommand{imags, my_fig, time_wat_bstween_linss, image_patch = ImagsPatoh{image)

" in smple_guery( iz thers a guy?”) Jower(),
stput to a8 guy”

retum result

Figure 5:

baseline ViperGPT fails. Input questions and answers are shown on the left, ge

middle, and code on the right.

results are 42.4%! on GQA, 45.1% on A-OKVQA,
55.0% on RefCOCO, and 52.2% on RefCOCO+.
While ViperGPT sometimes underperforms com-
pared to VLMs depending on the LLLMs, PropTest
remains robust, performing well on all models, in-
cluding smaller ones.

We did not compare our models to previous vi-
sual programming methods that use closed API-
based LLMs (Yuan et al., 2024; Subramanian et al.,
2023; Chen et al., 2023b), as it would be unfair or
unfeasible due to the different or deprecated LLMs
used in those models.

Qualitative Results. Fig. 5 shows representative
examples of the types of property tests that get gen-
erated and output programs. By leveraging prop-
erty test cases, PropTest generates a code with cor-
rect logic and results on cases that fail to return a
correct answer due to logical errors on ViperGPT.
In addition, we illustrate cases with logical errors
that produce assertion errors in Appendix C. By
checking on logical errors, PropTest provides ex-

'Result under the same setting as ViperGPT, differing from
the original work (Li et al., 2023)

guy_patches = image_patoh.find{"guy")
guy_in_suit_patohes = [g for g in guy_patohes if g.vsnfy_orosedy("guy”, "suit’]]
if len{guy_in_suit_patohes)} == 0

guy_in_suit_patohes = guy_patohea
guy_in_suit_patches. zor{key=|lambda guy:guy-horizontal_center) PI‘OpTESt
guy_patch = guy_in_suit_patches]0]
returm guy_patch

Example results on GQA, A-OKVQA and RefCOCO. We show cases where PropTest succeeds but the

enerated property test cases in the

tra interpretability on the reason for failure. More
qualitative results are shown in Appendix B.

5 Error Analysis & Discussion

In this section, we first focus on the question: What
types of errors does the code generation model
produce? We analyze the errors in the generated
code from ViperGPT and PropTest across datasets,
categorizing them into three basic Python errors:
Assertion, Runtime, and Syntax errors. We report
results using Llama3-8B in Table 1.

We first note that code generation models pro-
duce more errors in visual grounding tasks than
in VQA tasks. This is because visual ground-
ing involves stricter assertions in test cases, lead-
ing to a higher frequency of assertion errors. In
visual grounding, all test cases check the result
image_patch for specific properties, and errors
occur when objects or properties are missing. In
contrast, VQA often involves simpler yes-or-no
checks, where incorrect results might still pass the
test. Furthermore, RefCOCO+ has a higher overall
error rate compared to RefCOCO due to its com-
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Dataset Method # Errors  Assert. Runt. Syntax
GQA ViperGPT 411 (3.3%) - 322 89
PropTest 1264 (10.0%) 1001 227 36
ViperGPT 11 (1.0%) - 9 2
A-0RVAN PropTest 174 (15.2%) 169 3 2
ViperGPT 281 (5.0%) - 240 41
Refooca PropTest 871 (15.4%) 617 241 13
ViperGPT 435 (7.6%) - 386 49
RSO PropTest 1132(19.8%) 875 250 7

Table 1: Error Analysis on ViperGPT (Suris et al., 2023)
and PropTest across benchmarks using Llama3-8B in-
cluding runtime and syntax errors.

plex queries. The simpler queries in RefCOCO
make PropTest generate test cases that accurately
identify the target object, resulting in fewer errors.
Detailed analysis with examples is in Appendix C.

We also find that due to additional assertion er-
rors, PropTest has higher overall errors compared to
ViperGPT. Nevertheless, PropTest notably reduces
runtime and syntax errors on three datasets (e.g.,
322 — 227 runtime, 89 — 39 syntax errors in
GQA). This reduction indicates that the inclusion
of property test cases enhances code generation
quality in the aspects of runtime and syntax errors.
However, the increase in assertion errors, leading
to a rise in total errors, implies that PropTest relies
more on the fullback model. This raises the ques-
tion: Does the performance gain of PropTest come
from an increased dependence on VLMs?

To address this, we compare the performance of
ViperGPT and PropTest without using the fallback
model for error handling, as shown in Table 2. We
evaluate “w/o fallback models” in Table 2 over all
cases and count the case as wrong whenever an
error occurs (e.g., assertion, runtime, and syntax
error) or the answer is incorrect. When the case
fails the property test, it will generate an asser-
tion error, and we count it as wrong. Across all
datasets, PropTest either outperforms or performs
on par with ViperGPT, demonstrating that the per-
formance gain is from improved code quality rather
than increased reliance on VLMs.

Now, we move on to another question: How
does running a test case during execution help
when there is an error? To address this, we com-
pare PropTest with an approach where property test
cases are only provided for code generation but are
not executed to catch errors (“w/o running test” in
Table 2). Our findings show that running test cases

w/o VLMs as fallback w/ VLMs as fallback

Dataset ViperGPT  PropTest oS I:;:ﬂ;‘;s:eﬂs PropTest
GQA 39.1 43.8 45.8 46.1
A-OKVQA 428 42.8 47.3 48.1
RefCOCO 60.1 61.6 63.8 64.4
RefCOCO+ 50.2 55.8 58.1 58.5

Table 2: Ablation study on the reliance on Visual Lan-
guage Models (VLMs) for error handling in generated
code and the impact of executing test cases.

ViperGPT Incorrect Correct
PropTest Correct Incorrect Correct Incorrect
GQA 86 (11.30%) 303 (39.82%) 297 (39.03%) 75 (9.86%)

A-OKVQA 53 (6.74%) 356 (45.299%) 358 (45.55%) 19 (2.42%)
RefCOCO 278 (43.99%) 154 (24.37%) 159 (25.16%) 41 (6.49%)
RefCOCO+ 119 (18.25%) 169 (25.92%) 316 (48.47%) 48 (7.36%)

Table 3: Accuracy comparison of PropTest and
ViperGPT (Suris et al., 2023) when both models gen-
erate outputs with correct types using Llama3-8B. We
show the counts and percentages of each correct/incor-
rect combination.

in the presence of errors increases accuracy, indi-
cating that our generated property test cases are
effective at detecting incorrect code (e.g., +0.8 in
A-OKVQA).

Furthermore, we ask another question: Does the
PropTest improve the quality of the code in cases
where the baseline also generates correct output
types? To tackle this, we compare the results where
both the ViperGPT (Suris et al., 2023) and PropTest
produced correct output types. To extract the sam-
ples where both the ViperGPT and PropTest pro-
duced correct output types, we run generated prop-
erty tests on the outputs of the ViperGPT. We sam-
pled 1000 subsets from each benchmark and gath-
ered the samples where the output of the code solu-
tion passed the property tests in both ViperGPT and
PropTest. We used the code solutions by LLlama3-
8B. Since A-OKVQA uses soft accuracy as a met-
ric, we assume the output is correct when the soft
accuracy is larger than 0.5. We consider the result
to be correct if the IoU exceeds a threshold of 0.7
for RefCOCO and RefCOCO+. The results shown
in Table 3 indicate that PropTest consistently out-
performs ViperGPT. Across all benchmarks, there
are more cases where PropTest produces correct
answers while ViperGPT is incorrect, compared to
the reverse scenario. Particularly, in GQA, among
the cases where both models produced correct out-
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Method Acc.

Basic VQA 45.6 732 (5.8%)
Advanced VQA 46.1 1264 (10%)

# Errors Assert. Runt. Syntax

469 232 31
1001 227 36

Table 4: Error analysis on GQA dataset using basic
and advanced property tests using Llama3-8B, includ-
ing runtime and syntax errors. APIs are used for the
Advanced VQA property test cases, where only basic
Python functions are used in Basic VQA.

put types, PropTest provided correct answers while
the ViperGPT was incorrect in 11.30% of the cases.
Conversely, ViperGPT was correct while PropTest
was incorrect in 9.86% of the cases. These results
demonstrate that even with information about the
type (properties). property tests lead the code gen-
eration process toward more accurate solutions.

6 Property Test Analysis

In this section, we investigate generated property
tests in depth by comparing two types of VQA
property test cases (section 6.1) and evaluating the
generated property test cases (section 6.2).

6.1 Basic vs Advanced Property Tests

Table 4 shows the accuracy and error analysis
of two types of VQA property fest cases using
Llama3-8B. Advanced property test cases have
higher accuracy compared to basic tests. Using
advanced property test case generation produces
almost twice as many etrors as basic property test
case generation, This is due fo an exfra seman-
tic property test, which leads fo more assertion
errors. Advanced property test cases will be longer
and more complicated than basic test cases, which
causes more syntax errors (e.g., 31 — 36).

6.2 Generated Property Test Evalnation

We first evaluate our generated property tests on
correctness by using the answers. If an answer
passes the generated test, we count it as correct,
We report this as accuracy in Table 5. We also
examine the quality of our property test cases by
using toxicity rate (Chen et al., 2022). If the pro-
duced results pass the test while the answer fails
the test, we assume the test case is toxic. Advanced
VQA property test cases have lower accuracy and
higher toxic rates compared to basic VQA tests he-
cause they generate complicated property test cases
that check semantic properties using tools.
Moreover, we present a 2 x 2 confusion matrix
for the advanced property test cases generated on

Method Dataset Acc. Toxic rate
Basic VQA GQA 095.7% 0.03%
Advanced VQA  GQA 91.7% 0.04%

Table 5: Accuracy and loxic rate ol generated property
test cases on GQA with Llama3-8B. APIs are utilized
in Advanced VQA property test cases, while only basic
Python functions are used in Basic VQA.
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Figure 6;: Confusion Matrix of the generated advanced
property test cases on GQA using Llama3-8B. We show
the counts ol correct and incorrect results, further di-
vided by whether they passed or did not pass the gener-
ated property tesl case.

GQA using Llama3-8B in Fig. 6. We define True
Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) as follows:

* TP: cases where the correct result passes the
property case

= TN: cases where the wrong result fails the
property case

* FP: cases where the wrong result passes the
property case

* FN: cases where the correct result fails the
property case

The matrix shows a high number of false positives,
primarily due to the flexibility of VQA property
test cases. For example, these tests often check
for binary answers (yes or no), which can pass
even if the result is incorrect. The confusion matrix
for the basic property test case and for the visual
grounding test case are provided in Appendix D.
Additionally, we conducted an experiment with
the Oracle property tests on randomly sampled 100
subsets from GQA and RefCOCO. We created the
oracle property tests by manually fixing errors in
the generated property tests using Llama3-8B. As
shown in Table 6, we can see an improve ment when
using oracle property tests. Our oracle property
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: PropTest
Dataset ViperGPT PropTest ot Ehriche B it
GQA (Acc.) 42.0 46.0 50.0
RefCOCO (Iol)) 48.2 60.4 62.5

Table 6: Comparison of ViperGPT, PropTest, and
PropTest with Oracle Property Tests for GQA (Accu-
racy) and RefCOCO (IoU). We sample 100 subsets from
each benchmark and use Llama3-8B.

tests could still be further refined as we only lim-
ited ourselves to fixing mistakes in the automat-
ically generated property tests. Importantly, this
result shows that better property tests lead to fur-
ther improvement under our method, generating
better code and signaling that PropTest works for
the right reasons.

7 Related Work

End-to-end vision language models (VLMs) are
generally trained on large datasets containing
images paired with text descriptions or instruc-
tions (Li et al., 2023; Alayrac et al., 2022; Yu et al.,
2022; Driess et al., 2023; Liet al., 2022a; Liu et al.,
2023; Guo et al., 2023; Wang et al., 2023). By
learning correlations between visual features and
linguistic patterns, VLMs can understand sophis-
ticated relations between images and text using a
single forward pass through a deep neural network.
These models, however large, are still bounded by
what functions can be learned and encoded in their
model weights.

On the other hand, with the rise of LLMs for
code generation in recent years (Chen et al., 2021;
Roziere et al., 2023; Guo et al., 2024; Nijkamp
et al., 2023; Luo et al., 2023), a recent set of meth-
ods in visual recognition have adopted the use of
these models to solve visual tasks using a hybrid
approach where VLMs and other computer vision
models are used as tools by one of these code gen-
eration LLMs to generate a program that can solve
a given task (Surfs et al., 2023; Gupta and Kemb-
havi, 2023; Subramanian et al., 2023). This type
of neuro-symbolic reasoning model was referred
to as Visual Programming by Gupta and Kemb-
havi (2023). These methods lead to an executable
program that decomposes complex visual reason-
ing queries into interpretable steps, which are then
executed to produce results. These methods de-
fine APIs (tools) they use during the execution,
with functions mapped to off-the-shelf vision mod-
ules such as object detectors (He et al., 2017; Li

et al., 2022a), depth estimators (Ranftl et al., 2022),
among many others. These methods benefit from
not needing extra training while enhancing reason-
ing capabilities and interpretability. The perfor-
mance of these methods depends on the tools or
APIs the model leverages and the quality of the gen-
erated code. One line of work focuses on creating
better and more diverse toolsets to improve accu-
racy (Yuan et al., 2024; Chen et al., 2023b; Wang
et al., 2024). Efforts to enhance code quality have
been made by code refinement techniques, incor-
porating various types of feedback, such as visual,
textual, error-related, and human feedback (Gao
et al., 2023). Self-tuning mechanisms have also
been explored to optimize model hyperparameters
automatically (StaniC et al., 2024). Training a code
debugger to detect and fix the code has been inves-
tigated (Wu et al., 2024). Our method builds upon
these findings, aiming to maximize the efficacy of
VLMs (Li et al., 2023, 2022a) through property
testing that is more specific to the visual domain.

Meanwhile, writing test cases is a common tech-
nique used by software developers to avoid writing
code that contains programming errors. Similarly,
it has enhanced code generation in code contest
tasks. Test cases are used to detect errors and
give feedback for self-refinement (Le et al., 2023;
Chen et al., 2023a; Olausson et al., 2023). An-
other line of work generates test cases by mutating
existing test inputs (Li et al., 2022b) or by using
LLMs (Chen et al., 2022). Our research, however,
differs from these methods by generating property
tests that check different properties of the output,
and utilizing these tests as an additional input when
generating code.

8 Conclusion

This paper presents PropTest, a novel framework
for leveraging property test code generation to im-
prove the quality of generated program code in
visual programming. PropTest shows consistent
improvements on VQA and Visual Grounding with
four open-source code generation LLLMs. Interest-
ingly, we find that common software development
advice which dictates that we should first write test-
ing code before implementing new functionality,
also applies to LLM-based code generation.

Acknowledgements: Our work was partially
funded by the Ken Kennedy Institute at Rice
University and NSF Award #2221943, #2201710,
#1845893.
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9 Limitations

PropTest is an initial work that applies property test
case generation for visual reasoning. Although the
PropTest is a very promising framework for visual
reasoning, there are several limitations that can be
mentioned. First, PropTest requires an extra LLM
inference to generate property test code, which will
require extra time and resources, but we expect that
as faster LLMs are supported in the future, this
becomes less of an issue. Additionally, PropTest
needs to design a specific property test case prompt
depending on the type of the result (image or text).
This can be resolved by adding an LLM that can
design an automatic prompt depending on the task.

Although less common, the code generated for
the property tests themselves could also contain
logical errors which limits their usefulness, and
additionally, the tools they rely upon could also
introduce errors. These limitations can be resolved
by integrating visual programming works focused
on tool generation (Yuan et al., 2024; Wang et al.,
2024) or self-refining (Gao et al., 2023; Stani¢ et al.,
2024) to enhance the code generation skills. Fi-
nally, although the discussed datasets show strong
performance, numerous visual reasoning tasks,
such as video causal/temporal reasoning, remain to
be explored in future research.
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