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Multi-Frequency Spherical Near-Field Antenna
Measurements Using Compressive Sensing

Marc Andrew Valdez “, Jacob D. Rezac

Abstract—We propose compressive sensing approaches for
broadband spherical near-field measurements that reduce mea-
surement demands beyond what is achievable using conventional
single-frequency compressive sensing. Our approaches use two dif-
ferent compressive signal models—sparsity-based and low-rank-
based—whose viability we establish using a simulated standard
gain horn antenna. Under mild assumptions on the device be-
ing tested, we prove that sparsity-based broadband compressive
sensing provides significant measurement number reductions over
single-frequency compressive sensing. We find that our proposed
low-rank model also provides an effective means of achieving
broadband compressive sensing, using numerical experiments,
with performance on par with the best broadband sparsity-based
method. Exemplifying these best-case results, even in the presence
of measurement noise, the methods we propose can achieve relative
errors of —40 dB using about 1/4 of the measurements required for
conventional sampling. This is equivalent to about 1/2 sample per
unknown, whereas traditional spherical near-field measurements
require a minimum of roughly 2 measurements per unknown.

Index Terms—Compressed sensing, antenna radiation patterns,
broadband antennas, antenna measurements, near-field radiation
pattern.

I. INTRODUCTION

HARACTERIZING the near- or far-field radiation pat-
C tern [1] of an antenna or antenna array is critical for un-
derstanding antenna performance. Such characterizations allow
antennas to be properly considered in performance models and
help to identify undesirable device performance characteris-
tics. Communications devices that operate on 5G and future
6G modalities incorporate technologies such as beamforming,
beamsteering, and field controllability that complicate radiation
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pattern characterization. These devices operate in a large number
of states, frequencies, and modalities. As such, measurement
demands for antenna pattern characterization must accommo-
date a wide range of frequency bands, bandwidths [2], [3], and
antenna form factors. Characterization becomes more difficult
with devices operating at high frequencies and across large
frequency bands, where measurement defects can lead to large
errors in the estimated radiation pattern.

A standard approach for determining the radiation pattern of
a device under test (DUT) is to apply a near-field to far-field
transformation (NFT) on measurements of the DUT’s near-
field [4], [5], [6], [7], [8]. NFTs are particularly useful when
far-field techniques impose costly measurement challenges [9],
[10]. This is true, for example, of devices operating at mil-
limeter wave frequencies (e.g., the FR2 band [2], [3]) where
far-fields measurements suffer from path-loss issues. Near-field
techniques can be done in a spatially compact measurement
space and lead to the holographic [11], [12] ability to inves-
tigate the Fresnel (0.621/D3/A < r < 2D? /X, where r is the
distance from the radiator, D is the diameter of the smallest
sphere enclosing the radiator, and A is the wavelength of the
radiation) and Fraunhoffer (2D? /A <r) regions of antenna
patterns. This is possible because NFTs extract the propagating
spherical mode coefficients for the DUT’s radiated field [13],
which specify the DUT’s radiated field in the near- and far-field.
This ability is useful in array testing and in identifying defective
array elements. Unfortunately, the measurements needed for the
NFT-based approaches can take hours or days due to the high
sample number dictated by typical sampling theorems [7], [8],
[13], [14]. This becomes even more problematic when a device
has multiple configurations that need to be characterized, as test
equipment can drift away from proper operation over the course
of many days/weeks.

In this work, we propose two techniques for broadband
radiation pattern characterization by estimating the radiating
mode coefficients of a DUT with minimal measurements. These
methods modify standard NFT techniques with tools from com-
pressed sensing (CS). Similar CS-based ideas have been used
previously to reduce measurement requirements for radiation
pattern characterization [7], [8], [14], [15], [16], [17], [18],
[19]. In brief, CS helps reduce measurement requirements by
leveraging structural assumptions about a DUT’s Wigner D-
function coefficients (WDFCs), which are estimated in the NFT
process. Once the WDFCs are known, it is straightforward to
derive the DUT’s spherical mode coefficients, which define the
near- and far-field radiation patterns or the DUT’s sensitivity to
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external radiation, and can be used for holographic projections
within the near-field [11], [12]. These CS-based approaches are
typically based on a sparse or compressible signal model (i.e.,
many WDFCs are zero or near zero).

The existing CS-based methods for NFTs are all designed
for single-frequency operation. Research has been done outside
of CS on broadband antenna characterization, e.g. [20], but
such work relies on dense sampling grids. To perform the high-
precision radiation pattern characterizations that are desirable
for modern devices and required for broadband reference fields,
existing CS methods would be applied one frequency at a time.
The techniques we propose in this work leverage common
structures across frequencies to further reduce measurement
requirements. To do this, we model the broadband WDFCs with
structure beyond single-frequency sparsity and compressibility
in two ways: smoothness induced joint sparsity/compressibility
across the desired characterization band and a low-dimensional
matrix model where the DUT’s WDFCs make up the columns
of a low-rank matrix.

In this article, we compare the two proposed CS approaches
and find both to be effective models for characterizing antenna
radiation patterns with significant measurement number reduc-
tions. For the sparsity-based CS approach, we provide theoretical
bounds on the approach’s accuracy by leveraging the CS theory
for bounded orthonormal systems (BOSs). For the low-rank CS
approach, we provide an analysis of its limitations regarding the-
oretical guarantees in the context of the matrix sensing literature.
Lastly, in numerical examples, we compare our proposed meth-
ods to existing CS methods for NFTs applied to broadband DUT
characterizations and find significant reductions in measurement
numbers and improved robustness to measurement noise.

The remainder of this article is arranged as follows. This
section concludes with a summary of the paper’s main problem,
our solution approaches, and an overview of the existing related
literature. Section II gives the necessary background on spherical
NFTs and CS. Section III presents our theoretical results for CS
in broadband NFTs. Section IV presents numerical examples
pertaining to our approach for compressive broadband NFTs.
Lastly, Section V provides our conclusions.

A. Notation

Throughout this paper we use the following notation. Upper-
case bold math, e.g., A, represents matrices, while lower case
bold math, e.g., a, represents vectors. A matrix or vector with *
applied, e.g. A" or a*, signifies the Hermitian adjoint. Similarly,
T represents the transpose operation on a matrix or vector. An
overline T represents the complex conjugate of x. Applied to a
vector or function, || - ||, represents the typical ¢, or L, norm,
respectively, which should be clear from context. The symbol ®
signifies the Kronecker product. The inner product (A, B) , ¢ is
the Hilbert-Schmidt inner product between matrices. We use the
notation {z; } ¥, as shorthand for the set {z; : i = 1,2,..., N}.

B. Problem Statement

In short, the goal of this article is to enable a spherical NFT for
a DUT over a wide frequency band with as few measurements

as possible. In Section II-A, we discuss how the spherical NFT
problem for a single frequency reduces to finding a set of WDFCs
for the DUT from a set of linear measurements of the DUT’s
near-field radiation. Once these are acquired, the transformation
to the far-field radiation pattern is effectively a formality (thus,
in our examples we will not compute this). In this light, our main
problem is formally stated as follows:

Problem 1 (Primary Goal): Given a DUT and a set of Ny

evenly spaced frequencies F = {f; ng:fl’ let a; € CNP be the

vector of Np WDFCs, indexed by m, u, n, at the frequency f;.

That is, [a;]; = aﬁ(j]))“ (U)(£,) where ™" (f) are the frequency
dependent WDFCs of the DUT associated with the Wigner D-
functions DX . From as few spherical near-field measurements
as possible (denoted by w, w, W, or Y depending on context),

accurately recover a; for all <.

C. Approach and Contributions

Problem 1 raises a few key questions to address in order to
have a satisfactory solution approach: 1. What signal models can
we impose to help estimate WDFCs? 2. What sampling patterns
should be used? 3. How many measurements are needed? 4.
What reconstruction algorithm should be used to estimate the
WDEFCs of a DUT from the measurements?

To answer questions 1-4, we propose two distinct types of
approaches:

1) A sparse-model-based approach that can be treated as

a BOS that incorporates both the spatial and frequency
dependence of a DUT’s radiation pattern while using
monochromatic measurements.

2) A low-rank matrix reconstruction approach that can be
used with either monochromatic or polychromatic mea-
surements.

For the first type of approach, we prove two theorems about
its accuracy when used to solve Problem 1 via basis pursuit
(denoising), Theorems § and 9. For the second type of approach,
no guarantee is available for the low-rank model.! However, we
perform an extensive set of numerical experiments showing that
the low-rank approach provides accurate WDFC reconstructions
with high rates of compression and robustness to noise.

The sparsity-based approach we propose is novel in the CS and
NFT literature. In particular, even though Theorem 8 is similar
in flavor to other BOS results [18], [19], [21], [22], [23], using
this model in the context of joint spatial and frequency NFT
reconstructions is new. Moreover, Theorem 9, which is key to
the effectiveness of the sparse-model-based approach, is entirely
new; often there are no bounds on the sparse representation error
of a particular physical signal in CS approaches, yet we arrive
at an explicit bound in this article.

The low-rank matrix reconstruction approaches, while not
novel in the broader CS literature, are novel in the NFT literature.
To the authors’ knowledge, no work has analyzed the effec-
tiveness of low-rank approaches to accurately and efficiently
reconstruct the WDFCs of a device. Moreover, no study of which

The problems facing accuracy guarantees are discussed in the supplementary
material.
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we are aware has analyzed the additional benefit that poly-
chromatic measurements can provide for compressive NFTs.
Though polychromatic measurements are not seen in the litera-
ture, we include it as a possible driver of measurement system
development—as we will see, it can provide improvements in
accuracy using fewer samples than monochromatic samples, at
least in some cases.

D. Prior Work

1) Sparse Signal Model: In spherical NFTs, CS using the
sparsity model has been of keen interest to reduce measure-
ment times in the single frequency context [7], [14], [16], [17],
[18], [19]. In [14], [16], efforts were taken to establish exper-
imental usefulness of sparsity/compressibility models applied
to a DUT’s single frequency WDFCs a;. Further development
in [7], [8], [18] aimed to optimize sampling patterns and the
number of samples versus reconstruction accuracy, again for
single frequency WDFCs. These works, however, are either
based on coherence, which is weak in terms of CS guarantees, or
use experimental phase transition diagrams to infer the needed
number of samples (often this is all that can be done when no
guarantees are known). In contrast, [ 18] established theoretical
guarantees based on the Restricted Isometry Property (RIP) for
spherical NFTs and [19] extended RIP guarantees in spherical
NFTs when realistic measurement restrictions are included. The
former proved guarantees by considering the WDF series defined
by a DUT in the context of the CS theory of BOS. The latter
transformed the problem from WDFs to Slepian functions to
create a BOS on a restricted measurement domain. Both of
these works, however, require random samples on SO(3) (or
a subdomain) and do not use the equiangular sample positions
that are conventionally used [13]. An extension that allows for
random subsamples of a measurement grid closer to conven-
tional sample positions can be found in [23], which developed
the Gauss-Legendre-quadrature-based sampling patterns used in
this paper.

In summary, the prior sparsity-based work for spherical NFT's
focused on sampling patterns and measurement reductions in
the single frequency case. In principle, this work can be used to
give a solution to Problem 1. However, such an approach would
miss out on any joint structure to further improve sampling
in the multi-frequency case. In contrast, to address questions
1-4 and thus Problem 1, we use the sparsity model to jointly
solve for the WDFCs at multiple frequencies, i.e., all of the set
{az} 1- This sparsity model leverages smoothness properties
present in the frequency dependence of a device’s WDFCs
and uses the same monochromatic measurements that existing
single-frequency CS approaches use. We show that this model
and solution approach can outperform the approach of solving
for each a,; individually.

There has been additional work not discussed above to recon-
struct broadband radiation patterns [24], [25], but these efforts
are based on combinations of samples at different spatial posi-
tions using arrays of probes, which we do not consider. More-
over, these experiments do not incorporate theoretical details of
the NFT measurements, i.e., their expansion in a known set of
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Fig. 1. Horn Antenna VSWF Coefficients at 10 GHz. The relative magnitude
|AT |/ maxy m, - |AT} 7_| of the simulated VSWFCs A7 from a simulated
horn antenna at 10 GHz, in the middle of the device’s operational band.
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Fig. 2. Horn Antenna WDF Coefficient Matrix. The relative magnitude
|A;j|/ max; j |Aij| (top panel), absolute phase of A;; (middle panel), and
the relative magnitude | B;;|/ max;,j | B;;| of the Fourier transformed WDFC
matrix B (bottom panel) for the simulated standard gain horn antenna using
samples taken at 1 m using an z-directed electric dipole probe (a type of p = £1
probe). The columns of A span the frequency band of 8-12 GHz with 201
samples, i.e., 20 MHz samples.

basis functions and the nature of the sparsity deriving from the
coefficients in this basis.

Additionally, we note that there are various other approaches
to reconstruct multiple sparse vectors with common spar-
sity structures. Examples include multiple measurement vector
(MMV) approaches and more [26], [27], [28], [29]. Many of
these methods do not provide guarantees for structured measure-
ments like BOSs, which is a primary goal of this article. More-
over, while there are guarantees in some MMV approaches, they
are unsatisfactory for this work. In particular, MMV guarantees
are only as good as single frequency CS in the most general
case [29]. Lastly, many of these methods enforce row-sparse
structure in the WDFCs A. This structure is less than ideal
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Fig. 3. Model Representation Errors. Sparse, low-rank, and row-sparse

(MMYV) model representation errors for the WDFCs of a simulated standard
gain horn antenna as measured by a dipole probe from 8-12 GHz. Windowed
results are windowed by a Planck-Taper window.
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reconstruction phase diagrams the relative error of the solution in dB when
samples are perturbed by additive noise. At each sample density and rank, we
average over 50 trials.

NFTs because device WDFCs typically become more populated
athigher frequencies. Thus, we expect more flexible models like
our sparsity and low-rank ones to be more effective. Indeed, in
basic tests, we see this effect for the MMV approach (see Fig. 3).

2) Low-Rank Signal Model: Rank awareness in matrix re-
covery problems has seen wide application and study. A broad
overview of the subject is given in [30] while specific examples
include hyperspectral imaging [31], [32], joint sparse recovery
from ensemble signals or multi-sensor array signals [33], quan-
tum state tomography [34], tensor recovery [35], [36], and more.
However, to the best of our knowledge, there are no applications
of rank-aware matrix sensing in the spherical NFT literature.
We address this lack of study and present low-rank joint recov-
ery approaches to which joint sparsity can be compared and
while motivating further developments in the capabilities of
spherical NFTs measurement systems. Here we note that some
investigations have sought improved compressive sensing by
combining sparse and low-rank models [37], [38]. These models
utilize row-sparse matrices that are also low-rank. However, the
restrictiveness of such signal models is unfavorable for NFTs
(see the above discussion on simultaneously sparse signals).
Thus, we do not combine sparse and low-rank models, though
such an investigation may be an interesting avenue for future
work if the inflexibility of combined spare and low-rank models
can be removed in some manner.

A key underlying principle in these works is that the data
of interest has a low-dimensional structure so that the matrix
representation of the data is low-rank. We hypothesize that the
WDFC matrix A for a DUT, in many cases, fits well into such a
model. From an intuitive physical perspective, as the frequency
of a DUT like a horn is changed, the radiation pattern does
not change too much across its operational frequency. See, for
example, the analytical expressions for horn antenna far-fields
in [39]. Thus, its WDFCs should not vary too much, leading
to the possibility that these changes can be described by a low
dimensional model. Note, this behavior across a frequency band
may not always be true; some devices gain side lobes in a non-
smooth way, e.g., due to gratings. However, if the frequencies of
such a critical change are known, one may still take advantage
of smoothness on either side of such critical frequencies.

Beyond low dimensionality due to little change across fre-
quency bands, the WDFCs being sparse at each frequency and, as
we will see, compressible along frequency, imply there should be
alow-dimensional representation of A that is at least equivalent
to the savings we see in using the sparsity model.

II. BACKGROUND
A. Spherical Near-Field to Far-Field Transformations

The spherical NFT has become a standard approach for
characterizing the radiation pattern of a DUT (either receiving
or transmitting). We will discuss the case where the DUT is
transmitting and set up the spherical NFT in the single frequency
case, which is standard. The receiving case can equally be
handled by our methods; see [13] for details on the differences
between the two cases.
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The spherical NFT approach typically follows a standard set
of steps. First, measurements are taken and expressed in terms
of the DUT’s radiated electric field using a known probe. The
measurements are taken in the DUTs near-field on a sphere
with radius 7,45 enclosing and centered on the DUT. Since
the measurements are taken using a probe, a process of probe
correction must be used. This process relates the DUT’s electric
field to what the probe receives using rotation and translation
transformations and then accounting for the probe’s known
field sensitivity [13]. The result of probe correction is that a
measurement w is given by a linear combination of Wigner
D-functions, DA™ (defined formally below), whose coefficients
are the DUT’s WDFCs. The DUT’s WDFCs are a product of the
probes known sensitivity to fields and the DUT’s vector spherical
wavefunction coefficients (VSWFCs, also known as spherical
mode coefficients), A7, that define the DUT’s radiated electric
field. Using these near-field measurements, we construct and
solve a linear inverse problem for the WDFCs, a;**, from which
we can get the VSWFs. We can then use these VSWFCs to
project out in the radial direction to get the DUT’s far-field or
using holographic projections, investigate near-field regions. For
conciseness, we do not carry out this procedure in our numerical
examples; once the WDFCs are known, the DUT’s far-field
and holographic projections can be determined through known
equations. Mathematically, the measurements are

w(e, 8,7, f) =V/sinB > art(f)DEm™ (o, B,7), (1)

T, M, [

where we use the shorthand >° =~ to mean 2
D onmt D m=—n 2p=_n- Here, ap'(f) are the WDFCs of the
DUT. The WDFCs are a sum of the probe response constants [ 13]

C# . times the VSWFCs A7 and the normalization constants
(cim)~1 (see the definition of WDFs below):
2
an(f) = D (™) T AT (NCh () @)
T=1

The response constants contain the translation information of
the spherical NFT as well as the probe’s sensitivity to field
modes, both of which stay constant (for a single radiating
frequency) since 7,,.qs 1S constant. In addition, the WDF
arguments («, 3,7) = (—XEButer, —0Euler, —PEuler), Where
(PEulers OBulers X Euler) are Euler angles in the zy'2” passive
convention [40, p. 21] that specify the measurement position
relative to the original DUT coordinate system.?

In the above formulation, the frequency dependence of the
radiated field is contained only in the unknown WDFCs and
the known probe response constants. We also note here the
additional prefactor of +/sin /3, which is not typical in most
spherical NFTs literature. This prefactor is present because CS
guarantees require it (see [18], [22], [41]). Practically speak-
ing, the inclusion of the prefactor can be easily accounted for

2The zy' 2" passive Euler angle convention is as follows: We ﬁrst rotate the
zyz coordinate system by ¢ gyer about the z-axis into the 'y’ 2’-coordinate
system; then we rotate from the z'y’2’-coordinate to the x”y" 2"-coordinate
by 0 gyier around the y'-axis; last we complete transformation by rotating the

coordinate system by X g1 about the z”-axis.

in spherical NFT implementations by computationally scaling
measurements accordingly.

The WDFs described above form a basis for Lo functions
on the rotation group SO(3) [40] and are defined for n €
No, m,pu € Z, |m|, |p| < mnas

Di™ (o, B,7) = epme Hedi™ (B)e ™, 3)

where ¢#™ is a normalization constant’ and the Wigner d-
function, d*™(3), is given by [40], [42]

dy"(B) = (=) (2n +1)/2

x v/ (n+m)!l(n —m)!(n+ u)(n—

!
min(n+m,n—u)

x Y

o=max(0,m—p)

2n—20+m—p 20-m—+p
(-1)° (cos g) (sin g)

o = 4
¢ alln+m—o)l(n—p—0o)(p—m+o)! @
Here, («,8,7) € [0,27) x [0,7] x [0,27) parameterizes a
point on SO(3). Later on, we will use the orthogonality rela-
tionship of WDFs,

(DE™DM™YSO(3) = / DI D™ ASO(3)  (5)
SO(3)

872 (ckm)?
= —nénn’émm'd 8] 6
2n+1 e ©)

where dSO(3) = sin fdadfBdy For further details,
e.g., [40] or [43].

see,

B. Linear Inverse Problem Formulations

Given a set of measurements indexed by j at a fixed frequency
fi fromProblem 1,i.e., w(e;, B;,7;, fi), we can define the mea-
surement vector [w;]; = w(a;, 35,7, fi) and use (1) to form a
fully determined linear inverse problem for the vector of WDFCs
a;. Then, from the determined WDFs, we can straightforwardly
find the VSWFCs using the known probe response constants.
This single-frequency process is extended to fully determined
versions of the multi-frequency linear inverse problems in (9)
and (10), which we then describe compressive counterparts for
in (11)—(14).

We can write the linear inverse problem for the single-
frequency WDFs in matrix form as

w; = Ppa; +n;, @)

where 7); is a vector of noise associated with the measurements
w; and the entries of ® ;, which we refer to as the measurement
matrix, given by

[®p] jl= \/smBjD“gf;m(l)

3The definition of the WDFs with the arbitrary normalization constant is un-
conventional, but useful for our case. Depending on the use, e.g., for a continuous
BOS, discrete BOS, or rotation operator for spherical wave functions, different
values should be used. For a continuous BOS we use ch,™ = (5 2n+1 Y1/2 fora

= (Cy 2n+1)1/2 with C from [23 Th 3 and Cor.
=1.

discrete BOS we use chy
6], and for rotations of spherical wavefunctions we use chy'
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Here [ indexes all possible values of the indices m, u, n. If we
now combine all frequencies in F using the same measurement
positions («;, 5;,7;) we have the inverse problem

W=®&pA+ H, C)]

where W = [w; ws - --wy, ], with A = [a; as --- ay,]and
H = [n1 n2 --- nn,]. As mentioned above, the spherical NFT
measurements use only monochromatic radiation and (9) only
requires monochromatic measurements.

In contrast to typical monochromatic NFTs and under the as-
sumption that the propagation media has frequency-independent
permeability and permittivity,* multiple frequencies could, in
principle, be driven through the radiator and result in multi-
frequency a* ( f), allowing us to set up a linear inverse problem
of the form

Y =®pAE + H, (10)

where E = [e1 €2 - en.], Ne > Ny, and the €; € CNf define
linear coefficients weighting linear combinations of the different
radiated frequencies specified by a;. We will take the entries of
each ¢; tobei.i.d. Rademacher random variables. The purpose of
choosing E this way is to provide an extra source of subgaussian
randomness in sampling, which, heuristically, typically benefits
CS methods [45]. Although any subgaussian distribution could
be used here, we use Rademacher random variables to ensure
that each single-frequency component of the broadband signal
has the same magnitude. Other subgaussian distributions could
result in arbitrarily large or small components. Combining ra-
diated frequencies in this way is not usually done in spherical
NFT applications due to limitations in the ability to accurately
measure the phase of broadband signals in existing measurement
systems. We hypothesize, though, that if measurements such as
this were made possible in a new measurement apparatus,” it
would improve the capability of compressive measurements for
multi-frequency spherical NFTs.

Without any assumptions on the structure of the WD-
FCs, noiseless spherical NFTs require (nmax + 1)(2nmax + 1)?
equiangular samples per frequency on SO(3) to make ® p, full
column rank and have A be the unique solution to (9) and
(10) when H = 0 [13], [46]. However, it is common to use
a probe that is only sensitive to the VSWFs Fj;1, called a
= £1 probe, which reduces the sum over p in (1) to only
@ = %1 terms. This decreases the required number of samples
to N, S“;lﬁc = 2(Nmax + 1)(2nmax + 1) per frequency. In a typ-
ical u = +1 probe setup, the samples are equiangular on [0, 7]
for O pyier, equiangular on [0, 27 for ¢gyier, and at X gyier €
{0,7/2} [13]. In contrast, we will not use equianglar sampling

4This assumption is required so that the superposition principle holds, which
then means that we can linearly combine single frequency radiation solutions to
the Maxwell equations. Such an assumption will always hold in free space and
will hold in air when the frequency band considered is not too wide compared
to its center frequency [44]. In contrast, if the medium of propagation varies
substantially with frequency, our models may not be applicable. When the
superposition principle holds, any coefficients can be used for the superposition.

SWe are not suggesting such measurements are currently possible, nor are we
proposing a specific method to acquire these measurements. We are proposing
a target capability for future measurement systems.

but instead consider the fully sampled and invertible spatial sam-
pling pattern based on Gauss-Legendre quadrature [23], [46]. We
use the Gauss-Legendre quadrature sampling pattern because it
requires the same sample size to give a fully determined inverse
problem, gives better CS guarantees than equiangular sampling,
and still has fast sampling algorithms available [23].

1) Monochromatic Measurement Models: In the context of
our goal to solve Problem 1, we will use two monochromatic
compressive measurement models and two polychromatic com-
pressive measurement models. Each of these models will be
expressed as functions of the WDFCs via A, or its Fourier
transform. The monochromatic compressive models are sub-
samples of (9) expressed in terms of A or its Fourier transform
B = \/N_f 71AU}, where U p is the unitary DFT matrix. This
means that B contains the DFT of the WDFCs A along the rows,
i.e., across frequency f. This transform across f is independent
of any sparsity or structure related to the Wigner D-functions.
Moreover, the transformation does not have any effect on the
measurements W. Instead, the transform changes the basis in
which we solve the inverse problem to enable compression in
the frequency dependence of each individual Wigner D-function
coefficient. This compression, as we will see in Section III, is
due to DUT Wigner D-function coefficients varying smoothly
with frequency.

The two monochromatic compressive measurement models
we propose are (11) and (12)

P (vec(W)) = Po ((In; ® ®p) vec(A) + vec(H)) ,

(1D
Pq (vec(W))=Pq (\/N_f (U ® ®p) vec(B) + Vec(H)) ,
(12)

where P selects a subset of the fully sampled measurements
W . Both of these compressive measurement models use direct
subsamples of (9). We will call the form of the problem where
the measurements are expressed as a function of B the joint BOS
(JBOS). The case in (11), we will refer to as the individual BOS
(IBOS). We name it IBOS because the measurement operator
I Ny ® ® p is block diagonal and each block is a BOS measure-
ment matrix acting on the individual a;, i.e., each individual
single frequency problem can be solved separately. In contrast,
the JBOS formulation has a measurement matrix thatis not block
diagonal and is a BOS measurement matrix acting on all of the
WDFCs jointly via vec(B), which must be solved for all at once.
As we will see in Section III-B, the form of the JBOS will be
beneficial in recovering all a; at once.

2) Polychromatic Measurement Models: As mentioned
above, polychromatic measurements are not used in NFT's; how-
ever, we are including them in this paper’s studies to investigate
the potential benefit of such measurements in CS and propose a
target capability for future measurement systems. For the com-
pressive measurement model counterparts to the polychromatic
problem (10), we consider (13) and (14),

Pq (vec(Y)) = Po ((E” @ ®p) vec(A) + vec(H)), (13)
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TABLE
SPATIAL AND FREQUENCY SAMPLE POSITIONS FOR THE FOUR PROBLEM FORMULATIONS, IBOS, JBOS, RADEMACHER IBOS, RADEMACHER JBOS

[ Approach || Spatial Distribution | Frequency Distribution | Polychromatic | Frequency Combination Coefficients | Estimated Matrix |
1BOS GL Nodes Equispaced No n/a A
JBOS GL Nodes Equispaced No n/a B
Rad. IBOS GL Nodes Equispaced Yes ii.d. Rad. A
Rad. JBOS GL Nodes Equispaced Yes i.i.d. Rad. B

All use spatial sampling positions that are drawn from the gauss-legendre quadrature nodes. The main differences come from whether or not
samples are monochromatic or polychromatic (i.e., frequencies linearly combined or not), indicated in the fourth column.

Pa (vec(Y)) = Pq (m (ULE" @ ®p) vec(B)
+vec(H)). (14)

We call these the Rademacher IBOS and Rademacher JBOS
sampling approaches, respectively.

We close this section with a table summarizing the above
problem formulations. For each of the above approaches, Table I
describes the spatial and frequency sample patterns and how they
are combined into measurements.

C. Sparsity Model

The sparsity model has been widely used in the literature in a
problem commonly referred to as compressed sensing (CS). In
its simplest form, this problem is concerned with reconstructing
an unknown vector & € C" using a set of measurements y €
CM, related by

y = Px + 1, (15)

where @ is known as the measurement matrix and 7 is additive
measurement noise. The CS model assumes that x is s-sparse
(s nonzero entries) and M < N.

The pioneering work for this form of CS was done by Donoho,
Candés, Romberg, and Tao [47], [48], [49], [50], which focus
on random measurement matrices ®. This work was soon fol-
lowed by Rauhut [51] for structured ® such as those built from
trigonometric polynomials. A comprehensive resource for CS
can be found in [45].

A main focus of this initial work in CS was establishing algo-
rithms and guarantees for solving (15) under the sparsity model.
Though many algorithms are known, we will use quadratically
constrained basis pursuit (basis pursuit denoising) [45, p. 85,
Py ;] to solve (15) (and our corresponding inverse problems
(11) and (12)),

mizrliénléze |z|l1 subjectto @z —yl2 <no.  (16)
In QCBP, the goal is to find the sparsest vector that explains
the observed measurements. The £/ norm is a convex relaxation
of ¢y and its minimization promotes sparsity [45], while the
constraint ensures the solution is within the error explained by
the additive measurement noise.

Letting the solution to (16) be an estimate of a, which we
denote by Z, guarantees about the accuracy of Z have been
formally studied in CS. In particular, it is known that ® satisfying
the robust null space property [45, p. 86 Def. 4.17] is known to
guarantee the accuracy of . It is well known that the robust null
space property is difficult to prove directly for ®, so a sufficient

condition that implies that the (robust) null space property is the
RIP. Note, when there is no measurement noise 79 = 0 reduces
(16) to basis pursuit and guarantees still apply.

Definition 1 (Restricted Isometry Property (RIP) [45, p. 133,
Def. 6.1]): A matrix ® € CM*¥ is said to satisfy the restricted
isometry property of order s with constant § € (0, 1) if for all
s-sparse vectors & € CV

(1=l < [Pz < (1+8)|=]3 (17)

holds. The smallest §, denoted by dg, is called the restricted
isometry constant of order s.

The guarantee for the accuracy of & that relies on the RIP is
given in [45, p. 144 Th. 6.12], which states that if ® satisfies the
2 s-RIP with small enough RIP constant, then the error between
Z and « is small for sparse or compressible x. To measure the
sparsity/compressibility of a vector in this context, we use the
best s-sparse approximation error of x.

Definition 2 (Best s-Sparse Approximation Error [45, p. 42,
Def. 2.2]): Given a vector & € C¥, the best s-sparse approxi-
mation error in the £, norm is

min |z —= (18)

i .
2eCN:z[p<s ”p

os(x)p =

When the RIP-based conditions are satisfied, the accuracy of
QCBP is bounded by the best s-sparse approximation error of
a and the size of the measurement noise.

Theorem 3 (Accuracy of QCBP [45, p. 144 Th. 6.12]): If the
measurement matrix ® satisfies the 2 s-RIP with

6y < 4/V/A41, (19)

then, for any € C¥ and y such that ||®x — yl|2 < 7o, the
solution of (16) satisfies

|z — & < Cs™20,(x), + Do (20)

where C', D > 0 are constants that depend on 05 5.

Extensions and improvements in CS via RIP guarantees when
® is structured have been developed, in particular for sparse
series expansions in different orthonormal bases [18], [19], [21],
[22], [52], [53]. These results all establish a CS guarantee by
proving a number of samples M needed to guarantee that the
RIP is satisfied, at the core of which is the following result for
BOSs.

Theorem 4 (RIP for Bounded Orthonormal Systems [45,
p. 405, Th. 12.31]): Consider a set of basis functions ¢; : D —
C, i€{1,2,...,N} that are orthonormal with respect to a
probability measure p on the measurable space D. Consider the
matrix & ¢ CM*N with entries

[(P]ji:¢i(tj)7je {172a”-aM}7 i€{1727‘--aN} (21)
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constructed with i.i.d. samples of ¢; from the measure p on
D. Suppose the orthonormal functions are bounded such that

Sup;eqr,. Ny 1Pilloc < K IE

M > Cy62K? sIn*(N), (22)

then with probability atleast 1 — N~ In®(N) , the restricted isom-
etry constant d§, of \/LM@ satisfies 05 < ¢ for § € (0,1). The

constant Cy > 0 is universal.

D. Low-Rank Model

Similar to CS using a sparsity model, there are many ap-
proaches to recovering an unknown low-rank matrix X €
CN*P from some number of linear measurements. In these
approaches, measurements of are of the form

y=L(X)+n

where y € CM, L is a linear measurement operator L :
CN*P — CM of the form

[L(X)]i = (X, W) yg

where (-, -) ;; ¢ is the Hilbert-Schmidt inner product, {¥; : ¥, €
CNxP i =1,2,..., M} is a set of measurement matrices, and
7 is additive measurement noise.

In terms of reconstruction algorithms aimed at minimizing
l5 distance between the samples y and y generated from a
candidate solution /)2, Y= E(/)E), one can consider iterative
solvers subject to a low-rank constraint [30], [54]. Alternatively,
similar to how sparsity-based CS minimizes the ¢; norm to
promote sparse solutions, we can minimize the nuclear norm
(the sum of the singular values of a matrix) to promote low-rank
solutions. This latter case is the equivalent of basis pursuit for
low-rank matrices. In general, these low-rank reconstruction
approaches can give guarantees similar to sparsity-based CS if
the measurement operator £ satisfies a matrix restricted isometry
property (which we will refer to as M-RIP, not to be confused
with the sparsity-based RIP) with small enough isometry con-
stant.

Definition 5 (Matrix Restricted Isometry Property (M-
RIP) [45, p. 133, Def. 6.1]): The measurement operator L :
CN*P — CM js said to satisfy the matrix restricted isometry
property of rank r with constant § € (0,1) if for all rank-r
X € CN xP

1= )IX|% < 1£X)]3 < (1 +9)IX|,

(23)

(24)

(25)

holds. The smallest §, denoted by 4, is called the matrix re-
stricted isometry constant.

While guarantees for nuclear norm minimization are user
friendly, the problem sizes we encounter in this paper make it
desirable to solve (23) using methods based only on applications
of our sampling operator and its adjoint (e.g., gradient descent).
This is in contrast to many low-rank iterative methods for (23),
which require repeated SVD calculations and are best for small
to moderate sized problems. To that end, we instead will solve
Problem 1 under the low-rank model using an approach that
solves for the factors in X = U V™ using methods like gradient
descent [55]. As an important note, the factors U € CV*" and

V € CP*" are tall matrices, where the number of columns
imposes a rank constraint.

In more detail, the work in [55] centers on solving a non-
convex minimization problem for the Burer-Montiero (BM)
factorization of X, X = UV™, instead of solving a convex
problem for X . This alternative approach reduces computational
complexity of the low-rank matrix recovery and, under certain
assumptions (see [55, Th. 1, Remark 2]), has the property that
any local minimizer of the non-convex problem is equivalent
to the desired solution X. In addition, satisfying the M-RIP
with small enough isometry constant implies the BM factorized
approach gives accurate results [55, Cor. 1]. Note, the measure-
ment operator satisfying the M-RIP is not the only condition to
imply this result for the BM factorized approach. The M-RIP
implies restricted strong convexity and smoothness, which is
the key property needed in [55]. As applied to our low-rank
matrix sensing problem, the BM factorized approach solves the
minimization problem,

minimize

(26)
UGCNXT,VECPXT

1 %\ 12
sly— OV,
In the context of matrix sensing as described above, we can
recast the IBOS, JBOS, Rademacher IBOS, and Rademacher
JBOS sampling operators to match the standard notation used
in the literature:

[Lipos(A)]k = <A’me;(k)>ﬂs 27
[LRaa. 1BOS(A)]K = <A’m€;(k)>ﬂs (28)
(Ls80s(B))k = VN; (B.@pame;wUs), . @9
(£ rad. 1805 (B)li = /N7 (B, @b € Us) . (30)

where (/)g, ik) is a row selected at random from the BOS mea-
surement matrix ® p, e;( K is arandomly selected standard basis
vector, €; is arandom vector whose entries are i.i.d. Rademacher
random variables, and B is defined as above in Section II-C.
Note, (11)—(14) use the same samples as (27)—(30), respectively.
See Supplementary Material Section VII for details.

III. THEORETICAL ANALYSIS

In this section, we outline the theoretical guarantees (or lack
thereof) for Problem 1 under the sparsity and low-rank models.

A. Individual BOS

The treatment of (7) using the sparsity model has been well
studied in the individual frequency case. The following theorem
establishes a BOS-based guarantee for the IBOS sampling ap-
proach when we assume a total budget of M measurements to
be used across all frequencies.

Theorem 6 (IBOS Estimation of Wigner D-function Co-
efficients): Consider Problem 1 and assume a budget of
M measurements are spread evenly across all frequencies
such that at each frequency we take at least |M/N;| >

C/NgGs]Bos In*(Np) measurements drawn i.i.d. from the
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appropriate distribution [23, Th. 3 and Cor. 6], where C’ is a
constant and s;pog is a positive integer. Moreover, assume the
measurement noise for each frequency satisfies ||1¢]/~c < 70
and that we use these measurements to estimate the WDFCs
for each frequency individually using (16) to solve the inverse
problem (11) normalized as a discrete BOS [23, Th. 3 and Cor.
6] (i.e., we are solving the single-frequency problems w; =
Po®pa; +n; for each i individually using QCBP). Then
with probability least 1 — N BIHS(ND ), the individual estimated
WDEFCs, a;, satisfy

C
VSIBOS
where C', D > ( are universal constants. Moreover, the matrix of
estimated WDFCs, A = [a; a2 --- an,] satisfies, with prob-

1.3
ability at least 1 — Ny N,"™ VP,

||a1_al||2 S USIBos(ai)1+Dn07 (31)

/ ¢ %
Osipos (ai)l + DanO- (32)
SIBOS =1

Proof: See Supplementary Material Section VI.

Remark 7: A notable fact about (32) is that the term in the
error due to measurement noise is not affected by increases in
the measurement number, M, and it increases if the number
of frequency samples, Ny, increases. The former attribute is
fundamentally due to the structure of QCBP. The QCBP problem
has the quadratic constraint grow with each measurement used
and so the accuracy limit depends on the assumed maximum
error in any given measurement.

a4, <
F

B. A Joint BOS for Broadband NFTs

Due to the tensor product nature of the measurement operator
(12), this measurement operator fits the criteria to be a BOS for
the vector vec(B). In particular, this operator is a BOS sampling
operator if the subsampling operator Pq, is defined so that a
given measurement has a spatial position selected according to
the BOS distribution for ® p specified in [23, Th. 3 and Cor. 6]
and the frequency for the measurement (i.e., the row of UZL) is
selected at random independently of the position. Additionally,
the bound on the magnitude of the entries of the JBOS operator
is the same as ® p, since the scaled DFT matrix \/N_f Ur has
all entries of magnitude one. Pairing these facts we can apply
BOS guarantees under the sparsity model to (11).

Theorem 8 (JBOS Estimation of Wigner D-function Co-
efficients): Consider the linear inverse problem specified by
(12), normalized so that the WDFs are a discrete BOS, with
measurement noise bounded so that ||1; ||~ < 70, ¥i. Suppose
M > C/Nll)/GSJBOS 1n4(NDNf) samples are taken i.i.d. from
the product distribution having a uniform distribution on the
rows of Ufﬁ and the spatial portion, the rows of ®p, are
distributed according to the BOS distribution specified in [23,
Th. 3 and Cor. 6]. Let (16) provide an estimate vec(B) of

the coefficients B = /N fﬁlAUﬁ7 and the estimated WDFC
matrix be A = /N fEUF. Then, with probability at least

1-— (NfND)’l’“S(NfND), A satisfies

a4, <o
F

OsyBos (VeC(B))l + D\/ Nf7707
SJBOS

(33)
where C', D > 0 are constants depending on the restricted isom-
etry constant 0z, ., 0f \/NyPoUh @ ®p.

Proof: See Supplementary Material Section VI.

Comparing the error results in Theorems 6 and 8, the noise
term of the IBOS approach grows faster by a factor of \/N_f in
Theorem 6. In terms of the sparse representation error term, the
picture is a bit less clear. In later numerical examples, we will see
that the sparse representation error for the JBOS is much more
controlled, especially as N increases. However, this does not
justify, theoretically, why we might expect the JBOS to perform
better with respect to sparse representation error.

To that end, we analyze the sparse representation error in the
JBOS case assuming the WDFCs are infinitely differentiable
with respect to frequency. Using this assumption and properties
of Fourier series expansions, we bound the sparse representation
error of B.

Theorem 9: Let B = \/N; ' AU, be the matrix of JBOS
coefficients for a DUT with WDFC matrix A whose frequency
samples are specified by Problem 1 and N is even (similar state-
ments can be made for odd V). Assume the maximum sparsity
of any column of A is s, and each other column has a support
contained in the support of this s,,,,x-sparse column. Moreover,
assume the WDFCs are scaled by a windowing function so that

the periodization of the WDFCs,
Ap+6r Ap+6y
F1Of f f) (34)

27r+ 2

ar(©=ap (1
where ¢ € [~m, 7], Ay = fn, — fi,and 65 = fiy1 — fi,isin-
finitely differentiable with respect to ¢ (frequency). Then, for
positive integer 7, the sparse representation error of B satisfies,
Vp > 2,

a5+ s (B < LS (39)
'(p)NsN¥?
< NN, (36)
]p

where r’(p) is a constant depending on p and the p-th derivatives
of the WDFCs.

Proof: See Supplementary Material Section VI.

The assumption regarding the maximum column sparsity and
support is quite restrictive, but for many standard radiators this
pattern is seen to hold, e.g., the horn antenna WDFCs in Fig. 2.
Moreover, the form of (35) is rather complicated but can be
thought of in the following way: If each WDFC has a sparsity
Smax Or less, and we sample at a positive integer multiple j
of smax (times the factors from Theorem 8), then the error
has superpolynomial decay in this multiple j. Additionally, we
actually expect this bound to be loose in cases of devices like
horn antennas. This is because the explicit matrix we construct to
bound the sparse representation error in our proof is constrained
to fill each row with equally many entries. This could mean that
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the matrix we use is not a good sparse approximation to B. This
is because it is possible, and seemingly likely for certain devices
(see Theorem 8), that certain rows of B contain multiple entries
larger than any entry in another row.

We can now compare Theorem 8 with Theorem 6 in
the context of Theorem 9. Take the assumptions needed for
Theorem 9 and also assume we take a total of C'qspyax N g 6 %
(log factors) noiseless samples (noting the difference in log
factors between Theorems 6 and 8), where ¢ > 0 is an integer.
According to Theorem 6, one would expect to recover the
gSmax/INy largest entries of each WDFC vector a;. As we
increase g, we recover the next largest entries in each WDFC
vector. However, we do not know how the error of the Theorem
6 estimate decays because we do not know how the magnitude of
the WDFC vectors’ entries decay. In contrast, using Theorem 8
and Section II-C, as we increase ¢ we do know how the error
decays. This error decays superpolynomially with g, thanks
to the smoothness properties of the WDFCs with respect to
frequency.

Regarding the assumption of smooth WDFCs used above, this
property will hold so long as the VSWFCs for the DUT and the
probe sensitivity are also infinitely differentiable with respect to
frequency, which will be valid in free space and other simple
propagation media.% This is due to the form of the translation
operator only depending on frequency in the spherical Hankel
functions, which are continuously differentiable with respect to
frequency. We note that other research has also relied on similar
frequency smoothness assumptions for antennas [20]. Moreover,
for dipole probes and common DUTSs like horn or aperture
antennas, infinite differentiability is a reasonable assumption
based on theoretical analyses in [13], [39].

C. Low-Rank Approaches

In Section III-A and III-B, we saw that the theoretical RIP
guarantees from the CS literature are readily applied to the
sparsity based approaches for Problem 1. In contrast, M-RIP
results from the theory of low-rank matrix sensing are not readily
applied to Problem 1. This inability is due to the structure
of the BOS sensing operators in (27) and (29) (similarly the
operators in (28) and (30)); the structure is problematic because
various existing results either do not directly apply or their
existing proof approaches, e.g., in [34], [35], [45], [56], do not
permit translation to the BOS sampling operators structure. We
discuss this topic in more detail in the Supplementary Material
(see Section VIII).

IV. NUMERICAL EXPERIMENTS

In this section, we examine the effectiveness of sparsity and
low-rank models. First, in Section IV-A, we discuss some gen-
eral computational considerations when using either model—
even for relatively small band-limits, 7., problem sizes

5Complicated media where permeability and permittivity do not vary
smoothly with frequency will be problematic and lessen the effectiveness of
the DFT across frequency since they will affect the smoothness properties of the
WDEFCs.

can become large when used for a typical horn antenna. In
Section IV-B, we examine the effectiveness of the sparsity
and low-rank models for a typical horn antenna. Section IV-C
analyzes the success of using the sampling operators defined in
Section II-D, as we do not have theoretical guarantees like we
do for the sparsity model. Lastly, in Section IV-D, we compare
the reconstruction results for the sparsity and low-rank models.

A. Computational Considerations and Fast Algorithms

Applying the sampling operator or its adjoint/inverse in NFT
algorithms can become difficult, even in the single frequency
case. This fact is due to the scaling in the problem size with the
band limit, either n2 , _in the 1 = 41 probe case or n3,, more
generally. Thus, fast NFT algorithms are highly important for
NFTs over a large frequency range. In the fully sampled NFT,
it is possible to implement a fast approach using FFTs [13].
However, to have guaranteed CS with fast NFTs, more work is
required.

For CS guarantees to apply to sub-sampled NFTs, the first
guarantees required continuous random sampling on SO(3) or
a subset of SO(3) [18], [19]. Such continuous random sampling
renders existing fast algorithms unusable. A modest improve-
ment in the situation is found in [57]; however, the scaling
of the guarantees is worse than the continuous counterpart.
Fortunately, CS guarantees of the same scaling as the continuous
sampling can be extended to sampling positions amenable to
a fast algorithm [23]. This approach allows sampling on the
Gauss-Legendre nodes for the polar angle S in the WDFs,
enabling the use of the fast algorithm in [46]. Thus, in our
numerical examples, we use the algorithm in [46] for the
WDF transform and its adjoint, paired with FFTs/IFFTs for
the frequency dependence of the WDFCs. Table II compares
the fully-sampled computation time and memory complexity
of the forward (or adjoint/inverse) sampling operator using
the fast algorithm [46] with the full matrix approach used for
continuous random sampling on SO(3). It is worth commenting
that, even though we formulate our problem using Kronecker
products in (11) and (12), the computational complexities are
identical to computing ® p A and ® , BU . Note also that the
Rademacher counterparts will fare worse computationally due
to the need to fully compute the matrix products containing F
from (10).

B. Model Efficiency

Both the sparse and low-rank models we propose should, if
they are useful models, provide a significant level of compres-
sion that we can leverage in the sensing for Problem 1. The level
of compression of a signal under such models generally trans-
lates to sampling savings, at least in an idealized scenario. For
example, if a BOS has the optimal bound (KX = 1), then, up to
logarithmic factors, the number of samples needed to represent
an s-sparse signal is proportional to s. A similar case is true when
using M-RIP guarantees and nuclear norm minimization or using
or BM factorized matrix sensing as described in Section II-D.
Thus, to get an idea of the effectiveness of each model, we look at
the relative error when representing the WDFCs of a simulated
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TABLE I
COMPUTATIONAL COMPLEXITY AND MEMORY COMPLEXITY OF DIFFERENT SAMPLING OPERATOR IMPLEMENTATIONS FOR NFTS (NO ASSUMPTIONS ON PROBE)

[ Approach ][ Complexity (Single-Frequency) [ Memory (Single-Frequency) [ Complexity (Multi-Frequency) | Memory (Multi-Frequency) |

‘ Matrix O(n8 ) Oo(n8 ) O(ng]axNJ%) O(n?naXNJ%)

The matrix row is the full matrix approach that would be used with continuous samples on so (3) while the fast algorithm [46] is enabled by sampling on gauss-legendre nodes.

standard gain horn antenna using the best sparse or low-rank
approximation of a given model complexity. The relative error
is defined as

Relative Error (dB) = 20log;, (HA - KHF / ||A||F) (37)

where A is the best s-sparse approximation to A under the JBOS
or IBOS assumptions, or the best rank-r approximation of A.
For the JBOS this means A = \/N;BU r and B contains the
s largest magnAitude entries of B, while for the IBOS, this means
each column A contains the best | s/N |-sparse approximation
to the corresponding column in A. This selection is made for the
IBOS as it represents a model with a budget of s entries to keep
and we do not know which columns of A are larger in general.
We define model complexity as

ﬁ, for an s-sparse model
min(NgT:ﬂ,Nf) ’

Model Complexity = for a rank-r model -

(38)
where N g:il is the dimension of the WDF basis restricted to
only the © = £1 WDFs since we assume a ¢ = %1 probe. For
the sake of comparison, we will also include the best row-sparse
approximation to A, which is the matrix we would recover using
the MMV approach mentioned in the introduction [26], [27].

Below, we consider VSWFCs standard gain horn antenna,
with an approximate operational band of 8-12 GHz, de-
scribed in [39, Fig. 13.22]. The VSWEFCs for this horn are
generated as follows. We use the MATLAB Antenna Tool-
box” horn object to specify a horn antenna using the spec-
ifications in [39, Fig. 13.22], set the waveguide feeding
the horn to match the width and height of WR90 wave-
guide, and tilt the horn using “Tilt”, [-90 901, with
"TiltAxis”, [0 1 0; 0 O 1]. The tilting procedure
orients the horn to have its main lobe along the z-axis. The
remainder of the parameters for the horn method are left at
their defaults. We then use the function EHfields to sim-
ulate the electric field for the horn antenna in the near-field
on a sphere of radius 1 m centered on the point (z,y,z) =
(0,0.5 * horn.Height,0.1). For the dimensions of the an-
tenna and frequencies we consider, this puts the Fresnel region
defined by 0.62,/D3/A <r <2D?/x at roughly 0.3 m to
4-5 m. Here, D is the diameter of the smallest sphere circum-
scribing the radiator and X is the wavelength of the radiation. We
then extract the VSWFCs using the angular orthogonality of the

7Commercial software is identified in this paper in order to specify the
experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

VSWFs (see [13, Appendix A1.4.3]). The VSWF coordinate
system is aligned parallel with the horn’s but centered on the
center of the sphere for which the electric field is known. We
shift the sphere and use its center for the coordinate system of
the VSWFs to better center the horn antenna with the origin
of the VSWFs and provide better VSWFC compressibility. For
computational simplicity, we set the band-limit of the VSWF
expansion for the field to nyax = 20, which gives reasonably
accurate field representations (the typical ny,,x = kr + 10 rule
gives Nmax ~ 25). Example VSWFCs for the horn antenna at
10 GHz can be seen in Fig. 1.

When investigating measurements w, we simulate these in-
computer according to (1) and (2) by using the VSWFCs and
assuming samples are taken at a radius of 1 musing an z-oriented
dipole probe (probe response constants are in [13, Eqgs. 3.39
and 3.40]). This radius puts the measurements well within the
Fresnel region referenced above. Using the dipole probe, only
the WDFCs with y = £1 are nonzero, so A is Ng:il x Ny.
In Fig. 2, we show the relative magnitude and absolute phases
of the entries of A as well as the relative magnitude of the
transformed coefficient matrix B. Both A and B can be seen to
be sparse/compressible, with the transformation applied to get
B resulting in increased sparsity/compressibility.

As anote, an analysis of the theoretical far-field of the horn we
consider [39, Eqgs. 13-46(a-c)] (omitted for the sake of brevity)
shows WDFCs that are much more sparse than Fig. 2—the
large coefficients are similar in structure, but the tail of smaller
coefficients on A are more towards —100 dB to —120 dB versus
the —40 dB to —60 dB range we see in Fig. 2. We hypothesize the
difference between such an analysis and Fig. 2 is in part due to
the mesh sizes used in the method of moments method MATLAB
uses for field calculations and to simplifying assumptions used
to arrive at [39, Egs. 13-46(a-c)]. However, real horn antennas
will likely also be more akin to Fig. 2, due to small imperfections
as well as the fact that the analysis in [39] is quite simplified.

As a further note, devices with wider operational bands than
our example do exist. However, as long as the field varies
smoothly with frequency in the operational band as our example
does, we do not expect the analysis of such devices to differ
significantly.

In Fig. 3, we see that each model provides compression
when used with different frequency sample densities and with
or without windowing included. Using a Planck-Taper window
(i.e., smoothing out the edges of the DFT across frequency)
and a frequency sampling of 20 MHz, both the JBOS and the
low-rank models achieve an accuracy of around —40 dB at a
model complexity of near 0.1. In contrast, the IBOS model does
not reach comparable accuracy until the model complexity is
much larger, near 0.4. The MMV approach fares even worse
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than the IBOS under the same conditions. This result is primar-
ily due to the fact that the compression is done by removing
rows of A, not just individual entries like the JBOS or IBOS
methods.

The results we see in Fig. 3 are promising for using any of
the proposed models for CS of all coefficients in A, but the
actual effectiveness of the sensing will heavily depend on the
reconstruction approach and how close to optimal it comes (here
optimal is meant in the sense of needed number of samples for
a given model complexity).

Looking more critically at Fig. 3, the number of frequency
samples in the given band has a large effect on the low-rank and
JBOS models. Comparing the top panel to the bottom panel (both
of which window the same ranges from 8§-8.3 GHz and 11.7-
12 GHz), a change in frequency sample density from 20 MHz
to 100 MHz significantly affects the low-rank model and has
a slight effect on the JBOS model, but little effect is seen in
the IBOS or row-sparse MMV model. Comparing the top and
middle panel, we can see the windowing significantly affects the
JBOS model for the better, but it has little effect on the low-rank
or IBOS models.

C. General Low-Rank Reconstruction Phase Diagrams

It is common in the CS literature to demonstrate the general
effectiveness of a reconstruction approach by using a phase tran-
sition diagram (PTD) that plots reconstruction accuracy versus
sampling rate and signal model complexity (i.e., sparsity level
or matrix rank). Since we have no theoretical guarantees for our
low-rank reconstruction approaches, we give phase transition di-
agrams for each approach using noisy samples Fig. 4. In this fig-
ure, each sample has noise drawn uniformly at random from the
complex disk with radius 7,05 Where peak signal /Tyoise =
70 dB. For noiseless samples see Supplementary Material Sec-
tion IX.

To generate the phase transition diagrams, we run 50 trials at
each displayed rank and sample density,

Sample Density = # of samples/ (N“:il Nf)

sample

(39)
where Ns‘ffnlplc := 2(Nmax + 1)(2nmax + 1) is the number of
measurements in fully sampled NFTs at an individual frequency,
and we have set 1,2 = 10 and Ny = 200. Note that NH=EL

sample
is roughly double N gﬂ, owing to the form of the orthogonality
relationship for Wigner D-functions and associated sampling
theorems [13], [46]. In each trial we use 26 to reconstruct a
unit Frobenius norm matrix X € C¥5 *Ns from its mea-
surements. We generate a rank r matrix X by selecting the
r singular values uniformly at random from [0.01,1] (selected
to avoid extremely poor conditioned matrices). The singular
vectors are selected uniformly at random from the Haar measure
on unitary matrices [58]. To solve (26) we use gradient descent
with a maximum of 250 iterations and fix the rank estimate as
the known rank r. The random samples for the IBOS and JBOS
model are selected according to their BOS distribution described
in [23]. For their Rademacher counterparts, the spatial samples
are distributed the same as the non-Rademacher operators and

at each measured spatial point a new coefficient vector € is
generated. To initialize the gradient descent algorithm in the
IBOS and JBOS cases, we use the inverse operators of the full
IBOS and JBOS operators applied to the random subsamples.
These inverse operators use the inverse operator in [46] (paired
with an extra DFT in the JBOS case). For the Rademacher
IBOS and JBOS sampling operators, since there is no easily
constructed inverse or pseudoinverse for their corresponding
full operators, we use the adjoint of each operator normalized
by factors of (mNy)~" for the IBOS and (mN7)~' for the
JOBS—the extra Ny in the JBOS is to deal with the scaled
DFT operator across frequency.

InFig. 4 we can see that, when sub-sampled, all four proposed
sampling operators are able to reconstruct the unknown matrix
to reasonable accuracy. However, it is clear that the Rademacher
IBOS and Rademacher JBOS sampling approaches perform
slightly better than the IBOS and JBOS counterparts. Comparing
to the Rademacher FFT approach as a baseline, we can see that
none of the sampling operators perform nearly as well, and the
roll off of the PTDs in the relative error is much more sharp
for the Rademacher FFT. Unfortunately, the Rademacher FFT
example is not possible to measure in NFTs, it is just a baseline
method for comparison; its exceptional performance is expected
since it has a guarantee that is, like Gaussian samples in CS,
nearly optimal.

D. Multi-Frequency Reconstructions for a Horn Antenna

Next, in Fig. 5 we compare the performance of our proposed
CS approaches for the simulated horn from Section I'V-B in the
presence of noise. As with the model representation error plots
in Fig. 3, we also include the MMV approach. Without noise the
results are highly similar and for the sake of brevity not included.
For these experiments, we use Ny = 200, which amounts to
20 MHz samples, and window as described in Section IV-B.
For the IBOS, JBOS, and MMV methods, we generate the
measurements W using the set of known coefficients, from
which we then randomly sub-select. This mimics typical single
frequency measurements in that all we need for the IBOS and
JBOS CS approaches are the sub-selected entries of W at the
positions and frequencies specified by sampling the appropriate
angle and frequency sample distributions, w(c;, 8;,7;, f;)- For
the Rademacher-based approaches, we directly generate the sub-
sampled measurements of Y. For the low-rank reconstructions,
we use the same initialization approach as described in Sec-
tion IV-C and a rank value of r = 25. For the QCBP results
(labeled as ¢;), we use the SPGL183 software [59].

In the top row of Fig. 5, we see that each reconstruction
approach recovers the horn antenna’s WDFCs with at least 5%
accuracy (roughly —25 dB) using m =~ 0.4, S‘;fnﬁcNf or less,
about 40% of all sample positions at each frequency (there about
2 N#=*! spatial sample positions, so this is m ~ 0.8 Ns~"" N
samples to recover N g:ﬂ Ny unknowns). The IBOS ¢; method
and MMV approaches, with comparable performance, are the

8The use of this product is not an endorsement and is only to clarify what was
used in this paper.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on February 10,2025 at 19:15:43 UTC from IEEE Xplore. Restrictions apply.



584
e [BOS /3

—JBOS 4 - == IBOS L.R.
- - --JBOSLR. asseenns Rad. IBOS L.R.
--------------- Rad. JBOS L.R. MMV

s Z

< <

o |' ~ —ecax—ecaea

) i )

[} H [}

3 i b=

n i N

. b .

aet H ~ L

X G B o N QY s B s N

° Q¥ o7 N o ¥ o7 M

Sample Density

Sample Density
1 T -

o

Q \5) \2) \a) N
Voot N

1% R.E. Succ. Rate
o
o

1% R.E. Succ. Rate
o
o

Q N2l \a \a} N
¥ o7 M

Sample Density Sample Density

o

A
‘\\

&
&
'0
A
RRLDY T, | TS e

0.5 1
Sample Density

)
o
.
)
o
.

EN
o
1
1
]
i
3
1
i
1
i
i
'
N
o

o
o
.
oy
S

Relative Error (dB)
Relative Error (dB)
)

o

0.5 1
Sample Density

Fig. 5. Noisy Horn Antenna Reconstructions The reconstruction results for
a simulated standard gain horn from 8-12 GHz. All plots share the legends
given above the top panels (non-bold corresponds to the JBOS methods, left
column, and bold corresponds to the IBOS or MMV methods, right column).
The top two rows of plots give the success rate for 5% and 1% relative error

(Success Rate = #ofuialswith RE.<%outoff yhile the bottom two panels show

the corresponding average relative errors. At each sample density, 50 trials are
run for the proposed methods, while only 10 trials are used for the MMV method.

worst approaches; their standing among the other methods is as
expected from the model representation errors Fig. 3. The JBOS
¢; and Rademacher L.R. methods are the best, needing only
m ~ 0.1N% ﬁ;}eN . The performance of the non-Rademacher
low-rank methods come in slightly behind the JBOS ¢; and
Rademacher L.R. methods. Decreasing the success criteria to
1% relative error (—40 dB) in the second row of plots, we see that
the IBOS ¢; method requires roughly 75% of the conventional
number of measurements, while the other methods fare better.
The JBOS ¢; and Rademacher L.R. approaches continue to
perform the best, needing m ~ 0.25V, ;;ﬁl:p%eN ; measurements.
This means the best methods tested need roughly 0.5 mea-
surements for each unknown, a significant savings considering
conventional approaches need roughly 2 samples per unknown.
Looking at the relative error, the JBOS /; results corresponding
to Theorem 8 perform the best over the broadest range of sample
numbers. The stark difference between the IBOS or MMV and
JBOS /1 results shows the vast improvement in model effective-
ness the JBOS possesses over the other two. This is explained
by the extra compression provided by the JBOS in Fig. 2 as well
as the JBOS’s improved theoretical performance over the IBOS
from Section III.

As a note, the low-rank reconstruction approaches have ac-
curacy limited by both the selected rank and the number of
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gradient descent iterations. In terms of the latter factor, exper-
iments showed larger iteration numbers resulted in improved
performance. We did not select these larger simulation iterations
due to the large computation times needed to simulate many
trials at each measurement number. However, when used in the
wild, more iterations can be used, since single reconstructions
are much less computationally burdensome than full phase di-
agrams. Moreover, the selected rank value can be optimized
beyond what we considered here. One procedure to do this
would be to use a holdout set of measurements, reconstruct under
multiple assumed rank values in the BM approach (26), and use
the rank value which gives the best predictive estimates for the
holdout set of measurements.

V. CONCLUSION

Due to the long sample times, broadband nature of antenna
or antenna array characterizations, and lack of existing multi-
frequency reconstruction approaches, we proposed new multi-
frequency compressive sensing approaches to that can be used
in spherical near-field to far-field transformations or spherical
holographic techniques. In particular, we proposed using a
joint-sparse model for the Wigner D-function coefficients across
the desired characterization band as well as a low-rank model.
Numerical experiments showed that, for a simulated standard
gain horn antenna, both models produce effective compression
of the Wigner D-function coefficients beyond typical single
frequency compressed sensing. We also saw that the effective-
ness of each model depends on the density of desired frequency
samples in the characterization band—higher density frequency
samples improve both models’ effectiveness while lower density
frequency samples do the opposite. It is likely the case that
the best model to use in applications will need to be tailored
based on the desired frequency sample density. Future work
can address more systematic approaches to model selection,
or even combining the sparse and low-rank models to improve
effectiveness.

For the joint-sparse approach we propose, we provided
new BOS-based compressive sensing guarantees for multi-
frequency spherical field measurements along with bounds
on the sparse representation error for the joint-sparse model.
These results only require monochromatic measurements, which
means these guarantees apply in the context of existing mea-
surement systems. We discussed the difficulty surrounding
low-rank compressive sensing guarantees in the context of
multi-frequency spherical NFTs using both monochromatic
and polychromatic field measurements. The main constraint
here is that measurements are in the form of a bounded or-
thonormal system for which no uniform low-rank compres-
sive sensing guarantees exist, even with additional random-
ization as seen in our proposed Rademacher combined sam-
pling schemes. Future work can aim to establish general low-
rank compressive sensing guarantees for bounded orthonor-
mal systems as seen in this work. In addition, future work
could also aim to find alternative guarantees based on signal
coherence, as is often done in the low-rank matrix sensing
literature.
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Our numerical experiments showed that both the joint-sparse
and low-rank models provide effective approaches to recover an
antenna’s Wigner D-function coefficients in few compressive
measurements. In particular, the JBOS ¢; (monochromatic mea-
surements) and the Rademacher-based low-rank (polychromatic
measurements) approaches were able to recover the device’s
WDFCs to atleast 5% or 1% (= —25 dB or —40 dB) relative error
with a number of measurements that is around 0.1 or 0.25 times
the conventional number of NFT samples, respectively. This is
around 0.2 or 0.5 times the total unknowns, which is significant
given conventional approaches require roughly 2 samples per
unknown. The JBOS /¢ approach, the only joint approach with
an accuracy guarantee, showed the best performance in relative
error. In contrast, for the case tested, the IBOS ¢; approach
(using the same measurements as the JBOS) was not sufficient
to enable compressive reconstruction from less than 1/3 of the
conventional number of NFT measurements. This may improve
for devices with very high rates of sparsity/compression. How-
ever, in such cases we still expect the other proposed methods
to provide better performance. Informally, if our observed gains
extrapolate well to other devices that are more compressible
at each individual frequency, IBOS ¢; reconstruction may re-
duce measurements by say 1/2, but JBOS /; reconstruction or
Rademacher-based low-rank reconstruction could improve this
further to 1/4 or better.

As noted at the end of our numerical experiments, the low-
rank approaches were not optimized in terms of all possible
parameters, in particular the selected rank and more gradient
descent iterations. Thus, the effectiveness of the Rademacher
sampling approaches, which may improve beyond what are
even seen in this paper, imply that future research towards
enabling such polychromatic measurements would be beneficial.
Regardless, for the case where reconstruction guarantees are
required, the monochromatic joint-sparse approach we present
gives highly competitive results and could be of use in many
labs today.
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