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Abstract—Large language models (LLMs), such as GPT4 and
LLaMA, are creating significant advancements in natural language
processing, due to their strong text encoding/decoding ability and
newly found emergent capability (e.g., reasoning). While LLMs
are mainly designed to process pure texts, there are many real-
world scenarios where text data is associated with rich structure
information in the form of graphs (e.g., academic networks, and
e-commerce networks) or scenarios where graph data is paired with
rich textual information (e.g., molecules with descriptions). Besides,
although LLMs have shown their pure text-based reasoning ability,
it is underexplored whether such ability can be generalized to
graphs (i.e., graph-based reasoning). In this paper, we provide
a systematic review of scenarios and techniques related to large
language models on graphs. We first summarize potential scenarios
of adopting LLMs on graphs into three categories, namely pure
graphs, text-attributed graphs, and text-paired graphs. We then
discuss detailed techniques for utilizing LLLMs on graphs, including
LLM as Predictor, LLM as Encoder, and LLM as Aligner, and
compare the advantages and disadvantages of different schools
of models. Furthermore, we discuss the real-world applications of
such methods and summarize open-source codes and benchmark
datasets. Finally, we conclude with potential future research direc-
tions in this fast-growing field.

Index Terms—Graph neural networks, graph representation
learning, large language models (LLMs), natural language
processing.
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I. INTRODUCTION

ARGE language models (LLMs) (e.g., BERT [23], T5 [29],

LLaMA [118]) which represents a direction of ever-
increasing models’ sizes pre-trained on larger corpora, have
demonstrated powerful capabilities in solving natural language
processing (NLP) tasks, including question answering [1], text
generation [2] and document understanding [3]. There are no
clear and static thresholds regarding the model sizes. Early
LLMs (e.g., BERT [23], RoBERTa [24]) adopt an encoder-
only architecture and show capabilities in text representation
learning [4] and natural language understanding [3]. In recent
years, more focus has been given to larger decoder-only architec-
tures [118] or encoder-decoder architectures [29]. As the model
size scales up, such LLMs have also shown reasoning ability
and even more advanced emergent ability [5], exposing a strong
potential for Artificial General Intelligence (AGI).

While LLMs are extensively applied to process pure texts,
there is an increasing number of applications where the text
data are associated with structure information which are rep-
resented in the form of graphs. As presented in Fig. 1, in
academic networks, papers (with title and description) and
authors (with profile text), are interconnected with authorship
relationships. Understanding both the author/paper’s text infor-
mation and author-paper structure information on such graphs
can contribute to advanced author/paper modeling and accurate
recommendations for collaboration; In the scientific domain,
molecules are represented as graphs and are often paired with
text that describes their basic properties (e.g., mass and weight).
Joint modeling of both the molecule structure (graph) and the as-
sociated rich knowledge (text) is important for deeper molecule
understanding. Since LLMs are mainly proposed for modeling
texts that lie in a sequential fashion, those scenarios mentioned
above pose new challenges on how to enable LLMs to encode
the structure information on graphs. In addition, since LLMs
have demonstrated their superb text-based reasoning ability, it
is promising to explore whether they have the potential to address
fundamental graph reasoning problems on pure graphs. These
graph reasoning tasks include inferring connectivity [6], shortest
path [7], subgraph matching [8], and logical rule induction [18].

Recently, there has been an increasing interest [9] in extending
LLMs for graph-based applications (summarized in Fig. 1).
According to the relationship between graph and text presented
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Fig. 1. According to the relationship between graph and text, we categorize
three LLM on graph scenarios. Depending on the role of LLM, we summa-
rize three LLM-on-graph techniques. “LLM as Predictor” is where LLMs are
responsible for predicting the final answer. “LLM as Aligner” will align the
inputs-output pairs with those of GNNs. “LLM as Encoder” refers to using
LLM:s to encode and obtain feature vectors.

in Fig. 1, the application scenarios can be categorized into
pure graphs, text-attributed graphs (nodes/edges are associated
with texts), and text-paired graphs. Depending on the role of
LLMs and their interaction with graph neural networks (GNNs),
the LLM on graphs techniques can be classified into treating
LLMs as the final component for prediction (LLM as Predictor),
treating LLMs as the feature extractor for GNNs (LLM as
Encoder), and align the latent space of LLMs with GNNs (LLM
as Aligner).

There are a limited number of existing surveys exploring the
intersection between LLMs and graphs. Related to deep learning
on graphs, Liu et al. [20] discuss pretrained foundation models
on graphs, including their backbone architectures, pretraining
methods, and adaptation techniques. Pan et al. [21] review the
connection between LLMs and knowledge graphs (KGs) espe-
cially on how KGs can enhance LLMs training and inference,
and how LLMs can facilitate KG construction and reasoning.
Mao et al. [203] and Li et al. [204] review LLM on graphs
focusing on techniques rather than applications. In summary,
existing surveys either focus more on GNNs rather than LLMs
or fail to provide a systematic perspective on their applications
in various graph scenarios as in Fig. 1. Our paper provides
a comprehensive review of the LLMs on graphs for broader
researchers from diverse backgrounds besides the computer
science and machine learning community who want to enter
this rapidly developing field (Fig. 2).

Our Contributions: The notable contributions of our paper are
summarized as follows:
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o Categorization of Graph Scenarios: We systematically
summarize the graph scenarios where language models
can be adopted into: pure graphs, text-attributed graphs,
and text-paired graphs.

o Systematic Review of Techniques: We provide the most
comprehensive overview of language models on graph
techniques. For different graph scenarios, we summarize
the representative models, provide detailed illustrations of
each of them, and make necessary comparisons.

® Abundant Resources: We collect abundant resources on
language models on graphs, including benchmark datasets,
open-source codebases, and practical applications.

e Future Directions: We delve into the foundational prin-
ciples of language models on graphs and propose six
prospective avenues for future exploration.

Organization of Survey: The rest of this survey is organized
as follows. Section II-B introduces the background of LLMs
and GNN:ss, lists commonly used notations, and defines related
concepts. Section III categorizes graph scenarios where LLMs
can be adopted and summarizes LLMs on graph techniques.
Sections 1V, V, and VI provides a detailed illustration of LLM
methodologies for different graph scenarios. Section VII deliv-
ers available datasets, open-source codebases, and a collection
of applications across various domains. Section VIII introduces
some potential future directions. Section IX summarizes the

paper.

II. DEFINITIONS & BACKGROUND

A. Definitions

We provide definitions of various types of graphs and intro-
duce the notations (as shown in Table I) in this section.

Definition 1 (Graph): A graph can be defined as G = (V, &).
Here V signifies the set of nodes, while £ denotes the set of
edges. A specific node can be represented by v; € V, and an
edge directed from node v; to v; can be expressed as e;; =
(vs,v;) € €. The set of nodes adjacent to a particular node v is
articulated as N (v) = {u € V|(v,u) € £}.

Definition 2 (Graph with node-level textual information): This
type of graph can be denoted as G = (V, &, D), where V, € and
D are node set, edge set, and text set, respectively. Eachv; € Vis
associated with some textual information d,,, € D. For instance,
in an academic citation network, one can interpret v € VV as
the scholarly articles, e € £ as the citation links between them,
and d € D as the textual content of these articles. A graph with
node-level textual information is also called a text-attributed
graph [31], a text-rich graph [61], or a textual graph [71].

Definition 3 (Graph with edge-level textual information): This
type of graph can be denoted as G = (V, £, D). Eache;; € £ is
associated with some textual information d.,; € D. For exam-
ple, in a social network, one can interpret v € V as the users,
e € £ as the interaction between the users, and d € D as the
textual content of the messages sent between the users. Such a
graph is also called a textual-edge network [73].

Definition 4 (Graph with graph-level textual information):
This type of graph can be denoted as the pair (G, dg), where
G =(V,€).Vand € are node set and edge set. dg is the text
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Zero-Shot [123]-[125], [127], [130],
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=
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s H Graphs Two-step  }—{GIANT [57], LM-GNN [67], SimTeG [34], GaLM [79] )
]
= Data Augmentation LLM-GNN [63], TAPE [69], ENG [70
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Graph as Sequence )— MoIXPT [168] , LLM-ICL [167] , Text+Chem T5 [170] ,
MolT5 [122] , KV-PLM [174] , Chemformer [155] ,
LLM as Predictor (MFBERT [175] , Galatica [177] , SMILES-BERT [178]
ReLM [156] , Prot2Text [160] , GIMLET [46] ,
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LLM as Aligner )—(Latent Space Alignment )— CLAMP [169] , MoMu-v2 [172] , MoleculeSTM [171] ,
(MoMu [173] )
Fig.2. A taxonomy of LLM on graph scenarios and techniques with representative examples.

set paired to the graph G. For instance, in a molecular graph G,
v € V denotes an atom, e € £ represents the strong attractive
forces or chemical bonds that hold molecules together, and dg
represents the textual description of the molecule. We note that
texts may also be associated with subgraph-level concepts and
then paired with the entire graph. Such a graph is also called a
text-paired graph.

B. Background

(Large) Language Models: Language Models (LMs), or lan-
guage modeling, is an area in the field of natural language
processing (NLP) on understanding and generation from text
distributions. In recent years, large language models (LLMs)
have demonstrated impressive capabilities in tasks such as ma-
chine translation, text summarization, reasoning, and question
answering [26], [42], [111], [112], [113], [114], [194], [208].

Language models have evolved significantly over time.
BERT [23] marks significant progress in language modeling
and representation. BERT models the conditional probability
of a word given its bidirectional context, also named masked

language modeling (MLM) objective :

Esp Zlogp(sl-\sl,...,si,l,sﬂ_l,...,sNS) , (D
S;ES
where S is a sentence sampled from the corpus D, s; is the i-th
word in the sentence, and N is the length of the sentence. On
the other hand, the objective of causal language modeling or text
generation is defined as:

Es-p | Y logp(silst, ., si1)] - 2)

s; €S

Following BERT, other masked language models are proposed,
such as RoBERTa [24], ALBERT [115], and ELECTRA [116],
with similar architectures and objectives of text representation.
Efforts have been made to combine language models with
other modalities such as vision [95], [120] and biochemical
structures [46], [121], [122]. In this paper, we will discuss its
combination with graphs.

The lifecycle of an LLM usually involves some or all the
following steps: pretraining, finetuning, and prompting. In pre-
training, LLMs are usually trained on a larger corpus with
multiple language modeling objectives [23], [26], [28], which
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TABLE I
NOTATIONS OF CONCEPTS

Notations Descriptions
- The length of a set.
A, B] The concatenation of A and B.
| Concatenate operation.
[4 A graph.
)% The set of nodes in a graph.
v Anodewv € V.
£ The set of edges in a graph.
e Anedgee € £.
Gu The ego graph associated with v in G.
N(v) The neighbors of a node v.
M A meta-path or a meta-graph.
N The nodes which are reachable from
(V) node v with meta-path or meta-graph M.
D The text set.
seS The text token in a text sentence S.
dy, The text associated with the node v;.
de,; The text associated with the edge e;;.
dg The text associated with the graph G.
n The number of nodes, n = [V].
b The dimension of a node hidden state.
Xy, € RY The initial feature vector of the node v;.
H, € R"*%? The node hidden feature matrix.
h,, €R’ The hidden representation of node v;.
hg € R? The hidden representation of a graph G.
h,, € R’ The representation of text dy.
Hy, € RI4vX? The hidden states of tokens in dy.
W, 0,w,0 Learnable model parameters.
LLM(-) Large Language model.
GNN(+) Graph neural network.

aims to endow LLMs with strong language understanding and
completion capability. If domain-specific abilities are expected,
LLMs are then finetuned with a smaller amount of domain-
specific data [36], [37], [38], [39], [42], [43]. Human preference
optimization methods are sometimes applied after this stage to
align outputs better with users’ intentions or social values [205],
[206], [207]. Finally, various prompting or prompt engineering
techniques can be deployed to boost downstream task perfor-
mance [47], [48], [49]. A more comprehensive description can
be found in Appendix A, available online

We would like to point out that the word “large” in LLM
is not associated with a clear and static threshold to divide
language models. “Large” actually refers to a direction in which
language models are inevitably evolving, and larger foundational
models tend to possess significantly more representation and
generalization power. Hence, we define LLMs to encompass
both medium-scale PLMs, such as BERT, and large-scale LMs,
like GPT-4, as suggested by [21].

Graph Neural Networks & Graph Transformers: Inreal-world
scenarios, not all the data are sequential like text, many data lies
in a more complex non-euclidean structure, i.e., graphs. GNN is
proposed as a deep-learning architecture for graph data. Primary
GNNs including GCN [83], GraphSAGE [84] and, GAT [85]
are designed for solving node-level tasks. They mainly adopt
a propagation-aggregation paradigm to obtain node representa-
tions:

h() = AGG® (hgf—U,PROP(” ({hg}-U lue /\/(v)})) .
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When propagation is global (u € V), the Graph Trans-
former [140], [141] with attention-weighted node importance
during sum aggregation can be defined. Let W, W, Wy, be
the query, key, and value matrices, respectively, and ke, denote
the similarity between two nodes. Then, we have:

) N )
Atn(hi ) =3 D
wey 2wey Kexp(ho 7 hy )

(1-1) (1-1)
where ey (B, 10 = excp( 2 Wahl Wi

To solve graph-level tasks, GNN modcféls like GIN [188]
or Graph Transformers obtain graph representations using a
READOUT function: hg = READOUT ({h,, | v; € G}). The
READOUT functions include mean pooling, max pooling, and
so on. Subsequent work on GNN tackles the issues of over-
smoothing [138], over-squashing [139], interpretability [144],
and bias [142]. While message-passing-based GNNs excel in
structure encoding, researchers aim to enhance their expressive-
ness with Graph Transformers. These models leverage global
multi-head attention mechanisms and integrate graph induc-
tive biases through positional encoding, structural encoding,
combining message-passing with attention layers, or improving
attention efficiency on large graphs. Graph Transformers have
been proven to be a state-of-the-art solution for many pure graph
problems.

Language Models Versus Graph Transformers: Modern lan-
guage models and graph Transformers both use Transform-
ers [92] as the base model architecture. This makes the two con-
cepts hard to distinguish, especially when the language models
are adopted on graph applications. In this paper, “Transformers”
typically refers to Transformer language models for simplicity.
Here, we provide three points to help distinguish them: 1)
Tokens (word token versus node token): Transformers take a
token sequence as inputs. For language models, the tokens are
word tokens; while for graph Transformers, the tokens are node
tokens. In those cases where tokens include both word tokens
and node tokens if the backbone Transformers is pretrained
on text corpus (e.g., BERT [23] and LLaMA [118]), we will
call it a “language model”. 2) Positional Encoding (sequence
versus graph): language models typically adopt the absolute
or relative positional encoding considering the position of the
word token in the sequence, while graph Transformers adopt
shortest path distance [140], random walk distance, the eigen-
values of the graph Laplacian [141] to consider the distance
of nodes in the graph. 3) Goal (text versus graph): The lan-
guage models are originally proposed for text encoding and
generation; while graph Transformers are proposed for node
encoding or graph encoding. In those cases where texts are
served as nodes/edges on the graph if the backbone Transform-
ers is pretrained on text corpus, we will call it a “language
model”.

hg_l)WV,

III. CATEGORIZATION AND FRAMEWORK

In this section, we first introduce our categorization of graph
scenarios where language models can be adopted. Then we
discuss the categorization of LLM on graph techniques. Finally,
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we summarize the training & inference framework for language
models on graphs.

A. Categorization of Graph Scenarios With LLMs

Pure Graphs without Textual Information are graphs with
no text information or no semantically rich text information.
Examples include traffic graphs and power transmission graphs.
Those graphs often serve as context to test the graph reasoning
ability of large language models (solve graph theory problems)
or serve as knowledge sources to enhance the large language
models (alleviate hallucination).

Text-Attributed Graphs refer to graphs where nodes or edges
are associated with semantically rich text information. They
are also called text-rich networks [31], textual graphs [71] or
textual-edge networks [73]. Examples include academic net-
works, e-commerce networks, social networks, and legal case
networks. On these graphs, researchers are interested in learning
representations for nodes or edges with both textual and structure
information [71][73].

Text-Paired Graphs have textual descriptions defined for the
entire graph structure. For example, graphs like molecules may
be paired with captions or textual features. While the graph
structure significantly contributes to molecular properties, text
descriptions can complement our understanding of molecules.
The graph scenarios can be found in Fig. 1.

B. Categorization of LLMs on Graph Techniques

According to the roles of LLMs and what are the final com-
ponents for solving graph-related problems, we classify LLM
on graph techniques into three main categories:

LLM as Predictor: This category of methods serves LLM as
the final component to output representations or predictions. It
can be enhanced with GNNs and can be classified depending
on how the graph information is injected into LLM: 1) Graph
as Sequence: This type of method makes no changes to the
LLM architecture, but makes it be aware of graph structure by
taking a “graph token sequence” as input. The “graph token
sequence” can be natural language descriptions for a graph or
hidden representations outputted by graph encoders. 2) Graph-
Empowered LLM: This type of method modifies the architecture
of the LLM base model (i.e., Transformers) and enables it to
conduct joint text and graph encoding inside their architecture.
3) Graph-Aware LLM Finetuning: This type of method makes
no changes to the input of the LLMs or LLM architectures, but
only fine-tunes the LLMs with supervision from the graph.

LLM as Encoder: This method is mostly utilized for graphs
where nodes or edges are associated with text information
(solving node-level or edge-level tasks). GNNs are the final
components and we adopt LLM as the initial text encoder. To
be specific, LLMs are first utilized to encode the text associ-
ated with the nodes/edges. The outputted feature vectors by
LLMs then serve as input embeddings for GNNs for graph
structure encoding. The output embeddings from the GNNs
are adopted as final node/edge representations for downstream
tasks. However, these methods suffer from convergence issues,
sparse data issues, and inefficient issues, where we summarize
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solutions from optimization, data augmentation, and knowledge
distillation perspectives.

LIM as Aligner: This category of methods adopts LLMs as
text-encoding components and aligns them with GNNs which
serve as graph structure encoding components. LLMs and GNNs
are adopted together as the final components for task solving.
To be specific, the alignment between LLMs and GNNs can be
categorized into 1) Prediction Alignment where the generated
pseudo labels from one modality are utilized for training on the
other modality in an iterative learning fashion and 2) Latent
Space Alignment where contrastive learning is adopted to align
text embeddings generated by LLMs and graph embeddings
generated by GNNs.

In the following sections, we will follow our categorization
in Section III and discuss detailed methodologies for each graph
scenario.

IV. PURE GRAPHS

The study of pure graphs in graph theory is essential for under-
standing the introduction of LLMs into graph-related reasoning
problems. Pure graphs are a universal representation format used
to address a wide range of algorithmic problems in computer
science. Many graph-based concepts, such as shortest paths,
specific sub-graphs, and flow networks, are strongly connected
to real-world applications [132], [133], [134], [192]. Therefore,
reasoning based on pure graphs is crucial for providing theoret-
ical solutions and insights for real-world applications.

Nevertheless, many reasoning tasks require a computation
capacity beyond traditional GNNs. GNNs are typically designed
to carry out a bounded number of operations given a graph size.
In contrast, graph reasoning problems can require up to indefinite
complexity depending on the task’s nature. On the other hand,
LLMs demonstrate excellent emergent reasoning ability [47],
[111], [112] recently. This is partially due to their autoregressive
mechanism, which enables computing indefinite sequences of
intermediate steps with careful prompting or training [47], [48].

The following subsections discuss the attempts to incorporate
LLMs into pure graph reasoning problems. We will also discuss
the corresponding challenges, limitations, and findings. Table 4
in the Appendix, available online lists a categorization of these
efforts. Usually, input graphs are serialized as part of the input
sequence, either by verbalizing the graph structure [123], [124],
[125], [127], [128], [129], [130], [131] or by encoding the
graph structure into implicit feature sequences [41]. The studied
reasoning problems range from simpler ones like connectivity,
shortest paths, and cycle detection to harder ones like maximum
flow and Hamiltonian pathfinding (an NP-complete problem). A
comprehensive list of the studied problems is listed in Appendix
Table 5, available online. Note that we only list representative
problems here. This table does not include more domain-specific
problems, such as the spatial-temporal reasoning problems
in [127]. We first briefly describe the approaches to formatting
the graph inputs to be fed to LLMs.

Plainly Verbalizing Graphs: Verbalizing the graph structure in
natural language is the most straightforward way of representing
graphs. Representative approaches include describing the edge
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and adjacency lists, widely studied in [123], [124], [127], [130].
For example, for a triangle graph with three nodes, the edge list
can be written as “[(0, 1), (1, 2), (2, 0)]”, which means node O
is connected to node 1, node 1 is connected to node 2, node 2 is
connected to node 0. It can also be written in natural language
such as “There is an edge between node 0 and node 1, an edge
between node 1 and node 2, and an edge between node 2 and
node 0.” On the other hand, we can describe the adjacency list
from the nodes’ perspective. For example, for the same triangle
graph, the adjacency list can be written as “Node 0 is connected
to node 1 and node 2. Node 1 is connected to node 0 and node
2. Node 2 is connected to node 0 and node 1.”

Paraphrasing Graphs: The verbalized graphs can be lengthy,
unstructured, and complicated to read, even for humans, so they
might not be the best input format for LLMs to infer the answers.
To this end, researchers also attempt to paraphrase the graph
structure into more natural or concise sentences. [125] find that
by prompting LLMs to generate a format explanation of the raw
graph inputs for itself (Format-Explanation) or to pretend to
play a role in a natural task (Role Prompting), the performance
on some problems can be improved but not systematically.
[130] explores the effect of grounding the pure graph in a
real-world scenario, such as social networks, friendship graphs,
or co-authorship graphs. In such graphs, nodes are described as
people, and edges are relationships between people.

Encoding Graphs Into Implicit Feature Sequences: Finally,
researchers also attempt to encode the graph structure into
implicit feature sequences as part of the input sequence [41]. Un-
like the previous verbalizing approaches, this usually involves
training a graph encoder to encode the graph structure into a
sequence of features and fine-tuning the LLLMs to adapt to the
new input format.

A. Direct Answering

Although graph-based reasoning problems usually involve
complex computation, researchers still attempt to let language
models directly generate answers from the serialized input
graphs as a starting point, partially because of the simplicity of
the approach and partially in awe of other emergent abilities of
LLMs. Although various attempts have been made to optimize
how graphs are presented in the input sequence discussed in the
sections above, bounded by the finite sequence length and com-
putational operations, this approach has a fundamental limitation
to solving complex reasoning problems such as NP-complete
ones. Unsurprisingly, most studies find that LLMs possess pre-
liminary graph understanding ability, but the performance is less
satisfactory on more complex problems or larger graphs [41],
[123], [124], [125], [127], [130] where reasoning is necessary.

On plainly verbalized graphs, one can prompt LLMs to
answer questions either in zero-shot or few-shot (in-context
learning) settings. The former asks questions directly given
the graph structure, while the latter asks questions about the
graph structure after providing a few examples of questions
and answers. [123], [124], [125] do confirm that LLMs can
answer easier questions such as connectivity, neighbor identifi-
cation, and graph size counting but fail to answer more complex
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questions such as cycle detection and Hamiltonian pathfinding.
Their results also reveal that providing more examples in the
few-shot setting increases the performance, especially on easier
problems, although it is still not satisfactory. Results on para-
phrased graphs indicate that encoding in real-world scenarios
can improve performance on some problems, but it still cannot
be done consistently. By encoding graphs into features, [41]
demonstrates drastic performance improvement on problems
including substructure counting, maximum triplet sum, shortest
path, and bipartite matching. This indicates that fine-tuning
LLM:s has great fitting power on a specific task distribution.

B. Heuristic Reasoning

Direct mapping to the output leverages the LLMs’ powerful
representation power to “guess” the answers. Still, it does not
fully utilize the LLMs’ impressive emergent reasoning ability,
which is essential for solving complex reasoning problems.
To this end, attempts have been made to let LLMs perform
heuristic reasoning on graphs. This approach encourages LLMs
to perform a series of intermediate reasoning steps that might
heuristically lead to the correct answer, which resembles a
path-finding reasoning schema [202].

Reasoning Step by Step: Encouraged by the success of chain-
of-thought (CoT) reasoning [47], [112], researchers also attempt
to let LLMs perform reasoning step by step on graphs. Chain-
of-thought encourages LLMs to roll out a sequence of reasoning
steps to solve a problem, similar to how humans solve problems.
Zero-shot CoT is a similar approach that does not require any ex-
amples. These techniques are studied in [41], [123], [124], [125],
[127],[130], [131]. Results indicate that CoT-style reasoning can
improve the performance on simpler problems, such as cycle
detection and shortest path detection. Still, the improvement is
inconsistent or diminishes on more complex problems, such as
Hamiltonian path finding and topological sorting.

Retrieving Subgraphs as Evidence: Many graph reasoning
problems, such as node degree counting and neighborhood
detection, only involve reasoning on a subgraph of the whole
graph. Such properties allow researchers to let LLMs retrieve
the subgraphs as evidence and perform reasoning on the sub-
graphs. Build-a-Graph prompting [123] encourages LLMs to
reconstruct the relevant graph structures and then perform rea-
soning on them. This method demonstrates promising results
on problems except for Hamiltonian pathfinding, a notoriously
tricky problem requiring reasoning on the whole graph. Another
approach, Context-Summarization [125], encourages LLMs to
summarize the key nodes, edges, or sub-graphs and perform
reasoning.

Searching on Graphs: This kind of reasoning is related to
the search algorithms on graphs, such as breadth-first search
(BFS) and depth-first search (DFS) Although not universally
applicable, BFS and DFS are the most intuitive and effec-
tive ways to solve some graph reasoning problems. Numer-
ous explorations have been made to simulate searching-based
reasoning, especially on knowledge-graph question answering.
This approach enjoys the advantage of providing interpretable
evidence besides the answer. Reasoning-on-Graphs (RoG) [128]

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on February 10,2025 at 18:12:46 UTC from IEEE Xplore. Restrictions apply.



8628

is a representative approach that prompts LLMs to generate
several relation paths as plans, which are then retrieved from
the knowledge graph (KG) and used as evidence to answer the
questions. Another approach is to iteratively retrieve and reason
on the subgraphs from KG [129], [131], simulating a dynamic
searching process. At each step, the LLMs retrieve neighbors
of the current nodes and then decide to answer the question
or continue the next search step. These methods address the
scalability challenge when knowledge from multiple graphs is
available.

C. Algorithmic Reasoning

The previous two approaches are heuristic, which means
that the reasoning process accords with human intuition but
is not guaranteed to lead to the correct answer. In contrast,
these problems are usually solved by algorithms in computer
science. Therefore, researchers also attempt to let LLMs perform
algorithmic reasoning on graphs. [123] proposed “Algorithmic
Prompting”, which prompts the LLMs to recall the algorithms
that are relevant to the questions and then perform reasoning step
by step according to the algorithms. Their results, however, do
not show consistent improvement over the heuristic reasoning
approach. A more direct approach, Graph-ToolFormer [126],
lets LLMs generate API calls as explicit reasoning steps. These
API calls are then executed externally to acquire answers on
an external graph. This approach is suitable for converting
real-world tasks into pure graph reasoning problems, and it has
demonstrated efficacy in various applications such as knowledge
graphs, social networks, and recommendation systems.

D. Discussion

Despite the extensive research, there has not been a consen-
sus about the best practice in graph representation in LLMs.
The eventual solution to this problem should reach a perfect
balance between computation efficiency and information com-
pleteness, probably drawing inspiration from long-context LLM
researches [209], [210]. The above reasoning methods are not
mutually exclusive, and future efforts can be made to combine
them to achieve better performance. For example, efficiency in
algorithmic searching can be improved by prompting language
models for better heuristics.

V. TEXT-ATTRIBUTED GRAPHS

Text-attributed graphs exist ubiquitously in the real world,
e.g., academic networks, and legal case networks. Learning on
such networks requires the model to encode both the textual
information associated with the nodes/edges and the structure
information lying inside the input graph. Depending on the role
of LLM, existing works can be categorized into three types:
LLM as Predictor, LLM as Encoder, and LLM as Aligner. We
summarize all surveyed methods in Appendix Table 6, available
online.
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A. LLM as Predictor

These methods serve the language model as the main model
architecture to capture both the text information and graph
structure information. They can be categorized into three types:
Graph as Sequence methods, Graph-Empowered LLMs, and
Graph-Aware LLM finetuning methods, depending on how struc-
ture information in graphs is injected into language models
(input versus architecture versus loss). In the Graph as Se-
quence methods, graphs are converted into sequences that can
be understood by language models together with texts from
the inputs. In the Graph-Empowered LLMs methods, people
modify the architecture of Transformers (which is the base
architecture for LLMs) to enable it to encode text and graph
structure simultaneously. In the Graph-Aware LLM finetuning
methods, LLM is fine-tuned with graph structure supervision
and can generate graph-contextualized representations.

1) Graph as Sequence: In these methods, the graph infor-
mation is mainly encoded into the LLM from the “input” side.
The ego-graphs associated with nodes/edges are serialized into
a sequence Hg, which can be fed into the LLM together with
the texts d,,:

Hg, = Graph2Seq(G,), 3)
h, = LLM([Hg, ,d,])- “4)

Depending on the choice of Graph2Seq(-) function, the methods
can be further categorized into rule-based methods and GNN-
based methods. The illustration of the categories can be found
in Fig. 3.

Rule-Based: Linearizing Graphs into Text Sequence with
Rules: These methods design rules to describe the structure
with natural language and adopt a text prompt template as
Graph2Seq(-). For example, given an ego-graph G,,, of the paper
node v; connecting to author nodes v; and v;, and venue nodes
vg and v, Hg, = Graph2Seq(G.,,) = “The centor paper node
is v;. Its author neighbor nodes are v; and vy, and its venue
neighbor nodes are v, and vs”. This is the most straightforward
and easiest way (without introducing extra model parameters)
to encode graph structures into language models. Along this
line, InstructGLM [45] designs templates to describe local ego-
graph structure (maximum 3-hop connection) for each node
and conduct instruction tuning for node classification and link
prediction. GraphText [64] further proposes a syntax tree-based
method to transfer structure into text sequence. Researchers [81]
also study when and why the linearized structure information on
graphs can improve the performance of LLM on node classifi-
cation and find that the structure information is beneficial when
the textual information associated with the node is scarce (in this
case, the structure information can provide auxiliary information
gain).

GNN-Based: Encoding Graphs into Special Tokens with
GNNs: Different from rule-based methods which use natural lan-
guage prompts to linearize graphs into sequences, GNN-based
methods adopt graph encoder models (i.e., GNN) to encode the
ego-graph associated with nodes into special token representa-
tions which are concatenated with the pure text information into
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the language model:

Hg, = Graph2Seq(G,) = GraphEnc(G,). ®)
The strength of these methods is they can capture hidden rep-
resentations of useful structure information with a strong graph
encoder, while the challenge is how to fill the gap between graph
modality and text modality. GNP [40] adopts a similar philoso-
phy from LLaVA [90], where they utilize GNN to generate graph
tokens and then project the graph tokens into the text token space
with learnable projection matrices. The projected graph tokens
are concatenated with text tokens and fed into the language
model. GraphGPT [44] further proposes to train a text-grounded
GNN for the projection with a text encoder and contrastive
learning. DGTL [75] introduces disentangled graph learning,
serves graph representations as positional encoding, and adds
them to the text sequence. METERN [74] adds learnable relation
embeddings to node textual sequences for text-based multiplex
representation learning on graphs [91].

2) Graph-Empowered LLMs: In these methods, researchers
design advanced LLM architecture (i.e., Graph-Empowered
LLMs) which can conduct joint text and graph encoding in-
side their model architecture. Transformers [92] serve as the
base model for nowadays pretrained LMs [23] and LLMs [35].
However, they are designed for natural language (sequence)
encoding and do not take non-sequential structure information
into consideration. To this end, Graph-Empowered LLMs are
proposed. They have a shared philosophy of introducing virtual
structure tokens H ¢ inside each Transformer layer:

Y - = HY)|

v

(6)

where H g can be learnable embeddings or output from graph
encoders. Then the original multi-head attention (MHA) in
Transformers is modified into an asymmetric MHA to take the
structure tokens into consideration:

) = ||%_, head, (H(l) H?)

MHA 4, ( HY H

O7=OT
—~(1 o K ~
where head,, (H gu), H fiu)) = softmax Q\/W . VS)’

=0 =0

7w —a, W, v —E W)

Quw Ku

Q=
()

5u.

hidden state sequence

(b) GNN-based Graph as Sequence

(c) Graph-Empowered LM

The illustration of various LLM as Predictor methods, including (a) Rule-based Graph As Sequence, (b) GNN-based Graph As Sequence, (c) Graph-

With the asymmetric MHA mechanism, the node encoding
process of the (I + 1)-th layer will be:

=)

1
H, = Normalize <Hg) + MHA 4y (HEJ), H((il,?)) J

H™ = Normalize (HS) + MLP (Hfj) )) 8)
Along this line of work, GreaseLM [66] proposes to have a
language encoding component and a graph encoding compo-
nent in each layer. These two components interact through a
modality-fusion layer (MlInt layer), where a special structure
token is added to the text Transformer input, and a special node
is added to the graph encoding layer. DRAGON [80] further
proposes strategies to pretrain GreaseLM with unsupervised
signals. GraphFormers [71] are designed for node representa-
tion learning on homogeneous text-attributed networks where
the current layer [CLS] token hidden states of neighboring
documents are aggregated and added as a new token on the
current layer center node text encoding. Patton [31] proposes
to pretrain GraphFormers with two novel strategies: network-
contextualized masked language modeling and masked node
prediction. Heterformer [72] introduces virtual neighbor tokens
for text-rich neighbors and textless neighbors which are concate-
nated with the original text tokens and fed into each Transformer
layer. Edgeformers [73] are proposed for representation learning
on textual-edge networks where edges are associated with rich
textual information. When conducting edge encoding, virtual
node tokens will be concatenated onto the original edge text
tokens for joint encoding.

3) Graph-Aware LLM Finetuning: In these methods, the
graph information is mainly injected into the LLM by “fine-
tuning on graphs”. Researchers assume that the structure of
graphs can provide hints on what documents are ‘“‘semantically
similar” to what other documents. For example, papers citing
each other in an academic graph can be of similar topics. These
methods adopt vanilla language models that take text as input
(e.g., BERT [23] and SciBERT [25]) as the base model and fine-
tune them with structure signals on the graph [50]. After that,
the LLMs will learn node/edge representations that capture the
graph homophily from the text perspective. This is the simplest
way to utilize LLMs on graphs. However, during encoding, the
model itself can only consider text.

Most methods adopt the two-tower encoding and training
pipeline, where the representation of each node is obtained
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separately and the model is optimized as follows:

hvi = LLM@(dm)v mein f(hvm {hvj' }v {hv:}) (9)

Here fuj represents the positive nodes to v;, v; represents the
negative nodes to v; and f(-) denotes the pairwise training
objective. Different methods have different strategies for v;L
and v, with different training objectives f(-). SPECTER [50]
constructs the positive text/node pairs with the citation relation,
explores random negatives and structure hard negatives, and
fine-tunes SciBERT [25] with the triplet loss. SciNCL [51]
extends SPECTER by introducing more advanced positive and
negative sampling methods based on embeddings trained on
graphs. Touchup-G [53] proposes the measurement of feature
homophily on graphs and brings up a binary cross-entropy
fine-tuning objective. TWHIN-BERT [55] mines positive node
pairs with off-the-shelf heterogeneous information network em-
beddings and trains the model with a contrastive social loss. MI-
CoL [58] discovers semantically positive node pairs with meta-
path [89] and adopts the InfoNCE objective. E2EG [59] utilizes
a similar philosophy from GIANT [57] and adds a neighbor
prediction objective apart from the downstream task objective.
WalkLLM [60] conducts random walks for structure linearization
before fine-tuning the language model. A summarization of
the two-tower graph-centric LLM fine-tuning objectives can be
found in Appendix Table 7, available online.

There are other methods using the one-tower pipeline, where
node pairs are concatenated and encoded together:

hvi,vj = LLMy (dvq,advj)v mainf(hvi,vj)~ (10)

LinkBERT [30] proposes a document relation prediction objec-
tive (an extension of next sentence prediction in BERT [23])
which aims to classify the relation of two node text pairs from
contiguous, random, and linked. MICoL [58] explores predict-
ing the node pairs’ binary meta-path or meta-graph indicated
relation with the one-tower language model.

4) Discussion: Although the community is making good
progress, there are still some open questions to be solved.

Graph as Code Sequence: Existing graphs as sequence meth-
ods are mainly rule-based or GNN-based. The former relies on
natural language to describe the graphs which is not natural
for structure data, while the latter has a GNN component that
needs to be trained. A more promising way is to obtain a
structure-aware sequence for graphs that can support zero-shot
inference. A potential solution is to adopt codes (that can capture
structures, e.g., graph XML or JSON) to describe the graphs and
utilize code LLMs [22].

Advanced Graph-Empowered LLM Techniques: Graph-
empowered LLLM is a promising direction to achieve founda-
tional models for graphs. However, existing works are far from
enough: 1) Task. Existing methods are mainly designed for
representation learning (with encoder-only LLMs) which are
hard to adopt for generation tasks. A potential solution is to
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design Graph-Empowered LLMs with decoder-only or encoder-
decoder LLMs as the base architecture. 2) Pretraining. Pretrain-
ing is important to enable LLMs with contextualized data un-
derstanding capability, which can be generalized to other tasks.
However, existing works mainly focus on pretraining LLMs
on homogeneous text-attributed networks. Future studies are
needed to explore LLM pretraining in more diverse real-world
scenarios including heterogeneous text-attributed networks [72],
dynamic text-attributed networks [127], and textual-edge net-
works [73].

B. LLM as Encoder

LLMs extract textual features to serve as initial node feature
vectors for GNNs, which then generate node/edge representa-
tions and make predictions. These methods typically adopt an
LLM-GNN cascaded architecture to obtain the final representa-
tion h,, for node v;:

Xy, = LLM(d,,) h, = GNN(X,,G). (11)

Here x,, is the feature vector that captures the textual infor-
mation d,, associated with v;. The final representation h,, will
contain both textual information and structure information of v;
and can be used for downstream tasks. In the following sections,
we will discuss the optimization, augmentation, and distillation
of such models. The figures for these techniques can be found
in Fig. 4.

1) Optimization: One-Step Training refers to training the
LLM and GNN together in the cascaded architecture for the
downstream tasks. TextGNN [76] explores GCN [83], Graph-
SAGE [84], GAT [85] as the base GNN architecture, adds
skip connection between LLM output and GNN output, and
optimizes the whole architecture for sponsored search task. Ads-
GNN [77] further extends TextGNN by proposing edge-level
information aggregation. GNN-LM [65] adds GNN layers to
enable the vanilla language model to reference similar contexts
in the corpus for language modeling. Joint training LLMs and
GNNss in a cascaded pipeline is convenient but may suffer from
efficiency [67] (only support sampling a few one-hop neighbors
regarding memory complexity) and local minimal [34] (LLM
underfits the data) issues.

Two-Step Training means first adapting LLMs to the graph,
and then finetuning the whole LLM-GNN cascaded pipeline.
GIANT [57] proposes to conduct neighborhood prediction
with the use of XR-Transformers [78] and results in an LLM
that can output better feature vectors than bag-of-words and
vanilla BERT [23] embedding for node classification. LM-
GNN [67] introduces graph-aware pre-fine-tuning to warm up
the LLM on the given graph before fine-tuning the whole LLM-
GNN pipeline and demonstrating significant performance gain.
SimTeG [34] finds that the simple framework of first training
the LLMs on the downstream task and then fixing the LLMs
and training the GNNs can result in outstanding performance.
They further find that using the efficient fine-tuning method,
e.g., LoRA [39] to tune the LLM can alleviate overfitting issues.
GalM [79] explores ways to pretrain the LLM-GNN cascaded
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architecture. The two-step strategy can effectively alleviate the
insufficient training of the LLM which contributes to higher text
representation quality but is more computationally expensive
and time-consuming than the one-step training strategy.

2) Data Augmentation: With its demonstrated zero-shot ca-
pability [42], LLMs can be used for data augmentation to gener-
ate additional text data for the LLM-GNN cascaded architecture.
The philosophy of using LLM to generate pseudo data is widely
explored in NLP [82], [88]. LLM-GNN [63] proposes to con-
duct zero-shot node classification on text-attributed networks
by labeling a few nodes and using the pseudo labels to fine-tune
GNNs. TAPE [69] presents a method that uses LLM to generate
prediction text and explanation text, which serve as augmented
text data compared with the original text data. A following
medium-scale language model is adopted to encode the texts
and output features for augmented texts and original text re-
spectively before feeding into GNNs. ENG [70] brings forward
the idea of generating labeled nodes for each category, adding
edges between labeled nodes and other nodes, and conducting
semi-supervised GNN learning for node classification.

3) Knowledge Distillation: LLM-GNN cascaded pipeline is
capable of capturing both text information and structure infor-
mation. However, the pipeline suffers from time complexity
issues during inference, since GNNs need to conduct neighbor
sampling and LLMs need to encode the text associated with both
the center node and its neighbors. A straightforward solution is
to serve the LLM-GNN cascade pipeline as the teacher model
and distill it into an LLM as the student model. In this case,
during inference, the model (which is a pure LLM) only needs
to encode the text on the center node and avoid time-consuming
neighbor sampling. AdsGNN [77] proposes an L2-loss to force
the outputs of the student model to preserve topology after the
teacher model is trained. GraD [68] introduces three strategies
including the distillation objective and task objective to optimize
the teacher model and distill its capability to the student model.

4) Discussion: Given that GNNs are demonstrated as pow-
erful models in encoding graphs, “LLMs as encoders” seems
to be the most straightforward way to utilize LLMs on graphs.
However, there are still open questions.

Limited Task: Go Beyond Representation Learning: Current
“LLMs as encoders” methods or LLM-GNN cascaded archi-
tectures are mainly focusing on representation learning, given
the single embedding propagation-aggregation mechanism of
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GNNs, which prevents it from being adopted to generation tasks
(e.g.,node/text generation). A potential solution to this challenge
can be to conduct GNN encoding for LLM-generated token-level
representations and to design proper decoders that can perform
generation based on the LLM-GNN cascaded model outputs.

Low Efficiency: Advanced Knowledge Distillation: The LLM-
GNN cascaded pipeline suffers from time complexity issues
since the model needs to conduct neighbor sampling and then
embedding encoding for each neighboring node. Although there
are methods that explore distilling the learned LLM-GNN model
into an LLM model for fast inference, they are far from enough
given that the inference of LLM itself is time-consuming. A
potential solution is to distill the model into a much smaller
LM or even an MLP. Similar methods [86] have been proven
effective in GNN to MLP distillation and are worth exploring
for the LLM-GNN cascaded pipeline as well.

C. LLM as Aligner

These methods contain an LLM component for text encoding
and a GNN component for structure encoding. These two com-
ponents are served equally and trained iteratively or parallelly.
LLMs and GNNs can mutually enhance each other since the
LLMs can provide textual signals to GNNs, while the GNNs
can deliver structure information to LLMs. According to how
the LLM and the GNN interact, these methods can be further cat-
egorized into: LLM-GNN Prediction Alignment and LLM-GNN
Latent Space Alignment. The illustration of these two categories
of methods can be found in Fig. 5.

1) LLM-GNN Prediction Alignment: This refers to training
the LLM with the text data on a graph and training the GNN
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with the structure data on a graph iteratively. LLM will gener-
ate labels for nodes from the text perspective and serve them
as pseudo-labels for GNN training, while GNN will generate
labels for nodes from the structure perspective and serve them
as pseudo-labels for LLM training. By this design, these two
modality encoders can learn from each other and contribute to a
final joint text and graph encoding. In this direction, LTRN [56]
proposes a novel GNN architecture with personalized PageR-
ank [93] and attention mechanism for structure encoding while
adopting BERT [23] as the language model. The pseudo labels
generated by LLM and GNN are merged for the next iteration
of training. GLEM [61] formulates the iterative training pro-
cess into a pseudo-likelihood variational framework, where the
E-step is to optimize LLM and the M-step is to train the GNN.

2) LLM-GNN Latent Space Alignment: It denotes connect-
ing text encoding (LLM) and structure encoding (GNN) with
cross-modality contrastive learning:

hy, = LLM(d,,), h,, = GNN(G,),
Sim(hdvi y hul)
Zj;ﬁi SlI‘Il(hduZ y hvj) ’
1
£=S —(i(hy, ,

v;€G

12)

v,

l(hg, ,h,,)= (13)

2 )
v,

h'Ui) + l(hvi7hdui)) (14)

A similar philosophy is widely used in vision-language joint
modality learning [95]. Along this line of approaches, Con-
Grat [52] adopts GAT [85] as the graph encoder and tries
MPNet [33] as the language model encoder. They have expanded
the original InfoNCE loss by incorporating graph-specific el-
ements. These elements pertain to the most likely second,
third, and subsequent choices regarding the nodes from which
a text originates and the texts that a node generates. In ad-
dition to the node-level multi-modality contrastive objective,
GRENADE [54] proposes KL-divergence-based neighbor-level
knowledge alignment: minimize the neighborhood similarity
distribution calculated between LLM and GNN. G2P2 [62]
further extends node-text contrastive learning by adding text-
summary interaction and node-summary interaction. Then, they
introduce using label texts in the text modality for zero-shot clas-
sification, and using soft prompts for few-show classification.
THLM [32] proposes to pretrain the language model by con-
trastive learning with a heterogeneous GNN on heterogeneous
text-attributed networks. The pretrained LLM can be fine-tuned
on downstream tasks.

3) Discussion: Most existing methods adopt homogeneous
text-graph alignment, assuming that the semantic relation be-
tween the two modalities, namely text and graph, is singular.
However, this is not usually the case in the real world, given: 1)
The existence of multimodal attributes: Other modalities, e.g.,
images can appear together with text and graph. In this case,
it is worth researching how to align the multimodal attributes
in a graph scenario. 2) Heterogeneous semantic relations: the
semantic relationships between data units (text/image/graph)
can be multiplex. Different relations have different distributions
and a single semantic alignment will fail to capture the compre-
hensively [74].
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VI. TEXT-PAIRED GRAPHS

Graphs are prevalent data objects in scientific disciplines
such as cheminformatics [182], [193], [199], material infor-
matics [180], bioinformatics [200], and computer vision [146].
Within these diverse fields, graphs frequently come paired with
critical graph-level text information. For instance, molecular
graphs in cheminformatics are annotated with text properties
such as toxicity, water solubility, and permeability proper-
ties [180], [182]. Research on such graphs (scientific discovery)
could be accelerated by the text information and the adoption
of LLMs. In this section, we review the application of LLMs
on graph-captioned graphs with a focus on molecular graphs.
According to the technique categorization in Section III-B, we
begin by investigating methods that utilize LLMs as Predictor.
Then, we discuss methods that align GNNs with LLMs. We
summarize all surveyed methods in Appendix Table 8 and
Figure 6, available online.

A. LLM as Predictor

In this subsection, we review how to conduct “LLM as Predic-
tor” for graph-level tasks. Existing methods can be categorized
into Graph as Sequence (treat graph data as sequence input) and
Graph-Empowered LLMs (design model architecture to encode
graphs).

1) Graphas Sequence: For text-paired graphs, we have three
steps to utilize existing LLM for graph inputs. Step 1: Linearize
graphs into sequence with rule-based methods. Step 2: Tokenize
the linearized sequence. Step 3: Train/Finetune different LLMs
(e.g., Encoder-only, Encoder-Decoder, Decoder-only) for spe-
cific tasks. We will discuss each step as follows.

Step 1: Rule-based Graph Linearization. Rule-based lin-
earization converts molecular graphs into text sequences that
can be processed by LLMs. To achieve this, researchers develop
specifications based on human expertise in the form of line
notations [147]. For example, the Simplified Molecular-Input
Line-Entry System (SMILES) [147] records the symbols of
nodes encountered during a depth-first traversal of a molecu-
lar graph. The International Chemical Identifier (InChlI) [148]
encodes molecular structures into unique string texts with more
hierarchical information. Canonicalization algorithms produce
unique SMILES for each molecule, often referred to as canonical
SMILES. However, there are more than one SMILES corre-
sponding to a single molecule and SMILES sometimes rep-
resent invalid molecules; LLMs learned from these linearized
sequences can easily generate invalid molecules (e.g., incorrect
ring closure symbols and unmatched parentheses) due to syntac-
tical errors. To this end, DeepSMILES [149] is proposed. It can
alleviate this issue in most cases but does not guarantee 100%
robustness. The linearized string could still violate basic physical
constraints. To fully address this problem, SELFIES [150] is
introduced which consistently yields valid molecular graphs.

Step 2: Tokenization. These approaches for linearized se-
quences are typically language-independent. They operate at
both character level [166], [177] and substring level [161], [168],
[172],[173],[174],[175], based on SentencePiece or BPE [154].
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Additionally, RT [163] proposes a tokenization approach that
facilitates handling regression tasks within LM Transformers.

Step 3: Encoding the Linearized Graph with LLMs.

Encoder-only LLMs: Earlier LLMs like SciBERT [25] and
BioBERT [179] are trained on scientific literature to understand
natural language descriptions related to molecules but are not
capable of comprehending molecular graph structures. To this
end, SMILES-BERT [178] and MFBERT [175] are proposed for
molecular graph classification with linearized SMILES strings.
Since scientific natural language descriptions contain human
expertise which can serve as a supplement for molecular graph
structures, recent advances emphasize joint understanding of
them [158], [174]: The linearized graph sequence is concate-
nated with the raw natural language data and then input into the
LLMs. Specifically, KV-PLM [174] is built based on BERT [23]
to understand the molecular structure in a biomedical context.
CatBERTa [158], as developed from RoBERTa [24], specializes
in the prediction of catalyst properties for molecular graphs.

Encoder-Decoder LLMs: Encoder-only LLMs may lack the
capability for generation tasks. In this section, we discuss
LLMs with encoder-decoder architectures. For example, Chem-
former [155] uses a similar architecture as BART [28]. The rep-
resentation from the encoder can be used for property prediction
tasks, and the whole encoder-decoder architecture can be opti-
mized for molecule generation. Others focus on molecule cap-
tioning (which involves generating textual descriptions from a
molecule) and text-based molecular generation (where a molec-
ular graph structure is generated from a natural description).
Specifically, MolT5 [122] is developed based on the T5 [29],
suitable for these two tasks. It formulates molecule-text transla-
tion as a multilingual problem and initializes the model using the
TS5 checkpoint. The model was pre-trained on two monolingual
corpora: the Colossal Clean Crawled Corpus (C4) [29] for the
natural language modality and one million SMILES [155] for the
molecule modality. Text+Chem TS5 [170] extends the input and
output domains to include both SMILES and texts, unlocking
LLMs for more generation functions such as text or reaction
generation. ChatMol [165] exploits the interactive capabilities
of LLMs and proposes designing molecule structures through
multi-turn dialogs with T5.

Decoder-only LLMs: Decoder-only architectures have been
adopted for recent LLMs due to their advanced generation
ability. MolGPT [176] and MolXPT [168] are GPT-style models
used for molecule classification and generation. Specifically,
MolGPT [176] focuses on conditional molecule generation tasks
using scaffolds, while MolXPT [168] formulates the classifi-
cation task as a question-answering problem with yes or no
responses. RT [163] adopts XL Net [27] and focuses on molec-
ular regression tasks. It frames the regression as a conditional
sequence modeling problem. Galactica [177] is a set of LLMs
with a maximum of 120 billion parameters, which is pretrained
on two million compounds from PubChem [182]. Therefore,
Galactica could understand molecular graph structures through
SMILES. With instruction tuning data and domain knowledge,
researchers also adapt general-domain LLMs such as LLaMA
to recognize molecular graph structures and solve molecule
tasks [159]. Recent studies also explore the in-context learn-
ing capabilities of LLMs on graphs. LLM-ICL [167] assesses
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the performance of LLMs across eight tasks in the molecular
domain, ranging from property classification to molecule-text
translation. MolReGPT [164] proposes a method to retrieve
molecules with similar structures and descriptions to improve
in-context learning. LLM4Mol [162] utilizes the summarization
capability of LLMs as a feature extractor and combines it with
a smaller, tunable LLM for specific prediction tasks.

2) Graph-Empowered LLMs: Different from the methods
that adopt the original LLM architecture (i.e., Transformers)
and input the graphs as sequences to LLMs, graph-empowered
LLMs attempt to design LLM architectures that can conduct
joint encoding of text and graph structures. Some works modify
the positional encoding of Transformers. For instance, GIM-
LET [46] treats nodes in a graph as tokens. It uses one Trans-
former to manage both the graph structure and text sequence
[V1,V2, s U5 SY|415 - - - » S|V]+]dg|]» Where v € V is a node
and s € dg is a token in the text associated with G. This se-
quence cannot reflect graph structure. Therefore, a new position
encoding (PE) is used to jointly encode graph structures and text
sequences. It defines the relative distance between tokens ¢ and
7 as follows:

PE(i, j)
i—j ifi,j € dg,

_ ) GSD(4,5) + Mean,, cgp(i,j) Xe, ifi,5 €V,

T ) —o0 ifieV,jedg,
0 ificdgjeV.

15)

GSD is the graph shortest distance between two nodes, and
Meanycsp(;,;) represents the mean pooling of the edge features
Xe, along the shortest path SP(i,j) between nodes ¢ and j.
GIMLET [46] adapts bi-directional attention for node tokens
and enables texts to selectively attend to nodes. These designs
render the Transformer’s submodule, which handles the graph
part, equivalent to a Graph Transformer [140].

Cross-attention is also used to interact representations be-
tween graphs and texts. Given the graph hidden state hg,
its node-level hidden state H, and text hidden state Hy,,
Text2Mol [121] implemented interaction between representa-
tions in the hidden layers of encoders, while Prot2Text [160]

implemented this interaction within the layers of between
- WoH,, (WxH,)T
encoder and decoder Hgy, = softmax(Ty

Wy H,, where Wg, W, Wy are trainable parameters that
transform the query modality (e.g., sequences) and the key/value
modality (e.g., graphs) into the attention space. Furthermore,
Prot2Text [160] utilizes two trainable parameter matrices W
and W, to integrate the graph representation into the sequence
representation Hg, = (Hg, + 1)q, hg W1)Wa.

3) Discussion: LLM Inputs with Sequence Prior: The first
challenge is that the progress in advanced linearization methods
has not progressed in tandem with the development of LLMs.
Emerging around 2020, linearization methods for molecular
graphs like SELFIES offer significant grammatical advantages,
yet advanced LMs and LLMs from graph machine learning and
language model communities might not fully utilize these, as
these encoded results are not part of pretraining corpora prior to
their proposal. Consequently, recent studies [167] indicate that
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LLMs, such as GPT-3.5/4, may be less adept at using SELFIES
compared to SMILES. Therefore, the performance of LM-only
and LLM-only methods may be limited by the expressiveness
of older linearization methods, as there is no way to optimize
these hard-coded rules during the learning pipeline of LLMs.
However, the second challenge remains as the inductive bias of
graphs may be broken by linearization. Rule-based lineariza-
tion methods introduce inductive biases for sequence model-
ing, thereby breaking the permutation invariance assumption
inherent in molecular graphs. It may reduce task difficulty by
introducing sequence order to reduce the search space. How-
ever, it does not mean model generalization. Specifically, there
could be multiple string-based representations for a single graph
from single or different approaches. Numerous studies [151],
[152], [153] have shown that training on different string-based
views of the same molecule can improve the sequential model’s
performance, as these data augmentation approaches manage
to retain the permutation-invariance nature of graphs. These
advantages are also achievable with a permutation-invariant
GNN, potentially simplifying the model by reducing the need
for complex, string-based data augmentation design.

LLM Inputs With Graph Prior: Rule-based linearization may
be considered less expressive and generalizable compared to
the direct graph representation with rich node features, edge
features, and the adjacency matrix [ 186]. Various atomic features
include atomic number, chirality, degree, formal charge, number
of hydrogen atoms, number of radical electrons, hybridization
state, aromaticity, and presence in a ring. Bond features en-
compass the bond’s type (e.g., single, double, or triple), the
bond’s stereochemistry (e.g., E/Z or cis/trans), and whether
the bond is conjugated [187]. Each feature provides specific
information about atomic properties and structure, crucial for
molecular modeling and cheminformatics. One may directly
vectorize the molecular graph structure into binary vectors [ 185]
and then apply parameterized Multilayer Perceptrons (MLPs) on
the top of these vectors to get the graph representation. These
vectorization approaches are based on human-defined rules and
vary, such as MACCS, ECFP, and CDK fingerprints [185]. These
rules take inputs of a molecule and output a vector consisting
of 0/1 bits. Each bit denotes a specific type of substructure
related to functional groups that could be used for various
property predictions. Fingerprints consider atoms and structures,
but they cannot automatically learn from the graph structure.
GNNs could serve as automatic feature extractors to replace
or enhance fingerprints. Some specific methods are explored in
Section VI-A2, while the other graph prior such as the eigenvec-
tors of a graph Laplacian and the random walk prior could also be
used [141].

LLM Outputs for Prediction: LMs like KV-PLM [174],
SMILES-BERT [178], MFBERT [175], and Chemformer [155]
use a prediction head on the output vector of the last layer.
These models are finetuned with standard classification and
regression losses but may not fully utilize all the parameters
and advantages of the complete architecture. In contrast, mod-
els like RT [163], MolXPT [168], and Text+Chem T5 [170]
frame prediction as a text generation task. These models are
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trained with either masked language modeling or autoregressive
targets, which requires a meticulous design of the context words
in the text [163]. Specifically, domain knowledge instructions
may be necessary to activate the in-context learning ability
of LLMs, thereby making them domain experts [167]. For
example, a possible template could be divided into four parts:
{General Description}{Task-Specific Description}{Question-
Answer Examples } { Test Question}.

LLM Outputs for Reasoning: Since string representations
of molecular graphs usually carry new and in-depth domain
knowledge, which is beyond the knowledge of LLMs, recent
work [145], [156], [164] also attempts to utilize the reasoning
ability of LLMs, instead of using them as a knowledge source
for predicting the property of molecular graphs. ReLM [156]
utilizes GNNSs to suggest top-k candidates, which were then used
to construct multiple-choice answers for in-context learning.
ChemCrow [145] designs the LLMs as the chemical agent to
implement various chemical tools. It avoided direct inference in
an expertise-intensive domain.

B. LLM as Aligner

1) Latent Space Alignment: One may directly align the latent
spaces of the GNN and LLM through contrastive learning and
predictive regularization. Typically, a graph representation from
a GNN can be read out by summarizing all node-level represen-
tations, and a sequence representation can be obtained from the
[CLS] token. We first use two projection heads, which are usually
MLPs, to map the separate representation vectors from the GNN
and LLM into a unified space as hg and h,, and then align them
within this space. Specifically, MoMu [173] and MoMu-v2 [172]
retrieve two sentences from the corpus for each molecular graph.
During training, graph data augmentation was applied to molec-
ular graphs, creating two augmented views. Consequently, there
are four pairs of G and dg. For each pair, the contrastive loss for

exp(cos(hg,hqa;)/7)

2 dy#ag exp(cos(hg,h ) /T)
where 7 is the temperature hyper-parameter and d~g denotes the
sequence not paired to the graph G. MoleculeSTM [171] also
applies contrastive learning to minimize the representation dis-
tance between a molecular graph G and its corresponding texts
dg, while maximizing the distance between the molecule and
unrelated descriptions. MoleculeSTM [171] randomly samples
negative graphs or texts to construct negative pairs of (G, cZ) and
(Q ,d). Similarly, MolFM [161] and GIT-Mol [157] implement
contrastive loss with mutual information and negative sampling.
These two methods also use cross-entropy to regularize the
unified space with the assumption that randomly permuted graph
and text inputs are predictable if they originate from the same
molecule.

However, the aforementioned methods cannot leverage
task labels. Given a classification label y, CLAMP [169]
learns to map active molecules (y = 1) so that they align
with the corresponding assay description for each molecu-

lar graph G: {cLamp = ylog(U(T’lhgth)) +(1—y)log(l —

space alignment is as {yjomy = — log
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TABLE II
DATA COLLECTION IN SECTION V FOR TEXT-ATTRIBUTED GRAPHS

Text. Data Year Task # Nodes # Edges Domain Source & Notes
ogb-arxiv 2020.5 NC 169,343 1,166,243 Academic OGB [187]
ogb-products 2020.5 NC 2,449,029 61,859,140 E-commerce  OGB [187]
ogb-papers110M 2020.5 NC 111,059,956  1,615,685,872  Academic OGB [187]
ogb-citation2 20205 LP 2,927,963 30,561,187 Academic OGB [187]
Cora 2000 NC 2,708 5,429 Academic [10]
Citeseer 1998 NC 3,312 4,732 Academic [11]
o DBLP 2023.1 NC,LP 5,259,858 36,630,661 Academic www.aminer.org/citation
3 MAG 2020 NC, LP, Rec RG ~ 10M ~ 50M Academic multiple domains [12] [13]
Z Goodreads-books 2018 NC, LP ~ 2M ~ 20M Books multiple domains [14]
Amazon-items 2018 NC, LP, Rec ~ 15.5M ~ 100M E-commerce  multiple domains [15]
SciDocs 2020 NC, UAP, LP, Rec - - Academic [50]
PubMed 2020 NC 19,717 44,338 Academic [16]
Wikidata5M 2021 LP ~ 4M ~ 20M Wikipedia [17]
Twitter 2023 NC, LP 176,279 2,373,956 Social [52]
o Goodreads-reviews 2018 EC,LP ~ 3M ~ 100M Books multiple domains [14]
2P Amazon-reviews 2018 EC,LP ~ 15.5M ~ 200M E-commerce  multiple domains [15]
M Stackoverflow 2023 EC, LP 129,322 281,657 Social [73]

Task: “NC”, “UAP”, “LP”, “Rec”, “EC”, “RG” denote node classification, user activity prediction, link prediction, recommendation, edge classification, and regression

task.

o(t7'hhg,)). CLAMP [169] requires labels to encour-
age that active molecules and their corresponding text de-
scriptions are clustered together in the latent space. To ad-
vance the alignment between two modalities, MolCA [166]
trains the Query Transformer (Q-Former) [189] for molecule-
text projecting and contrastive alignment. Q-former initial-
izes N, learnable query tokens {qk}kNil. These query tokens
are updated with self-attention and interact with the output
of GNNs through cross-attention to obtain the k-th queried
molecular representation vector (hg); := Q-Former(qy). The
query tokens share the same self-attention modules with the
texts, but use different MLPs, allowing the Q-Former to
be used for obtaining the representation of text sequence
hg, := Q-Former([CLS]). Then we have /yoica = —leo —
exp(maxy, cos((hg)x,hay)/7)

~ag o<p(may, cos((Bg) kb )/7)”

Loy, where flq = log S and
G

exp(maxy cos(hg,,(hg)k)/T
log = log 2646 e(Xp(m’clxk Cos(ghdgv()h;)k))/‘r) ’

2) Discussion: Larger-Scale GNNs: GNNs integrate atomic
and graph structural features for molecular representation learn-
ing [144]. Specifically, Text2Mol [121] utilizes the GCN [83] as
its graph encoder and extracts unique identifiers for node features
based on Morgan fingerprints [185]. MoMu [173], MoMu-
v2 [172], MolFM [161], GIT-Mol [157], and MolCA [166]
prefer GIN [188] as the backbone, as GIN has been proven to
be as expressive and powerful as the Weisfeiler-Lehman graph
isomorphism test. As described in Section II-B, there has been
notable progress in making GNNs deeper, more generalizable,
and more powerful since the proposal of the GCN [83] in
2016 and the GIN [188] in 2018. However, most reviewed
works [157], [161], [166], [172], [173] are developed using the
GIN [188] as a proof of concept for their approaches. These
pretrained GINs feature five layers and 300 hidden dimensions.
The scale of GNNs may be a bottleneck in learning semantic
meaningful representation and there is a risk of over-reliance
on one modality, neglecting the other. Therefore, for future
large-scale GNN designs comparable to LLMs, scaling up the
dimension size and adding deeper layers, may be considered.

Besides, Transformer encoders [141] may also improve the
expressive power of deep GNNs.

Generation Decoder with GNNs: GNNs are often not used
as decoders for graph generation. The prevalent decoders are
mostly text-based, generating linearized graph structures such
as SMILES. These methods may be sensitive to the sequence
order in the linearized graph. Generative diffusion models [201]
on graphs could be utilized in future work to design generators
with GNNs.

VII. RESOURCES AND APPLICATIONS
A. Datasets, Splitting and Evaluation

We summarize the datasets for three scenarios (namely pure
graphs, text-attributed graphs, and text-paired graphs) and show
them in Tables V, II, and III respectively.

1) Pure Graphs: In Table 5, we summarize the pure graph
reasoning problems discussed in Section IV. Many problems are
shared or revisited in different datasets due to their commonality.
NLGraph [123], LLMtoGraph [124] and GUC [125] study a set
of standard graph reasoning problems, including connectivity,
shortest path, and graph diameter. GraphQA [130] benchmarks
a similar set of problems but additionally describes the graphs
in real-world scenarios to study the effect of graph grounding.
LLM4DyG [127] focuses on reasoning tasks on temporally
evolving graphs. Accuracy is the most common evaluation met-
ric as they are primarily formulated as graph question-answering
tasks.

2) Text-Attributed Graphs: We summarize the famous
datasets for evaluating models on text-attributed graphs in
Table II. The datasets are mostly from the academic,
e-commerce, book, social media, and Wikipedia domains. The
popular tasks to evaluate models on those datasets include node
classification, link prediction, edge classification, regression,
and recommendation. The evaluation metrics for node/edge
classification include Accuracy, Macro-F1, and Micro-FI.
For link prediction and recommendation evaluation, Mean
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TABLE III
DATA COLLECTION IN SECTION VI FOR TEXT-CAPTIONED GRAPHS

Data Date  Task Size Source & Notes
ChEMBL-2023 [184] 2023  Various 2.4M?2,20.3M3 Drug-like

PubChem [182] 2019  Various 96M2,237M3 Biomedical

PC324K [166] 2023  PT, Cap., 324K! PubChem [182]

MOolXPT-PT [168] 2023 PT 30M2 PubChem [182], PubMed, ChEBI [181]
ChE-bio [46] 2023 PT 365K2 ChEMBL [183]

ChE-phy [46] 2023 PT 365K?2 ChEMBL [183]

ChE ZS [46] 2023 GC 91K2 ChEMBL [183]

PC223M [169] 2023  PT, Retr. 223M!2M?220K3  PubChem [182]

PCSTM [171] 2022 PT 281K PubChem [182]

PCdes [182] 2022 FT, Cap, Retr. 15K PubChem [182]

ChEBI-20 [121] 2021  FT., Retr,, Gen., Cap.  33K! PubChem [182], ChEBI [181]

“PT”, “FT”, “Cap.”, “GC”, “Retr.’, and “Gen.” refer to pretraining, finetuning, caption, graph classification, retrieval, and graph generation,
respectively. The superscript for the size denotes # graph-text pairs', # graphs?, # assays”.

Reciprocal Rank (MRR), Normalized Discounted Cumulative
Gain (NDCG), and Hit Ratio (Hit) usually serve as metrics.
While evaluating model performance on regression tasks,
people tend to adopt mean absolute errors (MAE) or root mean
square error (RMSE).

3) Text-Paired Graphs: Table III shows text-paired graph
datasets (including text-available and graph-only datasets). For
Data Splitting, options include random splitting, source-based
splitting, activity cliffs and scaffolds [195], and data balanc-
ing [142]. Graph classification usually adopts AUC [187] as
the metrics, while regression uses MAE, RMSE, and R2 [144].
For text generation evaluation, people tend to use the Bilin-
gual Evaluation Understudy (BLEU) score; while for molecule
generation evaluation, heuristic evaluation methods (based on
factors including validity, novelty, and uniqueness) are adopted.
Howeyver, it is worth noted that BLEU score is efficient but less
accurate, while heuristic evaluation methods are problematic
subject to unintended modes, such as the superfluous addition
of carbon atoms in [196].

B. Open-Source Implementations

HuggingFace: HF Transformers' is the most popular Python
library for Transformers-based language models. Besides, it also
provides two additional packages: Datasets? for easily accessing
and sharing datasets and Evaluate? for easily evaluating machine
learning models and datasets.

Fairseq: Fairseq” is another open-source Python library for
Transformers-based language models.

PyTorch Geometric: PyG’ is an open-source Python library
for graph machine learning. It packages more than 60 types of
GNN, aggregation, and pooling layers.

Deep Graph Library: DGL is another open-source Python
library for graph machine learning.

Thttps://huggingface.co/docs/transformers/index
Zhttps://huggingface.co/docs/datasets/index
3https://huggingface.co/docs/evaluate/index
“https://github.com/facebookresearch/fairseq

Shttps://pytorch- geometric.readthedocs.io/en/latest/index.html
Shttps://www.dgl.ai/

RDKit: RDKit” is one of the most popular open-source chem-
informatics software programs that facilitates various operations
and visualizations for molecular graphs. It offers many useful
APIs, such as the linearization implementation for molecular
graphs, to convert them into easily stored SMILES and to convert
these SMILES back into graphs.

C. Practical Applications

1) Scientific Discovery: Virtual Screening: It aims to search
a library of unlabeled molecules to identify useful structures
for a given task. Machine learning models could automatically
screen out trivial candidates to accelerate this process. However,
training accurate models is not easy since labeled molecules
are limited in size and imbalanced in distribution [142]. There
are many efforts to improve GNNs against data sparsity [142],
[144],[191]. However, it is difficult for a model to generalize and
understand in-depth domain knowledge that it has never been
trained on. Texts could be complementary knowledge sources.
Discovering task-related content from massive scientific papers
and using them as instructions has great potential to design
accurate GNNGs in virtual screening [46].

Molecular Generation: Molecular generation and optimiza-
tion is one fundamental goal for drug and material discovery.
Scientific hypotheses of molecules [198], can be represented
in the joint space of GNNs and LLMs. Then, one may search
in the latent space for a better hypothesis that aligns with the
text description (human requirements) and adheres to structural
constraints like chemical validity. Chemical space has been
found to contain more than 100 molecules [197], which is
beyond the capacity of exploration in wet lab experiments.
Generating constrained candidates within relevant subspaces is
a challenge [201] and promising, especially when incorporating
textual conditions.

Synthesis Planning: Synthesis designs start from available
molecules and involve planning a sequence of steps that can
finally produce a desired chemical compound through a series of
reactions [198]. This procedure includes a sequence of reactant
molecules and reaction conditions. Both graphs and texts play

7https://www.rdkit.org/docs/
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important roles in this process. For example, graphs may rep-
resent the fundamental structure of molecules, while texts may
describe the reaction conditions, additives, and solvents. LLMs
can assist in the planning by suggesting possible synthesis paths
directly or by serving as agents to operate on existing planning
tools [145].

2) Computational Social Science: In computational social
science, researchers are interested in modeling the behavior of
people/users and discovering new knowledge that can be utilized
to forecast the future. The behaviors of users and interactions
between users can be modeled as graphs, where the nodes are
associated with rich text information (e.g., user profile, mes-
sages, emails). We will show two example scenarios below.

E-commerce: In E-commerce platforms, there are many inter-
actions (e.g., purchase, view) between users and products. For
example, users can view or purchase products. In addition, the
users, products, and their interactions are associated with rich
text information. For instance, products have titles/descriptions
and users can leave areview of products. In this case, we can con-
struct a graph [101] where nodes are users and products, while
edges are their interactions. Both nodes and edges are associated
with text. It is important to utilize both the text information
and the graph structure information (user behavior) to model
users and items and solve complex downstream tasks (e.g.,
item recommendation [ 105], bundle recommendation [106], and
product understanding [107]).

Social Media: In social media platforms, there are many users
and they interact with each other through messages, emails, and
so on. In this case, we can build a graph where nodes are users
and edges are the interaction between users. There will be text
associated with nodes (e.g., user profile) and edges (e.g., mes-
sages). Interesting research questions will be how to do joint text
and graph structure modeling to deeply understand the users for
friend recommendation [108], user analysis [109], community
detection [110], and personalized response generation [96], [97].

3) Specific Domains: In many specific domains, text data are
interconnected and lie in the format of graphs. The structure
information on the graphs can be utilized to better understand
the text unit and contribute to advanced problem-solving.

Academic Domain: In the academic domain, graphs [12]
are constructed with papers as nodes and their relations (e.g.,
citation, authorship, etc) as edges. The representation learned
for papers on such graphs can be utilized for paper recommen-
dation [102], paper classification [103], and author identifica-
tion [104].

Legal Domain: In the legal domain, opinions given by the
judges always contain references to opinions given for previous
cases. In such scenarios, people can construct a graph [98] based
on the citation relations between opinions. The representations
learned on such a graph with both text and structure informa-
tion can be utilized for clause classification [99] and opinion
recommendation [100].

Education Domain: Inthe education domain, we can construct
a graph with coursework as nodes and their relations as edges.
The model learned on such a graph can be utilized for knowledge
tracing [135] and student performance prediction [136].
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VIII. FUTURE DIRECTIONS

Better Benchmark Datasets: Most pure graph benchmarks
evaluate LLMs’ reasoning ability on homogeneous graphs but
do not include evaluations on heterogeneous or spatial-temporal
graphs. For text-attributed graphs, as summarized in Table II,
most benchmark datasets are from academic domains and e-
commerce domains. However, in the real world, text-attributed
graphs are ubiquitous across multiple domains (e.g., legal and
health). More diverse datasets are needed to comprehensively
evaluate LLMs on real-world scenarios. For text-paired graphs,
as summarized in Table III, there is a lack of comprehensive
datasets covering various machine learning tasks in chemistry.
Although a massive number of scientific papers are available,
preprocessing them into a ready-to-use format and pairing them
with specific molecular graph data points of interest remains a
cumbersome and challenging task. Besides, we could investigate
graph-text pairs in 3D space, where each molecule may be
associated with atomic coordinates [137].

Broader Task Space with LLMs: More comprehensive studies
on the performance of LL.Ms for graph tasks hold promise for the
future. While LLMs as encoder approaches have been explored
for text-attributed graphs, their application to text-captioned
molecular graphs remains underexplored. Promising directions
include using LLMs for data augmentation and knowledge dis-
tillation to design domain-specific GNNs for various text-paired
graph tasks. Furthermore, although graph generation has been
approached in text-paired graphs, it remains an open problem for
text-attributed graphs (i.e., how to conduct joint text and graph
structure generation)

Efficienct LLMs on Graphs: While LLMs have shown a strong
capability to learn on graphs, they suffer from inefficiency in
graph linearization and model optimization. On one hand, as
discussed in Sections V-Al and VI-Al, many methods rely
on transferring graphs into sequences that can be inputted into
LLMs. However, the length of the transferred sequence will in-
crease significantly as the size of the graph increases. This poses
challenges since LLMs always have a maximum sequence input
length and a long input sequence will lead to higher time and
memory complexity. On the other hand, optimizing LLMs itself
is computationally expensive. Although some general efficient
tuning methods such as LoRA are proposed, there is a lack of
discussion on graph-aware LLM efficient tuning methods.

Generalizable and Robust LLMs on Graphs: Another in-
teresting direction is to explore the generalizability and ro-
bustness of LLMs on graphs. Generalizability refers to having
the ability to transfer the knowledge learned from one do-
main graph to another; while robustness denotes having con-
sistent prediction regarding obfuscations and attacks. Although
LLMs have demonstrated their strong generalizability in pro-
cessing text, they still suffer from robustness and hallucination
issues, which are to be solved for graph data modeling as
well.

Multi-Modal Foundation Models: One open question is,
“Should we use one foundation model to unify different modal-
ities, and how?” The modalities can include texts, graphs, and
even images. For instance, molecules can be represented as
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graphs, described as texts, and photographed as images; prod-
ucts can be treated as nodes in a graph, associated with a ti-
tle/description, and combined with an image. Designing a model
that can conduct joint encoding for all modalities will be useful
but challenging. Furthermore, there has always been tension
between building a unified foundational model and customizing
model architectures for different domains. It is thus intriguing
to ask whether a unified architecture will suit different data
types, or if tailoring model designs according to domains will be
necessary. Correctly answering this question can save economic
and intellectual resources from unnecessary attempts and also
shed light on a deeper understanding of graph-related tasks.

LLMs as Dynamic Agents on Graphs: Although LLMs have
shown their advanced capability in generating text, one-pass
generation of LLMs suffers from hallucination and misinforma-
tion issues due to the lack of accurate parametric knowledge.
Simply augmenting retrieved knowledge in context is also bot-
tlenecked by the capacity of the retriever. In many real-world
scenarios, graphs such as academic networks, and Wikipedia
are dynamically looked up by humans for knowledge-guided
reasoning. Simulating such a role of dynamic agents can help
LLMs more accurately retrieve relevant information via multi-
hop reasoning, thereby correcting their answers and alleviating
hallucinations.

IX. CONCLUSION

In this paper, we provide a comprehensive review of large
language models on graphs. We first categorize graph scenarios
where LMs can be adopted and summarize the large language
models on graph techniques. We then provide a thorough review,
analysis, and comparison of methods within each scenario.
Furthermore, we summarize available datasets, open-source
codebases, and multiple applications. Finally, we suggest future
directions for large language models on graphs.
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