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Abstract

Computational modeling has become indispensable in investigating the dynamics of

decision making processes. A prominent category of models in this domain are Evidence

Accumulation Models (EAMs), which model both the decisions people make and the

time they take. Many variations have been proposed which modify the drift rate,

diffusion rate, and decision thresholds, encoding increasingly complex dynamics into the

EAM framework. However, adding model features complicates parameter recovery,

making model interpretation more difficult. In this work, we perform a parameter

recovery study to a variety of common binary choice EAMs, identify the specific

challenges for each, and explore how to improve their parameter recoverability. Though

previous studies have addressed this question, they have been piecemeal in nature, with

different groups applying different computational methods to study different models.

We aim to unify this body of literature using the best currently available computational

methods. Further, we present the first, to our knowledge, Bayesian analysis of diffusion

conflict models. Our purpose here is to be thorough, not exhaustive or comprehensive.

With this in mind, this article catalogues a number of results, some previously shown

and some new. Further, it illustrates different approaches to model analysis. This

article is intended to be a resource for researchers interested in utilizing EAMs for

studying decision-making processes, providing insights into the challenges associated

these models, how to analyze them in light of those challenges, and examples of how to

address those challenges.

Keywords: Decision-making, Drift-diffusion, Evidence Accumulation, Changing

thresholds, Urgency gating, Conflict model, Parameter recovery, Bayesian parameter

estimation
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A parameter recovery assessment of a wide class of evidence accumulation models of

decision-making.

Introduction

For over half a century, computational modeling has been instrumental in

exploring decision-making dynamics. With the challenges of directly manipulating and

observing the brain, models play a crucial role in formalizing and evaluating

mechanistic hypotheses regarding decision-making processes. They enable us to explore

questions such as how individuals process information over time, adapt their caution

levels across diverse contexts, or navigate through complex choice landscapes with

multiple alternatives and attributes. Such questions often prove elusive through

observation or statistical analysis alone. Models offer a robust method to indirectly

investigate these questions by comparing the anticipated data patterns predicted by

models to experimental findings.

One prominent category of models in this realm are Evidence Accumulation

Models (EAMs). EAMs model decision outcomes by simulating the processes involved

in making a choice. For instance, the commonly used Diffusion Decision Model (DDM)

posits that individuals probabilistically sample information over time, incrementally

accumulate evidence based on this information, and reach a decision upon reaching a

critical evidence threshold. Such models, including variants, are often represented

mathematically through stochastic differential equations (SDEs). A notable advantage

of this model family lies in its ability to model both the decisions made and the time

taken to reach them, commonly referred to as Choice–Response Time (choice-RT) data.

Crucially, the duration of decision-making offers valuable insights into the properties of

underlying cognitive processes.

Evidence Accumulation Models (EAMs) are widely recognized in cognitive

psychology for their effectiveness. They accurately capture various aspects of

decision-making and response times, including the trade-off between speed and

accuracy, the right skew in human response time distributions, the relationship between

average response times and their variability, and distinctions between quick and slow
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errors (Brown & Heathcote, 2008; Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff,

Zandt, & McKoon, 1999; Usher & McClelland, 2001). Additionally, they find

application in diverse areas such as learning processes (Evans, Brown, Mewhort, &

Heathcote, 2018; Fontanesi, Gluth, Spektor, & Rieskamp, 2019), categorization tasks

(Nosofsky, Little, Donkin, & Fific, 2011; Nosofsky & Palmeri, 1997), memory

mechanisms (Osth & Farrell, 2019; Ratcliff, 1978), language comprehension (Lerche,

Christmann, & Voss, 2018; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008), consumer

decision-making (Busemeyer, Gluth, Rieskamp, & Turner, 2019; Evans, Holmes, &

Trueblood, 2019), development and aging (Ratcliff, Thapar, & McKoon, 2001; van

Wouwe et al., 2016; Wieschen, Makani, Radev, Voss, & Spaniol, 2023), and personality

and mood (White, Ratcliff, Vasey, & McKoon, 2010). Researchers have also begun to

integrate EAMs with psychophysiological data, such as neural recordings (Turner et al.,

2013; Turner, Rodriguez, Norcia, McClure, & Steyvers, 2016; Turner, van Maanen, &

Forstmann, 2015), motor performance data (Servant, White, Montagnini, & Burle,

2016), eye movements (Krajbich, Armel, & Rangel, 2010), functional magnetic

resonance imaging (Forstmann, van den Wildenberg, & Ridderinkhof, 2008; White et

al., 2014), electromyography (Servant, White, Montagnini, & Burle, 2015), and

electroencephalography (Kelly & O’Connell, 2013; Philiastides, Heekeren, & Sajda,

2014; Servant et al., 2016).

Their popularity and success has led to the proposal of numerous modifications to

the original DDM concept. Such proposals have modified the drift rate (Cisek, Puskas,

& El-Murr, 2009; Dendauw et al., 2024; Ditterich, 2006; Smith, 1995; Ulrich, Schröter,

Leuthold, & Birngruber, 2015), the diffusion rate (Cisek et al., 2009; Trueblood,

Heathcote, Evans, & Holmes, 2021), and the shape of the decision thresholds

(Churchland, Kiani, & Shadlen, 2008; Ditterich, 2006; Evans & Hawkins, 2019; Evans,

Hawkins, & Brown, 2020; Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011; Hawkins,

Forstmann, Wagenmakers, Ratcliff, & Brown, 2015; Palestro, Weichart, Sederberg, &

Turner, 2018; Voskuilen, Ratcliff, & Smith, 2016), with the intention of exploring

decision mechanisms beyond those encoded in the standard DDM. Though the
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introduction of these additional features into the EAM framework substantially

increases its investigative breadth, it also presents challenges. One of the prime values

of EAMs over the decades has been their interpretability. They encode interpretable

mechanistic features and by fitting them to data researchers can understand how factors

of interest impact those features. These features are encoded in the model’s structure

and parameterization and interpretation often requires analysis of the parametric

behavior of the model. Encoding more complex model features is however known to

make such parametric analyses more challenging and less robust (Boehm et al., 2018;

Dutilh et al., 2019; Evans et al., 2019; Evans, Trueblood, & Holmes, 2020; Holmes &

Trueblood, 2018; White, Servant, & Logan, 2018). Thus there is a tension. More

complex models may facilitate investigation of wider ranges of questions and

phenomena, but that expansiveness may come at the expense of interpretability.

A number of works have sought to address this question of estimation and model

interpretability through parameter recovery studies. The general approach taken is to

1) choose a subset of models to explore, 2) simulate data from the models using a set of

known parameters, 3) generate a mathematical representation of the model, then 4) fit

the model representation to the simulated data to determine if the input model

parameters can be recovered. Among others, Lerche and Voss (2016) and Boehm et al.

(2018) explored the parameter recoverability of the DDM; Evans, Trueblood, and

Holmes (2020) explored the parameter recovery of the DDM in addition to models

containing time changing thresholds and drift rates; Trueblood et al. (2021) focused

specifically on the recovery of the Urgency Gating Model, an EAM with non-constant

drift and diffusion rate; White et al. (2018) explored the recoverability of EAMs

modeling conflict tasks; van Ravenzwaaij and Oberauer (2009) explored the DDM, the

Linear Ballistic Accumulator Model, and the Leaky Competing Accumulator Model;

and Evans et al. (2019) explored the recoverability of EAMs of multi alternative multi

attribute choice.

Though comprehensive, these studies have been piecemeal in nature. Different

groups investigate different models using different computational methods. Some
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studies use point estimate methods (maximize some cost function) while others use

Bayesian methods. Some rely on brute force stocahstic simulations of models (e.g.

Probability Density Approximation (Holmes, 2015; Turner & Sederberg, 2014) and

Quantile Maximation (Heathcote, Brown, & Mewhort, 2002; Ratcliff & Tuerlinckx,

2002)) while others rely on probabilistic methods (e.g. PyDDM (Shinn, Lam, &

Murray, 2020), fast-dm (Voss & Voss, 2007) and PyBEAM (Murrow & Holmes, 2024))

Some analyses are preformed using full distributional representations of the predictions

of models (likelihood functions) while others compress those representations into

summary statistics (RT quantiles, for example). Further, as methods evolve over time,

it is unclear how those findings translate using current best practices and methods. One

of the goals of this article is to unify this body of literature, and to do so using the best

currently available computational methods.

In this work, we seek to address this gap in the literature. We explore the

parameter recoverability of a wide number of commonly used EAMs that vary in their

implementation of the drift rate, diffusion rate, and decision thresholds. To do so, we

use the recently developed Python package PyBEAM, a tool which uses Bayesian

methods to fit these models to full choice-RT data (Murrow & Holmes, 2024). We are

using the best available modeling approach and applying it uniformly to these models

to assess their qualities. We identify the specific challenges associated with fitting each

model to data, then A) explore how to improve their parameter recoverability and B)

provide recommendations for how to use them. The intent of this paper is to act as a

single resource for the analysis of a suite of common binary choice EAMs, and to

provide practical recommendations for best use to researchers who may be interested in

studying them. That said, this is not a comprehensive assessment of such models. The

analysis of a model should always be tied to the structure of the data available and the

scientific purpose of using that model. The results and approaches here-in can however

serve as a starting point for such analyses.
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Models

In this section, we first introduce the general structure of the models explored in

this work. Next, we introduce the specific implementation details for each model.

Lastly, we discuss our approach to performing numerical experiments to test the

parameter recovery of each model and provide recommendations for practical use.

Two threshold, binary evidence accumulation models

Evidence accumulation models (EAMs) hypothesize that, during a decision,

information is stochastically sampled from the stimulus, then additively accumulated

until a critical level of evidence is reached. In this article, we specifically focus on the

class of two threshold, binary evidence accumulation models discussed in the

“Introduction.”

EAMs of this type take the general form shown in Panel A of Figure 1. The

horizontal axis of this panel is elapsed time from stimulus presentation, while the

vertical axis provides the total accumulated evidence x at time t. Two thresholds are

present, an upper, positive valued function (b1(t), solid line) and lower, negative valued

function (b2(t), dashed line), each corresponding to one of the two choices available.

Though the thresholds in this figure are constant in value, they can also vary with time,

either expanding or collapsing from their initial location. The separation between

thresholds indicates the level of caution a exhibited by the decision maker. If the

thresholds are far apart (near), the decision process will be slower (faster), resulting in

more (less) accurate decisions.

Evidence accumulation begins at the start point z, indicated by the blue dot on

the left of the panel. The start point can be located anywhere between the upper and

lower thresholds and corresponds to an initial bias towards one of the two choices prior

to stimulus presentation. For convenience, the start point is often written as a ratio of

the threshold separation. This new parameter is referred to as the relative start point,

and is given by w = z/(2a). Noisy accumulation proceeds from the start point and

continues until one of the two decision thresholds have been reached. If the upper
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Figure 1 . Figure caption on next page.

(lower) threshold is reached first, then choice one (two) is chosen and the time at which

the choice occurs is the threshold crossing time. The rate at which evidence

accumulates is referred to as the drift rate, indicated by the upwards pointing arrow.

An additional parameter tnd is added to the final choice-RT value which encodes

non-decision related behaviors such as stimulus encoding and motor movement.

EAMs of this type can be written as the following Stochastic Differential Equation

(SDE),

dx(t) = v(x, t)dt + D(x, t)dW (t), (1)
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Figure 1 . A) Schematic of an EAM. Evidence is accumulated (black line) starting from

an initial bias z (black dot) until one of the two decision thresholds, b1(t) or b2(t), is

reached (red dot), triggering a decision. Though the thresholds are constant in this

plot, their position can vary as a function of time. The distance between thresholds

indicates the degree of caution (a) exhibited by the decision maker, which can remain

constant or change as a function of time if the thresholds are not constant. This process

is described mathematically by Equation (1). B) Example of data simulated from an

EAM via Equation (1) (grey bars) with likelihood functions overlaid. Data for the

upper decision threshold crossing is shown on the positive time axis, while data for the

lower threshold crossing is shown on the negative time axis. The solid black line

corresponds to the likelihood function for the upper decision threshold, while the

dashed black line gives the likelihood function for the lower decision threshold. The

probability of making a choice at any time is given on the vertical axis.

where x(t) is the total evidence accumulated at time t and v(x, t) is the rate of evidence

accumulation, referred to as the drift rate. The function D(x, t) is the diffusion rate,

and it is commonly fixed for scaling purposes. Lastly, W (t) is the standard Wiener

process. Once evidence x(t) ≥ b1(t) or x(t) ≤ b2(t), a choice is triggered.

In this article, we consider a variety of models which differ in their assumptions

about the drift rate, diffusion rate, and decision threshold behavior. The drift rate

v(x, t), diffusion rate D(x, t), and thresholds bi(t) are free to vary as functions of time

and/or evidence. Here, we consider several models of this type commonly applied in the

literature: the Simple DDM, EAMs with leaky integration, EAMs with changing

thresholds (either Weibull, exponential, or linear), the Urgency Gating Model, and the

Diffusion Model of Conflict, all of which are described in detail below.

Simple DDM

The first model we examine, the Simple DDM (sDDM), is the simplest EAM we

examine and the basis of all upcoming models. We use this model as the baseline by
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which to gauge recovery. The sDDM is similar to the Ratcliff Diffusion Decision Model

(DDM) (Ratcliff, 1978; Ratcliff & McKoon, 2008), but excludes across-trial variabilities

in the start point, non-decision time, and drift rate. The sDDM assumes that the drift

rate, decision thresholds, start point, and non-decision time are all fixed quantities

throughout the decision process. Thus, it contains four parameters: non-decision time

tnd; drift rate v(x, t) = µ, where µ is the stimulus strength; relative start point w; and

flat, symmetric decision thresholds b1(t) = −b2(t) = b. The diffusion rate D(x, t) acts as

the model scaling parameter and is fixed at D(x, t) = 1 for all our numerical

experiments. Note that all EAMs we use going forwards keep the same value for the

diffusion rate, with only a small modification for the Urgency Gating Model.

Leaky Integration Model

The leaky integration model, referred to as “Leakage” from here on, is an

extension of the sDDM with leaky integration added to the drift rate. This model is

also referred to in the literature as an Ornstein-Uhlenbeck process. Leakage is used to

more realistically describe the accumulation process by modeling the decay of excitatory

currents in decision neurons (Usher & McClelland, 2001). Leaky integration changes the

drift rate from a constant to the following,

v(x, t) = µ(t) − L x(t), (2)

where µ(t) is the stimulus strength (allowed to vary with time) and L is the leakage

strength. Addition of the leakage parameter causes old information to decay over a

scale approximately equal to 1/L, leading to the favorable property of evidence

decaying to zero when the stimulus is removed. This property has led it to being

proposed as a mechanism for preference reversals under time pressure (Busemeyer &

Townsend, 1993). If leakage is large, evidence is rapidly lost from the accumulator.

Conversely, small leakage values imply that accumulated evidence is retained for longer

periods of time, making the accumulator less sensitive to novel stimulus information.

The leakage parameter can be difficult to recover, so we follow the lead of Evans,

Trueblood, and Holmes (2020) and Trueblood et al. (2021) and run numerical
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simulations with two different drift rate implementations: fixed information and

changing information. In the fixed information case, the stimulus strength is a constant,

given by µ(t) = µ, where µ is the strength of stimulus information. For the changing

information case, Trueblood et al. (2021) proposed an experiment with time changing

information implemented via a grid of pixels flashing one of two colors (blue / orange).

They altered the fraction of each color on the screen at a given time while a decision

was being made such that, as an example, early in the decision process, the grid may be

55 percent blue, while later it might be 55 percent orange. This is implemented by

allowing the stimulus strength to change with time, given by,

µ(t) =


µ if t < t0,

−µ if t ≥ t0,

(3)

where, as in the fixed information case, µ0 is the strength of stimulus information, while

t0 is the time where stimulus information changes, referred to as the flip time. In the

context of the above example, at t < t0, the grid would be predominately blue

(corresponding to positive µ), while for t ≥ t0, the grid would be mainly orange

(corresponding to negative µ).

Time changing decision thresholds

We next examine EAMs which have time changing decision thresholds (CT). In

the case of CT, the first three parameters of the sDDM are retained unmodified: the

non-decision time tnd, the relative start point w, and the drift rate v(x, t) = µ. However,

the thresholds bi(t) now are a function of time. Though in principle they are free to

increase or decrease from their starting value, most interest in the literature has been

directed towards thresholds which collapse from their starting point towards zero.

Psychologically, CTs encode dynamic changes in decision strategy. They allow for

the subject to optimize the degree of caution they exhibit as time progresses to best

meet the demands of the decision task. Thresholds which specifically collapse were

shown to provide a mechanism that maximizes the reward rate in decision tasks with

unpredictable information (Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget,



PARAMETER RECOVERY 12

2012; Thura, Beauregard-Racine, Fradet, & Cisek, 2012). In addition, collapsing

thresholds provide a natural way to optimize decision behavior when experimental

instructions include deadlines or emphasize speed of responding. For example, if a

response time deadline is given to a subject, a fixed threshold strategy forces the

subject to decrease the entire threshold location. Though this guarantees that the

decision is completed by the deadline, it does so at the expense of accuracy early in the

decision process. Conversely, collapsing thresholds allow the subject to keep thresholds

distant early in the decision process to emphasize accuracy, then decrease the thresholds

near the deadline to increase decision speed. For an in depth discussion, see Malhotra,

Leslie, Ludwig, and Bogacz (2018), who developed a theoretical framework which

explores in depth the conditions which favor changing thresholds.

Time changing thresholds also provide an alternate cause for the discrepancy in

the average error and correct choice-RT. It is known that, in general, the average error

choice-RT is not equal to the average correct choice-RT (Luce, 1991; Swensson, 1972).

This behavior is most commonly accounted for via the addition of across-trial

variability in the drift rate, as in the DDM (Ratcliff, 1978; Ratcliff & McKoon, 2008).

Changing thresholds provide an alternate mechanism to explain this behavior,

predicting error RTs that are slower than the correct RTs (Ditterich, 2006).

Lastly, it has been shown that, in certain circumstances, primates implement

changing thresholds in order to optimize their decision process (Hawkins et al., 2015).

Though it is still a matter of debate (beyond the scope of this article) whether humans

routinely exhibit changing decision thresholds, exploration into this question is an

active area of research (Evans & Hawkins, 2019; Evans, Hawkins, & Brown, 2020;

Hawkins et al., 2015; Palestro et al., 2018).

The principal threshold we study here is the Weibull threshold. This threshold

uses a Weibull cumulative distribution function to model the decision threshold

behavior. It is a commonly used threshold due to its flexibility in behavior (Hawkins et

al., 2015) and has been used in a number of studies (Evans, Hawkins, & Brown, 2020;
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Hawkins et al., 2015; Palestro et al., 2018). The threshold is given by,

b1(t) = −b2(t) = b0 − b0(1 − c)
2

1 − exp
 −

(
t

λ

)κ
. (4)

Here, b0 is the initial threshold location. Parameter λ is referred to as the scale

parameter, and approximately sets the time at which the threshold expands or

collapses. Parameter κ is referred to as the shape parameter and indicates if the

threshold is of exponential-like shape (κ < 1) or logistic-like shape (κ > 1). The

remaining parameter, c, is the collapse ratio, and indicates how much the thresholds

expand or collapse. If c = −1, the thresholds collapse to zero; if −1 < c < 1, the

thresholds collapse to somewhere between their initial location b0 and zero; if c = 1, no

threshold collapse occurs; and if c > 1, the threshold expands away from b0. Generally,

it is assumed that decision thresholds collapse, and thus c < 1. For a more detailed

discussion of this threshold’s behavior, we refer the reader to the PyBEAM publication

(Murrow & Holmes, 2024) and Hawkins et al. (2015).

In addition to the Weibull threshold, we also examine several simpler thresholds

containing fewer parameters. The first of these, the Reduced Weibull threshold, is

identical to the Weibull threshold in Equation (4), with the exception that the collapse

parameter is fixed at c = −1. This causes the threshold to always collapse to zero,

constraining the behavior of the model and reducing the number of parameters it adds

to the sDDM to two. The Reduced Weibull threshold has been applied in this or a

similar form in Hawkins et al. (2015) and Evans, Hawkins, and Brown (2020).

The next two simpler CTs we examine are the linear and exponential thresholds

which each contain a single additional threshold parameter. The first, linear, defines the

decision thresholds as,

b1(t) = −b2(t) = b0 − mt, (5)

where b0 indicates the threshold location at time zero and m is the thresholds’ slope.

The second, exponential, defines the decision thresholds as,

b1(t) = −b2(t) = b0 exp(−t/τ), (6)



PARAMETER RECOVERY 14

where b0 is, as before, the decision threshold location at time zero and τ describes the

rate of threshold collapse.

Urgency Gating Model

The Urgency Gating Model (UGM) and other similar urgency based models

propose an alternate, yet related, account for decision making behavior (Cisek et al.,

2009). Unlike EAMs which posit that accumulation proceeds through gradual

accumulation and integration of stimulus information, urgency models suggest that a

time-varying gain function is the principal means by which the decision state is

updated. In the context of two threshold binary choice, the simplest implementation of

urgency is given by,

y(t) = g · E(t) · u(t), (7)

where y(t) is the decision state, g is a scalar gain term, E(t) is the strength of the

momentary evidence, and u(t) is a gain function which describes an increasing urgency

to make a response. A common choice for the urgency u(t) is a linear function, given by,

u(t) = b + mt, (8)

where b represents a baseline urgency, and m describes the rate of urgency increase over

time.

The UGM is a specific implementation of this class which hypothesizes that the

decision variable y(t) is affected by two main factors: the time dependent urgency

function u(t) discussed above, and a low pass filtered representation of integrated

stimulus information x(t), implemented via leaky integration. The decision variable is

given by,

y(t) = x(t)u(t) (9)

while the integrated stimulus information is,

dx(t) = (E(t) − Lx)dt + σdw, (10)

where E(t) is the evidence signal, u(t) is the linear urgency signal introduced above,

and L is the rate of leaky integration introduced in the leakage model.
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As shown by Trueblood et al. (2021), when an appropriate non-dimensional

variable is used, models of this kind can be written in a form identical to that of

Equation (1). Doing so modifies the drift rate of Equation (1) to,

v(x, t) = E(t)(1 + kt) +
 k

1 + kt
− L

x. (11)

where x is, in this case, a non-dimensionalized decision variable, and k = m/b and

represents an urgency ratio. In short, the urgency ratio describes the strength of

urgency in the system, with k = 0 implying no urgency is present, and large k implying

an urgency dominated system. In addition to altering the drift rate, the UGM

introduces a modified diffusion rate, given by,

D(x, t) = σ(1 + kt), (12)

where k is again the urgency ratio, σ is the scaling parameter from the sDDM and, as

for the sDDM, it is set to one.

Similarly to the leakage model, the UGM has well known recovery problems for

the leakage, urgency, and threshold parameters. Thus, as we did for the leakage model,

we follow the lead of Trueblood et al. (2021) and implement two versions of E(t): fixed

information and changing information. In the fixed information version, we assume that

the evidence signal is constant, given by E(t) = E0. In the changing information case,

we allow the evidence signal to change with time, given by,

E(t) =


E0 if t < t0,

−E0 if t ≥ t0.

(13)

where E0 is the strength of stimulus information and t0 is, as with the leakage model,

the time at which stimulus information changes.

Urgency signal models are motivated by many of the same questions as CT

models. However, unlike CTs, urgency signals propose that strategic manipulation is

implemented via the drift and diffusion rates instead of the threshold function. Recent

work has demonstrated that these accounts of decision making are in fact equivalent

(Smith & Ratcliff, 2022), an observation that we expand upon in the “Results” section.
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Diffusion Model of Conflict

The Diffusion Model of Conflict (DMC) is an EAM used to describe conflict tasks

(Ulrich et al., 2015). Conflict tasks are decision scenarios where conflicting evidence is

present for the correct response. Classic examples of conflict tasks are the Stroop task

(Stroop, 1935), where a written color word can conflict with the color it is written in;

the flanker task (Eriksen & Eriksen, 1974), where flanking items conflict with the target

item; and the Simon task (Simon & Small, 1969), where the stimulus location can

conflict with the response. The DMC was developed to model all three.

Its structure is based off the sDDM introduced earlier, and maintains three of its

parameters: the non-decision time tnd, the relative start point w, and the decision

thresholds b1(t) = −b2(t) = b. The original implementation of the DMC also includes

across-trial variability in the non-decision time and start point, but we exclude them in

this work for simplicity. The drift rate, however, deviates from the assumption of the

sDDM, and posits that evidence accumulation is a combination of early automatic

processing and late controlled processing. The early activation is modeled via a scaled

gamma function, which provides strong manipulation of the drift rate at early times,

and weakens as time progresses. In the context of the flanker task, this early activation

is driven by the flanking non-target arrows and is given by,

va = Ae−t/τ
[

te

τ(α − 1)

]α−1[
α − 1

t
− 1

τ

]
, (14)

where A is the amplitude of the early activation, equaling a positive value for congruent

tasks and negative value for incongruent tasks. Parameter τ sets the scale of the early

activation, while α sets the shape of the early activation.

The controlled drift rate µc is assumed to be constant as in the case of the sDDM,

and dominates the drift as time progresses. In the context of the flanker task, for

example, this models the shift from early activation driven by the flankers to the late

activation driven by the target arrow. The total drift rate is the sum of the automatic

and controlled process,

v(x, t) = va + vc. (15)
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The DMC lacks a simple analytic solution, leading to it being only analyzed using

simulation studies and quantile maximization approaches. A study has been performed

to study parameter recovery of the DMC (White et al., 2018), but, to our knowledge,

here is the first time that the DMC will be examined using the entire likelihood

function and Bayesian methods. We also seek to answer two other unexplored

questions: can the DMC parameters still be recovered when the response bias

parameter w is included, and does the inclusion of multiple drift rate conditions

meaningfully improve parameter recovery?

Choosing parameter sets

The general procedure used in this study is 1) generate a wide range of parameter

sets representative of realistic model behavior, 2) simulate data from each parameter

set, and 3) fit each model to the simulated data using PyBEAM, then analyze

parameter recovery reliability by comparing the input and best fit parameter sets. In

this section, we discuss our approach to each of these steps. To obtain a complete

assessment of each model’s identifiability, we generate a large number of parameter sets

across a wide range of values, displayed for each model in Table 1. Additionally, we

generate parameter sets across a range of simulation set sizes N to determine the

practical data set sizes needed for recovery.

The process used to generate parameter sets (for all models but the DMC) is as

follows. First, for each model and N value, we randomly generate parameter sets from

the ranges listed in Table 1 using a Latin Hypercube Sampling design (LHS). We choose

LHS over random sampling to ensure that the entire parameter space is evenly

explored, something random sampling struggles with in high dimensional parameter

space. Next, we filter out parameter sets which produce atypical choice-RT

distributions. Our goal with this filter is to censor out parameter sets which produce

data unlike that seen in experiment. To do so, we first simulate N of data for each

parameter set using the methodology discussed below in section “Simulating data.”

Then, we eliminate sets that do not fit certain distributional criteria (Evans, Trueblood,
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& Holmes, 2020; Trueblood et al., 2021). Specifically, we keep only parameter sets

whose simulated data meets the following standards: mean and median response times

between 0.4 and 2.5 seconds; interquartile range between 0.1 and 2 seconds; minimum

RT below 1.5 seconds and maximum RT above 0.5 seconds; and less than five RTs for

either decision. We randomly generate a sufficient number of parameter sets such that,

after filtering, we are left with 1000 total parameter sets for each sample size.

An additional filter is used for the models with time varying information. The

information change must occur at a meaningful time in the decision making process. If

it occurs too early, no accumulators will have reached threshold before the flip occurs. If

too late, most or all accumulators will have reached the decision threshold prior to the

flip. To address this, we constrain the flip times to be between the first and third

quartiles of the choice-RT distribution and eliminate parameter sets which do not fit

this.

For the DMC, we used the parameter ranges given by White et al. (2018). In their

work, these parameter ranges were constrained sufficiently that filtering was

unnecessary, so we do not filter out any parameter sets for this model. Additionally,

since the DMC is slower to run, we only use 100 unique parameter sets per experiment.

Simulating data

Data for each parameter set is simulated using the Python package PyBEAM

(Murrow & Holmes, 2024), discussed in detail in the “Introduction”. PyBEAM contains

pre-coded versions of each model and simulates the models by integrating Equation (1)

using the Euler-Maruyama method (Kloeden & Platen, 1992),

xn = xn−1 + v(xn−1, tn−1)∆t + D(xn−1, tn−1)∆W
√

∆t, (16)

where xn is the accumulated evidence at time step n, xn−1 is the accumulated evidence

at time step n − 1, and tn−1 is the time at time step n − 1. Functions v(xn−1, tn−1) and

D(xn−1, tn−1) are, as in Equation (1), the drift and diffusion rates, respectively,

evaluated at accumulated evidence xn−1 and time step tn−1. Term ∆W simulates the

Wiener process W (t) from Equation (1) by drawing a random number from a normal
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sDDM tnd w µ b

0.1–0.6 0.3–0.7 -5–5 0.25–1.5

Leakage tnd w µ L t0 b

0.1–0.6 0.3–0.7 -5–5 1–10 0.2–2 0.1–1

FWeibull tnd w µ b λ κ c

0.1–0.6 0.3–0.7 -5–5 0.25–1.5 1–10 0.4–10 -1.0–0.5

RWeibull tnd w µ b λ κ

0.1–0.6 0.3–0.7 -5–5 0.25–1.5 1–10 0.4–10

Linear tnd w µ b m

0.1–0.6 0.3–0.7 -5–5 0.25–3.0 0.1–2.5

Exp. tnd w µ b τ

0.1–0.6 0.3–0.7 -5–5 0.25–3.0 0.1–10

UGM tnd w µ L k t0 b

0.1– 0.6 0.3–0.7 -5–5 0.1–10 0.1–10 0.2–2 0.1–3

DMC tnd w A τ α µc b

0.27–0.4 0.5 0.12–0.32 0.02–0.12 1.5–4.5 1.6–6.3 0.36–0.63

Table 1

Parameter ranges used for each model: the Simple DDM (sDDM), the leaky integration

model (Leakage), the Full Weibull CT (FWeibull), the Reduced Weibull CT (RWeibull),

the Linear CT (Exp.), the Exponential CT (Exp.), the Urgency Gating Model (UGM),

and the Diffusion Model of Conflict (DMC).
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distribution with mean zero and standard deviation one at each integration step. The

final term is the integration time step ∆t, which sets the time at step n via tn = n∆t.

The simulation ends when a decision threshold has been crossed, given by xn ≥ b1(tn) or

xn ≤ b2(tn).

The choice of ∆t is dependent upon model, with models with shorter time scales

requiring smaller time steps. For this numerical experiment, our goal is to isolate

parameter identifiability, so we choose conservatively small ∆t values to reduce the

noise added to the system via simulation error. For all models but the DMC, we use

∆t = 1.0e − 4 seconds, while for the DMC we use ∆t = 1.0e − 6 seconds. We choose a

smaller time step for the DMC since its dynamics occur on a scale nearly an order of

magnitude faster than that of the other models.

Fitting models to data

Once we have simulated data for our parameter sets, we next fit each model to the

simulated data. To do so, we again utilize the Python package PyBEAM (Murrow &

Holmes, 2024). As discussed in the Introduction, PyBEAM is a fast, accurate method

for Bayesian modeling of full choice-RT distributions. Specifically, PyBEAM fits models

to data by calculating the model’s first passage time distribution, commonly referred to

as the likelihood function. The likelihood function gives the probability of crossing

either decision threshold at time t, and thus gives the probability of a making a choice

at time t.

An example of the likelihood function overlaid on a simulated data set is shown in

Panel B of Figure 1. The horizontal axis displays the time coordinate, while the vertical

axis gives the probability of making a choice. For convenience, we place the lower

threshold crossing data in negative time, and the upper threshold crossing data in

positive time.

Discussed in detail in the package publication, PyBEAM generates the likelihood

function in two main steps. First, it converts the SDE formalism of Equation (1) to the



PARAMETER RECOVERY 21

probabilistic Fokker-Planck equation,

∂p(x, t)
∂t

= −∂ [v(x, t)p(x, t)]
∂x

+ 1
2

∂2 [D(x, t)2p(x, t)]
∂x2 , (17)

where p(x, t) is the probability of accumulated evidence x at time t, and v(x, t) and

D(x, t) are the drift and diffusion rates discussed earlier. This equations provides the

probability at a given time t of having accumulated evidence quantity x. Then, to

determine the probability fi(t) of crossing a decision threshold bi at time t, it calculates

from Equation (17) the probability flux at the threshold, given by

J(x, t) = v(x, t)p(x, t) − 1
2

∂ [D(x, t)2p(x, t)]
∂x

. (18)

This is the probability flux at point (x, t) and the likelihood of crossing threshold bi is

fi(t) = J(bi(t), t).

PyBEAM uses the likelihood function to measure the level of agreement between

a model with given parameters and data. This log-likelihood is used in a Bayesian

framework to fit these models to data and obtain approximate posterior distributions

for their parameters. The computed log-likelihood is then used by PyBEAM to perform

Bayesian parameter estimation with the Python package PyMC (Salvatier, Wiecki, &

Fonnesbeck, 2016), a robust, highly supported package built specifically for Markov

chain Monte Carlo based inference. Though slower than other optimization methods

like max log-likelihood or chi-squared statistics, we choose the above approach for

fitting these models to data for several reasons. First, the use of PyBEAM allows access

to rapidly generated, high resolution likelihood functions for all models with little to no

modification. Most previous parameter recovery studies are restricted to Quantile

Maximization approaches generated through simulation, which compress the

information contained in the likelihood function. Second, the Bayesian inference

algorithms of PyBEAM provide access to the entire distribution of parameter space

rather than just the best fit parameters, giving us a more comprehensive way to analyze

our model recoverability. This becomes particularly relevant in our “Results” section for

our analysis of over-parameterized models.
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Results

In this section, we present the findings of our numerical experiments. We examine

the quality of fit for the five models discussed in “Methods”: the sDDM, EAMs with

leaky integration, EAMs with CTs, the UGM, and the DMC. We choose to include the

sDDM since it is the basis of the more complex EAMs we examine and thus serves as a

useful baseline to compare the other models to. The remaining are commonly used

models (introduced in “Methods”) which have, to our knowledge, not been

comprehensively examined using the full likelihood function with Bayesian methods.

There are of course numerous other models and variants that we do not consider here,

but we hope this process and the reference scripts provided online in the PyBEAM

documentaion (https://pybeam-documentation.readthedocs.io/en/latest/) will facilitate

similar study of other models where useful.

Simple DDM (sDDM)

We start with our parameter recovery experiments for the sDDM. For this

numerical experiment, we choose simulated data set sizes of

N = 100, 250, 500, 1000, and 10, 000 points. For each N , we use LHS to generate

1, 000 unique parameter sets, leading to a total of 5, 000 parameter sets. Data is

simulated from the model using PyBEAM, which itself implements Equation (16)

discussed in “Methods”.

We then fit the sDDM to each generated data set. We display the results of this in

Figure 2. Each column corresponds to one of the four Simple DDM parameters: the

non-decision time (tnd), the relative start point (w), the drift rate (µ), and the threshold

location (b) (where a = 2b is the threshold separation / caution). The column which

corresponds to each parameter is indicated along the bottom of the figure. Each row

corresponds to the number of simulated data points N in each numerical experiment,

ranging from N = 100 to N = 10, 000. The horizontal axis corresponds to the true

parameters input to each simulation, while the vertical axis displays the best fit

parameter sets, given by the parameter set with the maximum sum log-likelihood. The
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R2 values give the quality of fit, with points which fall along the red lines indicating

perfect parameter recovery.
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Figure 2 . Quality of fit for the sDDM for N = 100, 250, 500, 1000, and 10, 000

simulated data points. Horizontal axes indicate the true simulated parameter values,

while the vertical axes indicate the parameter values which best fit the simulated data.

The red lines on each scatter plot denote the location where the simulation and fit

parameters are equal. The correlation coefficients R2 indicate the quality of fit to the

red line.

We find that, regardless of N , recovery for the Simple DDM parameters is very
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good. Recovery is stable for as few as N = 100 samples, with near perfect recovery

achieved once N = 1, 000 is reached. The most difficult parameter to recover is the

relative start point, which struggles relative to the other parameters for small N . We

also find that b is relatively difficult to recover when it is large (approximately b > 1).

This has several likely causes. First, when threshold starts are large, choice-RT

distributions are dominated by the drift rate, resulting in fewer error RTs. This can

make it more difficult for the precise value of the threshold to be narrowed down.

Second, when thresholds are large, small deviations from the simulated thresholds result

in only tiny errors since they are a smaller percentage of the threshold location. This

model is well studied, many of these observations have been made, and we include here

mainly as a starting point and baseline to compare future models with.

Leaky integration (Leakage)

In this section, we report the results of our parameter recovery experiments for

the Leakage model. We display the first set of results in Figure 3. Each column

corresponds to a different parameter, noted beneath the bottom row of panels. The

horizontal axes provide the simulated input parameters, while the vertical axes display

the fit parameters determined from the max log-likelihood of the posteriors. The red

line on each panel indicates where the input and fit parameters are equal, with the R2

values indicating the quality of fit of the data to the line. Each row displays the results

for N = 1, 000 data points.

In row A1, we display results for fixed information (FI) with a single drift rate

condition, while in row A2, we display results for FI with two drift rate conditions. In

row B1, we display results for changing information (CI) with a single drift rate

condition, while in row B2, we display results for CI with two drift rate conditions. The

two drift rate conditions are used for a similar reason to that of the CI, being that

leakage is a difficult parameter to recover. Thus, we simulate a slightly more

complicated data set in rows A2 and B2 to see if it has a meaningful impact on

recovery: a smaller µ and a larger µ. This is used to model an experiment where both a
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low quality and high quality stimulus are shown to the participant. In the context of

the random dot kinematogram discussed earlier, this corresponds to a low coherence

and a high coherence stimulus, respectively. The fits of both drift rate conditions are

still displayed in the “Drift µ” column of Figure 3.

We find that, in the FI case, it is very difficult to recover the leakage parameter.

Both in the one and two drift condition cases, the leakage parameter is mostly

unidentifiable, with a small improvement present when two drift conditions are used. In

the single condition case (A1), all other parameters are well recovered, with the

exception of the the threshold b which struggles to be recovered for large values.

Addition of the second drift rate condition slightly improves recovery of w and µ, and

significantly improves the recovery of b, especially for large values.

Conversely, in the CI case, we find that the leakage parameter is well recovered,

with substantially better R2 values than that of FI. The remaining parameters are also

well recovered, with the exception of large drift rates. Small drift rates (µ < 3) are well

recovered for CI, but larger drift rates exhibit substantially more variance, particularly

in the single condition case (B1). Lastly, moving from a single to two drift rate

conditions (B2) provided a large improvement in the recovery of b, with R2 jumping

from 0.92 to 1 when a second drift condition is added.

We next examine how parameter recovery scales with the number of samples. We

perform the same experiment presented in row B1 of Figure 3 with fixed information

and a single drift rate condition. However, we report results for

N = 100, 250, 500, 1000, and 10, 000 data points to demonstrate how recovery scales

with simulation set size. We report the results of this in Figure 4. For N = 10, 000 we

find that recovery is excellent for all parameters. The N = 1, 000 results are the same as

Figure 3 which shows good recovery for each parameter. However, as N decreases,

recovery becomes increasingly worse, with L unrecoverable for N = 500, and the

remaining parameters difficult to recover for N = 250 and N = 100 data points. Thus,

when attempting to recover leakage, it is necessary to use as many data points as

possible to ensure good recovery of all parameters. Additionally, it is preferred to use
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Figure 3 . Quality of fit for the leakage model with N = 1, 000 simulated data points for

each numerical experiment. Horizontal axes indicate the true parameter values, while

the vertical axes indicate the parameter values which best fit the simulated data. The

red lines on each scatter plot are where the simulation and fit parameters are equal.

The correlation coefficient R2 indicates the quality of fit to the red line. Rows A1 and

A2 show the results for the fixed information (FI) experiments for one and two drift

rate conditions, respectively. Rows B1 and B2 show the results for the changing

information (CI) experiments for one and two drift rate conditions, respectively.
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more than one experimental condition as well. Though in Figure 3 we used two drift

rate conditions, other condition types, such as caution manipulations, could also prove

highly useful.
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Figure 4 . Figure caption on next page.

In summary, the leakage parameter cannot be recovered when FI is used, but can
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Figure 4 . Quality of fit for the single condition, CI leakage model for

N = 100, 250, 500, 1000, and 10, 000 simulated data points. Horizontal axes indicate

the true simulated parameter values, while the vertical axes indicate the parameter

values which best fit the simulated data. The red lines on each scatter plot denote the

location where the simulation and fit parameters are equal. The correlation coefficients

R2 indicate the quality of fit to the red line.

when CI is used. Additionally, recovery of non-leakage parameters improved when a

second drift condition was added to the experiment, with the largest increase in the

threshold b. Thus, we recommend that if the leakage parameter is your target, always

use CI. It may also be helpful to include multiple flip times into your experiment or

another novel modification of the stimulus strength. Further, it is highly recommended

to use multiple drift rate conditions (or other types of experimental conditions) to help

to mitigate this effect, especially with small sample size N .

Changing thresholds (CT)

We now explore the effect of time changing thresholds and urgency signals on

parameter recovery. We seek to answer three main questions. 1) First, are the

parameters of the Full Weibull model recoverable. If so, how many data points are

necessary? 2) Are alternative threshold models with fewer parameters equally capable

of describing data while achieving better parameter recovery? 3) Is it possible to

distinguish between time changing threshold models when applied to human data?

Full Weibull recovery. We begin by testing parameter recovery of the Full

Weibull model discussed in “Methods”. To do so, we follow a similar procedure to that

discussed in sections “Methods” and “sDDM”. We first generate 1, 000 parameter sets

using LHS, filtering out parameter sets which do not produce reasonable choice-RT

distributions. Then, we simulate N = 1, 000 choice-RT data points for each parameter

set. Lastly, we use PyBEAM to fit the Full Weibull model to the simulated data. The

effect of data set size on this model will be discussed in a subsequent simulation
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experiment.

The result of this numerical experiment is shown in Figure 5. Panels A1-A7

display scatter plots of the true versus best fit Full Weibull parameters. Note that we

report the log10 of the shape (λ) and scale (κ) parameters. Both λ and κ have large

functional parameter ranges, making them difficult to sample directly using Bayesian

methods. To address this, PyBEAM samples from the log base 10 of these parameters,

so we report their log here as well. Panel A8 displays the threshold error (TE),

calculated as,

TE =
∫ RTmax

RTmin

∣∣∣ b1,true(t) − b1,fit(t)
∣∣∣ dt∫ RTmax

RTmin
b1,true(t) dt

× 100%, (19)

where RTmin and RTmax are the minimum and maximum choice-RTs from the

simulated data set, respectively, and b1,true(t) and b1,fit(t) are the true and best fit

upper thresholds, respectively. This metric calculates the area between the true and

best fit upper thresholds, then divides it by the area under the true upper threshold to

approximate provide a normalized measure of error in the threshold. If TE is high

(low), then there is a large (small) distance between the true and best fit thresholds,

implying a poor (good) fit. Note that we only integrate between RTmin and RTmax since

the threshold location is relevant only when data is present.

We find that, for N = 1, 000 data points, recovery is very good for the

non-decision time (tnd), relative start point (w), and drift rate (µ). The threshold start

parameter (b) is poorly recovered, while the shape (λ), scale (κ), and collapse (c)

parameters are completely unrecoverable. The Full Weibull threshold is

over-parameterized, causing its parameters to be highly correlated and thus poorly

recoverable individually (Gutenkunst et al., 2007; Holmes & Trueblood, 2018).

However, even though the threshold parameters are unrecoverable, the threshold itself is

highly recoverable, with a TE = 5.2%. For reference, applying this metric to the sDDM

threshold gives a median TE = 1.6% for N = 1, 000 data points.

To more clearly illustrate the results presented in Figure 5, we provide an example

fit for the Full Weibull model in Figure 6. This example is chosen to represent an

“average” fit, one which contains features common to many simulated data sets. Panels
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Figure 5 . Quality of fit for the Full Weibull model with N = 1, 000 simulated data

points each. For scatter plots, horizontal axes indicate the true parameter values, while

the vertical axes indicate the parameter values which best fit the simulated data. The

red lines on each scatter plot are where the simulation and fit parameters are equal.

The correlation coefficient R2 indicates the quality of fit to the red line. The boxplot in

panel A8 indicates the percent error between the true and fit threshold (TE) calculated

using Equation 19. The percentage of outliers (those parameter sets that do not fit

within the box and whisker) are listed above the boxplot, while the median value is

noted on the right side of the boxplot in red.
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A1-A7 report the posteriors for each Full Weibull parameter. Panel B compares the

true threshold to the best fit threshold and reports its TE = 4.5% (approximately the

median TE from Figure 5). The dotted black line is RTmin for this data set, while

RTmax is the upper x-limit of the graph. Panel C is a histogram of the choice-RT data,

with upper threshold crossings in positive time and lower threshold crossings in negative

time. The likelihood functions for the true and best fit parameter sets are plotted,

displayed in a solid blue and dotted red line, respectively. The panel also contains the

log-likelihood values for the true and best fit parameter sets.

Figure 6 illustrates several features of the Full Weibull model. 1) Even in

scenarios where parameters are not recovered, the fit quality is still high and in this case

the recovered parameters produce a more favourable log-likelihood than even the

generating parameters (Panel C). 2) The threshold parameter indeterminacy does not

interfere with recovery of the relative start point or the drift rate. Both fits align closely

with their true values, and the posteriors are Normally distributed. 3) However, the

non-decision time parameter is underestimated and its posterior is skewed left. While in

this case the mis-fit is relatively small (∼ 10% of true value), this is a systematic

problem with the Full Weibull model. While the true and fit thresholds agree well on

the range of observed RTs (Panel B), they diverge substantially for t < RTmin. This

results in a non-decision time that is smaller than that of the true parameter set. Thus,

caution must be applied when interpreting the non-decision time predicted by the Full

Weibull model. If this is of significant concern, recent work has presented alternate

ways to constrain the non-decision time through the use of electro-myographical activity

(Weindel, Gajdos, Burle, & Alario, 2021) or non-parameterized non-decision functions

(Verdonck & Tuerlinckx, 2016).

We last explore the effect of simulated data set size N on the Full Weibull model’s

recovery quality. For this experiment, we follow the same procedure discussed in

“sDDM”. We first generate 1, 000 parameter sets using Latin Hypercube Sampling for

N = 100, 250, 500, 1000, and 10, 000 points, leading to a total of 5, 000 parameter

sets. As with the sDDM, we generate unique parameter sets for each N to eliminate
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Figure 6 . Example fit for a Full Weibull model. Parameter set chosen to be

representative of the median behavior. Panel group A show the posteriors for the model

parameters, with red lines indicating the best fit parameter based on max log-likelihood

and blue line corresponding to the true parameter value. Panel B displays the threshold

recovery, with the true threshold in blue, fit threshold in red, and minimum RT value

the vertical dashed black line. The TE is displayed on the bottom of the panel. Panel C

displays the fit to data, with data displayed in the grey histogram, the true likelihood in

the blue line, and the best fit likelihood in the red dashed line. The log-likelihood values

of the true and best fit parameters are displayed as well in LLHT rue and LLHF it,

respectively.
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parameter sets which produce few or no error RTs. We then fit the Full Weibull model

to each simulated data set. The results of this numerical experiment are shown in

Figure 7. Since threshold parameters are not recoverable themselves, we only report the

threshold error (TE) and not the parameters themselves.
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We find that parameter recovery is generally good, with excellent recovery

starting at N = 500 data points. Similarly to the Simple DDM, the relative start point

w is challenging to recover for small N and has the weakest recovery of all parameters.

As discussed earlier in Figure 6 and clearly visible for N = 10, 000 data points, the

non-decision time is systematically underestimated; thus, caution should be applied
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Figure 7 . Quality of fit for the Full Weibull model for

N = 100, 250, 500, 1000, and 10, 000 simulated data points. For scatter plots,

horizontal axes indicate the true parameter values, while the vertical axes indicate the

parameter values which best fit the simulated data. The red lines on each scatter plot

denote the location where the simulation and fit parameters are equal. The correlation

coefficient R2 indicates the quality of fit to the red line. Boxplots indicate the percent

error between the true and fit thresholds TE as calculated using Equation (19) The

percentage of outliers are listed above the boxplots, and the median values are listed

next to the boxplots in red.

when interpreting the non-decision time in the Full Weibull model. Lastly, threshold

recovery is good, with median TE’s highest for N = 100 at TE= 9.3%, steadily

decreasing to TE= 3.3% for N = 10, 000 data points.

In summary, model recovery for the Full Weibull model is generally good, but

there are a few key issues to be aware of. First, parameter recovery of the relative start

point and drift rate are excellent, but require substantially more samples than the

sDDM. Second, while threshold parameters are not recoverable, the threshold shapes

themselves, which are the source of inference, are well recovered. Third, the

non-decision time exhibits a small but systematic underestimation.

Weibull threshold versus alternative thresholds. As discussed above, the

Full Weibull parameter recovery is generally good, but struggles in a few key areas. To

address this, we explore the second question: can simpler thresholds be a better

alternative to the Full Weibull model? Can they replicate the dynamics of the Full

Weibull model while also giving improved parameter recovery? Additionally, which

threshold models are most effective at determining whether a given data set provides

evidence of changing versus fixed thresholds?

To address this, we first follow a similar procedure to that of the sDDM and Full

Weibull models discussed above. We simulate N = 1, 000 data points for 1000 randomly

generated parameter sets for each of the three alternative models: linear, exponential,
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and Reduced Weibull. Next, we fit the threshold models to their respective data sets.

This allows us to compare the recoverability of simpler thresholds to that of the Full

Weibull threshold. We display a summarized set of results for this in Figure 8, and the

full set of results in the Supplementary Information.

We find that the simpler threshold models are more recoverable than the the Full

Weibull threshold. The non-decision time tnd, relative start w, and drift rate µ have

approximately equal recovery to that of the Full Weibull, but the threshold error is

notably better. The Linear model (Supplement Figure 1) has the most recoverable

threshold with a median threshold error TE = 3%, while the exponential threshold

(Supplement Figure 2) produces the worst recovery with a median TE = 4.6%. The

Reduced Weibull (Supplement Figure 3) fell in the middle with a median TE of TE

= 4.2%.

We next examine if the alternate threshold models are capable of replicating the

Full Weibull threshold’s dynamics. We start by simulating N = 1, 000 data points for

the 1000 Full Weibull parameter sets of Figure 5. Then, we fit the four alternate models

discussed in “Methods” to this data: the sDDM, the Linear threshold model, the

Exponential threshold model, and the Reduced Weibull threshold model. The sDDM fit

is used to determine if, on average, data generated from a time changing threshold

model can be accurately described using a flat threshold. The other three are the same

alternate time changing threshold models used in Figure 8 which are candidates to

replace the Full Weibull threshold.

The results of this numerical experiment are shown in Figure 9. In Panel A, The

boxplots display the log-likelihood difference LLD between the best fit parameters of

the Full Weibull and alternate threshold models (shown on the horizontal axis). This is

calculated as the log-likelihood of the Full Weibull model minus the log-likelihood of the

alternate model. Thus, if LLD is positive, the Full Weibull model is preferred, whereas

if the log-likelihood difference is negative, the alternate model is preferred. These

figures allow us to determine whether the Full Weibull model is distinguishable from the

simpler candidates.
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Figure 8 . Quality of fit for the alternate thresholds models Linear, Exponential (Exp.),

and Reduced Weibull (Red. Weib.) with N = 1, 000 simulated data points for each. For

scatter plots, horizontal axes indicate the true parameter values, while the vertical axes

indicate the parameter values which best fit the simulated data. The red lines on each

scatter plot are where the simulation and fit parameters are equal. The correlation

coefficient R2 indicates the quality of fit to the red line. The boxplots in the final rows

indicate the percent error between the true and fit threshold (TE) calculated using

Equation 19. The percentage of outliers (those parameter sets that do not fit within the

box and whisker) are listed above the boxplot, while the median value is noted in red in

the panel title.
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In Panel B, the boxplots display the LLD between the alternate model and the

sDDM. Unlike Panel A, this is calculated as the log-likelihood of the alternate model

minus the log-likelihood of the sDDM, meaning that positive values favor the alternate

model (listed on the horizontal axis) over the sDDM. These figures allow use to

determine whether each of these models can infer presence of a changing threshold

when compared against the sDDM.
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Figure 9 . Boxplots of the log-likelihood difference (LLD) models. A) LLD between the

Full Weibull and alternate models, calculated as max log-likelihood of Full Weibull

minus the max log-likelihood of the alternate model, shown on the horizontal axis. If

positive, Full Weibull preferred; if negative, alternate model preferred. Outlier

percentage and median value displayed near each boxplot. B) LLD between the sDDM

and alternate models, calculated as max log-likelihood of sDDM minus the max

log-likelihood of the alternate model, shown on the horizontal axis. If positive, sDDM

preferred; if negative, alternate model preferred. Outlier percentage and median value

displayed near each boxplot in red.

From Figure 9A, we see that, on average, the sDDM performs the worst of all four
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alternate models, with a median LLD = 6.6. This suggests we cannot approximate a

Full Weibull threshold with a flat threshold. The next two models, linear and

exponential, perform similarly to each other, with median LLD = 2.4. The median

provides only weak evidence for distinguishing between the alternate and Full Weibull

thresholds. The last model, the Reduced Weibull, fits the Full Weibull data best. It has

a median log-likelihood difference of LLD = 0.4, making it nearly indistinguishable from

the Full Weibull. This suggests that the Reduced Weibull is a suitable replacement for

the Full Weibull model, especially considering its better parameter recoverability.

Panel B tells a similar story. The Full Weibull model shows clear evidence of

describing data better than the sDDM, with a median LLD = 6.6. The Linear and

Exponential thresholds have only weak evidence for better fitting the data than the

sDDM, with medians of approximately LLD = 3. Lastly, the Reduced Weibull model

has strong evidence for fitting the data better than the sDDM, with a median LLD = 5.

As with Panel A, this suggests that, of all alternate models, the Reduced Weibull is

preferred.

We make a brief note about the magnitude of the LLD observations here, which

are on the order of 1 − 10 in size. From an inference perspective, a LLD of 5 − 10 will

often be considered as weak or moderate evidence in support of a conclusion. Thus

from this perspective, the magnitude of these log-likelihood differences are relatively

small. We note however that we are simulating data sets from random parameter sets

using the full Weibull threshold. This threshold is capable of producing a wide array of

threshold shapes, including flat, exponential, and linear. Thus, it is likely that many of

the simulated data sets we use for this experiment are well mimicked by these other

thresholds and should not generate substantial LLD. Thus, the illustrated differences

between models are likely averaging results from parameter sets that do illustrate

distinctive signatures of changing thresholds with sets that do not.

In summary, the Reduced Weibull is sufficiently flexible to capture most threshold

behaviors of the Full Weibull while being parametrically simpler and more easily

recoverable. Further, it has nearly the same capacity to detect the presence of time
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varying thresholds when compared against the sDDM. While linear and exponential

thresholds may have usefulness in some circumstances, based on these analyses, they do

not have the same capacity as the full and reduced Weibull models if inferring the

presence of time varying thresholds is intended.

Fitting changing threshold models to human data. Overall, our simulated

results from Figure 7 and Figure 9 suggest that the best way to distinguish between

time changing and flat thresholds is by using the Reduced Weibull threshold. However,

since human data is always messier than simulated data, we next ask whether or not it

is possible to distinguish between thresholds when applied to human experiments.

In Figure 10, we fit the sDDM and changing threshold models to human

choice-RT data Evans, Hawkins, and Brown (2020). This data is comprised of three

different random dot kinematogram experiments where participants made decisions

about direction of dot motion. Four coherences are used for each: 0%, 5%, 10%, and

40%. In experiment one, 63 participants were instructed to maximize reward rate with

a cutoff time of 5 seconds; in experiment two, 71 participants were given a decision

deadline of 1.3 seconds; and in the third experiment, one 154 participants were

instructed to emphasize decision speed with the same 5 second cutoff of experiment one.

On average, Experiment 1 has N = 381 data points per subject, Experiment 2 has

N = 348 per subject, and Experiment 3 has N = 191 per subject. Our goal in this work

is to fit each data set to models with and without changing thresholds, then compare

quality of fit to determine A) if it is possible to distinguish between flat and changing

decision thresholds, and B) if it is possible, which thresholds is it possible for? We note

that our goal here is not to retest previous conclusions of Evans, Hawkins, and Brown

(2020). Rather, we are simply using this as a useful benchmark data set.

We display the results of these fits in Figure 10. Panels A, B, and C contain

boxplots for Experiments 1, 2, and 3, respectively, displaying the log-likelihood

difference (LLD) between the sDDM and CT model listed beneath it for each

participant. The LLD values are calculated by taking the max log-likelihood of the

changing threshold model minus the max log-likelihood of the sDDM; thus, if LLD is
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positive, the CT model is preferred, and if negative, the sDDM is preferred. Red lines

display the median LLD across all participants, with the value listed above the

boxplots.
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Figure 10 . Boxplots of the log-likelihood difference (LLD) between models when fit to

data collected by Evans, Hawkins, and Brown (2020). The LLD between the sDDM and

alternate models, calculated as max log-likelihood of sDDM minus the max

log-likelihood of the alternate model, is shown on the horizontal axis. If positive,

alternate model preferred; if negative, sDDM preferred. The median value is displayed

above each boxplot. Panel A, B, and C show the results for Experiments 1, 2, and 3

from Evans, respectively.



PARAMETER RECOVERY 41

For Experiment 1, we find that, on average, only the Full Weibull threshold has

strong evidence for fitting the data better than the sDDM. Both the linear and

exponential thresholds show almost no evidence for a better fit, while the Reduced

Weibull provides weak evidence for fitting the data better. For Experiment 2, we find

that all thresholds have very strong evidence for fitting the data better than the sDDM,

with the strongest evidence for the Full Weibull and Reduced Weibull models. Lastly,

for Experiment 3, no model shows significant evidence for changing thresholds. The Full

and Reduced Weibull thresholds shows very weak evidence for fitting the data better

than the sDDM, while the linear and exponential thresholds show functionally zero

evidence for it.

In Evans, Hawkins, and Brown (2020) and the refit of their data in Murrow and

Holmes (2024) using PyBEAM, the Reduced Weibull threshold was used. Both found

that only Experiment 2 showed significant evidence for CT, while Experiments 1 and 3

only did so for some participants. We see similar results in this work, with only

Experiment 2 in panel B of Figure 10 showing clear evidence for all CT. Additionally,

Experiment 3 closely matches the previous results, with most CT fitting the data

similarly to the flat threshold.

Experiment 1 tells a slightly different story. Like the previous fits, the Reduced

Weibull shows little evidence for fitting the data better than the sDDM. Additionally,

the simpler linear and exponential CTs also fit the data roughly similar to that of the

sDDM. The Reduced Weibull fits the data slightly better than the linear and

exponential fits since it can model both early and late collpase, whereas the linear and

exponential models can only describe early collapse.

The Full Weibull model, however, indicates a clearly better fit when compared to

the sDDM. This occurs because the Full Weibull threshold allows collapse anywhere

between the initial threshold location b0 and zero, and the Experiment 1 data benefits

greatly from this flexibility. When plotted, the principal threshold type that results

from the Full Weibull fits is a threshold that looks similar to a step function. It starts

at a constant level b0, then later rapidly collapses to another constant level somewhere
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between zero and b0.

This suggests strongly that a simple step function will fit the Experiment 1 data

as well as the more complex Full Weibull. To demonstrate this, we fit the Evans

Experiment 1 data using a smoothed step function as the threshold. The smoothed step

function is implemented by using the Full Weibull model and setting the shape

parameter κ = 10. We report the results of this in Figure 11. We find that the step

function fits nearly as well as the Full Weibull model and significantly better than the

other CTs. Thus, the underlying CT behavior for this is very likely a simple step

function, and it is unnecessary to use a complex Weibull threshold to accomplish this

much simpler fit.
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Figure 11 . Boxplots of the log-likelihood difference (LLD) between the sDDM and

changing threshold model listed on the horizontal axis when fit to Experiment 1 data

collected by Evans, Hawkins, and Brown (2020). The LLD is between the sDDM and

Full Weibull and stepwise models, calculated as max log-likelihood of the sDDM minus

the max log-likelihood of the alternate model, and is shown on the horizontal axis. If

positive, alternate model preferred; if negative, sDDM preferred. The median value is

displayed above each boxplot.

To summarize, when data contains a clear signature of changing thresholds with

early collapse (as was shown for Experiment 2), all threshold models are capable of

detecting this. If late collapse is present, the Full and Reduced Weibull models are

capable of capturing the data. When evidence is more mixed, different threshold models

generate different conclusions. In light of this, we recommend that researchers fit
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multiple thresholds of varying complexity to their data, then closely analyze their fit

quality to best determine if CTs are present. If all threshold types provide evidence for

CTs, there is a high probability they are present in that data set. If the Full Weibull

and Reduced Weibull only fit the data well, then there is likely a mixture of early and

late collapsing subject in your data set. If all thresholds indicate no collapse, no

collapse is likely present. And lastly, if different thresholds provide different results, one

should be careful not to draw strong conclusions from ambiguous supporting evidence.

Urgency Gating Model (UGM)

We next report the results of the UGM. As discussed in the methods, this model

is equivalent to a changing threshold model with the addition of leaky integration. We

display the results of our numerical experiments in Figure 12. Plotting conventions are

similar to prior simulation studies.

Row A of Figure 12 displays the results for the FI experiment. We find that

recovery of only the drift rate is acceptable, while all other parameters experience fair to

poor recovery. Row B displays the results of the CI information experiment. Recovery

for all parameters is substantially better than that of the FI case with the exception of

the relative start point w. We find that, in some cases, the start point is completely

unrecoverable in spite of the remaining parameters closely matching their true values.

This inability to recover the start point is an artifact of choosing evidence change

times that are too large relative to the typical response time. To demonstrate this, we

plot two different data sets in row B of Figure 12: one with large change times in black

circles, and one with small change times in cyan triangles. Specifically, the black circles

correspond to data sets where the flip time t0 > 0.35 × Mdata, where Mdata is the median

of the generated data set. The cyan triangles plot data where t0 ≤ 0.35 × Mdata. When

small flip times are used, recovery is better for all parameters. We display the

correlation coefficient for large flip time as R2 and small flip time as R2
st0 . The largest

improvement in recovery is present for the relative start point w. The most important

improvement is in the urgency ratio (k), which is one of the primary parameters one
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Figure 12 . Quality of fit for the UGM. Horizontal axes indicate the true parameter

values, while the vertical axes indicate the parameter values which best fit the

simulated data. Red lines on each scatter plot indicate where input and fit parameters

are equal. Correlation coefficients for the fit of the data to the red line are displayed

above each panel. A) Fit with fixed information for N = 1, 000 data points. B) Fit

with changing information for N = 1, 082 data points. The black circles are for fits with

t0 ≥ 0.35 ∗ Mdata and have N = 946 points, while the cyan triangles are for fits with

t0 ≤ 0.35 ∗ Mdata and have N = 136 points. Correlation coefficient R2 corresponds to

the black points, while R2
st0 corresponds to the cyan triangles.

would be interested in for this model. Interestingly, the leakage is well recovered

independent of the time at which the evidence change occurs, within the constraints of

this test.

In summary, fixed information does not produce good recovery of the UGM

parameters. Changing information improves recovery substantially, particularly if the

change occurs relatively early relative to typical response times for the task. Though

not shown in this section, following the lead of the Leakage model results, it is likely

that the introduction of multiple drift rate or caution conditions will further improve

recovery of the leakage and urgency parameters.
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Equivalence of changing thresholds and urgency models. As discussed in

“Methods”, Urgency models are motivated by the same theoretical questions which led

to the introduction of collapsing thresholds. However, unlike collapsing thresholds,

urgency models propose that strategic manipulation exists principally in the choice of

u(t). It has long been known that changing thresholds and urgency signals produce

similar behavior (Drugowitsch et al., 2012), with more recent work by Trueblood et al.

(2021) and Smith and Ratcliff (2022) explicitly demonstrating this. Smith and Ratcliff

(2022) showed that they result in mathematically identical likelihood functions under

the correct conditions. Specifically, a CT is equivalent to a UGM when the threshold

bi(t) is given by,

b1(t) = −b2(t) = b0/u(t), (20)

where b0 is the initial threshold location. One can also do the reverse, and use a UGM

to model a CT when Equation (20) is solved for u(t),

u(t) = ±b0/b(t), (21)

where it is positive if the thresholds collapses and negative if the threhsold expands

(though this later case is infrequently used).

Thus, when leakage L = 0, we can directly compare the results of CTs and UGMs.

Specifically, we can determine if the UGM’s choice of urgency function is an appropriate

choice. Since the UGM is equivalent to a CT, we approach this in the same way as in

the previous section. We fit it to the data collected by Evans, Hawkins, and Brown

(2020), then compare it to the fits of the other thresholds. So that the models are

directly comparable, we set the leakage rate L to zero.

We report the results of these fits in Figure 13. As with Figure 10, the boxplots

display the log-likelihood difference LLD between the best UGM and sDDM fits. If

positive, the UGM is preferred, while if negative, the sDDM is preferred. We find that

for Experiments 1 and 3, as with the other thresholds there is no evidence for the UGM

fitting the data better than the sDDM, fitting similarly to the linear and exponential

thresholds. For Experiment 2, as with the other CT models, the UGM shows clear
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preference over the sDDM; however, of all the CT models, it has the smallest LLD,

suggesting that it has the least power to determine if a collapsing threshold is present.

Overall, the UGM urgency functions appears equivalent to or worse than the

linear and exponential thresholds for detecting collapsing thresholds in human data.

This is unsurprising since the UGM “threshold” determined via Equation (20) has a

very similar shape to that of the exponential CT, another threshold whose shape and

simplicity causes it to struggle at detecting CTs in human data. This suggests that the

linear urgency function employed by the UGM may in fact be a poor choice when used

for detecting changing thresholds/urgency signals in data, and that more model power

may be achieved through the use of different urgency models. These could include the

Reduced Weibull “urgency” function from the previous section calculated via Equation

(21), or the logistic urgency function of Ditterich (2006).
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Figure 13 . Boxplots of the log-likelihood difference (LLD) between the UGM and

sDDM for the data collected by Evans, Hawkins, and Brown (2020). LLD between the

UGM and sDDM is calculated as max log-likelihood of UGM minus the max

log-likelihood of the sDDM. If positive, UGM preferred; if negative, sDDM preferred.

Median values displayed above each boxplot. Results for Experiments 1, 2, and 3 are

shown in panels A, B, and C respectively.

Diffusion Model of Conflict

We last explore the parameter recovery of the Diffusion Model of Conflict (DMC).

Though parameter recovery of the DMC has been studied in the past using simulation
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quantile methods (White et al., 2018), our work is the first time the DMC has been

studied using Bayesian methods with the full likelihood distribution. We report our

results in Figure 3. Simulation study methods and plotting conventions are similar to

prior studies. Each simulated data set here included N = 1, 000 simulated data points.

The primary model feature of interest with the DMC is the time changing drift

rate function and its associated parameters. We thus follow a similar procedure used in

the time changing threshold section. To assess the ability of the model to recover

accurate dynamics from data, we both examine 1) parameter recovery and 2) the

quality of recovery of the drift rate function as a function of time. For this second point,

we quantify Drift Error, given by,

DE =
∫ RTmax

tnd

∣∣∣ vtrue(t) − vfit(t)
∣∣∣ dt∫ RTmax

tnd

∣∣∣ vtrue(t)
∣∣∣ dt

× 100%, (22)

where vtrue is the true drift rate and vfit is the best fit drift rate. We integrate from the

non-decision time tnd to RTmax to capture the drift rate for the entire choice-RT

distribution. Similar to the threshold error of Equation (19) introduced in the changing

thresholds section, this metric calculates the area between the true and best fit drift

rate, then divides it by the area under the true drift rate to provide a normalized

measure of error in the drift. If DE is high (low), then there is a large (small) distance

between the true and best fit thresholds, implying a poor (good) fit. We use this metric

for much the same reason as the changing thresholds. Due to parameter degeneracy in

the DMC drift rate, it is possible to fit the drift function without recovering the exact

parameters. The DE provides a way to calculate recovery of the drift rate independent

of the fit parameters.

Figure 14 contains four rows with different sets of experimental conditions. In row

A, only congruent samples are generated, whereas in row B, only incongruent samples

are present. For each, we recieve good recovery of the non-decision time tnd, controlled

process drift rate µc, and threshold b; however, recovery for remaining drift rate

parameters is poor. Further, the DE is high, and though slightly better for the

incongruent than congruent condition, these give little power to extract meaningful

information fromt the data.
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Figure 14 . Quality of fit for the DMC with N = 1, 000 simulated data points each.

Horizontal axes indicate the true parameter values, while the vertical axes indicate the

parameter values which best fit the simulated data. The red lines on each scatter plot

are where the simulation and fit parameters are equal. The correlation coefficient R2

indicates the quality of fit to the red line. The box plots in the final column indicate the

Drift Error for each experiment, with the median displayed in red in the title. Row A

shows results for Congruent data only. Row B shows the results for Incongruent data

only. Row C shows the results for half Congruent and half Incogruent data.
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Row C displays the results for a slightly more complicated experiment. Here, we

have a two condition experiment, one congruent and one incongruent. This corresponds

to giving the subject N = 500 congruent trials and N = 500 incogruent trials as part of

the total of 1, 000 simulated data points. We find that mixing both congreuncies into a

single experiment provides substantially better recovery, with all parameters receiving

some degree of recoverability. Additionally, the DE is very low, suggesting that the

recovery of the drift rate function is good.

The last row, D, provides results for a four condition experiment. In this case, we

have the same congruent and incongruent setup as row C, but in addition, we have two

conditions for the controlled drift rate µc. As noted by Ulrich et al. (2015), this is an

easy experimental manipulation to make, and an obvious candidate for improving

parameter recovery of the DMC. We find that, in general, all parameters fit nearly as

well or better, with the largest gains seen in α. Parameter τ fits slightly worse in this

data set, but we expect that this is likely due to random variation in the sampled

parameter sets. In summary, there may be gains in recovery for this scenario when

additional conditions are added, but they are marginal and the interested researcher

should determine whether this manipulation provides value for experimental time.

In Figure 15, we provide an example DMC fit from the two condition experiment

of row C in Figure 14. In column A, we show the drift rate recovery for the congruent

(row 1) and incongruent (row 2) conditions, with the true drift rate in the solid blue

line and the recovered drift rate in the dashed red line. We provide the drift error above

the curves equaling DE = 4.2%. We specifically chose a fit with DE value

approximately equal to the median of row C in Figure 14 to provide context for what

that degree of error looks like. In row B, we provide the fit of the likelihood function to

the simulated data set. The solid blue line corresponds to the true likelihood function,

while the dashed red line corresponds to the best fit likelihood function. The grey

histogram is the simulated data. Both the best fit and true likelihood fit the data well,

demonstrating that recovery is effective at fitting the input data.

We last display results for a DMC with variable relative start point w in Figure
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Figure 15 . Example fit for the DMC taken from the two condition experiment from row

C of Figure 14. Column A displays the drift rate recovery, with the DE displayed above

the curves. The true drift rate is the solid blue line, while the fit drift rate is the dashed

red line. Column B shows the likelihood functions fit to the choice-RT data (grey

histogram). The true likelihood is the solid blue line, while the dashed red line is the fit

likelihood function.

16. All work on the DMC to this point has assumed no bias, and thus the relative start

parameter is fixed at w = 0.5. Here we determine if this parameter is recoverable. We

find that the non-decision time tnd, relative start point w, controlled drift rate µc, and

threshold parameters are all recovered with high accuracy. Recovery of the remaining

parameters is however impaired, and the total drift error, though not substantially

higher than the fixed start point case, has a larger variance. This level of drift rate

recovery error is unlikely to change conclusions drawn from its shape (Figure 15 shows a

4% error and the errors here are 7-10%). Thus, if there is reason to believe a bias may

be present, the models recovery characteristics are reasonable with it included.
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Figure 16 . Fit of DMC to N = 1, 000 data points with variable relative start w. Two

conditions, one congruent and one incongruent, are used. The input parameters are

displayed on the horizontal axis, while the fit parameters are on the vertical axis. The

red line is the location where the true and fit parameters are equal. The r and R2

values above each panel are the correlation and coefficient of determination for each fit

to the red line. The final panel displays the drift error, with the median DE shown

above the panel.
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Discussion

Evidence Accumulation Models comprise an ever expanding class of models used

to explore evidence accumulation and temporal aspects of decision making. In recent

years, the use of more complex variants of these models has become more common.

However, with this complexity comes added modeling challenges. How well posed are

these models relative to the data they are being challenged with? Are model parameters

recoverable and therefore interpretable? What experimental structures are sufficient to

constrain these models? How can and should one judge the quality of these models

mimicry of data? These questions are of paramount importance when working with

these more complex models. Researchers have investigated these questions in past

research (Boehm et al., 2018; Evans et al., 2019; Evans, Trueblood, & Holmes, 2020;

Lerche & Voss, 2016; Trueblood et al., 2021; van Ravenzwaaij & Oberauer, 2009; White

et al., 2018). However this research has been a patchwork of investigations with different

groups analyzing different models with different modeling approaches. Here, we address

this (partially at least) by using a state-of-the-art Bayesian modeling methodology to

investigate the methodological properties of a family of commonly used EAMs.

In this work, we considered a variety of EAMs which differed in their assumptions

about the drift rate, diffusion rate, and decision threshold behavior. Specifically, we

examined four types of models: the Simple DDM, EAMs with leaky integration, EAMs

with changing thresholds (including the Urgency Gating Model), and the Diffusion

Model of Conflict. While we have investigated each of these models using a unified

modeling framework, this is not a one-size fits all approach. Some of these models have

different variations and each comes with their own challenges. Thus while the general

approach to investigating these is similar, the specific analyses performed and

approaches vary to best address each class of models.

This investigation was performed using the Python package PyBEAM, an

accurate and efficient method for Bayesian choice–RT modeling of a broad class of

binary choice EAMs using the full likelihood function (Murrow & Holmes, 2024). This

methodology improves on simulation based methodologies - including Quantile
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Maximization (Heathcote et al., 2002; Ratcliff & Tuerlinckx, 2002), Probability Density

Approximation (PDA) (Holmes, 2015; Turner & Sederberg, 2014), and distribution

summary statistics (Wagenmakers, Van Der Maas, & Grasman, 2007) - and is more

powerful than methods that produce point parameter estimates such as PyDDM (Shinn

et al., 2020). It thus allows us to provide a more comprehensive analysis of these models

properties than prior studies. We also note that, to our knowledge, this is the first

investigation of the DMC using Bayesian methods. We briefly summarize the results of

investigations into each of these models. Some of these results have been found in prior

studies and are acknowledged in the preceding text. Others are, to our knowledge, new

observations.

Results from the Simple DDM (sDDM) reflect those from numerous prior

investigations (included mainly for comparison) and illustrate that this model has good

parameter recovery with as few as N = 100 data points. For the leaky integration

model which adds leakage L to the sDDM’s drift rate, recovery of the leakage

parameter was poor when fixed information was used. However, when changing

information was used, recovery of the leakage and threshold parameters improved, and

improved even more when multiple drift rate conditions were used.

For the changing threshold models, we found that recovery for the relative start

and drift rate parameters is always good. The non-decision time parameter is generally

recoverable, though the Full Weibull model systematically underestimates it by a small

amount. The threshold parameters for the Full and Reduced Weibull models are not

recoverable for any simulation size N ; however, the threshold shape is recoverable for

both models. Thus while structural inferences can be made from these models, one

needs to take care when making inferences based on parameters. For the linear and

exponential models, recovery of the threshold parameters is much better, with the linear

threshold providing the best recovery of all.

Use and interpretation of these different caution / threshold models when applied

to human data is more murky. In some cases these different threshold models will lead

to similar structural conclusions (presence or absence of time varying caution). In
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others they can lead to different conclusions. More details of these results are in the

main text. Given this murkiness, extra caution is recommended when using these

models. For example, one could use multiple threshold models and examine consistency

between results. Interpretation of results using these models will likely require problem

specific approaches however and we hope the approach illustrated in this paper may

provide a jumping off point to doing so.

While the Urgency Gating Model was originally discussed as a distinct model

from other standard EAMs, recent work (Smith & Ratcliff, 2022) has shown that the

UGM is a variation on the just discussed changing threshold model. Given this history,

we analyze this model both in its own right and as a member of the family of changing

threshold models. Our analysis shows that, as with the leakage model, recovery is poor

when information is fixed. However, when changing information is used, recovery is

excellent and improved further when multiple conditions are used. Further, parameter

recovery is best when the time of evidence change is early relative to typical response

times, especially if the relative start point is of interest to the experimenter.

Under an appropriate coordinate transformation, the UGM with linear urgency

becomes a collapsing threshold model with a particular threshold function. We thus

assess this model in comparison to the changing threshold models discussed previously.

This model performs similarly to the exponentially decaying threshold model. This is

expected since the changing threshold in the transformed UGM behaves like an

exponential decay (they look visually very similar). Thus the strengths (parameter

identify-ability) and weaknesses (inability to model late changes in thresholds) are

shared.

Lastly, we found that recovery for the Diffusion Model of Conflict is good,

provided the congruent and incongruent conditions are fit simultaneously. We also

found that addition of a second drift rate condition slightly improved recovery of the

drift rate, but not to a substantial effect. This is in contrast to prior models where the

addition of distinct trial types substantially improved matters. Finally, we found that

recovery of the relative start point is possible with this model, though it decreases the
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recoverability of the drift rate parameters related to the automatic process.

Overall, this work is, to our knowledge, the most comprehensive analysis of

complex EAMs using A) the full choice-RT distributions (using full likelihood

functions), and B) Bayesian inference. That said, a model should always be analyzed in

the context of the question of interest and data available. Our hope is that this article

is more than just a bullet point list of observations. We intend it to illustrate different

approaches of analyzing complex choice-RT models in the context in which they may be

used, while also providing practical suggestions for future studies which require models

of this type.
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Figure 1 . Quality of fit for the linear CT for N = 1, 000 simulated data points.

Horizontal axes indicate the true simulated parameter values, while the vertical axes

indicate the parameter values which best fit the simulated data. The red lines on each

scatter plot denote the location where the simulation and fit parameters are equal. The

correlation coefficients R2 above each panel indicate the quality of fit to the red line.
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Figure 2 . Quality of fit for the exponential CT for N = 1, 000 simulated data points.

Horizontal axes indicate the true simulated parameter values, while the vertical axes

indicate the parameter values which best fit the simulated data. The red lines on each

scatter plot denote the location where the simulation and fit parameters are equal. The

correlation coefficients R2 above each panel indicate the quality of fit to the red line.
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Figure 3 . Quality of fit for the exponential CT for N = 1, 000 simulated data points.

Horizontal axes indicate the true simulated parameter values, while the vertical axes

indicate the parameter values which best fit the simulated data. The red lines on each

scatter plot denote the location where the simulation and fit parameters are equal. The

correlation coefficients R2 above each panel indicate the quality of fit to the red line.


