2024 IEEE 13th Sensor Array and Multichannel Signal Processing Workshop (SAM) | 979-8-3503-4481-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/SAM60225.2024.10636678

ATOMIC NORM DENOISING FOR MULTI-FREQUENCY-SNAPSHOT DOA ESTIMATION

Yongsung Park* Peter Gerstoft*

Yifan Wu* Michael B. Wakin'

* NoiseLab, University of California San Diego, La Jolla, CA, USA
t Colorado School of Mines, Golden, CO, USA

ABSTRACT

Motivated by atomic norms in gridless sparse signal recov-
ery, we introduce a gridless direction-of-arrival (DOA) esti-
mator capable of handling scenarios with multiple frequen-
cies and multiple snapshots. Within the atomic norm frame-
work, we consider a multi-frequency model analogous to a
multi-snapshot model. Subsequently, we extend the model to
accommodate both multi-snapshot and multi-frequency data.
The proposed method is illustrated through numerical simu-
lations and validated using ocean acoustic experimental data.

Index Terms— DOA estimation, atomic norm minimiza-
tion, multi-frequency model, multiple measurement vectors

1. INTRODUCTION

Atomic norm minimization (ANM) [1-8] enables gridless
sparse plane-wave direction-of-arrival (DOA) estimation us-
ing linear arrays. Sparse processing provides high-resolution
DOA estimation, while gridless processing avoids DOA bias
caused by grid mismatch [9-13]. More accurate estimation
can be achieved when diverse observations are available.
Multiple measurement vectors (MMVs) offer one type of
diversity through multiple temporal snapshots. Another type
of diversity comes from sources with multiple temporal fre-
quencies. We propose a gridless sparse DOA estimator that
can handle such multi-snapshot and multi-frequency data.

Sparse regularization, as used in compressive sensing
(CS), promotes sparse solutions, resulting in sharp peak
beamforming spectra and enhanced high-resolution DOA
estimation [14-16]. A challenge in sparse DOA methods
lies in the mismatch between the angular grid and actual
DOAs [1,2,17]. To address this, a gridless sparse processing
method has been introduced and applied to DOA estimation.
For an overview of sparse DOA estimation, see [1-3,6].

ANM enables gridless sparse DOA estimation. Consider
when multiple time snapshots are available and the data share
a common sparsity profile across snapshots (i.e., the DOAs
are consistent across time) [14, 16]. This enables ANM with
MMV to achieve multi-snapshot gridless sparse DOA estima-
tion [11,13, 18-20].
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2203060, and Office of Naval Research (ONR) Grant N00014-21-1-2267.

Steering vectors (or array manifold vectors) in plane-
wave DOA estimation are frequency-dependent, making it
challenging to process multi-frequency data in a similar way
to multi-snapshot processing. It may be possible to estimate
DOAs for each frequency and then determine final DOA
estimates based on the obtained DOA estimates across fre-
quencies. However, this method could offer less processing
gain compared to joint processing of multi-frequency data.

Our contributions are as follows:

1) We propose an ANM-based DOA estimator capa-
ble of handling multi-snapshot and multi-frequency data. Our
model addresses multiple frequencies jointly. [21-26] utilized
certain properties of steering vectors for multi-frequency
processing, enabling approaches similar to multi-snapshot
processing. We utilize the nominal frequency-virtual array
element spacing concept for our multi-frequency process-
ing. This concept facilitates the formation of a common
sparsity profile for the data across frequencies. Similar to
multi-snapshot processing, we align and process multiple
frequency data.

2) The model [24, 25] is a multi-frequency model with
a single snapshot. In contrast, our proposed model handles
multiple snapshots. Within the ANM framework, [25] adopts
the dual problem of ANM and the dual semidefinite program-
ming (SDP). An extension [27] deals with non-uniform ar-
rays, non-uniform frequency spacing, and multiple snapshots,
following a regularization-free primal domain SDP with root
MUSIC for enhanced robustness. Our work adopts atomic
norm denoising with atomic norm soft thresholding (AST)
and its SDP [19, 28]. The model is an AST-based method
for handling MMV, including multiple snapshots and multi-
ple frequencies.

3) The proposed technique is applied to ocean acoustic
experimental data.

2. ARRAY DATA MODEL

Consider K DOAs with L snapshots at frequencies f;, i=
1,...,F. We assume the sources with DOAs 6, € [—90°,90°)
are in the far-field of a uniform linear array (ULA) with M
sensors. Let Xy, € CE*L pe the source amplitudes; for the
kth DOA at time ¢, [Xy,]x s, €C, k=1,...,K,l=1,..., L.
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The array data Yy, =y, f, ... Yt,.5,] €CM*F s

K

Yy = Zafi(ek)[xfi];cr,: +Ej, ey
k=1

where [Xfi]k,: = [[Xfi,]kﬂfl s [Xf'i]katL] € CL’ Efi e CMxEL
is the additive noise, and the steering vector

g, (0) = [e~ L0dsi0 =i Or-1) sy T ¢ oM o)

where c is the propagation speed and d is the ULA element
spacing. The additive noise Ey, is assumed independent
across sensors, snapshots, and frequencies, with each element
following a complex Gaussian CN'(0,02). The signal-to-
noise ratio (SNR) for a single snapshot is used, defined as

SNR =20logyq (|| S [X s, Je,eiar, 0 ||,/ || [E g ]],)-

3. ANM DOA ESTIMATION WITH MMV

This section gives a review of gridless sparse DOA estimation
using ANM [1-3,6, 10] for MMV following [9, 11].

The noiseless, single frequency f data with K DOAs (1)
having L snapshots, Y} € CMXxL g,

K
Y5 = ar(0)[Xsli.. 3)
k=1

The atom and atomic set for gridless sparse DOA es-
timation are defined as W (6, ¢;.) =a;(0x)d). with 0 €
[_9007900)’ ¢k:: E(CL’ ||d)k ||2 = 1’ and A= {‘I,(ekh d)k) :
0 €]—90°,90°),]||¢s. |l2=1}. The atomic norm of the noise-
free data Y} (3) is defined as [1,28]

K K
I¥3lla= &% { S Yj = ngaf(ek)¢-£:}~ 4)
s k=1 k=1

91‘:/»&&;

The atomic norm (4) is equivalent to the solution of the
following semidefinite program (SDP) [1, (IL.6)],

* o1 1
Y5, = min mTr(Toep(u)) + §Tr(VL)
T Y%
[ O?chﬁ“) Vﬂ -0, )

where V, € CEXL is a free matrix variable.

With noisy data Y f (1), we solve (5) in the regularized op-
timization problem as the LASSO [14,29]-like way, referred
to as AST [19, 28],

1
min S[[Y; = YF[E + 7Y 6)
f

The regularization parameter 7 balances the sparsity level in
Y’ and the data fitting (Y y — Y'}), and is empirically chosen.

Using the equivalent SDP formulation (5), the SDP for-
mulation of (6) is given by [28, Eq. (19)], [19, Eq. (12)]

o1 T/ 1
win 5IYy = Y3 + 5 (57 (Toep(u)) + Tx(V))
Ll,VL

Toep(u) Y3
s.t. [ Y}H Vi > 0. (7

The CVX program [30] can solve (7). The primal solution
Y’} and the dual solution Q € CM*L are specified by the op-
timality conditions. There is no duality gap [1,28]: (i) Y=
Y+ Q, (i) [ Ql| - <7 and (i) (Q, Y 5)p =7 Y5 L.

To retrieve DOAs, ANM obtains the DOAs using Y} 7
and Q=Y — Y7, by locating those points where

Q(0) = |Q"as(0)]3 = 7. (8)

4. ANM WITH MULTIPLE FREQUENCIES

We simultaneously process multi-frequency data within the
ANM framework. A multi-frequency model is formulated
similar to a multi-snapshot model. The nominal frequency-
virtual array element spacing allows the data to share a com-
mon sparsity profile, similar to multi-snapshot models. We
align multi-frequency data and then expand the model to en-
compass both multi-frequency and multi-snapshot data.

Multi-frequency processing considers multiple frequen-
cies jointly. For simplicity of notation, here we specialize
the multi-frequency processing to F'=2 frequencies { f1, f2}.
For a true DOA 6, the phase angle of the m + 1th element of
the steering vectors {ay, ,ay, } are given by

Zay, (0,d) = —%Tfldmsine = —%r%(,u'd)msinﬁ

= Zag, (0,4/d), ©)
ZLag,(0,d) = —Q%fgdmsinﬁ = —%%(u"d)msin@

/
= Zag, (0,1"d), (10)

where the nominal frequency fa=f1/p' and p/, 1" €7 are
integers for simplifying fo/f1 using cross-cancelling, i.e.,
W' /" = f1/fo. Note that, the steering vectors {ay, ,ay,}
share the same nominal frequency far but with different
element virtual spacing {p'd, 1"’ d}.

In Fig. 1, we illustrate the multi-snapshot-frequency mod-
eling with F'=4 frequencies, f;€{f1,1.5f1,2f1,2.5f1}
and element spacing d. Based on the nominal frequency
far=f1/2 (' =2), multiple frequency samples are reex-
pressed to have fxr with element spacing {2d, 3d,4d, 5d}
(n"=2,3,4,5).

The mth element of y;, r, € CM is mapped into the virtual
spacing, i.e. [25], (see Fig. 1),

Ve s J[(Fi/ ) m = 1) + 1] = [y 5 ][m], (1D
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Fig. 1: Multi-snapshot-frequency model. (a) Multi-frequency-data (f; € { f1,1.5f1,2f1,2.5f1}, F'=4) are transformed with the

nominal frequency fy =
processing (LF-MMV).

f1/2 and grouped. (b) Multi-frequency processing (F-MMYV) is extended to multi-snapshot-frequency
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Fig. 2: Multi-snapshot-frequency [Sec. 4] as a sparse linear array model and the element-selection I'q, see (14) and (16).

where [yy,,,] €CNM=DF with N =
largest frequency).

Multiple frequency samples at a single time t;, [?tl, f,-]
(11), ¢=1,..., F, share the same nominal frequency fa =
f1/u'. We group them into a matrix

fr/fxn (fF is the

Yiifw = [Fefs - Ferge) € CHM=DEDE 0 (47)

For multi-snapshot processing, the single snapshot multi-
frequency data Yy, .., l=1,..., L, is extended to a matrix

YT,fN = I:ythfl . 'ytval . 'ythF . 'ytLafF:I
6 (C(N(Mfl)ﬁ’l)XLF. (13)

Suppose data YfUI}NE(CN(M DADXLE " which are
full ULA data with N(M —1)+1 sensors Wlth the ele-
ment spacing d, observe sources havmg the same DOAs

0 and amphtudes Xtk €C, i=1,...F, k=1,... K,
andl =1,...,Lasin (1), 1ie.,
Y, = [Nfﬂ}l T Vonge - Vigoge), (140
Vins = Z afil (00) (X1 ]L,, + B, (14b)
[a?j‘\?(@)] [m'] = 6_3%("’ —1)-dsing (14c)

where m’=1,...,N(M —1)+1. The data Y1 ;. (13) is a

subset of ?fTul}N (14), i.e.,
?TJN :I‘QO?%I}N7 (15)

where T'q € {0,1}(N(M-1)+DXLF 5 the element-selection
matrix having all 0 but 1 at the non-zero positions in ?T, I
(13) and “o” denotes the Hadamard product, see Fig. 2.
Multi-frequency processing transforms frequencies to one
nominal frequency and aligns and processes multi-frequency-
data jointly as in (12). Multi-snapshot-frequency processing
groups all multi-snapshot and multi-frequency data as in (13).
Using (7) and (13), we have the optimization problem for
multi-snapshot-frequency processing as the follows,

1~ ~ T/1
min 3|V 5 —Tao ¥[34+ (57 Tr(Toep(w) +Tr(V2)

N

U,VL
T Y

st Oeﬁ() T | = 0. (16)
Yo v

As in (8), the DOAs are where

Q(0) = Q" a}()II5 = 2,
Q :YT,fN

(17a)

~TqoYh,, . (17b)
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Fig. 3: SNR performance. Frequencies are (a,c) 100 Hz and
(b,d) {100, 150,200,250} Hz. The number of snapshots is
L=10. DOAs are at (a,b) 45° + U(—.25°,.25°) and (c,d)
[—65,0,15]° + U(—.25°,.25°) (random uniformly distributed
grid offsets).

5. SIMULATION AND EXPERIMENTAL RESULTS

We consider a ULA with M =15 elements, inter-sensor
spacing d=3 m, and sound speed ¢=1500 m/s. Frequen-
cies are 100 Hz (F'=1) and {100,150,200,250} Hz (F'=
4). The wavelengths are {15,10,7.5,6} m, i.e., d/\ are
{5,10/3,2.5,2}. We compare the DOA estimates produced
by our approach to those obtained using SBL [31] using the
root-mean-squared error (RMSE):

1 . ) true 2
RMSE = ]E[KZ(Gk—ek )} (18)

k=1

The angular search grid is discretized as [—90:.5:90]° for
SBL. We use 7=.001 (6) for ANM.

Figure 3 presents four DOA scenarios: (a) a single fre-
quency F'=1 and (b) multiple frequencies F'=4 with one
DOA at 45° + U(—.25°.25°) and (c) F'=1 and (d) F'=4
with three DOAs at [—65,0,15]°+U(—.25%.25°) having a
random uniformly distributed grid mismatch. Each RMSE is
averaged over 100 trials. The sources have equal amplitudes,
each with random phases on [0,27) at SNRs [—20:5:30] dB.
The superior performance of ANM in the high SNR region
is illustrated by the curve lying on the Cramér-Rao bound
(CRB) [32, Eq. (110)]. SBL exhibits bias even at high SNRs
due to grid mismatch. To achieve CRB-like performance, a
grid spacing of at least 0.01°-interval was required.

We validate the proposed method using ocean acoustic
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(b) Multi-snapshot-frequency
Fig. 4: DOA estimation using ocean acoustic data from the
SWellEx-96 experiment. (a) Single-snapshot multi-frequency
AST and (b) Multi-snapshot multi-frequency processing for
conventional beamforming (CBF) and AST.

data from the SWellEx-96 experiment [13, 31, 33]. The data
used is the first 50 snapshots in [13] with F=2, {f1, fo} =
{112,166} Hz, i.e., fo=1.48f1~1.5f gives far=f1/2 and
N =3. We used elements 1-60 in the ULA (M =60).

The dataset includes multiple stationary DOAs across
time, suitable for multi-snapshot processing, see Fig. 4. We
have chosen K =10 strongest DOA estimates. For the asso-
ciated arrival paths with the estimated DOAs, see [13].

Single-snapshot processing with the proposed multi-
frequency ANM obtains good DOA estimates. Multi-snapshot
processing also achieves DOA estimates consistent across
multiple snapshots. The proposed method achieves pro-
cessing gain for accurate estimates by considering multiple
measurement vectors (multi-snapshot and multi-frequency)
compared to the single-snapshot single-frequency model.

6. CONCLUSION

A DOA estimation algorithm is developed for multiple data
across time and frequency. Multi-snapshot-frequency pro-
cessing employs the nominal frequency-virtual array element
spacing, allowing alignment of multi-frequency samples with
multi-snapshot samples, thus addressing both time and fre-
quency simultaneously. Incorporating more frequencies and
snapshots enhances the DOA performance, as demonstrated
by its effectiveness on real data.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on February 10,2025 at 18:42:31 UTC from IEEE Xplore. Restrictions apply.



(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

7. REFERENCES

G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
off the grid,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7465-7490,
Nov. 2013.

E.J. Candes and C. Fernandez-Granda, “Towards a mathematical theory
of super-resolution,” Commun. Pure Appl. Math., vol. 67, no. 6, pp.
906-956, Apr. 2014.

Z. Yang and L. Xie, “On gridless sparse methods for line spectral esti-
mation from complete and incomplete data,” IEEE Trans. Signal Pro-
cess., vol. 63, no. 12, pp. 3139-3153, Jun. 2015.

S. Li, D. Yang, G. Tang, and M. B. Wakin, “Atomic norm minimiza-
tion for modal analysis from random and compressed samples,” /[EEE
Trans. Signal Process., vol. 66, no. 7, pp. 1817-1831, Jan. 2018.

S. Li, M. B. Wakin, and G. Tang, “Atomic norm denoising for complex
exponentials with unknown waveform modulations,” /EEE Trans. Inf.
Theory, vol. 66, no. 6, pp. 3893-3913, Nov. 2019.

Y. Chi and M. Ferreira Da Costa, “Harnessing sparsity over the con-
tinuum: Atomic norm minimization for superresolution,” /IEEE Signal
Process. Mag., vol. 37, no. 2, pp. 39-57, Mar. 2020.

H. Groll, P. Gerstoft, M. Hofer, J. Blumenstein, T. Zemen, and C. F.
Mecklenbriuker, “Scatterer identification by atomic norm minimiza-
tion in vehicular mm-Wave propagation channels,” IEEE Access, vol.
10, pp. 102334-102354, Sep. 2022.

M. Pesavento, M. Trinh-Hoang, and M. Viberg, “Three more decades
in array signal processing research: An optimization and structure ex-
ploitation perspective,” IEEE Signal Process. Mag., vol. 40, no. 4, pp.
92-106, Jun. 2023.

Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse methods for direction-of-
arrival estimation,” in Academic Press Library in Signal Processing:
Array, Radar and Communications Engineering, vol. 7, chapter 11, pp.
509-581. Academic Press, 2018.

A. Xenaki and P. Gerstoft, “Grid-free compressive beamforming,” J.
Acoust. Soc. Am., vol. 137, no. 4, pp. 1923-1935, Apr. 2015.

Y. Park, Y. Choo, and W. Seong, “Multiple snapshot grid free compres-
sive beamforming,” J. Acoust. Soc. Am., vol. 143, no. 6, pp. 3849-3859,
Jun. 2018.

M. Wagner, Y. Park, and P. Gerstoft, “Gridless DOA estimation and
root-MUSIC for non-uniform linear arrays,” IEEE Trans. Signal Pro-
cess., vol. 69, pp. 2144-2157, Mar. 2021.

Y. Park and P. Gerstoft, “Gridless sparse covariance-based beamform-
ing via alternating projections including co-prime arrays,” J. Acoust.
Soc. Am., vol. 151, no. 6, pp. 3828-3837, Jun. 2022.

D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal recon-
struction perspective for source localization with sensor arrays,” IEEE
Trans. Signal Process., vol. 53, no. 8, pp. 3010-3022, Aug. 2005.

A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamform-
ing,” J. Acoust. Soc. Am., vol. 136, no. 1, pp. 260-271, Jul. 2014.

P. Gerstoft, A. Xenaki, and C. F. Mecklenbriuker, “Multiple and single
snapshot compressive beamforming,” J. Acoust. Soc. Am., vol. 138, no.
4, pp. 2003-2014, Oct. 2015.

Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to
basis mismatch in compressed sensing,” IEEE Trans. Signal Process.,
vol. 59, no. 5, pp. 2182-2195, May 2011.

C. Fernandez-Granda, “Super-resolution of point sources via convex
programming,” Inf. Inference, vol. 5, no. 3, pp. 251-303, Apr. 2016.

Y. Chi and Y. Li, “Off-the-grid line spectrum denoising and estimation
with multiple measurement vectors,” IEEE Trans. Signal Process., vol.
64, no. 5, pp. 1257-1269, Oct. 2016.

P. Chen, Z. Chen, Z. Cao, and X. Wang, “A new atomic norm for DOA
estimation with gain-phase errors,” IEEE Trans. Signal Process., vol.
68, pp. 4293-4306, Jul. 2020.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA estimation
exploiting a uniform linear array with multiple co-prime frequencies,”
Signal Process., vol. 130, pp. 37-46, Jan. 2017.

F. Wang, Z. Tian, G. Leus, and J. Fang, “Direction of arrival estimation
of wideband sources using sparse linear arrays,” IEEE Trans. Signal
Process., vol. 69, pp. 4444-4457, Jul. 2021.

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, “Enhanced DOA es-
timation exploiting multi-frequency sparse array,” IEEE Trans. Signal
Process., vol. 69, pp. 5935-5946, Oct. 2021.

Y. Wu, M. B. Wakin, and P. Gerstoft, “Gridless DOA estimation under
the multi-frequency model,” in Proc. IEEE ICASSP, 2022, pp. 5982—
5986.

Y. Wu, M. B. Wakin, and P. Gerstoft, “Gridless DOA estimation with
multiple frequencies,” IEEE Trans. Signal Process., vol. 71, pp. 417—
432, Feb. 2023.

Y. D. Zhang and M. G. Amin, “Multi-frequency rational sparse array
for direction-of-arrival estimation,” in Proc. IEEE ISSCS, 2023, pp.
1-4.

Y. Wu, M. B. Wakin, and P. Gerstoft, “Non-uniform array and fre-
quency spacing for regularization-free gridless DOA,” [EEE Trans.
Signal Process., vol. 72, pp. 20062020, Apr. 2024.

B. N. Bhaskar, G. Tang, and B. Recht, “Atomic norm denoising with
applications to line spectral estimation,” IEEE Trans. Signal Process.,
vol. 61, no. 23, pp. 5987-5999, Dec. 2013.

C. Steffens, M. Pesavento, and M. E. Pfetsch, “A compact formulation
for the £2,1 mixed-norm minimization problem,” IEEE Trans. Signal
Process., vol. 66, no. 6, pp. 1483-1497, Mar. 2018.

M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.2,” 2014, (Last viewed June 20, 2023).

S. Nannuru, K. L. Gemba, P. Gerstoft, W. S. Hodgkiss, and C. F. Meck-
lenbriuker, “Sparse Bayesian learning with multiple dictionaries,” Sig-
nal Process., vol. 159, pp. 159-170, Feb. 2019.

H. L. Van Trees, Optimum Array Processing (Detection, Estimation,
and Modulation Theory, Part IV), John Wiley & Sons, New York, 2002.

K. L. Gemba, S. Nannuru, and P. Gerstoft, “Robust ocean acoustic
localization with sparse Bayesian learning,” IEEE J. Sel. Topics Signal
Process., vol. 13, no. 1, pp. 49-60, Mar. 2019.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on February 10,2025 at 18:42:31 UTC from IEEE Xplore. Restrictions apply.



