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Multivariate adaptive regression splines (MARS) is a popular method for
nonparametric regression introduced by Friedman in 1991. MARS fits sim-
ple nonlinear and non-additive functions to regression data. We propose and
study a natural lasso variant of the MARS method. Our method is based on
least squares estimation over a convex class of functions obtained by con-
sidering infinite-dimensional linear combinations of functions in the MARS
basis and imposing a variation based complexity constraint. Our estimator
can be computed via finite-dimensional convex optimization, although it is
defined as a solution to an infinite-dimensional optimization problem. Under
a few standard design assumptions, we prove that our estimator achieves a
rate of convergence that depends only logarithmically on dimension and thus
avoids the usual curse of dimensionality to some extent. We also show that
our method is naturally connected to nonparametric estimation techniques
based on smoothness constraints. We implement our method with a cross-
validation scheme for the selection of the involved tuning parameter and
compare it to the usual MARS method in various simulation and real data
settings.

1. Introduction. We study a natural lasso variant of the multivariate adaptive re-
gression splines (MARS) method (see Friedman (1991) or Hastie, Tibshirani and Fried-
man (2009), Section 9.4) for nonparametric regression. To understand the relationship
between a response variable y and d explanatory variables x1, . . . , xd based on ob-
served data (x(1), y1), . . . , (x

(n), yn) with x(i) ∈ Rd and yi ∈ R, MARS fits a function
y = f̂mars(x1, . . . , xd) where f̂mars is a sparse linear combination of functions of the form

(1)
d

∏

j=1

(

bj (xj )
)αj =

∏

j :αj=1

bj (xj )

with α = (α1, . . . , αd) ∈ {0,1}d and

bj (xj ) = (xj − tj )+ or (tj − xj )+ for some real number tj .

Here ·+ := max{·,0} indicates the ReLU function. As a concrete example, to understand the
relationship between the logarithm of Weekly Earnings (y) and the two variables, Years of
Education (x1) and Years of Experience (x2), from a standard dataset (ex1029 in the R library
Sleuth3) collected from 25,437 full-time male workers in 1987, the default implementation
of MARS from the R package earth (with the maximum degree of interaction set to two) fits
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the function

5.83 + 0.0695(x1 − 7)+ − 0.0370(11 − x1)+

+ 0.0155(x2 − 13)+ − 0.0600(13 − x2)+ − 0.0164(x2 − 30)+

− 0.0114(x1 − 11)+(x2 − 40)+ + 0.00148(x1 − 11)+(40 − x2)+,

(2)

which is clearly a linear combination of the eight functions each of the form (1).
MARS fits a nonlinear function to the observed data that is simple enough to be inter-

pretable because it is built from the basic ReLU functions (xj − tj )+ and (tj −xj )+. Further-
more, MARS fits non-additive functions because of the presence of products in (1), which
enables interactions between the explanatory variables x1, . . . , xd . Indeed, the term (1) can
be interpreted as an interaction term of order |α| between the variables in the set S(α). Here
and in the rest of the paper, we use the notation

S(α) :=
{

j ∈ [d] : αj = 1
}

where [d] := {1, . . . , d},

and

|α| :=
∣

∣S(α)
∣

∣ =
d

∑

j=1

1{αj = 1}.

The exact methodology that MARS uses involves a greedy algorithm similar to stepwise
regression methods. Specifically, one adds in basis functions of the form (1) starting with a
constant function using a goodness of fit criterion. Typically, one only considers terms (1) for
which the interaction order |α| is smaller than a pre-chosen integer s ≤ d (most commonly
s = 1 or s = 2). Once a reasonably large number of basis functions with |α| ≤ s are added, a
backward deletion procedure is applied to remove superfluous basis functions. We refer the
reader to Hastie, Tibshirani and Friedman (2009), Section 9.4 for more details on MARS.

Our goal in this paper is to propose and study a lasso variant of the MARS method where
we consider all the basis functions of the form (1) with |α| ≤ s and apply the lasso method of
Tibshirani (1996). As is well known, lasso is an attractive alternative to stepwise regression
methods in usual linear models. In order to apply lasso in the MARS setting, we first assume
that the explanatory variables x1, . . . , xd all take values in the interval [0,1]. In other words,
the domain of the regression function is assumed to be [0,1]d . In practical settings, this can
be achieved by subtracting the minimum possible value and dividing by the range for each
explanatory variable. This scaling puts all the variables on a comparable footing enabling
the application of lasso. Without such a scaling, x1, . . . , xd might be on very different scales
in which case penalizing or constraining the sum of the absolute values of the coefficients
corresponding to the terms (xj − tj )+ would be unnatural (e.g., think of the setting where x1
is years of education and x2 is days of experience). After fitting a function in the transformed
domain [0,1]d , we can simply invert the transformation to find the equation of the fitted
function in the original domain (see Section 6 for some real data applications).

In the rest of the paper, we assume that the explanatory variables x1, . . . , xd all belong to
[0,1]. The observed data is (x(1), y1), . . . , (x

(n), yn) where x(i) ∈ [0,1]d and yi ∈ R. To this
data, we fit functions of the form y = f̂ (x1, . . . , xd) where f̂ : [0,1]d →R via the application
of lasso with the MARS basis functions. The restriction xj ∈ [0,1] allows us to make two
simplifications to the usual MARS setup:

(i) Instead of considering both kinds of functions (xj − tj )+ and (tj − xj )+, we only
take into account (xj − tj )+, because as each xj is assumed to be in [0,1], we can write

(tj − xj )+ = (xj − tj )+ − xj + tj = (xj − tj )+ − (xj − 0)+ + tj ,

which implies that every linear combination of functions of the form (1) is also a linear
combination of functions of the same form (1) where bj (xj ) = (xj − tj )+ for some tj .
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(ii) We assume that tj ∈ [0,1) for each j . This is because when tj ≥ 1, the function
(xj − tj )+ becomes 0 as xj ∈ [0,1], and for tj < 0, the function (xj − tj )+ = xj − tj =

(xj − 0)+ − tj is a linear combination of (xj − 0)+ and the constant function 1.

Because there are an uncountable number of functions of the form (1) (as tj can be any
number in [0,1)), we work with an infinite-dimensional version of lasso. Infinite-dimensional
lasso formulations have been used in many papers including Rosset et al. (2007), de Castro
and Gamboa (2012), Bredies and Pikkarainen (2013), Candès and Fernandez-Granda (2014),
Duval and Peyré (2015), De Castro et al. (2017), Denoyelle et al. (2020), and Condat (2020),
which studied various inverse problems in spaces of measures. The main idea is to consider
infinite linear combinations of basis functions that are parametrized by signed measures and
to measure complexity in terms of the variations of the involved signed measures. In the
MARS context, infinite linear combinations of the basis functions (1) with |α| ≤ s are

(3) fa0,{να}(x1, . . . , xd) := a0 +
∑

α∈{0,1}d\{0}
|α|≤s

∫

[0,1)|α|

∏

j∈S(α)

(xj − tj )+ dνα

(

t (α)),

where 0 := (0, . . . ,0), a0 ∈ R, να is a finite (Borel) signed measure on [0,1)|α|, and t (α)

indicates the vector (tj , j ∈ S(α)) for each binary vector α ∈ {0,1}d \ {0} with |α| ≤ s. We
will denote the collection of all such functions fa0,{να} by F

d,s
∞−mars (the subscript ∞ high-

lights the fact that Fd,s
∞−mars contains infinite linear combinations of the functions (1)). The

usual MARS functions are special cases of (3) corresponding to discrete signed measures να .
Indeed, when each να is supported on a finite set {(t

(α)
lj , j ∈ S(α)) : l = 1, . . . , kα} with

(4) να

({(

t
(α)
lj , j ∈ S(α)

)})

= b
(α)
l for l = 1, . . . , kα,

the function fa0,{να} becomes

(5) (x1, . . . , xd) �→ a0 +
∑

α∈{0,1}d\{0}
|α|≤s

kα
∑

l=1

b
(α)
l

∏

j∈S(α)

(

xj − t
(α)
lj

)

+.

Our infinite-dimensional lasso estimator minimizes the least squares criterion over
fa0,{να} ∈ F

d,s
∞−mars with a constraint on the complexity of fa0,{να}. The complexity measure

involves the sum of the variations of the underlying signed measures να and is an infinite-
dimensional analogue of the usual L1 norm of the coefficients used in finite-dimensional
lasso. Recall that, for a signed measure ν on � and a measurable subset E ⊆ �, the varia-
tion of ν on E is denoted by |ν|(E) and is defined as the supremum of

∑

A∈π |ν(A)| over
all partitions π of E into a countable number of disjoint measurable subsets. Using the
variation of the involved signed measures, we define our complexity measure for functions
f = fa0,{να} ∈ F

d,s
∞−mars by

(6) Vmars(fa0,{να}) =
∑

α∈{0,1}d\{0}
|α|≤s

|να|
(

[0,1
)|α|

\ {0}).

We are excluding 0 = (0, . . . ,0) in the variation of να because we want to only penalize those
basis functions that include at least one nonlinear term and leave unpenalized basis functions
that are products of linear functions (note that (xj − tj )+ = xj is linear when tj = 0 be-
cause xj ∈ [0,1]). In Section 11.1 of the Supplementary Material (Ki, Fang and Guntuboyina
(2024)), we show that this complexity measure is well defined by proving the uniqueness of
the representation f = fa0,{να}.
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To see why (6) is a generalization (to infinite linear combinations) of the notion of L1

norm over the coefficients of the finite linear combination (5), just note that when να is the
discrete signed measure given by (4), we have

Vmars(fa0,{να}) =
∑

α∈{0,1}d\{0}
|α|≤s

kα
∑

l=1

∣

∣b
(α)
l

∣

∣ · 1
{(

t
(α)
lj , j ∈ S(α)

)

	= 0
}

,

which is simply the sum of the absolute values of the coefficients in (5) corresponding to the
basis functions that have at least one nonlinear term in their product.

Our estimator is thus given by

(7) f̂
d,s
n,V ∈ argmin

f

{

n
∑

i=1

(

yi − f
(

x(i)))2
: f ∈ F

d,s
∞−mars and Vmars(f ) ≤ V

}

for a tuning parameter V > 0. We prove that f̂
d,s
n,V exists and can be computed by applying

finite-dimensional lasso algorithms to the finite basis of functions obtained by placing the
following restrictions on the knots tj in (1):

(8) tj ∈ {0} ∪
{

x
(i)
j : i ∈ [n]

}

.

Here we use the notation x(i) = (x
(i)
1 , . . . , x

(i)
d ) for the ith design point x(i). As the finite-

dimensional lasso estimation procedure usually zeros out many regression coefficients, it
enables us to obtain f̂

d,s
n,V that is a sparse linear combination of (1). Therefore, our estimation

procedure can be seen as an alternative to the usual MARS procedure. It is interesting to note
that the usual MARS algorithm also works with the restriction (8) on the knots, although
typically no theoretical justification is provided for this reduction. We also introduce a com-
putationally more efficient approximate version f̃

d,s
n,V of f̂

d,s
n,V which seems to work nearly as

well in practice. The approximate version f̃
d,s
n,V is obtained by restricting the knots tj as

tj ∈

{

0,
1

Nj

,
2

Nj

, . . . ,1
}

for some pre-selected positive integers N1, . . . ,Nd . For large n, f̃
d,s
n,V can be computed much

more efficiently than f̂
d,s
n,V .

We study the theoretical accuracy of these estimators for an unknown regression func-
tion f ∗ under the standard regression model:

yi = f ∗(

x(i)) + ξi,

where ξi are mean zero errors whose distributions satisfy certain restrictions. We work with
both the fixed design setting where x(1), . . . , x(n) form a lattice in [0,1]d , as well as the ran-
dom design setting where x(1), . . . , x(n) are assumed to be realizations of i.i.d. random vari-
ables. In the former lattice design setting, which is restrictive but standard in nonparametric
function estimation (see, e.g., Nemirovski (2000)), we analyze the non-asymptotic accuracy
of f̂

d,s
n,V and f̃

d,s
n,V . In the latter random design setting, we study their accuracy asymptotically.

Our theoretical results show that these estimators achieve rates of convergence of the form
n−4/5(logn)as+b for some constants a and b. It is already known that in the univariate case
(d = s = 1), the estimator f̂

1,1
n,V achieves the rate n−4/5 (see, e.g., Mammen and van de Geer

(1997), Theorem 10 or Guntuboyina et al. (2020), Theorem 2.1). Thus, our results imply
that in going from the univariate to the multivariate setting, the rate of convergence only
deteriorates by a logarithmic multiplicative factor. This suggests that our lasso method for
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MARS fitting avoids the usual curse of dimensionality to some extent and can thus be an
effective function estimation technique in higher dimensions.

We can see why our estimators achieve the dimension-free rates (up to the logarithmic
multiplicative factors) in part from an alternative characterization of f̂

d,s
n,V . We can character-

ize f̂
d,s
n,V alternatively as a least squares estimator over a class of functions whose smoothness

order, in a certain sense, grows with the dimension d . A key role in this characterization is
played by mixed partial derivatives of order 2. For an integer k ≥ 1 and a real-valued func-
tion f defined on [0,1]m, by the mixed partial derivatives of f of order k, we mean

(9) f (β) :=
∂β1+···+βmf

∂x
β1
1 · · · ∂x

βm
m

,

where β is an m-dimensional nonnegative integer vector with maxj βj = k. Whenever we use
the notation f (β), we inherently assume that f is sufficiently smooth, so that the right-hand
side of (9) is irrespective of the order of differentiation and f (β) is well defined. Using mixed
partial derivatives, we prove the following alternative characterization of f̂

d,s
n,V :

f̂
d,s
n,V ∈ argmin

f

{

n
∑

i=1

(

yi − f
(

x(i)))2
:

∑

β∈{0,1,2}d

maxj βj=2

∫

T̄ (β)

∣

∣f (β)
∣

∣ ≤ V

and f (α) = 0 for every α ∈ {0,1}d with |α| > s

}

,

(10)

where

T̄ (β) := T̄
(β)

1 × · · · × T̄
(β)
d where T̄

(β)
k =

⎧

⎨

⎩

[0,1] if βk = max
j

βj

{0} otherwise.
(11)

The main condition here is that the sum of the L1 norms of mixed partial derivatives of
order 2 is at most V . The set T̄ (β) appearing in the integral signifies that the integral of
the mixed partial derivative f (β) is only over those coordinates xl for which βl = maxj βj

(the remaining coordinates are set to zero). Also, the condition f (α) = 0 for |α| > s rules out
interactions of order greater than s. This characterization shows that the maximum total order
β1 + · · · + βd of the mixed partial derivatives appearing in the constraint equals 2d . In this
sense, the smoothness order of the constraint can be taken to be 2d , which increases with the
dimension d and explains the dimension-free (up to the logarithmic multiplicative factors)
rates of convergence. It should be noted however that not all (in fact, only one) mixed partial
derivatives of total order 2d are considered in the constraint, and this keeps the function
class being too small or restrictive. Also, it should be mentioned that it is well known from
approximation theory that Lp norm constraints on mixed partial derivatives are advantageous
and allow one to overcome the curse of dimensionality to some extent from the perspective
of metric entropy, approximation, and interpolation (see, e.g., Bungartz and Griebel (2004),
Dũng, Temlyakov and Ullrich (2018), Temlyakov (2018)).

In fact, the smoothness characterization (10) is not fully rigorous. Functions of the form (2)
clearly belong to the constraint set in (7), but they do not belong to the constraint set in
(10) because mixed partial derivatives of order 2 do not exist for these functions. We fix
this problem by interpreting the L1 norms of mixed partial derivatives of order 2 in terms
of the Hardy–Krause variations of particular derivatives that we will define in Section 4.
Hardy–Krause variation (see, e.g., Aistleitner and Dick (2015), Owen (2005)) is a multi-
variate generalization of total variation of univariate functions (we review the definition of
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Hardy–Krause variation and its properties in Section 7 of the Supplementary Material (Ki,
Fang and Guntuboyina (2024))). Thus, even though (10) is not fully rigorous because mixed
partial derivatives of order 2 do not exist for many important MARS functions, it is still
helpful for understanding how the curse of dimensionality can be avoided by our estimators.

The characterization (10) also connects our estimators to other related methods from the
literature. In the univariate case (d = s = 1), we have

f̂
1,1
n,V ∈ argmin

f

{

n
∑

i=1

(

yi − f
(

x(i)))2
:

∫ 1

0

∣

∣f ′′
∣

∣ ≤ V

}

which is a constrained analogue of the locally adaptive regression splines estimator of
Mammen and van de Geer (1997) when the order k (in their notation) equals 2. Hence,
our estimator f̂

d,s
n,V can be seen as a multivariate generalization of this univariate estimator

of Mammen and van de Geer (1997). Furthermore, if s = d and the condition maxj βj = 2
is replaced with maxj βj = 1 in (10), then one obtains the Hardy–Krause variation denois-
ing estimator of Fang, Guntuboyina and Sen (2021). Therefore, we can also view f̂

d,d
n,V as

a second-order Hardy–Krause variation denoising estimator. Further connections to related
work are detailed in Section 5.

We would like to point out here that the theoretical rates of convergence as well as the
smoothness characterization have been made possible due to our infinite-dimensional lasso
formulation of MARS. In contrast, to the best of our knowledge, no rates of convergence are
known for the usual MARS method. Also, there exist no prior connections between the usual
MARS method and nonparametric regression methods based on smoothness assumptions.

In addition to the above theoretical contributions, we also implement our method with a
cross-validation scheme for the selection of the tuning parameter V and compare our estima-
tors to the usual MARS estimator using simulated and real data.

The rest of the paper is organized as follows. In Section 2, we present results on the exis-
tence and computation of f̂

d,s
n,V and also introduce the approximate version f̃

d,s
n,V . Theoretical

accuracy results for f̂
d,s
n,V and f̃

d,s
n,V are in Section 3. Section 4 is devoted to the alternative

characterization (10) based on smoothness. In Section 5, we discuss connections between
our method and other related methods. In Section 6, we illustrate the performance of our
method in simulated and real data settings and compare its performance to that of the usual
MARS algorithm.

2. Existence, computation, and approximation. In this section, we prove the existence
of our infinite-dimensional lasso estimator f̂

d,s
n,V (defined in (7)) and show that it can be com-

puted via finite-dimensional lasso algorithms. We also introduce a computationally more ef-
ficient approximate version of our estimator.

We start with the observation that the objective function of the optimization problem de-
fined in (7) only depends on the function f through its values at the design points x(i), i ∈ [n].
As proved in the next lemma, this observation allows us to restrict our attention to the finite-
dimensional subclass of Fd,s

∞−mars consisting of the functions (3) where each να is a discrete
signed measure supported on the lattice generated by the design points. For each k ∈ [d], let
Uk denote the finite subset of [0,1] consisting of the points 0, x

(1)
k , . . . , x

(n)
k ,1 (recall here

that x
(i)
k denotes the kth coordinate of the ith design point x(i) = (x

(i)
1 , . . . , x

(i)
d )). As there

could be ties among 0, x
(1)
k , . . . , x

(n)
k ,1, we will write, for some nk ∈ [n + 1],

Uk =
{

u
(k)
0 , u

(k)
1 , . . . , u(k)

nk

}

where 0 = u
(k)
0 < · · · < u(k)

nk
= 1.

Note specially that the cardinality of Uk is nk +1, that u
(k)
0 is always 0, and that u

(k)
nk is always

1. The next lemma (proved in Section 11.2.1 of the Supplementary Material (Ki, Fang and
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Guntuboyina (2024))) implies that, for the optimization problem (7), we can restrict to the
functions of the form (3) where each να is a discrete signed measure supported on the finite
set (

∏

k∈S(α)Uk) ∩ [0,1)|α|.

LEMMA 2.1. Suppose we are given a real number a0 and a collection of finite signed
measures {να} where να is defined on [0,1)|α| for each α ∈ {0,1}d \ {0} with |α| ≤ s. Then,
there exists a collection of discrete signed measures {μα} where μα is concentrated on
(
∏

k∈S(α)Uk) ∩ [0,1)|α| for each α ∈ {0,1}d \ {0} with |α| ≤ s such that

(i) fa0,{μα}(x
(i)) = fa0,{να}(x

(i)) for all i ∈ [n], and
(ii) Vmars(fa0,{μα}) ≤ Vmars(fa0,{να}).

When να is concentrated on (
∏

k∈S(α)Uk) ∩ [0,1)|α| for each α, the function fa0,{να} can
be written as

(12) a0 +
∑

α∈{0,1}d\{0}
|α|≤s

∑

l∈
∏

k∈S(α)[0:(nk−1)]

να

({(

u
(k)
lk

, k ∈ S(α)
)})

·
∏

k∈S(α)

(

xk − u
(k)
lk

)

+,

where we use the notation [p : q] := {p,p + 1, . . . , q} for two integers p ≤ q . Also, its
complexity measure becomes

Vmars(fa0,{να}) =
∑

α∈{0,1}d\{0}
|α|≤s

∑

l∈
∏

k∈S(α)[0:(nk−1)]\{0}

∣

∣να

({(

u
(k)
lk

, k ∈ S(α)
)})

∣

∣.

The above function (12) is a linear combination of the basis functions (1) whose knots tk

are chosen from Uk \ {1} = {0, x
(1)
k , . . . , x

(n)
k }, and its complexity measure equals the abso-

lute sum of the coefficients of the involved basis functions with at least one nonlinear term.
Thus, if we additionally assume that f in the problem (7) is constructed from discrete signed
measures as above, then (7) reduces to a finite-dimensional lasso problem. Lemma 2.1 then
implies that every solution to this finite-dimensional lasso problem is also a solution to (7).
A precise statement is given in the following result, which we prove in Section 11.2.2 of the
Supplementary Material (Ki, Fang and Guntuboyina (2024)).

PROPOSITION 2.2. Let

J =

{

(α, l) : α ∈ {0,1}d \ {0}, |α| ≤ s, and l ∈
∏

k∈S(α)

[

0 : (nk − 1)
]

}

and let M be the n × |J | matrix with columns indexed by (α, l) ∈ J such that

Mi,(α,l) =
∏

k∈S(α)

(

x
(i)
k − u

(k)
lk

)

+ for i ∈ [n] and (α, l) ∈ J .

Also, let (â0, γ̂
d,s
n,V ) ∈ R×R|J | be a solution to the following finite-dimensional lasso problem

(

â0, γ̂
d,s
n,V

)

∈ argmin
a0∈R,γ∈R|J |

{

‖y − a01 − Mγ ‖2
2 :

∑

(α,l)∈J
l 	=0

|γα,l| ≤ V

}

,
(13)

where 1 := (1, . . . ,1) and y = (yi, i ∈ [n]) is the vector of observations. Then, the function
f on [0,1]d defined by

(14) f (x1, . . . , xd) = â0 +
∑

(α,l)∈J

(

γ̂
d,s
n,V

)

α,l ·
∏

k∈S(α)

(

xk − u
(k)
lk

)

+
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is a solution to the problem (7). The problem (7) can have multiple solutions, but every solu-
tion f̂

d,s
n,V satisfies

f̂
d,s
n,V

(

x(i)) = â0 +
(

Mγ̂
d,s
n,V

)

i = â0 +
∑

(α,l)∈J

(

γ̂
d,s
n,V

)

α,l ·
∏

k∈S(α)

(

x
(i)
k − u

(k)
lk

)

+

for every i ∈ [n].

Because the set
{

a01 + Mγ : a0 ∈ R, γ ∈R|J |, and
∑

(α,l)∈J
l 	=0

|γα,l| ≤ V

}

is closed and convex, there exists a solution to the finite-dimensional lasso problem (13).
Hence, the existence of solutions to our estimation problem (7) is guaranteed by Proposi-
tion 2.2. Also, once we find a solution to the problem (13) via any optimization algorithms,
we can construct a solution f̂

d,s
n,V to the problem (7) through the equation (14).

However, solving the finite-dimensional lasso problem (13) can be computationally inten-
sive if n is large because the number of columns of M equals

|J | =
∑

α∈{0,1}d\{0}
|α|≤s

∏

k∈S(α)

nk,

which is of order O(ns) (ignoring a multiplicative factor in d) in the worst case when each
nk = O(n). In the current implementation of our method, we utilize the optimization software
MOSEK as a black-box tool for solving the problem (13) (see Section 6 for more details).
Using this black-box tool involves creating the whole matrix M , and thus, when n is large,
our current implementation not only requires a large amount of space for this matrix but also
often consumes most of running time constructing it.

This limitation motivates us to come up with the following approximate method. As we
have seen above, Lemma 2.1 ensures that we only need to consider discrete signed measures
να supported on the lattices (

∏

k∈S(α)Uk)∩[0,1)|α| for our estimation problem (7). In the ap-
proximate method, we instead restrict our attention to discrete signed measures να supported
on the lattices generated by

Ũk =

{

0,
1

Nk

,
2

Nk

, . . . ,1
}

for some pre-selected positive integers N1, . . . ,Nd , and we only take into consideration the
basis functions corresponding to those signed measures. Note that in contrast to Uk whose
cardinality are of order O(n) in the worst case, the cardinality of each set Ũk is always Nk +1
regardless of the design points x(1), . . . , x(n).

We then consider the finite-dimensional optimization problem to which the problem (7)
reduces when we additionally impose such restrictions on signed measures να . We call this
problem the approximate (finite-dimensional optimization) problem. The approximate prob-
lem has the same form as (13) but with different M and J . Here

J =

{

(α, l) : α ∈ {0,1}d \ {0}, |α| ≤ s, and l ∈
∏

k∈S(α)

[

0 : (Nk − 1)
]

}

,

and M is the n × |J | matrix with columns indexed by (α, l) ∈ J such that

Mi,(α,l) =
∏

k∈S(α)

(

x
(i)
k −

lk

Nk

)

+
for i ∈ [n] and (α, l) ∈ J .
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As opposed to the original finite-dimensional problem (13), the number of columns of M in
this problem is always fixed and not affected by the design points x(1), . . . , x(n). Hence, this
approximate problem can be solved much efficiently than (13), especially when n is large.
Once we find a solution to the approximate problem, we can construct an estimator of the
true underlying function f ∗ through the equation (14) as before. We denote this estimator
by f̃

d,s
n,V and call it an approximate version of f̂

d,s
n,V . In the next section, we study the the-

oretical accuracy of f̃
d,s
n,V along with f̂

d,s
n,V . We will see that if we choose Nk appropriately,

the approximate method is as accurate as the original method, while it significantly improves
computational efficiency.

3. Risk analysis. This section is dedicated to the study of the theoretical accuracy of
f̂

d,s
n,V and f̃

d,s
n,V as an estimator for unknown regression functions. We first consider the non-

asymptotic accuracy of f̂
d,s
n,V and f̃

d,s
n,V in the fixed design setting and then study their asymp-

totic accuracy in the random design setting. The proofs of all the results in this section are
provided in Section 11.3 of the Supplementary Material (Ki, Fang and Guntuboyina (2024)).

3.1. Fixed design. Here we assume that x(1), . . . , x(n) form a lattice

(15)
{

x(1), . . . , x(n)} =
d

∏

k=1

{

u
(k)
ik

: ik ∈
[

0 : (nk − 1)
]}

,

where for every k ∈ [d], we have nk ≥ 2, 0 = u
(k)
0 < u

(k)
1 < · · · < u

(k)
nk−1 ≤ 1, and

u
(k)
ik

− u
(k)
ik−1 ≥

ρ

nk

for all ik ∈ [nk − 1]

for some constant ρ > 0. We also assume that y1, . . . , yn are generated according to the
regression model

(16) yi = f ∗(

x(i)) + ξi,

where f ∗ : [0,1]d → R is an unknown regression function and ξi are independent sub-
Gaussian errors with mean zero and with a sub-Gaussian parameter σ , that is,

E
[

eλξi
]

≤ e
σ2λ2

2

for all λ ∈ R. We measure the accuracy of an estimator f̂n of f ∗ via the squared empirical
L2 norm

(17)
∥

∥f̂n − f ∗
∥

∥

2
n :=

1

n

n
∑

i=1

(

f̂n

(

x(i)) − f ∗(

x(i)))2

and define its risk as

RF

(

f̂n, f
∗)

= E
∥

∥f̂n − f ∗
∥

∥

2
n,

where the expectation is taken over y1, . . . , yn.
Our first result states an upper bound of the risk of f̂

d,s
n,V under the assumption f ∗ ∈

F
d,s
∞−mars and Vmars(f

∗) ≤ V .

THEOREM 3.1. Suppose f ∗ ∈ F
d,s
∞−mars and Vmars(f

∗) ≤ V and assume the lattice de-

sign (15). The estimator f̂
d,s
n,V then satisfies that

(18) RF

(

f̂
d,s
n,V , f ∗)

≤ Cρ,d

(

σ 2V
1
2

n

)
4
5
[

log
(

2 +
V n

1
2

σ

)]
3(2s−1)

5
+ Cρ,d

σ 2

n
[logn]2

for some positive constant Cρ,d depending on ρ and d .
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Note that for fixed ρ, d , σ , and V and sufficiently large n, the first term is the dominant
term on the right-hand side of (18), so that

RF

(

f̂
d,s
n,V , f ∗)

= O
(

n− 4
5 (logn)

3(2s−1)
5

)

,

where the multiplicative constant underlying O(·) depends on ρ, d , σ , and V . In the univari-
ate case, we can deduce from Guntuboyina et al. (2020), Theorem 2.1 that

RF

(

f̂
1,1
n,V , f ∗)

≤ Cρ

(

σ 2V
1
2

n

)
4
5
+ Cρ

σ 2

n
logn,

where Cρ is a positive constant depending on ρ. In other words,

RF

(

f̂
1,1
n,V , f ∗)

= O
(

n− 4
5
)

,

where the multiplicative constant underlying O(·) depends on ρ, σ , and V . Thus, what The-
orem 3.1 tells us is that for general d and s, f̂

d,s
n,V can achieve the same rate n−4/5, although it

slightly deteriorates by a logarithmic multiplicative factor depending on s. This suggests that
our lasso method for MARS fitting can avoid the curse of dimensionality to some extent and
be a useful estimation technique in higher dimensions.

The key step of our proof of Theorem 3.1 is to find an upper bound of the metric entropy
of Dm (under the L2 norm), which is defined as the collection of all the functions of the form

(x1, . . . , xm) �→

∫

(x1 − t1)+ · · · (xm − tm)+ dν(t),

where m ∈ [d] and ν is a signed measure on [0,1]m with variation |ν|([0,1]m) ≤ 1. The
following theorem contains our result on the metric entropy of Dm.

THEOREM 3.2. There exist positive constants Cm and εm depending on m such that

logN
(

ε,Dm,‖ · ‖2
)

≤ Cmε− 1
2

[

log
1

ε

]
3(2m−1)

4

for every 0 < ε < εm. The logarithmic multiplicative factor can be omitted when m = 1.

REMARK 3.3. If the class Dm is altered by replacing (x − t)+ with 1{x ≥ t} and restrict-
ing ν to probability measures, one obtains the collection of all the functions of the form

(x1, . . . , xm) �→

∫

1{x1 ≥ t1} · · ·1{xm ≥ tm}dν(t) = ν
(

[0, x]
)

.

This class of functions is indeed the collection of all probability distributions on [0,1]m,
whose upper bounds on the metric entropy were derived in Blei, Gao and Li (2007). Thus,
we are basically extending the argument in Blei, Gao and Li (2007) from 1{x ≥ t} to (x − t)+.

Theorem 3.2 is novel to the best of our knowledge even though we use standard tools and
techniques for proving it. We first connect upper bounds of the metric entropy of Dm to lower
bounds of the small ball probability of integrated Brownian sheet based on ideas from Blei,
Gao and Li (2007), Section 3 and Gao (2008), Section 3 and results from Li and Linde (1999),
Theorem 1.2 and Artstein et al. (2004), Theorem 5. The small ball probability of integrated
Brownian sheet here refers to the quantity

P
(

sup
t∈[0,1]m

∣

∣Xm(t)
∣

∣ ≤ ε
)

,

where ε > 0 and Xm is an m-dimensional integrated Brownian sheet (a description of inte-
grated Brownian sheet is given in Section 11.3.2 of the Supplementary Material (Ki, Fang
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and Guntuboyina (2024))). Required bounds on this small ball probability are then obtained
using results from Dunker et al. (1999), Theorem 6 and Chen and Li (2003), Theorem 1.2.
Specifically, we show that there exist positive constants cm and εm depending on m such that

logP
(

sup
t∈[0,1]m

∣

∣Xm(t)
∣

∣ ≤ ε
)

≥ −cmε− 2
3

[

log
1

ε

]2m−1

for every 0 < ε < εm. This result, along with the connection between the metric entropy and
the small ball probability, leads to Theorem 3.2, which is the main ingredient in our proof of
Theorem 3.1.

Now, we turn to the result for the approximate version f̃
d,s
n,V . The next theorem presents an

upper bound of the risk of f̃
d,s
n,V under the same assumption as in Theorem 3.1. Recall that Nk

are the pre-selected integers for the approximate method.

THEOREM 3.4. Suppose f ∗ ∈ F
d,s
∞−mars and Vmars(f

∗) ≤ V and assume the lattice de-

sign (15). The estimator f̃
d,s
n,V then satisfies that

RF

(

f̃
d,s
n,V , f ∗)

≤
8V 2

N2
+ Cρ,d

(

σ 2V
1
2

n

)
4
5
[

log
(

2 +
V n

1
2

σ

)]
3(2s−1)

5
+ Cρ,d

σ 2

n
[logn]2

for some positive constant Cρ,d depending on ρ and d , where N = mink Nk .

Theorem 3.4 shows that f̃
d,s
n,V has almost the same risk upper bound as f̂

d,s
n,V . The only

difference is the existence of the approximation error term 8V 2/N2, which converges to 0
as N goes to infinity. Hence, for sufficiently large N , f̃

d,s
n,V achieves the same rate as f̂

d,s
n,V .

Indeed, if we set each Nk to be of order at least n2/5, then

(19) RF

(

f̃
d,s
n,V , f ∗)

= O
(

n− 4
5 (logn)

3(2s−1)
5

)

,

where the multiplicative constant underlying O(·) depends on ρ, d , σ , and V .

3.2. Random design. Here we assume that x(1), . . . , x(n) are realizations of i.i.d. random
variables X(1), . . . ,X(n) with a probability density function p0 on [0,1]d that is bounded by
some constant B ≥ 1, that is, ‖p0‖∞ ≤ B . Also, we assume that (X(1), y1), . . . , (X

(n), yn)

are generated according to the regression model

(20) yi = f ∗(

X(i)) + ξi,

where ξi are i.i.d. errors independent of X(1), . . . ,X(n) with mean zero and with finite L5,1

norm; that is,

(21) ‖ξi‖5,1 :=

∫ ∞

0

(

P
(

|ξi | > t
))

1
5 dt < ∞.

Note that the condition (21) is stronger than the finite fifth-moment condition ‖ξi‖5 < ∞, but
weaker than the finite (5 + ε)th-moment condition ‖ξi‖5+ε < ∞ for every ε > 0 (see, e.g.,
Ledoux and Talagrand (1991), Chapter 10). In this setting, we measure the accuracy of an
estimator f̂n of f ∗ by

(22)
∥

∥f̂n − f ∗
∥

∥

2
p0,2

:=

∫

(

f̂n(x) − f ∗(x)
)2

p0(x) dx.

The next theorem presents the rate of convergence of f̂
d,s
n,V under the assumption f ∗ ∈

F
d,s
∞−mars and Vmars(f

∗) ≤ V . Note that f̂
d,s
n,V still achieves the rate n−4/5 as in the fixed lattice

design setting, although the exponent of the logarithmic multiplicative factor is slightly bigger
when s > 2.
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THEOREM 3.5. If f ∗ ∈F
d,s
∞−mars and Vmars(f

∗) ≤ V , then we have

(23)
∥

∥f̂
d,s
n,V − f ∗

∥

∥

2
p0,2

= Op

(

n− 4
5 (logn)

8(s−1)
5

)

.

As the metric entropy of Dm played a central role in our proof of Theorem 3.1, the bracket-
ing entropy of Dm is the key ingredient of our proof of Theorem 3.5. The following theorem
states an upper bound of the bracketing entropy of Dm.

THEOREM 3.6. There exists a positive constant Cm depending on m such that

logN[ ]

(

ε,Dm,‖ · ‖2
)

≤ Cm

(

4

ε

)
1
2
∣

∣

∣

∣

log
4

ε

∣

∣

∣

∣

2(m−1)

for every ε > 0, where N[ ](ε,Dm,‖ · ‖2) is the ε-bracketing number of Dm under the L2

norm.

REMARK 3.7. Theorem 3.6 also provides an upper bound of the metric entropy of Dm

(under the L2 norm). Since

N
(

ε,Dm,‖ · ‖2
)

≤ N[ ]

(

2ε,Dm,‖ · ‖2
)

,

we can derive from Theorem 3.6 that

logN
(

ε,Dm,‖ · ‖2
)

≤ Cm

(

2

ε

)
1
2
∣

∣

∣

∣

log
2

ε

∣

∣

∣

∣

2(m−1)

for every ε > 0. However, this upper bound is weaker than the one we achieved in Theo-
rem 3.2. Although it has the same order for ε, the exponent of the logarithmic multiplicative
factor is bigger. We can obtain from this result an upper bound of the risk of f̂

d,s
n,V under the

fixed lattice design setting, but it will lead to a bound looser than the one in Theorem 3.1.

We can prove a similar result as in Theorem 3.5 for the approximate version f̃
d,s
n,V . As

we state in the following theorem, f̃
d,s
n,V achieves the same rate of convergence as f̂

d,s
n,V if

N1, . . . ,Nd are sufficiently large. Together with (19), this result suggests that the approximate
method with appropriately chosen N1, . . . ,Nd can be as accurate as the original method.

THEOREM 3.8. Suppose f ∗ ∈ F
d,s
∞−mars and Vmars(f

∗) ≤ V . Also, assume that N =
mink Nk = �(n4/15), that is, there exists a positive constant cB,d,V possibly depending on B ,
d , and V such that

N ≥ cB,d,V · n
4
15 .

Then, the estimator f̃
d,s
n,V satisfies that

∥

∥f̃
d,s
n,V − f ∗

∥

∥

2
p0,2

= Op

(

n− 4
5 (logn)

8(s−1)
5

)

.

Our next result shows that the logarithmic multiplicative factor in (23) can not be com-
pletely removed in the minimax sense. Specifically, we bound the minimax risk defined as

M
d,s
n,V = inf

f̂n

sup
f ∗∈F

d,s
∞−mars

Vmars(f
∗)≤V

Ef ∗

∥

∥f̂n − f ∗
∥

∥

2
p0,2

,

where the expectation is taken over (X(1), y1), . . . , (X
(n), yn) of (20) and inf

f̂n
denotes the

infimum over all estimators f̂n of f ∗ based on (X(1), y1), . . . , (X
(n), yn). Here we further
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restrict that ξi in the model (20) are independent Gaussian errors with mean zero and variance
σ 2 and that the probability density function p0 of X(i) is bounded below by some positive
constant b, that is, ‖p0‖∞ ≥ b. Our result shows that the supremum risk of every estimator
indeed requires a logarithmic multiplicative factor depending on s in addition to the n−4/5

term. Note though that there is still a gap between the exponent 8(s − 1)/5 of logn in the rate
of convergence of f̂

d,s
n,V and the exponent 4(s − 1)/5 of logn in the minimax lower bound.

THEOREM 3.9. There exist positive constants Cb,B,s depending on b, B , and s and cB,s

depending on B and s such that

M
d,s
n,V ≥ Cb,B,s

(

σ 2V
1
2

n

)
4
5
[

log
(

V n
1
2

σ

)]
4(s−1)

5

provided n ≥ cB,s · (σ 2/V 2).

Our proof of Theorem 3.9 is based on Assouad’s lemma with a finite set of functions in
{f ∗ ∈F

d,s
∞−mars : Vmars(f

∗) ≤ V } that is constructed by an extension of the ideas in Blei, Gao
and Li (2007), Section 4. Results similar to Theorem 3.9 can be proved under the fixed design
setting, but we do not go into detail in this paper.

4. Characterization in terms of smoothness. In this section, we provide alternative
characterizations of F

d,s
∞−mars, Vmars(·), and f̂

d,s
n,V in terms of smoothness. To motivate the

results for general d and s, let us first consider the univariate case d = s = 1. We include the
proofs of all the results in this section in Section 11.4 of the Supplementary Material (Ki,
Fang and Guntuboyina (2024)).

4.1. Smoothness characterization for d = s = 1. For d = s = 1, F1,1
∞−mars consists of all

the functions f : [0,1] → R of the form

(24) f (x) = a0 +

∫

[0,1)
(x − t)+ dν(t),

where a0 is a real number and ν is a finite signed measure on [0,1), and the complexity
measure of f is given by the variation of ν on (0,1); that is, Vmars(f ) = |ν|((0,1)).

The following simple arguments show that F
1,1
∞−mars can be characterized in terms of

smoothness. First, by replacing (x − t)+ with
∫ 1

0 1{t ≤ s ≤ x}ds in the integral in (24) and
changing the order of integration, we obtain

(25) f (x) = a0 +

∫ x

0
g(t) dt,

where the function g : [0,1] → R is given by

(26) g(t) = ν
(

[0, t] ∩ [0,1
)

).

It can be readily verified that the function g in (26) is right-continuous on [0,1] and left-
continuous at 1, and the total variation V (g) of g is finite and can be represented as

(27) V (g) = |ν|
(

(0,1)
)

.

Here the total variation of a function h : [0,1] →R is defined by

V (h) = sup
0=u0<u1<···<uk=1

k−1
∑

i=0

∣

∣h(ui+1) − h(ui)
∣

∣,



MARS VIA LASSO 1115

where the supremum is over all integers k ≥ 1 and partitions 0 = u0 < u1 < · · · < uk = 1
of [0,1]. Conversely, every function g : [0,1] → R that is right-continuous on [0,1], left-
continuous at 1, and has finite total variation can be written as (26) for a unique signed mea-
sure ν on [0,1) (see, e.g., Aistleitner and Dick (2015), Theorem 3). Putting these observations
together, we can argue that F1,1

∞−mars has the following alternative characterization:

F
1,1
∞−mars =

{

f : [0,1] → R : ∃a0 ∈ R and g : [0,1] → R s.t.

g is right-continuous on [0,1], left-continuous at 1,

V (g) < ∞, and f (x) = a0 +

∫ x

0
g(t) dt for all x ∈ [0,1]

}

.

(28)

Moreover, we can see that the complexity measure Vmars(f ) for f ∈ F
1,1
∞−mars is equal to the

total variation V (g) of the function g appearing in (28).
For every function f ∈ F

1,1
∞−mars, we can show that g satisfying the conditions in (28) is

unique, and thus, we can consider such g as a particular derivative of f satisfying (25). If we
denote it by D(1)f , the estimator f̂

1,1
n,V then can be alternatively written as

f̂
1,1
n,V ∈ argmin

f

{

n
∑

i=1

(

yi − f
(

x(i)))2
: V

(

D(1)f
)

≤ V

}

.

The representation (25) implies, by the Lebesgue differentiation theorem (see, e.g., Rudin
(1987), Theorem 7.10), that f ′ exists and is equal to D(1)f almost everywhere (with respect
to the Lebesgue measure) on [0,1]. Hence, we can also describe f̂

1,1
n,V somewhat loosely as

f̂
1,1
n,V ∈ argmin

f

{

n
∑

i=1

(

yi − f
(

x(i)))2
: V

(

f ′) ≤ V

}

.

The corresponding penalized version

(29) argmin
f

{

n
∑

i=1

(

yi − f
(

x(i)))2
+ λV

(

f ′)
}

was proposed by Mammen and van de Geer (1997) as part of the class of estimators col-
lectively called locally adaptive regression splines. In the univariate case, f̂

1,1
n,V can thus be

seen as a constrained analogue of the locally adaptive regression spline estimator of Mammen
and van de Geer (1997) when the order k (in their notation) equals 2. Steidl, Didas and Neu-
mann (2006) used the terminology second-order total variation regularization, and Kim et al.
(2009) and Tibshirani (2014) used the terminology first-order trend filtering for (29). There-
fore, our estimator f̂

d,s
n,V can be considered as a multivariate generalization of piecewise linear

(second-order) locally adaptive regression splines, second-order total variation regularization,
or first-order trend filtering.

From the alternative characterization of F1,1
∞−mars given above, it follows that every suf-

ficiently smooth function f : [0,1] → R belongs to F
1,1
∞−mars. Indeed, if f ′ and f ′′ exist

everywhere and are continuous on [0,1], then we have

f (x) = f (0) +

∫ x

0
f ′(t) dt

for all x ∈ [0,1], and

V
(

f ′) =

∫ 1

0

∣

∣f ′′
∣

∣ < ∞.
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Thus, in this case, f belongs to F
1,1
∞−mars and the complexity measure of f can be written as

(30) Vmars(f ) =

∫ 1

0

∣

∣f ′′
∣

∣.

This formula highlights the role of the second derivative f ′′ in the determination of Vmars(f )

for each sufficiently smooth function f .

4.2. Smoothness characterization for general d and s. As we have seen in the previous
subsection, in the univariate case, F1,1

∞−mars consists of all the functions f satisfying (25) with
some function g having finite total variation and some one-sided continuity. An analogous
characterization holds for general d and s. For general d and s, the role of total variation in the
univariate case is played by Hardy–Krause variation, which is an extension of total variation
of univariate functions to higher dimensions. In Section 7 of the Supplementary Material
(Ki, Fang and Guntuboyina (2024)), we review the definition of Hardy–Krause variation and
its properties that we will use for proving the results in this subsection. Standard references
for Hardy–Krause variation are Aistleitner and Dick (2015) and Owen (2005). Here we use
Hardy–Krause variation anchored at 0, which we denote by VHK0(·).

The following result provides an alternative characterization of Fd,s
∞−mars and Vmars(·) in

terms of smoothness. Recall that we use the notation t (α) to indicate the vector (tj , j ∈ S(α))

for each α ∈ {0,1}d \ {0} with |α| ≤ s.

PROPOSITION 4.1. The function class Fd,s
∞−mars consists precisely of all the functions of

the form

(31) f (x1, . . . , xd) = a0 +
∑

α∈{0,1}d\{0}
|α|≤s

∫

[0,x(α)]
gα

(

t (α))dt (α)

for some a0 ∈ R and some collection of functions {gα : α ∈ {0,1}d \ {0} and |α| ≤ s}, where
for each α ∈ {0,1}d \ {0} with |α| ≤ s,

(i) gα is a real-valued function on [0,1]|α|,
(ii) VHK0(gα) < ∞,

(iii) gα is coordinatewise right-continuous on [0,1]|α|, and
(iv) gα is coordinatewise left-continuous at each point x(α) = (xj , j ∈ S(α)) ∈ [0,1]|α| \

[0,1)|α| with respect to all the j th coordinates where xj = 1.

Furthermore, the complexity of f in (31) can be written in terms of the Hardy–Krause vari-
ations of gα as

(32) Vmars(f ) =
∑

α∈{0,1}d\{0}
|α|≤s

VHK0(gα).

Proposition 4.1 is completely analogous to (28) for the case d = s = 1. Specifically, the
condition (31) is analogous to the univariate condition (25). The condition VHK0(gα) < ∞

for each α ∈ {0,1}d \ {0} with |α| ≤ s corresponds to the univariate condition V (g) < ∞.
The coordinatewise right-continuity of each gα on [0,1]|α| is matched with the univariate
right-continuity on [0,1]. Lastly, the coordinatewise left-continuity of each gα at each x(α) ∈

[0,1]|α| \ [0,1)|α| (with respect to all the j th coordinates where xj = 1) is a counterpart of
the univariate left-continuity at 1. It is also interesting to note that Vmars(f ) equals the sum
of the Hardy–Krause variations of gα over α ∈ {0,1}d \ {0} with |α| ≤ s.
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For every function f ∈ F
d,s
∞−mars, it can be easily checked that gα appearing in Propo-

sition 4.1 are uniquely determined by f . As in the case d = s = 1, we can thus consider
such gα as particular derivatives of f satisfying (31). Let us denote them by D(α)f for
α ∈ {0,1}d \ {0}. We can then write our estimator f̂

d,s
n,V alternatively as

(33) f̂
d,s
n,V ∈ argmin

f

{

n
∑

i=1

(

yi − f
(

x(i)))2
:

∑

α∈{0,1}d\{0}
|α|≤s

VHK0
(

D(α)f
)

≤ V

}

.

Hence, our estimator can be viewed as a least squares estimator under a specific smoothness
constraint involving the sum of the Hardy–Krause variations of the particular derivatives
defined via D(α).

Recall that the univariate condition (25) implies that f ′ exists and equals to D(1)f almost
everywhere. Similarly, the condition (31) imposes a certain kind of smoothness on f and
characterizes the corresponding derivatives in terms of D(α)f . For each α ∈ {0,1}d \ {0} and
for x(α) = (xk, k ∈ S(α)), let

Dαf
(

x(α)) = lim
ε→0

1

ε|α|
·

∑

δ∈
∏

k∈S(α) {0,1}

(−1)
∑

k∈S(α) δkf
(

˜x(x + ε)
(α)

δ

)

,

if the limit exists, where

(

˜x(x + ε)
(α)

δ

)

k =

{

δkxk + (1 − δk)(xk + ε) if k ∈ S(α)

0 otherwise

for k ∈ [d]. For example, if d = 3 and α = (1,1,0), D1,1,0f is defined as

D1,1,0f (x1, x2) = lim
ε→0

1

ε2 ·
(

f (x1 + ε, x2 + ε,0) − f (x1, x2 + ε,0)

− f (x1 + ε, x2,0) + f (x1, x2,0)
)

,

if the limit exists. Note that in contrast to mixed partial derivatives f (α) (defined in (9)), in
which partial derivatives ∂/∂xj are taken sequentially, here all the j th coordinates where αj =
1 are considered simultaneously. Also, note that the remaining coordinates where αj = 0 are
set to zero for Dαf .

As in the case d = s = 1, we can show that Dαf exist and equal to D(α)f almost every-
where (with respect to the Lebesgue measure) on [0,1]|α|. The precise statement is given in
the following result.

PROPOSITION 4.2. Suppose that the condition (31) holds. Then, for each α ∈ {0,1}d \
{0}, Dαf = 0 if |α| > s, and Dαf = D(α)f almost everywhere (with respect to the Lebesgue
measure) on [0,1]|α| if |α| ≤ s.

Proposition 4.1 also implies that every sufficiently smooth function belongs to F
d,d
∞−mars.

This is proved in the next result, which also gives an expression for Vmars(f ) in terms of the
L1 norms of the mixed partial derivatives of f , for sufficiently smooth functions f .

The following notation will be used below. For each α ∈ {0,1}d \ {0}, we let Jα be the set
of all β ∈ {0,1,2}d such that

(34) max
j

βj = 2 and βj =

{

0 if αj = 0

1 or 2 if αj = 1.

Also, recall the notation T̄ (β) from (11).
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LEMMA 4.3. Suppose f : [0,1]d →R is smooth in the sense that

(i) f (α) exists and is continuous on [0,1]d for every α ∈ {0,1}d , and
(ii) f (β) exists and is continuous on T̄ (α) for every β ∈ Jα , for every α ∈ {0,1}d \ {0}.

Then, f ∈ F
d,d
∞−mars and

(35) Vmars(f ) =
∑

β∈{0,1,2}d

maxj βj=2

∫

T̄ (β)

∣

∣f (β)
∣

∣.

Furthermore, if f (α) = 0 for all α ∈ {0,1}d with |α| > s in addition, then f ∈ F
d,s
∞−mars and

(36) Vmars(f ) =
∑

α∈{0,1}d\{0}
|α|≤s

∑

β∈Jα

∫

T̄ (β)

∣

∣f (β)
∣

∣.

Note that the integrals on the right-hand side of (35) and (36) are only over those coordi-
nates xl for which βl = maxj βj (the remaining coordinates are set to zero).

The formula (35) is a multivariate generalization of the univariate formula (30), stating
that for sufficiently smooth functions f , Vmars(f ) is the sum of the L1 norms of the mixed
partial derivatives of f of order 2, where we take at most two partial derivatives along each
coordinate and exactly two partial derivatives along at least one coordinate. Note that mixed
partial derivatives of total order (β1 +· · ·+βd ) up to 2d appear in (35). From this perspective,
we can think of the smoothness order of our complexity measure Vmars(·) as 2d , which is
proportional to the dimension d . This gives an intuitive explanation on why our estimators
achieve the dimension-free rate n−4/5 (up to the logarithmic multiplicative factors), as we
observed in Section 3. However, we should also note that the maximum total order 2d is solely
achieved by the mixed partial derivative f (2,...,2), which prevents our function class from
being too small and restrictive. For these reasons, we can say that our complexity measure is
an effective constraint that leads to estimators avoiding the curse of dimensionality (to some
extent) while keeping the corresponding function class reasonably large.

There is also an interesting connection between Vmars(·) and VHK0(·) via (35). Specifi-
cally, if the condition maxj βj = 2 in (35) is replaced with maxj βj = 1, then one obtains
the formula for VHK0(f ) for sufficiently smooth functions f (see Lemma 7.4 of the Supple-
mentary Material (Ki, Fang and Guntuboyina (2024))). Hence, we can also view Vmars(·) as
second-order Hardy–Krause variation (anchored at 0).

In Section 8 of the Supplementary Material (Ki, Fang and Guntuboyina (2024)), we de-
scribe the results of this section by specializing to the case d = s = 2. We encourage readers
who find the results in this section too abstract to refer to Section 8 of Ki, Fang and Gun-
tuboyina (2024) for more explicit formulae.

5. Related work. Here are some connections between our paper and existing works on
nonparametric regression.

As mentioned earlier, our method can be viewed as a multivariate generalization of the
piecewise linear locally adaptive regression spline estimator of Mammen and van de Geer
(1997) (see also Steidl, Didas and Neumann (2006)). There are other ways of generalizing
the piecewise linear locally adaptive regression splines estimator to the multivariate setting as
well (see, e.g., Parhi and Nowak (2021, 2023) for some recent work). Also, we have seen that
our method can be considered as a multivariate extension of first-order trend filtering (see,
e.g., Kim et al. (2009), Tibshirani (2014)). Ortelli and van de Geer (2021) and Sadhanala
et al. (2021) recently studied different multivariate extensions of trend filtering. Although



MARS VIA LASSO 1119

they covered all orders of trend filtering in contrast to our method, their methods were how-
ever restricted to lattice designs. Moreover, they imposed weaker penalties on their models,
which resulted in their estimators converging to the true underlying function at dimension-
dependent rates. In Section 9 of the Supplementary Material (Ki, Fang and Guntuboyina
(2024)), we describe the method of Ortelli and van de Geer (2021) and compare their estima-
tor to the discrete formation of our estimator in the equally spaced lattice design setting (see
Remark 9.4 of Ki, Fang and Guntuboyina (2024) for more details).

We have also mentioned that Vmars(·) can be viewed as second-order Hardy–Krause varia-
tion (anchored at 0). Our estimation strategy can thus be seen as second-order Hardy–Krause
variation denoising. In Fang, Guntuboyina and Sen (2021), first-order Hardy–Krause vari-
ation denoising (i.e., least squares estimation over functions with bounded Hardy–Krause
variation) was studied. First-order Hardy–Krause variation denoising leads to piecewise con-
stant fits while our method leads to MARS fits (linear combinations of products of ReLU
functions of individual variables). Fang, Guntuboyina and Sen (2021) also proved that their
estimator achieves a dimension-free (up to a logarithmic multiplicative factor) rate of conver-
gence. However, it should be noted that their result is only proved in the fixed lattice design
setting. Moreover, unlike our method, interaction order restriction is not considered in Fang,
Guntuboyina and Sen (2021).

As is clear from the form of our functions (3) and our complexity measure (6), our method
can also be considered as a multivariate ANOVA modeling method based on total variation
constraints. There are a few works that utilize total variation penalties in multivariate ANOVA
modeling. Petersen, Witten and Simon (2016), Yang and Tan (2018), and Sadhanala and Tib-
shirani (2019) utilized total variation of univatiate functions in additive modeling, which can
be seen as a special case of ANOVA modeling where the interaction between covariates is not
allowed. Also, Yang and Tan (2021) used for multivariate ANOVA modeling a class of penal-
ties characterized in terms of certain hierarchical notions of total variation. Their hierarchical
total variations are defined using a pre-fixed grid of points. Interestingly, for functions f that
are sufficiently smooth, one of their hierarchical total variations (corresponding to m = 2 in
their notation) converges to Vmars(f ) as the grid resolution becomes arbitrarily small.

It should be mentioned that Lin (1998, 2000) also studied a multivariate ANOVA modeling
method, but instead of L1 norms as in our paper, they worked with penalties that are related
to the squared L2-Sobolev norms. Relevance of their works to our paper is therefore not from
the type of penalties but from tensor product structures on their basis functions. As our basis
functions (1) are the tensor products of univariate ReLU functions, their basis functions are
also the tensor products of univariate functions whose smoothness is constrained by the L2-
Sobolev norms. It is notable that the multivariate function spaces considered in Lin (1998,
2000) are defined as an appropriate completion of the pre-Hilbert space given by the tensor
product of the univariate L2-Sobolev spaces. We are curious whether we can also view our
function classes (e.g., Fd,d

∞−mars) as an appropriate completion of a tensor product space.
However, it is unclear to us at this point what norm should be chosen for completion as a
counterpart of the L2-Sobolev norms of Lin (1998, 2000). We believe this is an interesting
direction to extend our work, which can provide a new perspective on our function spaces.

In addition, van der Laan, Benkeser and Cai (2023) discussed function classes similar
to F

d,d
∞−mars and norms similar to Vmars(·) and used them for estimation in settings that are

different from our classical nonparametric regression framework.

6. Numerical experiments. In this section, we provide the results of some numerical
experiments illustrating the performance of our estimators from either the original or the ap-
proximate method. The performance of our estimators is compared to the performance of
the usual MARS estimator in our experiments. The results for simulated data are presented
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first, and those for real data follow next. Our methods are implemented in the R package reg-

mdc, which is available at https://github.com/DohyeongKi/regmdc. Our R package regmdc

employs the R package Rmosek (based on interior point convex optimization) to solve the
finite-dimensional lasso problem (13). For the usual MARS estimator, we use the R package
earth based on Friedman (1991) and Friedman (1993).

6.1. Simulation studies. Mammen and van de Geer (1997) and Tibshirani (2014) demon-
strated that their locally adaptive regression splines and trend filtering excel at estimating
functions with locally varying smoothness. Considering that our estimator is a multivariate
generalization of the piecewise (second-order) locally adaptive regression splines estimator
and the first-order trend filtering estimator, it is natural to examine whether our methods also
excel at adapting to the local variation of functions. To test the local adaptivity of our methods
and compare it to the local adaptivity of the usual MARS method, we exploit in our simula-
tion studies the following four functions (Function 1, Function 2, Function 3, and Function 4)
whose smoothness varies significantly over the domain.

The definitions of the four functions (Function 1, Function 2, Function 3, and Function 4)
are presented below. For each function, we consider the uniform design where X(i) are uni-
formly distributed on [0,1]d and yi are generated according to the model (20). For Function 1
and Function 3, we also consider the equally spaced lattice design where

{

x(1), . . . , x(n)} =
d

∏

k=1

{

ik

nk

: ik ∈
[

0 : (nk − 1)
]

}

for some integers nk ≥ 2. In all cases, independent Gaussian errors with standard deviation 1
are added to function evaluations. Simulations are performed at various sample sizes for each
function as presented in Table 1.

• Function 1 (L1). The first function f ∗ : [0,1]2 →R is defined by

f ∗(x1, x2) = 10 exp
(

−5 · r(x1, x2)
)

· cos
(

10π · r(x1, x2)
)

for x1, x2 ∈ [0,1], where r(x1, x2) =
√

(x1 − 0.3)2 + (x2 − 0.4)2. This function represents
a two-dimensional damped sinusoidal wave.

• Function 2 (L2). The second function f ∗ : [0,1]5 → R is defined as in Function 1 but
additionally includes three dummy variables x3, x4, and x5.

• Function 3 (L3). The third function f ∗ : [0,1]2 →R is defined by

f ∗(x1, x2) = 5 sin
(

4
√

x2
1 + x2

2 + 0.001

)

+ 7.5

for x1, x2 ∈ [0,1]. This function is a (scaled) two-dimensional version of the Doppler func-
tion used for simulation studies in Mammen and van de Geer (1997) and Tibshirani (2014).
We add 0.001 to avoid division by zero.

• Function 4 (L4). The fourth function f ∗ : [0,1]5 → R is defined as in Function 3 but
additionally includes three dummy variables x3, x4, and x5.

We also use for comparison the following four Friedman’s functions (see Friedman (1991),
Section 4.3 and 4.4), which have been frequently utilized to measure the performance of
nonparametric regression methods (see, e.g., Meyer, Leisch and Hornik (2003), Potts and
Schmischke (2021, 2022)). The four functions (Function 5, Function 6, Function 7, and Func-
tion 8) are defined as below, and for each function, we generate data (X(1), y1), . . . , (X

(n), yn)

according to the model (20) where X(i) are uniformly distributed on [0,1]d . For Function 5
and Function 6, we consider Gaussian errors with standard deviation 1 as in Friedman (1991),
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Section 4.3. For Function 7 and Function 8, we consider Gaussian errors with standard de-
viation 125 and 0.1, which yield a 3:1 signal to noise ratio as designed in Friedman (1991),
Section 4.4 (see also Meyer, Leisch and Hornik (2003)). Also, for each function, we con-
duct experiments on three different sample sizes as in Friedman (1991): 50, 100, and 200 for
Function 5 and Function 6; 100, 200, and 400 for Function 7 and Function 8.

• Function 5 (F1). The first function f ∗ : [0,1]10 →R is defined by

f ∗(x1, . . . , x10) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

for x1, . . . , x10 ∈ [0,1].
• Function 6 (F2). The second function f ∗ : [0,1]5 →R is defined as in Function 5, but here

the five variables x6, . . . , x10 are removed.
• Function 7 (F3). The third function f ∗ : [0,1]4 →R is defined by

f ∗(x1, x2, x3, x4) =

√

(

T1(x1)
)2

+
(

T2(x2) · x3 −
(

T2(x2) · T4(x4)
)−1)2

for x1, x2, x3, x4 ∈ [0,1], where T1, T2, and T4 are the linear maps defined by T1(x1) =
100x1, T2(x2) = 2π(260x2 + 20), and T4(x4) = 10x4 + 1.

• Function 8 (F4). The fourth function f ∗ : [0,1]4 →R is defined by

f ∗(x1, x2, x3, x4) = arctan
(

T2(x2) · x3 − (T2(x2) · T4(x4))
−1

T1(x1)

)

for x1, x2, x3, x4 ∈ [0,1], where T1, T2, and T4 are defined as in Function 7.

In all simulations, we compare the estimator f̂
d,2
n,V and its approximate version f̃

d,2
n,V to the

usual MARS estimator whose order of interaction is restricted to 2. The approximate method
is considered only when explanatory variables are uniformly distributed. The positive integers
Nk for the approximate method is set to 25 for each coordinate. Also, the tuning parameter V

is selected by 10-fold cross-validation in all cases. For each function, we repeat the above data
generation and estimator construction processes 25 times and average out computed losses.
We use the squared empirical L2 norm (17) for the fixed lattice design, and for the uniform
design, we generate 1000 new samples and approximate the prediction error (22).

Table 1 presents the average loss of our estimators and the usual MARS estimator over 25
repetitions for each function. In Table 1, we can first observe that our estimators outperform
the usual MARS estimator in capturing the local variation of the first four functions, L1, L2,
L3, and L4, under both the lattice and the uniform design. The only exceptions are when
we estimate the function L2 with 100 samples and the function L4 with 100, 200, and 400
samples. Even for these functions, our methods start performing better when they are given
more samples. It turns out that our methods usually benefit more from increases in sample
sizes compared to the usual MARS method. By comparing L1 with L2 and L3 with L4, we
can also see that our methods however suffer more from the addition of dummy variables.

Table 1 also shows that our methods estimate the Friedman’s functions F2, F3, and F4
much better, while the usual MARS method do better in the estimation of the function F1.
However, the performance gap in estimating F1 narrows as the sample size increases, which
reaffirms that increases in sample sizes are often more favorable for our methods than the
usual MARS method. Also, comparing the results of F2 with those of F1, again we can see
that our methods can benefit more from removing unnecessary covariates in advance. This
hints that having appropriate variable selection as a pre-processing step can greatly improve
the performance of our methods. We think it can be a promising avenue for future work.

Moreover, we can observe from Table 1 that the original and approximate method yield
almost the same outputs in most cases. Only for the Doppler function L3, which has extremely
wild fluctuation around the origin, the two methods show a notable difference. This tells us
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TABLE 1
The average and standard error of squared empirical L2 norms (17) (lattice design) or prediction errors (22)

(uniform design) for each experimental setting. The number below the name of each function (if any) is the scale
that should be multiplied to the corresponding averages and standard errors

Function Design Number of data Usual method Original method Approximate method

L1 Lattice 256 3.66 (0.07) 1.06 (0.07) –
1024 3.34 (0.04) 1.09 (0.05) –

Uniform 100 3.30 (0.15) 3.21 (0.09) 3.20 (0.08)

200 3.18 (0.09) 3.00 (0.05) 3.02 (0.05)
400 2.90 (0.05) 2.79 (0.05) 2.80 (0.04)
800 2.90 (0.03) – 2.62 (0.03)

L2 Uniform 100 3.29 (0.08) 3.59 (0.07) 3.59 (0.07)
200 3.15 (0.08) 3.13 (0.05) 3.13 (0.05)

400 3.12 (0.05) 3.09 (0.04) 3.09 (0.04)

800 2.92 (0.06) – 2.91 (0.05)

L3 Lattice 256 3.76 (0.08) 1.83 (0.07) –
1024 3.43 (0.07) 1.57 (0.05) –

Uniform 100 5.37 (0.16) 5.20 (0.23) 5.11 (0.21)

200 4.06 (0.15) 3.59 (0.08) 3.43 (0.09)

400 3.54 (0.07) 3.06 (0.17) 2.27 (0.08)

800 3.28 (0.07) – 1.51 (0.06)

L4 Uniform 100 6.25 (0.23) 7.62 (0.14) 7.62 (0.14)
200 4.47 (0.17) 6.03 (0.12) 5.94 (0.10)
400 3.63 (0.07) 4.30 (0.08) 4.25 (0.09)
800 3.28 (0.05) – 3.10 (0.06)

F1 Uniform 50 4.05 (0.37) 8.60 (0.35) 8.89 (0.36)
100 1.03 (0.09) 4.39 (0.36) 4.49 (0.38)
200 0.43 (0.02) 0.87 (0.03) 0.87 (0.03)

F2 Uniform 50 3.25 (0.28) 2.45 (0.31) 2.48 (0.33)
100 1.13 (0.10) 0.77 (0.12) 0.72 (0.07)

200 0.41 (0.03) 0.37 (0.03) 0.35 (0.02)

F3 (·103) Uniform 100 3.62 (0.37) 2.10 (0.23) 2.10 (0.23)

200 2.16 (0.22) 0.95 (0.07) 0.95 (0.07)

400 1.20 (0.15) 0.55 (0.04) 0.55 (0.04)

F4 (·10−3) Uniform 100 14.0 (1.04) 11.5 (0.60) 11.6 (0.63)
200 9.12 (0.78) 7.40 (0.34) 7.43 (0.34)
400 5.51 (0.35) 5.25 (0.24) 5.23 (0.23)

there may not be much degradation in practice from using the approximate method in place
of the original one, and there even can be some gains, as we observed in the case of L3.

From these simulation results, we can expect that although the usual MARS estimator
might perform better on small sample sizes, our estimators usually outdo the usual MARS
estimator when given enough samples. At what sample sizes such a transition occurs will
definitely vary across functions, but in the above examples, they were reasonably small.

6.2. Real datasets. Here we use a few standard real datasets (Earnings, Airfoil Self-
Noise, Abalone, Concrete, Ozone, Red Wine, and White Wine dataset) to compare our es-
timators with the usual MARS estimator. Brief descriptions of each dataset is presented in
Section 10 of the Supplementary Material (Ki, Fang and Guntuboyina (2024)).



MARS VIA LASSO 1123

TABLE 2
The number of explanatory variables, the number of data, and the type of our

method employed for each dataset. Original and Approx here stand for the original
and approximate method, respectively

Dataset Dimension Number of data Method

Earnings 2 25,437 Original
Airfoil Self-Noise 5 1503 Original
Abalone 7 4177 Approx
Concrete 8 1030 Approx
Ozone 9 330 Approx
Red Wine 11 1599 Approx
White Wine 11 4898 Approx

For each dataset, we first linearly transform each explanatory variable into [0,1]. In gen-
eral, there can be multiple options for linear transformations. If the domain of an explanatory
variable is known as [m,M], then it is natural to subtract m from the variable and then divide
it by M − m. In case the two extreme values of the domain, m and M , are unknown, we can
consider the same linear transformation after simply setting m as the minimum and M as the
maximum among observed values. Here we choose the latter option for all datasets.

We also split each dataset into a training set and a test set and use the mean squared error
on the test set for comparison. We use 80% observations as training data and the remaining
20% observations as test data. Also, for every dataset, we focus on interactions between
explanatory variables of order up to 2. In other words, we use f̂

d,2
n,V or its approximate version

f̃
d,2
n,V for estimating regression functions and compare it to the usual MARS estimator whose

order of interaction is restricted to 2. For the Earnings and the Airfoil Self-Noise datasets, we
employ the original method, and for the other datasets, we employ the approximate method,
with setting each Nk to 25. Furthermore, the tuning parameter V is chosen by 10-fold cross-
validation in all cases.

In Table 2, we present for each dataset the number of explanatory variables, the number of
data, and the type of our method we use (whether the original or the approximate method).
Table 3 shows the average mean squared error of our estimator and the usual MARS estimator
over 25 random training and test set splits for each dataset. In Table 3, we can see that our
method outperforms the usual MARS method in almost all examples, while showing great
improvement on the Airfoil Self-Noise, Concrete, Ozone, and White Wine dataset. The Red

TABLE 3
The average and standard error of mean squared errors on test sets for each

dataset. The number next to the name of each dataset is the scale that should be
multiplied to the corresponding average and standard error

Dataset Usual method Our method

Earnings (·10−1) 2.68 (0.01) 2.65 (0.01)

Airfoil Self-Noise (·100) 9.16 (0.31) 3.67 (0.13)

Abalone (·100) 4.64 (0.08) 4.59 (0.08)

Concrete (·101) 4.01 (0.08) 2.57 (0.17)

Ozone (·101) 1.68 (0.08) 1.45 (0.06)

Red Wine (·10−1) 4.17 (0.08) 4.17 (0.07)

White Wine (·10−1) 5.19 (0.05) 4.92 (0.07)
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Wine dataset is the only exception for which the usual MARS method produces better or
equally good fits. However, for its sibling (the White Wine dataset), which has about three
times as many observations, our method is clearly a better option than the usual MARS
method. This again proves that the usual MARS method may beat our method on small
sample sizes, but our method reclaims the throne once enough data are provided.

We can conclude from all the results in this section that not only can our estimators be an
alternative to the usual MARS estimator, but also they can supplement each other.
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SUPPLEMENTARY MATERIAL

Supplement to “MARS via LASSO” (DOI: 10.1214/24-AOS2384SUPPA; .pdf). It con-
tains a brief introduction to Hardy–Krause variation; the results of Section 4 for the case
d = s = 2; comparison between our method in the equally spaced lattice design setting and
the multivariate trend filtering method of Ortelli and van de Geer (2021); brief descriptions
of the datasets used for the numerical experiments in Section 6; and proofs of all our results.

Code (DOI: 10.1214/24-AOS2384SUPPB; .zip). It contains the code for all the numeri-
cal experiments in Section 6. The code is also available at https://github.com/DohyeongKi/
mars-lasso-paper.
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