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Abstract

Evidence accumulation models (EAMs) are powerful tools for making sense of human and
animal decision-making behaviour. EAMs have generated significant theoretical advances in
psychology, behavioural economics, and cognitive neuroscience, and are increasingly used as
a measurement tool in clinical research and other applied settings. Obtaining valid and
reliable inferences from EAMs depends on knowing how to establish a close match between
model assumptions and features of the task/data to which the model is applied. However,
this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the
private advice of mentors and colleagues, and on inefficient trial-and-error learning. In this
article, we provide practical guidance for designing tasks appropriate for EAMs, for relating
experimental manipulations to EAM parameters, for planning appropriate sample sizes, and
for preparing data and conducting an EAM analysis. Our advice is based on prior
methodological studies and the authors’ substantial collective experience with EAMs. By
encouraging good task design practices, and warning of potential pitfalls, we hope to

improve the quality and trustworthiness of future EAM research and applications.

Keywords: evidence accumulation models; experimental design; decision making; response

time; model-based cognitive neuroscience
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Introduction

Evidence accumulation models (EAMs) are powerful tools for understanding human and
animal decision-making (Donkin & Brown, 2018; Evans & Wagenmakers, 2019; Gold &
Shadlen, 2007; Smith & Ratcliff, 2024). They enable quantitative measurement of latent
decision processes that are confounded in typical (e.g., linear model) analyses of response
time (RT) and error rate (Lerche & Voss, 2020). EAMs explain key benchmark phenomena
that arise in decision-making tasks (e.g., speed—accuracy trade-offs, asymmetries in the
speed of correct and incorrect responses, and the characteristic positive-skew of RT
distributions; Ratcliff & McKoon, 2008). Since their introduction in the 1960s and 1970s
(Audley & Pike, 1965; Laming, 1968; Link & Heath, 1975; Stone, 1960; Vickers, 1970), EAMs
have become one of the most successful theoretical frameworks in cognitive psychology
(Evans & Wagenmakers, 2019; Ratcliff et al., 2016; Ratcliff & McKoon, 2008; Smith & Ratcliff,
2024) and cognitive neuroscience (Forstmann, Wagenmakers, et al., 2011; Forstmann et al.,
2016; Gold & Shadlen, 2007; Mulder et al., 2014; Schall, 2019; Smith & Ratcliff, 2004).
Further, they are increasingly being used to answer questions in domains such as
behavioural economics (Busemeyer et al., 2019; Krajbich et al., 2014; Krajbich & Rangel,
2011), Human Factors/ergonomics (Boag et al., 2023) and in clinical/healthcare settings
(Copeland et al., 2023; Ratcliff et al., 2022; White et al., 2010).

Obtaining valid inferences from EAMs relies on achieving a close match between model
assumptions and features of the task and data to which the model is applied. Failing to
achieve an appropriate task—model match can lead to misleading or spurious conclusions
(e.g., Cassey et al., 2014; Ratcliff & Kang, 2021). However, the EAM literature lacks a
comprehensive articulation of how to achieve a good task—model match. In this article, we
provide practical guidance for designing tasks appropriate for EAMs, for relating
experimental manipulations to EAM parameters, for sample size planning, for collecting and
preparing data, and for conducting and reporting an EAM analysis. We point out problems
that can arise if the models are used without sufficient regard for the factors that determine
their validity. Sometimes there is no one-size-fits-all answer and finding an appropriate
design may require careful judgment and consideration of trade-offs (e.g., collecting more
trials versus maintaining participant engagement). To aid this process, we highlight the key

issues and potential pitfalls affecting EAM analyses, so that readers can better plan
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experiments for reliable EAM analysis. Our advice is grounded in prior methodological
studies and in the authors’ years of collective experience using EAMs to understand human
and animal decision making.

By encouraging good task design practices, we hope to improve the quality and
trustworthiness of future EAM research and applications. To make our advice as broadly
applicable as possible, we do not focus on the details of specific EAMs. Instead, we focus on
the common properties and design considerations shared by the most prominent basic EAM
architectures (i.e., relative evidence models, e.g., Ratcliff, 1978; Wagenmakers et al., 2007,
2008; and racing accumulator models, e.g., Brown & Heathcote, 2008; Tillman et al., 2020;
Usher & McClelland, 2001; see Figure 1). Our advice is intended for researchers and
students who wish to apply an existing ‘off-the-shelf’ EAM to an experimental task in order
to measure the cognitive processes driving decision-making behaviour. While our
recommendations are intended for EAMs, many also apply more broadly to other cognitive
modelling approaches (e.g., reinforcement learning, Wilson & Collins, 2019).

In the next section, we outline the general features and assumptions of EAMs. The
remainder of the article is structured according to a typical EAM study workflow: We first
consider whether an EAM is the appropriate tool for our research question. Next, we look at
how to design EAM-appropriate experimental tasks, and strategies for collecting suitable
data. We cover sample size planning and discuss best practices for experimental procedure,
for assessing the quality of collected data, and for obtaining valid and reliable inferences
from EAM analyses. We discuss interpreting and reporting the results of an EAM analysis and

close with advice on what to do when the standard models fail.

The architecture of standard EAMs

EAMs assume that when presented with a stimulus (e.g., a left- or right-facing arrow), the
decision maker samples evidence for the available actions or choice options (e.g., “Should |
press the left or right arrow key?”) until a threshold amount of evidence is reached. Many
prominent models assume within-trial noise in this accumulation process (Ratcliff, 1978;
Tillman et al., 2020; Usher & McClelland, 2001), although it is possible to capture key RT
phenomena assuming only between-trial noise (Brown & Heathcote, 2008). Reaching a

threshold immediately triggers the motor movement for the overt response (e.g., pressing
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the left arrow key). Total RT is assumed to be the sum of three strictly sequential processing
stages: 1) stimulus encoding, 2) decision making (evidence accumulation), and 3) motor
response execution! (Bompas et al., 2023; Kelly et al., 2021; Servant et al., 2021; Weindel,
Gajdos, et al., 2021). As we will see, this places constraints on the timing and structure of
decision-making tasks appropriate for use with EAMs.

Figure 1 depicts the two prominent classes of EAM architectures. In relative evidence
models, decisions are based on accumulating the difference in evidence between response
options (e.g., Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; van
Ravenzwaaij et al., 2017; Wagenmakers et al., 2007, 2008). Relative evidence models have
historically been limited to decisions involving two choice options (but see, Churchland et
al., 2008; Ditterich, 2010; Kvam, 2019; Niwa & Ditterich, 2008; Smith et al., 2020). By
contrast, in racing accumulator models, decisions are based on accumulating the absolute
evidence for response options in separate modular accumulators (e.g., Bogacz et al., 2007,
Brown & Heathcote, 2008; Heathcote & Love, 2012; Kirkpatrick et al., 2021; Rouder et al.,
2015; Teodorescu & Usher, 2013; Tillman et al., 2020; Tsetsos et al., 2011; Usher et al.,
2002; Usher & McClelland, 2001). Racing accumulator models can accommodate any
number of choice options, typically with an accumulator per choice. Although relative and
absolute evidence models differ regarding how they conceptualize evidence, they have
similar requirements for achieving a good task—model match and often arrive at the same
substantive conclusions (Donkin, Brown, Heathcote, et al., 2011). In both architectures,
decision making is governed by the same 3 or 4 parameters, which are interpreted similarly
across models (Voss et al., 2004). Moreover, both architectures have similar data quality
requirements and often give convergent results when applied to the same data (Donkin,

Brown, Heathcote, et al., 2011; Dutilh et al., 2019).

1 1n most EAMs, the time taken for stimulus encoding and motor responding are not separately identifiable.
Instead, only their sum (referred to as “nondecision time”) is estimated (i.e., total RT = decision time +
nondecision time).
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Figure 1. lllustration of two standard EAM architectures. In relative evidence models (Panel A),
decisions are based on accumulating the difference in evidence between response options. The
first threshold to be reached determines the overt response and RT. In racing accumulator models
(Panel B), decisions are based on accumulating the absolute evidence for N response options in
separate modular accumulators. In these models, the first accumulator to reach threshold
determines the overt response and RT. In both architectures, RT is the sum of decision time plus
the time taken for nondecision processes such as sensory encoding and production of the motor
response. Both architectures share common processing assumptions and interpretation of core
parameters (see text for details). Note that only the noiseless mean accumulation rate is depicted.
For models with within-trial noise, each accumulation process traces a noisy trajectory around this

mean rate (e.g., Ratcliff, 1978).

A comprehensive overview of key model parameters and their uses is given in the section
‘Mapping EAM Parameters to Experimental Manipulations’. However, briefly, the models
contain parameters controlling the evidence starting point (allowing for a priori biases),
accumulation rate (controlling the speed of processing), threshold/boundary separation
(controlling the amount of evidence required to make a response), and nondecision time
(the sum of time taken for stimulus encoding and motor response production). The basic
frameworks also allow across-trial variability in accumulation rate, starting point, and
nondecision time, which account for commonly observed differences in the speed of correct
and incorrect responses (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002).

As will be discussed (see section ‘Going Beyond the Standard Models’), the basic
architecture has been extended to include additional mechanisms (e.g., Fific et al., 2010;
McDougle & Collins, 2021; Mileti¢ et al., 2021; Nosofsky & Palmeri, 1997, 2015; Pedersen et

al., 2017) and to account for tasks/situations that violate various processing assumptions of
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the standard models (e.g., Diederich, 2024; Diederich & Trueblood, 2018; Hawkins et al.,
2015; Holmes et al., 2016; Holmes & Trueblood, 2018; Lee & Sewell, 2024; Little et al., 2018;
Smith & Ratcliff, 2022; Ulrich et al., 2015; Voss et al., 2019; White et al., 2011; Zhang et al.,
2014; for a review, Evans & Wagenmakers, 2019). Most of the advice in this article will apply
when working with these models. However, researchers should be aware that extended
models may operate on a different set of processing assumptions and thus have idiosyncratic

(mechanism-specific) design constraints.

Processing assumptions of standard EAMs

Here, we outline the core assumptions of the basic EAM framework that have
implications for the design of tasks suitable for EAMs (summarised in Table 1). For data from
an experimental task to be suitable, the task must satisfy the assumptions of the model. The
core structural assumption of the models is that each decision is the result of a single,
continuous (uninterrupted) evidence accumulation process and culminates in a single
discrete response. In short, the models apply to tasks in which one decision is followed by
one response (Brown & Heathcote, 2008; Busemeyer & Townsend, 1993; Ratcliff, 1978;
Usher & McClelland, 2001).

During a trial/decision, the models assume within-trial stationarity, which refers to the
assumption that model parameters (e.g., accumulation rates and thresholds) do not change
in value while a decision is in progress (Ratcliff, 1978). For accumulation rates, this means
that evidence accumulates at a constant average rate? (although potentially with substantial
noise) for the duration of the trial (i.e., from stimulus onset to response onset) (Brown &
Heathcote, 2008; Ratcliff, 1978; for alternatives, Stine et al., 2020). In practice, this means
that stimuli should provide a constant input to the evidence accumulation process (i.e.,
stimulus evidence should not change in strength or sign over the course of a trial, Lee &
Sewell, 2024; Smith & Lilburn, 2020). For thresholds, within-trial stationarity means that
thresholds are set prior to stimulus onset and do not change in value during a trial. This

means that individuals are assumed to keep the same cognitive control/speed—accuracy

2 Some models, most prominently, the leaky competing accumulator model (Usher & McClelland, 2001), relax
this assumption in that the dominant response accumulator may provide increasingly strong inhibitory input to
its competitors over time, which would reduce the mean accumulation rate for competing responses
throughout a trial.
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trade-off settings throughout a decision and to not increase or decrease in caution during a
trial (for models that allow dynamic thresholds, Hawkins et al., 2015; Smith & Ratcliff, 2022;
Voskuilen et al., 2016).

Across trials, the standard application of EAMs assumes within-condition stationarity,
which refers to the assumption that model parameters do not change in value across trials
(of the same type) within a condition. This assumption is important for model fitting, which
relies on pooling information across trials of the same type. Theoretically, the assumption is
that trials of the same type are independent measurements of the same underlying process
(generated from the same cognitive settings). Empirically, the expectation is that participant
performance is stable for the duration of the experiment? (e.g., RT distributions do not
change in shape or scale over time).

The reviewed EAM assumptions have implications for the (choice-RT) data to which they
are applied. For one, EAMs can only predict positively skewed RT distributions. This owes to
the geometry of the models, whereby equal differences in accumulation rate are projected
as unequal differences in decision time (see Figure 1) (Ratcliff & McKoon, 2008). In practice,
this means that the models can only fit empirical RT distributions with characteristic positive
skewness, and fail to fit RT distributions that are normal or negatively skewed in shape
(Evans, Hawkins, et al., 2020). Ignoring skew can lead to biases in parameter estimation
(Verdonck & Tuerlinckx, 2016). The section ‘Planning Tasks that Meet EAM Assumptions’
contains advice on ensuring data satisfy this assumption.

Finally, EAMs assume the data are free of contaminant processes. That is, data come
from an evidence accumulation process and not some other process such as random
guessing or nonresponding (Ratcliff, 1993; Ratcliff & Tuerlinckx, 2002). Strategies for
identifying and accounting for contaminants are discussed throughout the article.

With this background in place, the remainder of this article steps through the
components of a typical EAM study workflow, giving advice on how to plan and conduct a
robust study. In doing so, we regularly refer back to the model assumptions outlined in this

section.

3 However, when there are a sufficient number of trials in an experiment, blocks or sessions of trials may be
treated as another condition, thus allowing for estimation of block-to-block changes in model parameters (e.g.,
Dutilh et al., 2009).
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Table 1. Standard EAM assumptions and implications for task design.

EAM assumption

Explanation

Design implications

Decisions well described by a
single, continuous accumulation
process resulting in a discrete

response

The outcome of each decision
(trial) is a discrete response
resulting from an uninterrupted
evidence accumulation process
running from stimulus to
response onset (i.e., one decision

= one response).

Trials should have a clear stimulus
onset.

The response modality should
allow precise measurement of

response onset.

Within-trial stationarity

Model parameters do not change
during a decision (trial). Stimulus
evidence should not change (e.g.,
ramp up or change sign) during a
trial. Thresholds do not change
dynamically within a trial or in
response to information unknown

before stimulus onset.

Use static stimuli that provide a
constant evidentiary input from
stimulus onset to the response.
Use sufficiently long intertrial
intervals to avoid interference
from processes that ran on
previous trials (e.g., process
overlap and proactive

interference).

Within-condition stationarity

Model parameters do not change
across trials of the same type.
Trials of the same type should be
independent observations
generated by the same latent
cognitive settings. Necessary for
pooling observations for model

fitting.

Minimize learning effects that are
not modelled. Minimize
fluctuations of attention and

potential changes in strategy.

Positively skewed RT distributions

RT distributions for each response
should be positively skewed and

free from truncation in the tails.

Use a well-calibrated response
window (calibrated to the mean
RT and variance of a typical
participant performing the target
task).

Data free of contaminant

processes

Data come from an evidence
accumulation process (and not
some other process such as fast
guessing). Participants perform

the task as instructed.

Provide clear task instructions.
Monitor participant behaviour.
Display corrective feedback
following undesirable responses
(e.g., “Too fast!”). Allow

participants sufficient breaks.

10
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Planning research questions for EAM analysis

Before the task design and modelling process can begin, the researcher must first decide
whether an EAM analysis is the appropriate tool to answer the research question. While
EAMs have many uses (Criiwell, Stefan, et al., 2019), our present focus is on using EAMs as a
cognitive measurement model (Donkin & Brown, 2018; Lee et al., 2019; see also, Batchelder,
2010, 2016; Batchelder & Riefer, 1999; Smith & Batchelder, 2010). Measurement studies
typically focus on interpreting the parameters of an existing ‘off-the-shelf’ EAM that is taken
a priori to adequately characterise the processes individuals use to perform the target task
(e.g., Huang-Pollock et al., 2017; Janczyk & Lerche, 2019; Klauer et al., 2007; Ratcliff et al.,
2004; Ratcliff & Rouder, 2000). To understand what kinds of research questions are suitable
for EAM analysis, it is helpful to consider the output of an EAM that has been fit to
participant data. For each participant, the model provides parameters that represent
measurements of that individual’s latent cognitive settings (e.g., accumulation rate,
threshold, bias, and nondecision time). Additional population-level parameters
characterising group differences can be obtained using hierarchical modelling approaches
(e.g., Chavez De la Pefia & Vandekerckhove, 2023; Gunawan et al., 2020; Heathcote et al.,
2019; Stevenson, Innes, et al., 2024; Wiecki et al., 2013). Changes in cognitive processes are
guantified by changes in the values of this set of model parameters. Therefore, suitable
research questions involve assessing how model parameters differ within or between groups
(e.g., Ratcliff et al., 2003; Steyvers et al., 2019), individuals (e.g., Evans et al., 2018), or
experimental conditions/treatments (e.g., Heathcote et al., 2015; Ratcliff et al., 2003;
Strickland et al., 2023), as well as assessing how parameters relate to other individual-level
covariates (e.g., eye-tracking, Cavanagh et al., 2014; Fiedler & Glockner, 2012; Krajbich &
Rangel, 2011; and neurophysiological measures, such as EEG, MEG, and fMRI, Forstmann et
al., 2011; Harris & Hutcherson, 2022; Nunez et al., 2023, 2024; Turner et al., 2013; Turner,
Forstmann, et al., 2019; Turner, Palestro, et al., 2019). EAMs allow multiple data sources to
be analysed under a common model and results interpreted in terms of well-supported
cognitive theory (Forstmann, Wagenmakers, et al., 2011).

For an EAM analysis to be useful, questions must map to the cognitive processes
represented by EAM parameters (i.e., accumulation rate, threshold, bias, and nondecision

time). Questions are typically posed in a similar manner to traditional confirmatory

11
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experimental research, where the goal is to understand the effect of particular experimental
manipulations, treatments/interventions, or clinical disorders on some measured outcome
variable (Donkin & Brown, 2018). For example, in a series of studies, Ratcliff and
collaborators asked whether age-related slowing is due to slower evidence accumulation
(cognitive impairment hypothesis), higher thresholds (conservative responding hypothesis),
or longer nondecision time (physical slowing hypothesis) (Ratcliff et al., 2003, 2006; Ratcliff,
Thapar, Gomez, et al., 2004; Ratcliff, Thapar, & McKoon, 2004; Thapar et al., 2003). This
guestion presents a clear test of three competing hypotheses that can be instantiated in
EAMs and evaluated. To give an example involving a subject-level covariate, Forstmann et al.
(2008) asked whether cue-induced threshold adjustments (a measure of top-down cognitive
control) are correlated with fMRI BOLD signal in the striatum and pre-supplementary motor
area (two structures hypothesized to be involved in such adaptive control). This question,
posed in terms of individual-differences correlations, presents a clear test of the relationship
between the model-based measure (magnitude of threshold adjustment) and the
hypothesized neural covariates (striatal and pre-SMA BOLD signal). Operationalising
guestions in this way is necessary to develop clear, testable hypotheses. That is, hypotheses
that can be instantiated in an EAM and subjected to model comparison and evaluation. We
explore this topic further in the section ‘Mapping Experimental Manipulations to EAM
Parameters’.

Unsuitable questions for standard EAMs are those that involve violations of their
assumptions. For example, asking questions about how parameters change from trial-to-trial
(violating within-condition stationarity) require extended models/methods that allow trial-
wise parameter estimation (Boehm et al., 2014; Ho et al., 2012; Van Maanen et al., 2011).
Formulating good research questions requires a sound understanding of theory of both
EAMs and the target domain. The EAM literature, especially measurement studies where the
focus is on interpreting parameter effects (e.g., Boag et al., 2023; Evans et al., 2018; Huang-
Pollock et al., 2017; Ratcliff & Rouder, 2000; Weigard et al., 2018) can be a rich source of
ideas and help build intuition for developing suitable research questions. Getting the
research question right is important because it ultimately dictates many experimental design
and analysis choices (e.g., sample size planning and whether to use hierarchical or

independent-subjects approaches).

12
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Planning tasks that meet EAM assumptions

Having formulated a research question, focus turns to designing an experimental task
that will be informative for the research question and that meets the processing
assumptions of EAMs. In this section, we discuss EAM-specific constraints on task design,
relating each back to the relevant EAM assumptions. Our advice is intended to assist
researchers in designing tasks that satisfy the assumptions of the basic EAM framework but
allows for judicious deviations such as when the focus is on developing a new model
(Crawell, Stefan, et al., 2019).

One decision, one response. As noted earlier, EAMs assume decisions involve a single,
uninterrupted evidence accumulation stage, culminating in a discrete response. Evidence is
assumed to accumulate continuously from stimulus onset to the response. EAM-appropriate
tasks need clearly defined stimulus and response onsets that do not overlap with processes
outside of the response window. Stimulus evidence should be static (e.g., of fixed strength
within a trial) and presented for the entire duration of the response window (from stimulus
onset to response initiation). This will ensure that stimuli provide a constant input to the
evidence accumulation process until a response is initiated, as is assumed in the standard
models.

Further, each decision should culminate in a single, discrete response, chosen from a set
of two or more choice options. This is because, in standard EAMs, evidence always
terminates at a single, discrete response threshold. Consequently, tasks that involve open-
ended response options (e.g., free recall tasks) or the possibility of submitting more than
one response during a single trial (e.g., change of mind tasks, Stone et al., 2022; double
response paradigms, Evans et al., 2020) require extensions beyond standard EAMs.

Within-trial stationarity. EAMs assume that the parameter settings of the model do not
change part way through a decision. Specifically, EAMs assume that threshold and bias
settings are unaltered in response to the stimulus, and most assume that evidence
accumulates at a constant average rate from stimulus onset to response onset. When
designing an experiment, any information intended to affect threshold or bias settings must
be presented before the onset of the stimulus. Likewise, any information not intended to
affect decision-making and cognitive control settings should be kept outside of the response

window. With regard to experimental design, this means that the evidence input to the

13
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decision process should not change during a trial, meaning that decision-relevant stimulus
features should be constant throughout a trial (Smith & Lilburn, 2020). For example, stimuli
in a perceptual decision-making task should not change in brightness or contrast part-way
through a trial, since this would require a corresponding change in accumulation rate. Tasks
involving dynamic evidence can be modelled using (computationally expensive) extensions
to the basic EAMs (e.g., Diederich, 2024; Diederich & Trueblood, 2018; Holmes et al., 2016;
Holmes & Trueblood, 2018).

Within-condition stationarity. EAMs also assume stationarity across trials of the same
type within a condition. This is because model fitting requires trials of the same type to be
treated as independent observations of the same latent cognitive settings. Aside from non-
systematic trial-to-trial variation accounted for in the model’s across-trial variability
parameters, there should be no systematic changes in threshold or mean accumulation rate
across trials of the same type. This assumption is important for statistical power and
measurement precision, which relies on information pooled across many observations
(trials) (Smith & Little, 2018). When designing experiments, researchers should attempt to
minimize factors that could cause parameters to change systematically across trials. For
example, accumulation rates are known to increase with learning, initially rising steeply
before tapering off to a stable asymptotic level (e.g., Fontanesi et al., 2019; Mileti¢ et al.,
2021; Pedersen et al., 2017; Sewell et al., 2019). Rates can also decrease with fatigue or
inattention/task disengagement (Huang-Pollock et al., 2020; Ratcliff & Van Dongen, 2011;
Walsh et al., 2017). Thresholds may also decrease over the course of an experiment due to
participants becoming impatient and trading accuracy for speed in an effort to complete the
experiment sooner (Hawkins et al., 2012; Larson & Hawkins, 2023).

Trial-to-trial variability is unavoidable (Aschenbrenner et al., 2018; Rouder et al., 2023)
due to noise at many levels, including the noise inherent in neural systems (Faisal et al.,
2008; Smith, 2010, 2023) and dynamic fluctuations in cognitive and affective state (Schurr et
al., 2024). Standard EAMs account for such noise sources via their across-trial variability
parameters. Nevertheless, researchers should take reasonable measures to ensure such
variability is kept as non-systematic as possible.

Stimuli. Stimuli provide the critical input to the decision-making process. Stimuli supply
the evidence upon which decisions are based and largely determine the cognitive domain

engaged by a task. For example, in a psychophysics task, evidence might be based on the

14
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objective luminance values of stimuli (e.g., Sewell & Smith, 2012; van Ravenzwaaij et al.,
2020). By contrast, evidence in a preferential choice task could be subjective value elicited
by viewing images of food items (e.g., Huseynov & Palma, 2021; Milosavljevic et al., 2010).
In working memory and categorization tasks, evidence may derive from the strength with
which items are activated in memory (Ratcliff, 1978; Shadlen & Shohamy, 2016) or the
strength of learned associations between stimuli and expected response outcomes (Dutilh et
al., 2009; Dutilh, Krypotos, et al., 2011; Mileti¢ et al., 2021; Sewell et al., 2019). As noted,
the evidence supplied by stimuli should be fixed within a trial (i.e., unchanging in strength
for the duration of the trial) to provide a constant input to the decision process.

Across trials or blocks, stimuli are often the target of manipulations designed to affect
the signal-to-noise ratio of the evidence entering the decision process (e.g., discriminability,
difficulty, etc.). When designing experiments, it is important to calibrate stimuli to be of an
appropriate difficulty level. This is because EAMs can struggle to fit floor effects (chance-
level accuracy) and ceiling effects (e.g., near-perfect accuracy with too few errors) (Dutilh,
Wagenmakers, et al., 2011). Floor effects occur when a task is too difficult, and usually mean
that participants cannot discriminate between choice options. Consequently, participants
may be using a guessing strategy rather than sampling evidence as assumed in EAMs. By
contrast, ceiling effects occur when a task is too easy, causing very few incorrect responses
to be observed. As we discuss in the section on sample size planning, it is important to elicit
enough error observations for reliable model estimation (Liken et al., 2023). We
recommend calibrating stimuli to produce error rates of 5-35% (Dutilh, Wagenmakers, et al.,
2011; Laken et al., 2023; Ratcliff & Childers, 2015). Calibration can be achieved through pilot
testing or via more advanced methods that perform individualised calibration based on task
performance (e.g., Myung et al., 2009; Myung et al., 2013; Yang et al., 2021).

Response modality. Standard EAMs assume that the onset of the response coincides
with termination of the evidence accumulation process (Figure 2). That is, the decision and
motor response processes occur sequentially (i.e., a motor response is only initiated once a
decision has been reached). As such, we recommend using response modalities with a
sharp, clearly defined response onset and short execution times, such as manual key presses
(Mean = 160 ms [120—230 ms]) or saccades (Mean = 60 ms [30—100 ms]) (Bompas et al.,
2023). Other response modalities such as computer mouse or foot pedal are also possible

(e.g., Leontyev & Yamauchi, 2021; Michmizos & Krebs, 2014). However, responses using such
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modalities may produce relatively variable response onsets (and consequently less precise
estimates of nondecision time).

The most critical consideration is that the chosen modality should enable the precise
measurement of RT. For most purposes, a standard computer keyboard provides sufficiently
precise RT measurements (up to the limit of the internal refresh rate). However, highly
precise (i.e., to the millisecond) timing can be obtained with specialized computer systems
and the use of precision-timing software/apparatus (Bridges et al., 2020; Plant et al., 2002).
We recommend using left—right symmetric key arrangements [with the layout
counterbalanced across participants, if appropriate to do so; see section ‘Stimulus—
Response (Decision Outcome) Mapping’]. This allows for the highly desirable assumption of

a common nondecision time across responses (and potentially across subjects).

Mapping experimental manipulations to EAM parameters

It is important to establish clear theoretical links between experimental manipulations
(e.g., speed vs. accuracy instructions, task difficulty, or working memory load) and their
expected effects on EAM parameters and data. Understanding the behavioural signatures of
experimental manipulations can give confidence that a manipulation is working as intended.
Becoming familiar with EAM theory and reading published EAM studies can help build
intuition for which model parameters are likely to be affected by a given manipulation. Much
of the key theoretical EAM literature and a variety of application studies are cited in this
article.

Not all EAM parameters will be relevant to every analysis. For example, a researcher
studying consumer choice preferences (e.g., preference for one product over another) may
be uninterested in nondecision time but be highly interested in using accumulation rates to
measure preference strength and starting point (or thresholds) to measure choice biases
(Busemeyer & Townsend, 1993; Cerracchio et al., 2023; Krajbich et al., 2012, 2015).
Additionally, it is common practice to not estimate variability parameters (e.g., by fixing
them to zero) unless they are needed to account for certain data features (e.g., fast guesses)
(Lerche & Voss, 2016; Ratcliff & Rouder, 1998).

Below, we briefly review common manipulations that have been used to selectively

influence each standard EAM parameter (see Box 1). The primary uses of each model
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parameter, common mappings to experimental manipulations, and expected effects on
behaviour are summarized in Table 2.

Stimulus—response (decision outcome) mapping. Some tasks will have stimulus—
response mappings that naturally correspond to objectively correct or incorrect decision
outcomes (e.g., pressing the left arrow key in response to a predominantly left-moving
stimulus). However, standard EAMs can easily accommodate tasks with subjective or
probabilistic stimulus—response mappings (e.g., preferential choice tasks, probabilistic
categorization tasks, and tasks with probabilistic rewards/payoffs; Lee & Usher, 2023;
Milosavljevic et al., 2010; Sewell & Stallman, 2020). In relative evidence models (e.g.,
Ratcliff, 1978; Wagenmakers et al., 2007), which are limited to two-choice tasks, each
threshold is mapped to one of the possible response options, and a single accumulation rate
measures the difference in evidence between options. However, in race models (e.g., Brown
& Heathcote, 2008; Tillman et al., 2020), which can accommodate an arbitrary number of
response options, each latent response is assigned an accumulator with its own threshold
and an accumulation rate representing the absolute evidence for that response. Race
models can also instantiate more complex decision rules (e.g., AND and OR rules) used for
combining multiple stimulus attributes into a final decision (e.g., Fific et al., 2010; Little et
al., 2018; van Ravenzwaaij et al., 2020).

Accumulation rate. Accumulation rates measure the strength (signal-to-noise ratio) of
evidence extracted from the stimulus (e.g., salience, preference strength, or discriminability
relative to other choice options; Gold & Shadlen, 2007; Palmer et al., 2005; Ratcliff &
McKoon, 2008). Rates are sensitive to the processing abilities of the decision maker
(Schmiedek et al., 2007) and the amount of attention or cognitive resources deployed to the
task (i.e., the degree to which the participant is paying attention; Boag et al., 2023; Castro et
al., 2019; Eidels et al., 2010). Holding one constant allows measurement of the other (e.g.,
for equivalent stimuli, different rates reflect differences in attention/capacity).

In a typical experiment, rates are used to account for manipulations of evidence strength
(e.g., low- versus high-discriminability stimuli), attention or processing capacity, and task
difficulty. That is, manipulations affecting how easily stimuli are perceived and/or processed
(Mulder et al., 2014; Palmer et al., 2005; Ratcliff & McKoon, 2008; Smith et al., 2015; Smith
& Sewell, 2013). This is accomplished by estimating a different accumulation rate for each

difficulty level (Ratcliff & Rouder, 1998). Behaviourally, a faster accumulation rate predicts
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faster responses and fewer errors, while a slower rate predicts the converse (Ratcliff &
McKoon, 2008). Accumulation is typically faster for easier decisions (Ratcliff & Rouder, 1998)
and faster for responses associated with higher reward or subjective value (Busemeyer &
Townsend, 1993; Krajbich et al., 2012, 2015). Rates track the strength of associative
relationships learned via feedback (e.g., Fontanesi et al., 2019; Mileti¢ et al., 2021; Pedersen
et al., 2017; Sewell et al., 2019) and the activation strength of items retrieved from memory
(Ratcliff, 1978; Ratcliff & McKoon, 1988). Further, these mappings hold in more complex
naturalistic tasks (for a review, Boag et al., 2023).

Threshold. Thresholds are a locus of proactive cognitive control (Strickland et al., 2018).
Thresholds control the amount of evidence needed to trigger a response and thus measure
response caution or speed—accuracy settings. As noted earlier, EAMs assume thresholds are
set in advance of stimulus onset (i.e., not adjusted based on features of the current stimulus,
since it would be circular for the threshold used to identify a stimulus to depend on knowing
the identity of that stimulus). In other words, thresholds cannot be altered based on
information that was unknown before the trial began (Donkin, Averell, et al., 2009).
Consequently, manipulations intended to affect threshold or bias settings must be presented
before the onset of a trial/stimulus. This is typically achieved using pre-trial cues or blocked
instructions (e.g., Forstmann et al., 2008; Katsimpokis et al., 2020), the aim of which is to
allow participants to make strategic adjustments (e.g., adopt different threshold/bias
settings) before encountering the upcoming stimulus.

In a typical experiment, thresholds are used to explain speed—accuracy trade-off effects
whereby individuals set lower thresholds when less time is available, and higher thresholds
when more time is available (Bogacz et al., 2010; Evans, Hawkins, et al., 2020; Forstmann et
al., 2008; Frazier & Yu, 2007; Heitz & Schall, 2012; Katsimpokis et al., 2020; Rae et al., 2014;
Ratcliff & McKoon, 2008). Behaviourally, higher thresholds predict slower, more accurate
decisions, while lower thresholds predict faster, less accurate decisions (Ratcliff & Rouder,
1998). In practice, thresholds are sensitive to task importance and response bias
manipulations, in which participants set lower thresholds for prioritized/more
rewarding/higher frequency responses and higher thresholds for non-prioritized/less
rewarding/lower frequency responses (Boag et al., 2019; Mulder et al., 2012; Strickland et

al., 2018; Trueblood et al., 2021; for a review, Cerracchio et al., 2023). Thresholds are
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further implicated in post-error slowing (Damaso, Castro, et al., 2022; Damaso, Williams, et
al., 2022), a kind of trial-to-trial speed—accuracy trade-off (Larson & Hawkins, 2023).

Starting point. As noted in the preceding paragraph, racing accumulator models measure
biases for one response over another by allowing competing response options to have
different thresholds. By contrast, relative evidence models measure response biases by
assessing how the starting point of the evidence accumulation process deviates from the
neutral midpoint between the two response boundaries (Leite & Ratcliff, 2011; Ratcliff &
McKoon, 2008; see also, Edwards, 1965). Like thresholds, the evidence starting point is
assumed to be under the control of the decision maker and manipulations intended to affect
starting point must be presented before stimulus onset. Behaviourally, deviating from the
neutral midpoint makes responses for the favoured (closer) threshold faster and more
accurate while making responses for the non-favoured (further) threshold slower and less
accurate (Ratcliff & McKoon, 2008; for a review, Cerracchio et al., 2023). In experiments,
starting point biases have been used to measure biases in police officer’s decisions to shoot
lighter- versus darker-skinned suspects (Johnson et al., 2018, 2021; Pleskac et al., 2018) and
to quantify individuals’ tendency to identify items as weapons versus non-weapons (Todd et
al., 2021). Starting point has also been used to understand how various response biases are
affected by factors such as heightened time pressure (Chen & Krajbich, 2018), changes in
stimulus prevalence (Trueblood et al., 2021; see also, Leite & Ratcliff, 2011), and payoff
structure (Leite & Ratcliff, 2011).

Nondecision time. Nondecision time measures the sum of the time taken to encode the
stimulus (at stimulus onset) and time to produce the motor response (at response onset)
(Bompas et al., 2023). Nondecision time is sensitive to the difficulty of both the encoding
and motor responding stages. For example, it is sensitive to changes in low-level visual
features of stimuli and the complexity or force required to produce the motor response
(Bompas et al., 2023; Gomez et al., 2015; Ho et al., 2009; Sandry & Ricker, 2022; Servant et
al., 2016; Voss et al., 2004; Weindel, Gajdos, et al., 2021). Although encoding and motor RT
cannot be separately identified in standard EAMs, they may be disentangled experimentally
(e.g., by holding stimulus properties constant while manipulating response modality or vice-
versa). Empirically, nondecision time shifts RT distributions in time without affecting

accuracy or the shape or scale of the distribution (Ratcliff & McKoon, 2008).
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In experimental settings, nondecision time has been used to measure potential
differences in encoding or motor response production (Ratcliff, Thapar, Gomez, et al., 2004;
Van Maanen et al., 2016). For example, Ratcliff et al. (2004) found that older participants
produced reliably slower nondecision times than did younger participants (see also, Van
Maanen et al., 2016). Saccadic eye movements have been found to elicit reliably shorter
nondecision times than manual key-press responses (Bompas et al., 2023; Ho et al., 2009).
Nondecision time has also been found to be shorter under conditions of greater urgency
(e.g., Rae et al., 2014, Ratcliff, 2006), potentially reflecting a tendency to encode stimuli less
deeply when under time pressure (e.g., Palada et al., 2018, 2019). However, we caution that
nondecision time is sometimes estimated less reliably than other EAM parameters (Lerche &
Voss, 2018), and can be highly variable across individuals, conditions, and tasks (Bompas et
al., 2023). Refining EAMs account of nondecision time is a topic of ongoing model
development work (Bompas et al., 2023; Kelly et al., 2021; Servant et al., 2021).

Variability parameters. The across-trial variability parameters (i.e., in accumulation rate,
starting point, and nondecision time) are less frequently used for measurement or inference.
Rather, they allow the model to account for a number of commonly observed features of
behavioural data, such as crossovers in the speed of correct and incorrect responses (Ratcliff,
2013; Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004).

Across-trial variability in accumulation rate can account for slow errors (Ratcliff, 1978).
This is because trials with faster-than-average accumulation produce fast responses with
very few errors. By contrast, trials with slower-than-average accumulation produce slow,
error-prone responses, which together results in disproportionately many slow errors
(Lerche & Voss, 2016). In experiments, across-trial rate variability can be used to account for
manipulations affecting variability in evidence extracted from the stimulus (Starns, 2014; Yap
et al., 2012), and to identify factors that lead to increased uncertainty (greater variability) in
decision making (Palada et al., 2020; Starns, 2014).

Across-trial variability in starting point can account for fast errors (Laming, 1968). This is
because when the accumulation process starts closer to the threshold for the incorrect
latent response, errors become both faster and more frequent. By contrast, when
accumulation starts closer to the threshold for the correct latent response, errors become
slower and less frequent, resulting in disproportionately many fast errors (Lerche & Voss,

2016). Including starting point variability alongside rate variability allows the model to
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account for interactions (crossovers or reversals) between correct and incorrect RT (e.g., fast
errors in some cells and slow errors in others; Ratcliff et al., 1999; Ratcliff & Rouder, 1998;
Wagenmakers, Ratcliff, et al., 2008). Starting point variability may be used to account for
factors affecting uncertainty (variability) in prior beliefs or expectations (Mulder et al., 2012).

Across-trial variability in nondecision time can account for changes in the leading edge
(e.g., the 0.1 quantile) of RT distributions (e.g., Ratcliff et al., 2004; Ratcliff & Tuerlinckx,
2002), including those caused by contaminant processes such as fast guesses (Ratcliff &
Tuerlinckx, 2002). This is because nondecision time variability fattens the tails (i.e.,
decreases skew) of RT distributions (Lerche & Voss, 2016), making the model more robust to
fast contaminants. Models with nondecision time variability predict a shallower onset of
responding than models without. Empirically, nondecision time variability accounts for
variability in encoding and motor response production (Bompas et al., 2023).

We reiterate that across-trial variability parameters tend to be estimated less reliably
than other parameters (Boehm et al., 2018; Vandekerckhove & Tuerlinckx, 2007; van
Ravenzwaaij & Oberauer, 2009; Lerche & Voss, 2016; Lerche, Voss, & Nagler, 2017; Yap,
Balota, et al., 2012). Moreover, at least one rate variability parameter is typically held fixed
in at least one design cell in order to satisfy the scaling property of EAMs (Donkin, Brown, et
al., 2009). In racing accumulator models, a common choice is to set across-trial rate
variability to 0.1 or 1. Although some work suggests that differences in across-trial variability
in accumulation rate and/or nondecision time can be recovered reasonably reliably in some
cases (e.g., Boehm et al., 2018; Starns & Ratcliff, 2014), there is evidence suggesting
variability parameters trade-off with other model parameters and can exhibit non-
stationarity over the course of an experiment (e.g., Dutilh et al., 2011; Evans et al., 2018;
Evans & Hawkins, 2019). Estimation and reliability issues with variability parameters can be
improved by fixing parameters (e.g., by constraining variability parameters to a single
estimated value or removing them entirely by setting variability to zero, Boehm et al., 2018;
Lerche & Voss, 2016; van Ravenzwaaij et al., 2017). Moreover, some EAM software simply
does not allow for the estimation of across-trial variability (e.g., EZ-diffusion, Dutilh et al.,
2013; Grasman et al., 2009; Schmiedek et al., 2007; Souza & Frischkorn, 2023; van
Ravenzwaaij et al., 2012, 2017; Wagenmakers et al., 2007, 2008), or requires variability to

be fixed across participants (e.g., HDDM, Wiecki et al., 2013). Overall, we recommend
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exercising caution if answering the research question relies on inferences based on

potentially unreliable variability parameters.

In the next section, we outline the elements of a single trial in a typical EAM experiment

and considerations for task design.

Table 2. Mapping experimental

manipulations to EAM parameters.

Parameter

Common manipulations

Data effect

Accumulation rate

Stimulus discriminability;
subjective task difficulty; strength
of preference; strength of

memory trace; attention; effort

Increasing accumulation rate
produces faster, more accurate
decisions and reduces RT

variability.

Threshold

Speed—accuracy trade-off;
instructions; cognitive control;
urgency; choice biases (in racing

accumulator models)

Increasing threshold/boundary
separation produces slower, more
accurate decisions, and increases

RT variability.

Starting point

Response biases; stimulus
prevalence/base rate;
reward/payoff structure; prior

knowledge and expectations

Starting closer to a boundary
makes that response occur more
quickly and frequently than the

non-favoured response.

Nondecision time

Accounts for complexity of
encoding and the complexity or
difficulty of producing the motor

response.

Shifts RT distributions by a
constant amount without
affecting accuracy or the shape

and skewness of the distribution.

Rate variability

Accounts for decision
uncertainty/evidence variability

and slower-than-average errors.

Greater across-trial rate variability
increases the proportion of slow

errors.

Starting point variability

Accounts for variability in prior
beliefs or expectations, and

faster-than-average errors.

Greater starting point variability
increases the proportion of fast

errors.

Nondecision time variability

Account for variability in motor
responding and RT distributions
with reduced skewness (e.g., a
shallower onset of responding

due to fast contaminants).

Greater nondecision time
variability ‘smears’ the RT
distribution along the time axis,
creating fatter tails (i.e., greater
probability of both faster and
slower responses) and shallower

onset of responding.
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Box 1. Selective influence.

Selective influence refers to the idea that an experimental manipulation should directly and
selectively engage the target cognitive process. That is, a manipulation should affect only the EAM
parameter it is theoretically expected to affect, and it should not affect other parameters (Jones &
Dzhafarov, 2014). Selective influence was neatly demonstrated by Ratcliff and Rouder (1998), who
orthogonally manipulated decision difficulty and speed/accuracy instructions. Decision difficulty
was found to selectively influence diffusion model accumulation rates, whereas speed/accuracy
instructions selectively influenced thresholds (see also, Forstmann et al., 2011; Hawkins et al.,
2012; Starns & Ratcliff, 2010; Usher & McClelland, 2001; Wagenmakers et al., 2008; but see,
Katsimpokis et al., 2020). Subsequent work demonstrated selective influence for other
parameters. Changing the rewards/payoffs associated with different responses selectively
influenced starting point bias (Voss et al., 2004) while changing response modality (e.g., saccades
vs. manual key presses) selectively affected nondecision time (Ho et al., 2009), consistent with the
theorized role of those parameters.

Selective influence is desirable because it greatly simplifies interpreting the results of an EAM
analysis. However, it is not strictly necessary. Many theoretically interesting violations of selective
influence have been reported. In one prominent example, Rae et al. (2014) demonstrated that an
urgency manipulation affected both accumulation rate and thresholds (a finding that has since
been well replicated, e.g., Boag et al., 2019; Heathcote & Love, 2012; Palada et al., 2020; Starns et
al., 2012; see also, Vandekerckhove et al., 2008). Yet other work has shown that speed—accuracy
instructions can additionally affect nondecision time (Arnold et al., 2015; de Hollander et al., 2016;
Donkin, Brown, Heathcote, et al., 2011; Dutilh et al., 2019; Heathcote & Love, 2012; Ho et al,,
2012; Huang et al., 2015; Kelly et al., 2021; Palmer et al., 2005; Ratcliff, 2006; Rinkenauer et al.,
2004; Servant et al., 2018, 2021; Voss et al., 2004; Weindel, Anders, et al., 2021; Weindel, Gajdos,
et al., 2021).

Overall, this work suggests that inappropriately assuming selective influence may lead to
misleading conclusions or to real effects being missed. We recommend comparing models that do
and do not assume selective influence to ensure the extra complexity of more flexible models is

warranted (see section ‘Comparing and Evaluating EAMSs’).
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Trial structure and event timing

One of the most important design considerations for model plausibility is how trials are
structured in terms of the timing of events within a trial (e.g., cue and stimulus
presentation). For an EAM to be a plausible model of the true decision process, the
sequence and timing of events within a trial must match the processing assumptions of the
model. A typical trial structure/sequence of a standard EAM is illustrated in Figure 2. In the
following subsections, we discuss the components that make up a typical trial, their
purpose, and common pitfalls surrounding their implementation. Note that the advice
presented here allows for judicious deviations, such as when developing a model or using an

extended EAM with different processing assumptions.

Observed RTs Truncated RTs
i (nonresponse misses)
Stimulus onset . Response onset  Trial deadline
"-.‘Accumulaton
process
A A
I Cue | Fixation Response window Feedback | ITI |
~ 7
“ % TOO Press any ke
SPEED + o 1 ~ y key
SLOW! to continue
AN \
I 1s | 0.2-5s | Stimulus to response or trial deadline I 1-5s | 1-5s
Time

Figure 2. Structure of a typical decision trial for an EAM-appropriate task. The trial begins with a
cue (e.g., instructing the participant to emphasize response speed or accuracy), followed by a
fixation interval of variable (unpredictable) duration. Next, a stimulus is presented (stimulus onset)
continuously until either the participant makes a response (response onset), or the trial time limit
expires (which produces a nonresponse that is truncated from the RT distribution). Feedback
indicating that the participant responded too slowly is then displayed. Finally, an intertrial interval
gives the participant time to prepare for the next trial. The theoretical accumulation process is
illustrated by the dotted arrow. Observing the outcome of many such decision trials produces a
distribution of RTs with a characteristic positive skew (the density of which is illustrated in grey at
the top of the figure). The presentation durations shown are suggestions only and should be

calibrated to the specific task.
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Cue. In some studies, trials begin with a cue that indicates how participants should
perform the upcoming trial (Figure 2). The cue interval is an opportunity to present
information intended to affect the decision maker’s processing and cognitive control settings
(e.g., thresholds and biases) prior to the decision. For example, presenting the text “Fast!” or
“Accurate!” may signal that participants should respond either quickly or accurately,
respectively (e.g., Forstmann et al., 2008; Katsimpokis et al., 2020). Other kinds of cues may
direct participants’ gaze to a particular item or spatial location (allowing comparison of
attended versus unattended performance, e.g., Liu et al., 2009; Logan et al., 2023; Smith et
al., 2015) or provide prior information intended to set up biases in the decision maker
before encountering the stimulus (Karayanidis et al., 2009; Mulder et al., 2012; Trueblood et
al., 2021).

Fixation. Fixation intervals serve the twofold purpose of concentrating participants’ eye
gaze/attention on the location of the upcoming stimulus (usually at the centre of the display)
and of allowing time for residual processes (such as those stemming from the preceding cue
or trial) to complete and return to baseline to avoid process overlap (Pashler, 1994). In a
typical fixation interval, participants fixate their gaze on a centrally presented fixation cross
while awaiting the stimulus. One issue that can arise with fixed-duration fixation intervals is
that participants learn to anticipate the onset of the upcoming stimulus. Participants’
expectation of the onset of the next trial increases over time according to a hazard function
(Luce, 1991). This can lead some participants to prematurely sample evidence in anticipation
of the stimulus, resulting in disproportionate anticipatory responses for longer intervals
(Oswal et al., 2007), which produces biased estimates of nondecision time (Jepma et al.,
2012). To avoid this problem, we recommend sampling the duration of fixation intervals
from an exponential (or pseudo-exponential) distribution (e.g., with mean around 0.7 s and
range of about 0.2—5 s) to avoid implausibly short intervals and excessively long waiting
times (e.g., Evans & Hawkins, 2019).

Stimulus onset. Following the fixation interval, the stimulus is presented. EAMs assume
that stimulus onset represents the beginning of the evidence accumulation process (plus the
time taken to encode the stimulus; Bompas et al., 2023). This structural constraint makes
certain tasks unsuitable for EAMs. For example, interrogation paradigms are inappropriate
for standard EAMs because the decision maker first views (and presumably accumulates

evidence about) the stimulus but must wait until prompted to give a response (Bogacz et al.,
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2006; Ratcliff, 2006). One reason this is problematic is because the evidence accumulation
process may terminate before the response prompt is presented, making it unclear what
cognitive processes might have occurred in the intervening time (or what the observed RT is
measuring). In sum, for the standard framework, it is crucial that the evidence accumulation
process runs uninterrupted from the onset of the stimulus until the response.

Response window. The onset of the stimulus marks the beginning of the response
window, which ends either when a response is submitted or upon expiry of a predefined
deadline. The response window should allow enough time for participants to process and
respond to the stimuli, and thus should be calibrated to the RT (and RT variability) of actual
participants performing the proposed task. An inappropriately calibrated response window
can lead participants to adopt undesirable/contaminant response strategies that are not
accounted for in standard EAMs. For example, an excessively short response window may
lead to a high proportion of fast guesses or cause slower responses to be truncated from the
tail of RT distributions (i.e., responses falling outside of the response window, as illustrated
in Figure 2). These processes can produce RT distributions that lack the characteristic
positive skew and thus cannot be fit by standard EAMs (Evans, Hawkins, et al., 2020).
Ignoring these issues can compromise parameter estimation (Verdonck & Tuerlinckx, 2016).
We recommend pilot testing novel tasks to find an appropriate response window, since the
optimal window will depend upon the task.

Another consideration is whether the average duration of decisions in the experimental
task is appropriate for EAMs. Participants making perceptual decisions about simple
psychophysical stimuli can usually respond within a 1.5 second response window. By
contrast, tasks typical of cognitive psychology (e.g., lexical decision, preferential choice) may
require up to 4 seconds to respond (Glickman & Usher, 2019), and more complex naturalistic
tasks can take even longer (e.g., up to 10 seconds, Boag et al., 2023; Boehm et al., 2021). It is
sometimes advised that standard EAMs be applied only to relatively rapid choice tasks (e.g.,
mean RT < 1.5 s, Ratcliff et al., 2004; Ratcliff & McKoon, 2008). This is intended to ensure
that the assumption of a single continuous evidence accumulation process is upheld, since
violations of the single stage assumption become increasingly plausible for decisions that
unfold over longer timescales. If longer decisions do in fact involve different underlying

processes, such as multiple processing stages, then they may not be accurately represented
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by a standard single-stage EAM, rendering the model difficult to interpret (Heathcote,
Brown, et al., 2015).

Some work suggests that standard EAMs may be a valid measurement model of more
complex naturalistic decisions that unfold over longer timescales (Boehm et al., 2021), even
when the assumption of a single accumulation process is explicitly violated (Boag et al.,
2023; Lerche & Voss, 2019). For example, Lerche and Voss (2019) found good fits to
simulated longer-RT data (mean RT = 7.4 seconds) in which the single accumulation process
assumption was violated. Empirical work has also found good fits to decisions with relatively
long RTs (e.g., Aschenbrenner et al., 2016, Experiment 2; Glickman & Usher, 2019).
Measurement-focussed application studies have also reported good fits of standard EAMs to
more complex naturalistic tasks (e.g., air-traffic control, maritime surveillance, and forensic
decision making) with longer RTs (2 s < mean RT < 10 s; for a review, Boag et al., 2023). In
this work, experimental manipulations were found to affect model parameters in the same
way in longer- and shorter-RT studies (i.e., task difficulty and stimulus discriminability effects
mapped to accumulation rates; speed—accuracy trade-off, cognitive control, and bias effects
mapped to thresholds and starting point).

Overall, when designing a novel task, researchers should consider whether the
assumption of a single uninterrupted accumulation process is appropriate, especially in
longer-RT tasks. If not, the researcher may turn to extended EAMs designed to account for
phenomena associated with longer RTs, such as models that allow for slow contaminant
processes (e.g., Dolan et al., 2002; Ratcliff & Tuerlinckx, 2002), randomly slow or non-
terminating accumulation processes (Damaso, Castro, et al., 2022; Howard et al., 2020;
Tillman et al., 2017), off-task mind wandering (Hawkins et al., 2019; Hawkins, Mittner, et al.,
2015), and multiple processing stages (Little, 2012; Provost & Heathcote, 2015; Shahar et al.,
2019).

Post-response interval. The post-response interval signals that the trial has ended, and a
response recorded. The post-response interval provides an opportunity to display corrective
feedback. For example, excessively fast or slow responding can be discouraged by displaying
a warning message (e.g., “Too fast/slow!”) following such responses. Warning messages can
be accompanied by a timeout interval that delays the onset of the next trial (e.g., by 1—5s)
to further encourage compliance (e.g., Evans & Hawkins, 2019). Such feedback can help to

keep mean RT within the response window.
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Providing feedback on performance (e.g., accuracy or points/rewards for correct
responses) on experimental trials may introduce non-stationarities (e.g., post-error
speeding/slowing and learning effects) that are not accounted for in the standard EAM
framework (Mileti¢ et al., 2020, 2021). Aside from during training (see section ‘Task
Training’), we advise against providing performance feedback for experimental trials, unless
explicitly modelling learning with an extended EAM (e.g., Fontanesi et al., 2019; Mileti¢ et
al., 2021; Pedersen et al., 2017). However, since providing no feedback at all may cause
participants to become disengaged from the task, it is possible to give summarized
performance feedback (e.g., mean accuracy or overall points scored) following each block of
trials. ‘Gamifying’ experiments in this way can increase participant engagement (Lumsden et
al., 2016) while avoiding undesirable non-stationarities associated with trial-to-trial feedback
(e.g., learning and adaptation). Moreover, such performance summaries can double as an
intermittent check that participants are paying attention and performing the task as
instructed.

Intertrial interval. Intertrial intervals refer to the time between trials. The intertrial
interval gives participants time to ‘reset’ and to concentrate their attention on the upcoming
trial. The intertrial interval is designed to prevent process overlap (Pashler, 1994) and to
minimize other potential sources of proactive interference, such as sequential or carry-over
effects stemming from events that occurred on previous trials (e.g., Aschenbrenner et al.,
2018; Balota et al., 2018; Jones et al., 2013). Avoiding such interference is important for
preserving stationarity, both within and across trials (i.e., for treating all trials within a
condition as independent observations of the same underlying process). Intertrial intervals
can be open-ended (e.g., where the participant must press a key to initiate the next trial),
allowing for self-paced breaks, or can automatically progress to the next trial after some

delay.

Sample size planning

Trial numbers. Researchers should plan to collect enough observations (trials) per
participant in each experimental condition for reliable modelling. Doing so is important

because sufficient data are required to obtain precise and unbiased individual measurement
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of the EAM parameters representing each participant’s latent decision processes (Smith &
Little, 2018).

Much methodological work has explored how the number of trials used in fitting affects
the reliability (e.g., bias, variability, and recoverability) of EAM parameters (Alexandrowicz &
Gula, 2020; Lerche et al., 2017; Lerche & Voss, 2016; Liken et al., 2023; Ratcliff & Childers,
2015; Ratcliff & Tuerlinckx, 2002; van Ravenzwaaij & Oberauer, 2009; Vandekerckhove &
Tuerlinckx, 2007; Visser & Poessé, 2017; Wagenmakers et al., 2007; Wiecki et al., 2013).
These studies broadly agree that around 200 trials per condition is sufficient to achieve
reasonably precise and unbiased individual-level measurement. In general, more trials afford
greater measurement precision and thus greater power to detect effects, since (Gaussian)
measurement variance decreases with the square root of the number of measurements
(trials) (Ratcliff & Tuerlinckx, 2002). However, they are diminishing returns, with simulations
suggesting there is little to gain from collecting more than about 500 trials per condition
(Lerche et al., 2017).

When determining the number of trials to collect, a critical question is whether there will
be sufficient observations of the least frequently occurring trial type in the data (Donkin,
Brown, & Heathcote, 2011). In most designs, the rarest kind of trials are incorrect responses
to the most easily discriminable stimuli (i.e., incorrect responses to decisions typically made
with high accuracy). However, other infrequent stimulus-response combinations are
possible, such as those that arise in paradigms involving the presentation of a rare stimulus
or event on a small subset of trials (e.g., Einstein & McDaniel, 1990; Loughnane et al., 2019;
Strickland et al., 2018). Liken et al. (2023) recommend obtaining error rates of at least 5% to
ensure reliable parameter estimation with the standard diffusion (Ratcliff, 1978) and linear
ballistic accumulator models (Brown & Heathcote, 2008). With 200 trials, a 5% error rate
corresponds to 10 observations of incorrect responses. This number should be taken as a
minimum: Ten error observations provided just enough information about the shape of the
error RT distribution to identify the model. Fitting to data with smaller error rates is risky
because the greater estimation uncertainty can make some parameters (e.g., rates and
thresholds) unidentifiable (Luken et al., 2023).

We caution that although 10 error observations may provide the bare minimum
constraint needed to identify the models (e.g., by locating the mean of the incorrect RT

distribution), many more observations are needed to make reliable inferences about
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parameters that rely on information about the variance and skewness of the error RT
distribution (e.g., the starting point and rate variability parameters for the incorrect latent
response). Parameter recovery simulations can help determine how many trials (and
participants) are needed to reliably measure a given effect (Heathcote, Brown, et al., 2015;
White et al., 2018; Wilson & Collins, 2019). The simulation procedure is as follows: 1) set
model parameters to values representative of the effect of interest, 2) simulate many
synthetic participants (datasets), 3) fit the model to the synthetic data, and 4) assess how
well the recovered parameters match the known data-generating values. Doing this for a
range of effect sizes and for different numbers of trials and participants can help determine
the most appropriate design for achieving a desired level of measurement precision (see
section ‘Parameter Recovery’).

Clearly, there is no one-size-fits-all solution to trial number planning, since it depends
upon the goals of the researcher, the size of the target effect, and properties of the model.
Several thousand observations may be needed to make reliable inferences about across-trial
variability parameters, or about parameters associated with rare responses (e.g., the
accumulation rate of the incorrect latent response). In general, we recommend researchers
use parameter recovery simulations to guide trial number planning (Heathcote, Brown, et
al., 2015).

When thousands of trials are required, the experiment may need to be spread across
multiple testing sessions. Long-duration experiments have several pitfalls that, if ignored,
can compromise an EAM analysis. For example, participants tend to become less engaged
(e.g., due to fatigue or boredom) the longer a task goes on (Cunningham et al., 2000;
Krimsky et al., 2017). Disengaged or impatient participants may ‘satisfice’ by processing
stimuli less deeply or by lowering their response criteria over time to get through an
experiment more quickly (Boehm et al., 2016; Evans et al., 2019; Hawkins et al., 2012).
Disengagement can introduce speeding trends and other autocorrelation effects in the data
(Gong & Huskey, 2023). Additionally, longer experiments that span multiple days tend to
have higher rates of participant attrition and may exacerbate already high day-to-day
variability in individuals’ cognitive and affective state (Schurr et al., 2024; Stevenson, Innes,
et al., 2024). Such effects are problematic because standard EAMs assume data are free of

such non-stationarities. These issues can be mitigated by giving participants frequent breaks,
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and by using appropriate counterbalancing and trial-randomization schemes to
experimentally control for time-on-task effects such as learning and fatigue.

Finally, we note that collecting a large number of trials is not always feasible. This is true
for fMRI research (in which scanner time is costly and scarce; Basten et al., 2010; Forstmann
et al., 2008), when studying certain clinical populations (Matzke, Hughes, et al., 2017), or
when reanalysing existing data. If the use of sparse data is unavoidable, there are several
techniques that can improve EAM estimation properties. These include using hierarchical
models (e.g., Stevenson et al., 2024), using more informative priors (i.e., for Bayesian
analyses, Lee & Vanpaemel, 2018; Matzke et al., 2020; Tran et al., 2021), constructing
simpler models (e.g., by not estimating across-trial variability parameters, Boehm et al.,
2018; Lerche & Voss, 2016; Ratcliff & Childers, 2015), holding some parameters constant
over conditions (Donkin, Brown, & Heathcote, 2011), and by using alternative (simpler)
model formulations that require only information about error proportions rather than error
RT (e.g., Ludwig et al., 2009). We recommend checking the results obtained from simpler
models against those obtained from a model in which the constraints are not applied
(Vandekerckhove & Tuerlinckx, 2007). If both approaches arrive at the same conclusions, this
provides evidence it is safe to interpret the simpler model. If not, one may need to adjust
the experimental design and sampling plan until reliable model estimation is achieved.

Participant numbers. A further consideration concerning data suitability is how many
participants to include in the sample. The number of participants determines how well
findings generalize to the wider population and contributes to power and measurement
precision in certain analyses (e.g., individual-differences correlations; Button et al., 2013;
Rouder & Haaf, 2019). Studies investigating individual differences (e.g., examining
correlations between EAM parameters and individual-level covariates) typically need many
participants (e.g., 80 or more), each performing at least a moderate number of trials (e.g.,
around 200), to obtain sufficiently low measurement noise to reliably characterise
potentially subtle individual differences (Rouder et al., 2023; Rouder & Haaf, 2018).
Between-subjects and mixed designs also typically require many participants for sufficiently
powered between-group contrasts (e.g., Boag, Strickland, Loft, et al., 2019; Steyvers et al.,
2019) and to precisely characterise the distribution of population-level parameters in

hierarchical Bayesian analyses (Lee, 2011).
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By contrast, studies seeking to reliably measure within-subjects effects without assessing
individual differences (e.g., comparing parameters for the same individual between different
conditions) typically use fewer participants (e.g., as few as 3; Ratcliff & Rouder, 1998) who
each perform a large number (typically thousands) of trials to ensure high individual
measurement precision (Smith & Little, 2018). An advantage of fully within-subjects designs
is that the unit of replication is the individual participant rather than the whole study,
meaning that each participant serves as an independent replication (validation) of the target
effects (Smith & Little, 2018). Replication increases confidence that obtained effects are real
and meaningful.

As with trial number planning, we recommend conducting parameter recovery
simulations (based on different numbers of synthetic participants) to understand how many
participants are needed to obtain a desired level of power or measurement precision for a

proposed analysis (White et al., 2018).

Procedural considerations

In this section, we discuss procedural considerations that can help bring participants (and
the data they produce) in line with EAM assumptions. We consider task instructions, task
training, and the testing environment.

Task instructions. Task instructions should be designed to maximize participant
compliance with the task and to minimize undesirable behaviours that may produce data
unsuitable for EAMs. Undesirable behaviours may include fast guessing, mind-wandering
and inattention, waiting/delayed start-ups, random responding, and nonresponding (e.g.,
Cassey et al., 2014; Hawkins et al., 2019; Ratcliff & Kang, 2021). The foremost goal of
instructions is to ensure that participants understand how to perform the task as intended
by the researcher. This may involve explaining how a typical trial is structured and showing
examples of different possible decision outcomes. Instructions should also explain key
features of the task display, experiment presentation software, and response apparatus.

It is good practice to confirm that participants understand the task instructions and to
provide reminders of key instructions before each testing block and following breaks or
interruptions. Participant compliance/understanding can be assessed through verbal

confirmation or by having participants demonstrate that they meet some performance
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criterion. As a generic strategy, we recommend instructing participants to respond to each
trial as quickly and accurately as possible. This instruction is designed to ensure that
decisions stem from a pure (uninterrupted) evidence accumulation process, as assumed in
the models. If using a manual response modality such as a computer keyboard, we suggest
instructing participants to keep their fingers positioned directly above the response keys.
This serves to reduce across-trial variability in nondecision time (potentially justifying its
removal from the model) and ensures motor RT is as similar as possible for all participants
(potentially justifying estimating a common nondecision time across participants). We
recommend inviting participants to clarify any outstanding questions before commencing
the experiment. Doing so may reduce the amount of data lost due to misunderstanding or
noncompliance.

Task training. It is good practice to have participants perform practice/training trials
before starting the experiment. Practice serves the two-fold purpose of helping participants
understand the task and of stabilising performance prior to the experimental trials. Reaching
a stable level of performance is important for preserving within-condition stationarity (i.e.,
that latent decision settings do not change within a condition). Identifying the point of stable
performance is difficult since learning and adaptation may continue indefinitely for some
tasks. Nevertheless, common practices include having participants practice until reaching
some performance criterion (e.g., > 80% accuracy). Providing performance feedback
following training trials (e.g., indicating whether the response was correct or incorrect) can
help to speed up the learning/performance stabilisation process. Non-stationarities and
carry-over effects (e.g., across trials and conditions) can be further minimized using
appropriate randomization (e.g., randomizing the presentation of trials within a condition)
and counterbalancing regimes (e.g., balancing the order of conditions within an experiment;
Brooks, 2012; Lewis, 1989; Zeelenberg & Pecher, 2015).

The testing environment. The testing environment should encourage participants to
perform the experimental task in the manner intended by the researcher. For most
purposes, this means that participants are seated at a desk with a computer and a keyboard
or other response apparatus, and a display monitor positioned at a comfortable viewing
distance. In application studies, which use various high-fidelity simulated and virtual-reality
environments (e.g., Castro et al., 2022; Ratcliff & Strayer, 2014; Tillman et al., 2017; Vanunu

& Ratcliff, 2023), participants should be positioned appropriately for the simulator
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environment. To facilitate engaged and attentive task performance, testing should be
conducted in a quiet, comfortable space, free from distractions and interruptions. This is
important for the EAM assumptions of model plausibility (i.e., that responses are generated
by a single continuous evidence accumulation process) and of stationarity (i.e., that latent
cognitive settings are stable over time).

Ideally, all participants would be tested in a single in-person session under identical
conditions. However, if testing must be conducted across multiple sessions or in different
locations, then conditions should be kept as consistent as possible between each session
and testing location. Consistency of context is important because individuals are known to
use different decision-making strategies in different contexts, such as when performing a
task inside versus outside of an fMRI scanner (Forstmann et al., 2008; Van Maanen et al.,
2016). Inside the scanner, participants adopted more conservative (higher) response
thresholds and had longer nondecision times than they did in the out-of-scanner testing
context (Van Maanen et al., 2016; see also, Forstmann et al., 2008; Gunawan et al., 2020).
Ignoring or aggregating over such context effects may introduce undesirable data features
(e.g., bimodal RT distributions) that may cause failures to fit and produce misleading or
meaningless parameter estimates.

Online testing platforms (e.g., Mechanical Turk, Prolific, CloudResearch) give researchers
the potential to collect data more quickly and affordably than is possible offline (Barbosa et
al., 2023; Birnbaum, 2004). However, there are concerns that unsupervised online
participants may generate poor quality data (e.g., data that are noisy, non-stationary, or
generated by contaminant processes; Douglas et al., 2023; Peer et al., 2021). These concerns
arise because, lacking supervision, online participants may misunderstand task instructions
or be inattentive/careless (Albert & Smilek, 2023; Aruguete et al., 2019) and the remote
online context makes it difficult for experimenters to identify and correct such problems
(Reips, 2002). Ratcliff and Hendrickson (2021) conducted an online replication of several
classic EAM studies and found that almost half of the participants in one experiment made a
significant number of fast guesses (i.e., premature responses with chance accuracy) and/or
produced RTs that were unstable (non-stationary) across the testing session. Nevertheless,
inferences based on diffusion model parameters were largely consistent with the prior in-
person studies (Ratcliff & Hendrickson, 2021). We recommend approaching online testing

with appropriate caution and to avoid collecting mixed samples of online and in-person
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participants. We refer readers to Gong and Huskey (2023) for more detailed advice about
constructing an online testing pipeline for EAM analyses.

If context effects are suspected, we recommend accounting for these effects in the EAM
analyses. This can be done in most EAM software by including a ‘session’ or ‘testing context’
factor allowing parameters to vary by context, by fitting the model to data from each context
separately, or by building the additional contextual structure into a hierarchical model (e.g.,
Schurr et al., 2024; Stevenson, Innes, et al., 2024; Wall et al., 2021). Finding a close

agreement across contexts may justify pooling data.

Collecting and recording data

EAM analysis requires certain information about each trial to be recorded. Such
information is typically recorded by the software used to present the experiment and is
saved in the form of a data table or comma-separated values file, in which each row
represents a trial and each column an experimental or measured variable. At minimum, each
row of the data should record the participant identifier, experimental condition, the
presented stimulus, the submitted response and RT.

Data should include the testing session (if more than one) and trial number, and it is
good practice to record the timing of events, including stimulus and response onsets, and
events such as cues, feedback/reward screens, and intertrial intervals. While not everything
will be used in modelling, the raw data should ideally allow one to reconstruct the trial
composition and timing of the original experiment. Most EAM software will require as input
a data frame of this approximate form (e.g., Heathcote et al., 2019; Stevenson et al., 2024).
However, specific data and file formatting requirements will differ depending on the

software/fitting routine used.

Screening data prior to EAM analysis

Prior to EAM analysis, it is important to screen data for potentially undesirable features
or distributional properties that may violate EAM assumptions. Undesirable data features
can include outliers (excessively fast or slow RTs), nonresponses, truncated or misshapen RT

distributions, and data from participants who did not comply with task instructions. These
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contaminant processes can compromise the validity of an EAM analysis. Specifically, failure
to ensure data fidelity can introduce bias and uncertainty into parameter estimates (Ratcliff,
1993; Ratcliff & Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx, 2007).

Outliers. Outliers are contaminant RTs that are generated by processes other than those
that the researcher is interested in, and which often lie outside the range of normal
observations (Berger & Kiefer, 2021; Miller, 2023). Outliers can be the result of fast guesses
(e.g., guesses made without properly inspecting the stimulus), slow guesses (e.g., guesses
based on a failure to reach a decision), delayed or failed start-ups (e.g., due to attentional
lapses or ‘trigger failures’, Matzke et al., 2017; Vandekerckhove et al., 2008), or from the
participant executing multiple runs of the process of interest (e.g., making multiple
assessments before committing to a final response; Ratcliff, 1993; Vandekerckhove &
Tuerlinckx, 2007).

The simplest and most common method for removing outliers is to define a range of
acceptable RTs and to remove any observations outside of this range. For fast outliers, it is
common practice to remove RTs faster than about 150—300 ms (e.g., McVay & Kane, 2012;
Rae et al., 2014; White et al., 2010). This practice is motivated by the argument that, since
nondecision time (for manual key presses) is typically on the order of 150—250 ms (Bompas
et al., 2023), responses executed sooner than this are psychologically implausible because
they allow too little time for the accumulation of evidence. A more principled method for
removing fast guesses is motivated by the fact that fast guesses tend to have very short RTs
and chance-level accuracy (Ratcliff & Kang, 2021; Ratcliff & Tuerlinckx, 2002;
Vandekerckhove & Tuerlinckx, 2007). Consequently, one can sort RTs from fastest to slowest,
find the RT at which accuracy rises above chance, and discard all RTs below the chance-
performance point (Vandekerckhove & Tuerlinckx, 2007). The latter method is preferrable,
although differences between approaches will likely be small unless there is a significant
proportion (e.g., > 5%) of fast contaminants distorting the leading edges of the RT
distributions (Ratcliff, 1993, 2013; Ratcliff & Tuerlinckx, 2002).

For slow outliers, it is more common to define an upper cut-off based on some measure
of observed RT variability or to simply not censor slow outliers unless there is clear evidence
of their presence. For example, some researchers censor RTs beyond 3 times the
interquartile range/1.349 above the mean (a measure of standard deviation that is robust to

skew; e.g., Strickland et al., 2018). Since RT variability differs between individuals, the
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process of defining and removing slow outliers should be conducted separately for each
participant (Miller, 2023). We caution that slow contaminants can be more difficult to detect
than fast guesses, or even impossible, as although they are generated by a contaminant
process, they may be hidden within the range of normal RTs (Ratcliff, 1993; Ulrich & Miller,
1994; see also, Berger & Kiefer, 2021).

Nonresponses. Nonresponses occur when a participant fails to submit a response (e.g.,
due to missing the response deadline). Since nonresponses result in missing values for
choice and RT, standard EAM likelihood functions cannot be evaluated for nonresponses.
Nonresponses are thus uninformative in fitting standard EAMs and should be excluded prior
to fitting the model. Some kinds of nonresponses, such as ‘trigger failures’ (i.e., failures to
run the evidence accumulation process, Matzke et al., 2017) can be incorporated into
standard EAMs via mixture modelling (Heathcote et al., 2019) or with the aid of specialized
experimental designs (Verbruggen et al., 2019).

Misshapen or non-stationary RT distributions. The geometry of standard EAMs predicts
positively skewed, stationary RT distributions free of truncation (i.e., without censorship of
the leading or trailing edge of an RT distribution). EAMs struggle to capture the shape of
truncated distributions, since the truncation process is not accounted for in the model.
Similarly, EAMs cannot predict normally distributed or negatively skewed RT distributions
(Evans, Hawkins, et al., 2020), or non-stationary distributions that change in shape or scale
over time (Mileti¢ et al., 2021; Walsh et al., 2017). We recommend checking that RT
distributions are positively skewed, stationary, and free of truncation. Non-stationarity can
be checked by testing the correlation between RT and trial number or by dividing the RTs
into sequential bins and testing for changes in mean RT/variance/skewness. Significant
correlations or between-bin differences suggest non-stationarity.

Noncompliant participants. In addition to excluding individual contaminant trials, it is
prudent to exclude data from participants who failed to comply with task instructions. The
reason is that noncompliant participants are unlikely to have used the same cognitive
strategies as compliant participants who performed the task as instructed. Consequently,
standard EAMs may be a poor model of the unknown processes underlying noncompliant
participants’ data. One indicator of noncompliance is chance-level performance. It is
common practice to exclude data from participants with near-chance performance over all

or part of the experiment (e.g., Stevenson, Innes, et al., 2024).
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Manipulation check. It is important to check that experimental manipulations produced
the expected effects on accuracy and mean RT because it may be not worth modelling data
that lack convincing behavioural effects (Palminteri et al., 2017; Wilson & Collins, 2019).
Manipulation checks can be conducted by testing for differences in accuracy or mean RT
using traditional or Bayesian linear models (e.g., mixed-effects regression models, Rouder et
al., 2017). Bayesian approaches further allow for quantifying evidence for null effects using
Bayes Factors (Dienes, 2016; Lakens et al., 2020; Morey & Rouder, 2011). A lack of
convincing behavioural effects could indicate that the experimental manipulations were
weak or ineffective. Nevertheless, it is possible to find theoretically interesting latent effects
that are masked in accuracy or RT (Lerche & Voss, 2020). We recommend pilot testing
proposed tasks on a small sample of participants to ensure novel designs/manipulations are
effective.

When it comes to data exclusions, it is our view that prevention is better than a cure.
Good data is a hard-won resource, and researchers should seek to minimize the amount of it
lost to exclusions. We encourage researchers to take measures to minimize contaminants
such as fast guesses and nonresponses and to ensure participants comply with task
instructions (e.g., by providing sufficient task training and penalizing undesirable
behaviours). Encouraging compliance will help maximize the data quality and minimize the
data lost to exclusions. All data exclusions and exclusion criteria should be reported
transparently. Further, it is good practice to check whether results are robust to exclusions

(e.g., by conducting the same analysis with and without the exclusions applied).

Fitting EAMs to data

Once satisfied the data are appropriate for EAM modelling, the process of model fitting
can begin. There are numerous freely available software packages that enable fitting EAMs
to data (e.g., Heathcote et al., 2019; Innes et al., 2022; Stevenson et al., 2024;
Vandekerckhove & Tuerlinckx, 2008; Voss et al., 2015; Voss & Voss, 2007; Wagenmakers et
al., 2007, 2008; Wiecki et al., 2013). Some fitting software takes a Bayesian approach and
some use frequentist methods. Software differs on which models are supported and in how
readily the software can be modified or extended (e.g., to support novel models). It is

beyond the scope of this article to weigh the merits of various software packages and fitting
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methods. We direct interested readers to several detailed comparative studies (e.g.,
Alexandrowicz & Gula, 2020; Evans, 2019; Lerche et al., 2017; Ratcliff & Childers, 2015; van
Ravenzwaaij & Oberauer, 2009) and to existing comprehensive resources on evaluating and
troubleshooting the model fitting process (e.g., assessing convergence and diagnosing
problems with sampling/fitting algorithms; Baribault & Collins, 2023; Gelman et al., 1995;
Kruschke, 2014; McElreath, 2016).

We recommend fitting EAMs to the data of individuals rather than to group-aggregated
data (e.g., data that has been collapsed or averaged across participants). This is because
nonlinear models (such as EAMs) can produce misleading inferences when fit to aggregated
data (Heathcote et al., 2015; see also, Averell & Heathcote, 2011; Brown & Heathcote, 2003;
Heathcote et al., 2000). In some cases, one may want to fit just a single model, such as when
the researcher has in mind a specific EAM, and clear expectations for how model parameters
should change. In this case, the researcher moves on to assessing absolute fit (i.e., how well
the chosen model accounts for important data features) and then on to interpreting
parameters. An alternative (and more common) situation is to have several plausible models
of the data, with the goal of finding the one that gives the best (e.g., most parsimonious)
account of the data. Finding a good model involves assessing relative fit (i.e., how well a
model accounts for data relative to other models) and absolute fit and evaluating the

reliability of parameter effects. These are the topics of the next section.

Comparing and evaluating EAMs

A thorough modelling analysis involves evaluating both relative fit (a model’s ability to
account for data relative to other models) and absolute fit (a model’s absolute ability to
capture the data). Model comparison enables researchers to evaluate competing cognitive
theories against one another (Pitt et al., 2002), the goal being to find the simplest model
that also fits the data well (Myung & Pitt, 1997). Model comparison is important because
more flexible models will have an unfair advantage in fitting data more closely than a simpler
model but will also tend to predict future data less well than a simpler model that only
captures robust/reliable effects (Busemeyer & Wang, 2000; Cutting et al., 1992; Myung,
2000; Myung & Pitt, 1997; Roberts & Pashler, 2000; Yarkoni & Westfall, 2017).
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Model comparison requires the researcher to propose a set of candidate models, each of
which constitutes a different theory of decision making, as instantiated in an EAM. For
example, a researcher might be interested in whether participants’ slower RTs in one
condition are due to slower accumulation, higher thresholds, or longer nondecision time (or
some combination thereof). The researcher would then build models that explain the effect
(i.e., slower RTs) using (the appropriate combination of) accumulation rates, thresholds, or
nondecision time, while holding the other parameters fixed. The proposed models may vary
in complexity (e.g., the number of free parameters and how model parameters are
combined in the model equations, Myung & Pitt, 1997) and in which parameters are used to
explain the target effects (e.g., whether a manipulation is assumed to affect accumulation
rates or thresholds or both). Moreover, researchers may seek converging evidence by fitting
the same theory instantiated in different EAM architectures (e.g., using relative evidence
and racing accumulator models). Doing so helps to ensure results are not dependent on the
specific choice of EAM (Singmann et al., 2018).

Relative fit. Relative fit can be assessed using model comparison metrics (e.g., Akaike,
1974; Ando, 2007; Schwarz, 1978; Spiegelhalter et al., 2002; Watanabe & Opper, 2010) that
account for both model fit and model complexity (for a review, Evans, 2019). These metrics
can identify the model that, out of the models considered, provides the most parsimonious
account of the data (i.e., offers the best trade-off between fit and complexity).
Methodological work indicates that even the relatively simple ‘parameter counting’ metrics
(e.g., AIC, Akaike, 1974; BIC, Schwarz, 1978; DIC, Spiegelhalter et al., 2002) give similar
results to gold-standard methods such as Bayes Factors (Evans, 2019), which can be difficult
to implement for complex cognitive models (Annis et al., 2019; Evans & Brown, 2018;
Gronau, Heathcote, et al., 2020), but are argued to give the optimal trade-off between
flexibility and goodness-of-fit (Jeffreys, 1998; Kass & Raftery, 1995).

When multiple models are under consideration, we recommend the ‘bookending’
strategy (Lee et al., 2019) in which the set of candidate models includes a minimally
parameterized base model (where all target effects are removed/held fixed) and a fully
flexible top model (where all target effects are included). This strategy helps establish upper
and lower bounds on model complexity and to the find the model (from the set of candidate
models) that provides the most parsimonious account of the data (Heathcote, Brown, et al.,

2015; Lee et al., 2019; Shiffrin et al., 2008). Bookending helps to navigate the treacherous
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waters between underfitting (i.e., failing to capture important data features) and overfitting
(i.e., capturing noise or idiosyncratic data features).

When participants have different preferred models, it can indicate the use of distinct
cognitive strategies. For example, in a speed—accuracy trade-off experiment, some
participants may be better fit by a model in which urgency selectively influences thresholds,
whereas others may prefer a model in which urgency affects both rates and thresholds. In
such cases, we recommend reporting the proportion of participants best represented by
each model.* We further encourage researchers to seek converging evidence (e.g., by
comparing multiple complexity metrics) when choosing from among many possible models.

Absolute fit. One limitation of relative fit metrics is that there is no guarantee that a
model selected in this manner actually provides a good account of the data (Box, 1976). The
winner may be the best of a bad bunch. This limitation makes relative fit metrics
inappropriate for falsifying models, since they only consider the relative evidence for the
winning model against (an incomplete set of) rival models, while ignoring whether the
winner gives an adequate account of the data (Palminteri et al., 2017). The ability to falsify
models is important for scientific progress, since it allows researchers to discard bad theories
(models) and to propose better ones that become the target of future falsification attempts
(Popper, 2005). Falsification requires assessing the absolute fit of a model, that is, its ability
to account for all the important trends in the data. A further reason assessing absolute fit is
critical is that parameters derived from models that fail to capture important data features
may be misleading or uninterpretable (Anscombe, 1973; Heathcote, Brown, et al., 2015).

Absolute fit is commonly assessed via visual inspection (Dutilh et al., 2019). In this
method, model predictions are overlaid against empirical data (Heathcote, Brown, et al.,
2015). We recommend assessing model fit to both accuracy (response proportion) and RT in
each cell of the design. Fit to RT should be assessed across the entire range of RTs (e.g., by
plotting fits to the 0.1, 0.5, and 0.9 RT quantiles, which correspond to the leading edge,
median, and tail, of an RT distribution, respectively). Some researchers also check whether

models capture higher moments (e.g., variance and skewness) of RT distributions (e.g.,

4 For hierarchical analyses, which assume a common model across participants, one may instead investigate
individual differences in the pattern (e.g., size and direction) of parameter effects.
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Evans, Hawkins, et al., 2020). Conducting a thorough evaluation of absolute fit can help
diagnose potential sources of mis-fit and identify where a model might be mis-specified.

We recommend visually inspecting model fits for each participant individually. Poor
individual-level fits can reveal noncompliant participants (e.g., using alternate or
contaminant strategies), since the EAM failed to adequately describe the processes at play.
We suggest running modelling analyses with and without poorly fit participants and
comparing the results of the two analyses. Points of disagreement may reveal findings that
are driven by processes other than those the researcher is interested in. We caution that
graphical assessment of fit is inherently subjective and thus subject to human error and
judgement biases (Browne & Cudeck, 1992; Korteling & Toet, 2022; Kunda, 1990).
Confidence can be increased by using multiple independent assessors (D’Agostino, 1986).
For reporting purposes, it usually suffices to show the overall fit averaged over participants
(although the model was fit individually), since it may be infeasible to display comprehensive
model fits for potentially hundreds of individual participants.

Parameter recovery. Having chosen an adequate model, it is good practice to assess
parameter recovery (Heathcote, Brown, et al., 2015). Parameter recovery refers to the
practice of fitting a model to many synthetic datasets (simulated from known parameter
values) and assessing whether the model consistently returns the known data-generating
parameters. Recovery can be assessed graphically by plotting the correlation between true
and recovered values. Parameter recovery studies have utility for establishing the reliability
of model inferences and for identifying potentially unreliable (poorly recovered)
parameters/effects. Parameter recovery simulations are also useful for assessing a design’s
suitability for modelling (in terms of trial and participant numbers) and for verifying the
efficacy of experimental manipulations (in terms of expected effect size; Heathcote, Brown,
et al., 2015; Mileti¢ et al., 2017; Wilson & Collins, 2019). To generate the synthetic data used
to assess recovery, one can simulate from parameter values that have been previously
reported for similar tasks (Tran et al., 2021), from values (e.g., posterior means) derived
from fitting the target model to prior data, or from values derived from the beliefs of subject
matter experts (Gronau, Ly, et al., 2020; Kadane & Wolfson, 1998; Stefan et al., 2022).
Parameter recovery should be assessed across a range of ‘true’ generating values, in case

there are biases in specific generating-parameter ranges.
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Test and interpret parameter effects. Having established a reliably estimated model that
is preferred based on relative and absolute fit, focus turns to testing and interpreting
parameter effects (i.e., differences across conditions or correlations) contained within the
preferred model. Tests can be conducted using traditional statistical approaches (e.g.,
ANOVA, Ratcliff et al., 2004, t-tests, Voss et al., 2004) or by comparing posterior parameter
distributions using Bayesian approaches (e.g., Kruschke, 2010; Meng, 1994). Establishing
that there are strong parameter effects can help justify complexity in a model (Heathcote,
Brown, et al., 2015). To aid interpretation, it is good practice to visualize parameter effects
(e.g., by plotting parameter means and variances or credible intervals across the levels of the
relevant manipulation).

Interpreting parameters involves mapping parameter effects back to cognitive theory. For
example, in working memory tasks, accumulation rate effects might be interpreted in terms
of differences in item activation in memory (e.g., Donkin & Nosofsky, 2012; Ratcliff, 1978;
Zhou et al., 2021). By contrast, in preferential choice tasks, rate effects might be interpreted
in terms of subjective utility or preference strength (e.g., Busemeyer et al., 2019; Konovalov
& Krajbich, 2017). Likewise, in different tasks, threshold effects might be interpreted in terms
of urgency settings (e.g., Evans, 2021) or the operation of adaptive cognitive control (e.g.,
Boag et al., 2019; Strickland et al., 2018). Linking parameters to broader cognitive theory
helps readers understand and interpret the results of an EAM analysis.

These evaluation practices constitute a minimal set of checks intended to promote
robust cognitive modelling (Lee et al., 2019), rather than an exhaustive list of best practices.
A complete tutorial on evaluating EAMs is beyond the scope of this article. We point
interested readers to a number of excellent sources on more advanced model evaluation
techniques (e.g., Evans, 2019; Heathcote et al., 2015; Shiffrin et al., 2008). These techniques
include model recovery and cross-fitting methods to assess mimicry between models
(Donkin, Brown, Heathcote, et al., 2011; Evans, 2020; Hawkins, Forstmann, et al., 2015) and
generalization tests to assess how well model predictions match new data and experimental

contexts (Busemeyer & Wang, 2000; Vehtari et al., 2017).
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Reporting an EAM analysis

We encourage researchers to carefully report all stimuli, materials, procedures, and
analysis choices. Table 3 lists essential information to include when reporting an EAM
analysis. The purpose of including this information is to help readers interpret and assess the
quality of the analysis, and to facilitate future follow-up studies, such as replications and
meta-analyses of EAM results (Theisen et al., 2021; Tran et al., 2021). Providing contextual
information (e.g., justifying research goals and design choices) can help readers interpret
findings and determine their scope of applicability. Thoroughly describing the experimental
procedure and analysis pipeline can help readers assess the trustworthiness of your results.
To promote transparency and openness in science (Hales et al., 2019; Nosek et al., 2016), we
encourage researchers to openly report potential flaws of models and methods. To further
encourage open and reproducible research (Criwell, Van Doorn, et al., 2019; Gilmore et al.,
2017; Munafo et al., 2017), we recommend researchers share anonymized raw data
(Martone et al., 2018; Wilkinson et al., 2016) along with modelling and analysis code
(McDougal et al., 2016; Wilson et al., 2019).

Table 3. Essential components to include when reporting an EAM analysis.

Analyses component Recommended reporting practice

Research context Provide background/context to the research question and justify all
design choices. Interpret findings in relation to the broader research
context.

Stimuli and materials Describe key properties of the stimuli and how they map to the
possible response options. Describe any equipment used for testing.

Task and procedure Describe the task and any training procedures, instructions, or feedback
given to participants. Report any trial-randomization or
counterbalancing schemes. Report the timing (onset and duration) of
all events (e.g., cue, fixation cross, stimulus, trial deadline, feedback,
and intertrial interval). Report the number of participants, trials, and
testing blocks, and the trial composition of each block.

Data exclusions Report all exclusions (e.g., outliers, nonresponses, and noncompliant
participants) and exclusion criteria.

Response times Report RT mean and variance (averaged over participants) for correct

and incorrect responses in each condition.
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Measurement scale/units

Model parameters

Parameter coding

Parameter estimates

Model fitting method

Model fit

Model comparison

Model evaluation

Priors

Inferential statistics
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Report accuracy mean and variance (over participants) in each
condition.

Report the measurement scale/units (e.g., seconds vs. milliseconds) of
behavioural measures and relevant model parameters (e.g.,
nondecision time).

Report which parameters were included in the model and over which
conditions they varied. Report which parameters were not estimated
(e.g., fixed as scaling constants).

Report whether the model was cell coded (e.g., when different
parameters are estimated for each design cell) or whether an
alternative parameterisation was used.

Report descriptive statistics (e.g., means and standard deviations over
participants) for all model parameters.

Report the fitting method (e.g., the optimization or posterior sampling
method and criteria used to assess convergence) and software used.
Show whether the model captures the target data (e.g., by plotting
model predictions against observed effects).

Report model comparison metrics (e.g., AlC, DIC, or Bayes Factors) and
explain their interpretation.

Report the results of any model evaluation procedures (e.g., parameter
recovery, model mimicry, and generalisation tests).

For Bayesian analyses, describe the priors (i.e., distribution type and
parameter settings) for individual- or group-level parameters.

Describe all statistical tests and inferential procedures.

Going beyond the standard models

Here we raise the issue of what to do when a proposed task violates the processing

assumptions of standard EAMs or when the standard framework fails to provide an

adequate account of the data. In these situations, it is prudent to first search the EAM

literature to find out whether there already exists an extended EAM that may account for

your data. The literature is replete with EAM variants that have been adapted to account for

tasks and phenomena not accounted for in the basic EAM framework. One class of extended

EAMs account for violations of within-condition stationarity due to learning (Fengler et al.,

2022; Fontanesi et al., 2019; Mendonca et al., 2020; Mileti¢ et al., 2021; Pedersen et al.,

2017; Pedersen & Frank, 2020; Sewell et al., 2019). In these models, a learning rule allows
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parameters to be updated from trial-to-trial in response to feedback (for a review, Mileti¢ et
al., 2020). Extensions also exist that account for various violations of within-trial stationarity.
These include models that allow for within-trial changes in evidence strength (Diederich,
2024; Holmes et al., 2016; Holmes & Trueblood, 2018; Krajbich et al., 2010; Maier et al.,
2020; Sepulveda et al., 2020; Sullivan et al., 2015; Weichart et al., 2022; Yang & Krajbich,
2023) or thresholds (Busemeyer & Rapoport, 1988; Evans, Hawkins, et al., 2020; Hawkins,
Forstmann, et al., 2015; Smith & Ratcliff, 2022; Voskuilen et al., 2016; Voss et al., 2019;
Zhang et al., 2014), and the effects of multiple, potentially conflicting, sources of evidence
on the accumulation process (Lee & Sewell, 2024; Little et al., 2018; Ulrich et al., 2015;
Weichart et al., 2020; White et al., 2011, 2018). Another highly active area of model
development research seeks to refine the standard account of nondecision time by titrating
the sensory encoding and motor components (Bompas et al., 2023; Kelly et al., 2021;
Servant et al., 2021; Weindel, Gajdos, et al., 2021).

The basic framework has been extended to decisions involving more than one discrete
response per trial (e.g., best—worst ranking tasks, Hawkins et al., 2014; and double-
response paradigms; Evans, Dutilh, et al., 2020; Taylor et al., 2023; Ulrich & Stapf, 1984),
decisions with continuous response spaces (e.g., colour-matching and continuous-scaling
tasks; Kvam, 2019b, 2019a; Kvam et al., 2023; Kvam & Turner, 2021; Qarehdaghi & Amani
Rad, 2022; Smith, 2016, 2019; Smith et al., 2020; Zhou et al., 2021), and decisions that
involve integrating information along multiple attributes or feature dimensions (Busemeyer
et al., 2019; Busemeyer & Townsend, 1993; Fific et al., 2010; Krajbich & Rangel, 2011;
Nosofsky et al., 2011; Nosofsky & Palmeri, 1997; Roe et al., 2001; Strickland et al., 2023;
Trueblood et al., 2014; Tsetsos et al., 2010).

If no appropriate model exists, focus turns to model development. The goal of model
development is to construct a new model that accounts for phenomena that existing models
do not (Criiwell, Stefan, et al., 2019). This is often accomplished by adapting or extending an
existing model (e.g., Brown & Heathcote, 2005; Evans et al., 2018; Hawkins & Heathcote,
2021; Mileti¢ et al., 2021; Ratcliff & Rouder, 1998) but can also involve constructing an
entirely new model to explain the target paradigm (e.g., Ratcliff, 1978; Usher & McClelland,
2001). Model development is an iterative and exploratory process (Criwell, Stefan, et al.,
2019) and one may require specialized knowledge of mathematics and computer

programming to successfully build and implement a new model. We refer interested readers
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to several excellent resources on cognitive model development (Busemeyer & Diederich,
2010; Farrell & Lewandowsky, 2018; Lee & Wagenmakers, 2014).

One focus of model development concerns how to incorporate choice confidence ratings
into the standard account of decision making (Lee et al., 2023; Lee & Dry, 2006; Moran et al.,
2015; Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Van Zandt & Maldonado-
Molina, 2004). Confidence ratings offer a third data source (i.e., choice, RT, and confidence)
with which to constrain models of decision making (Vickers, 2014). Current models make
different assumptions about the how confidence rating decision trials should be structured.
For example, Ratcliff and Starns (2009) measure confidence during the initial decision, while
Pleskac and Busemeyer (2010) measure confidence during a subsequent additional decision
stage (see also, Moran et al., 2015). This difference is critical if confidence ratings are based
on different evidence before, during, and after a decision (Lee & Pezzulo, 2022, 2023). Such
structural differences make it difficult to compare models (both to other confidence models
and to standard EAMs), especially if eliciting the confidence rating changes how individuals
perform the task. We echo Evans and Wagenmakers (2019) in expressing that “although
choice confidence is an interesting additional source of data that can help us better
understand certain aspects of decision-making, inferences made in these paradigms may
lose direct applicability to the standard two-alternative forced choice paradigms used in

most decision-making tasks” (p. 18).

Concluding remarks

Our aim in this paper was to provide practical guidance on planning experimental tasks
for EAMs. To this end, we gave advice on how to design tasks that meet EAM assumptions,
on how to relate experimental manipulations to EAM parameters, and on how to collect and
prepare task data for EAM analysis. We discussed techniques for evaluating EAMs and
warned of common pitfalls that can arise in EAM analyses. Some issues, such as sample size
planning, depend upon the goals of the researcher and may require careful judgement. This
article is intended as a resource to aid in planning experiments for reliable EAM analysis. By
encouraging good task design practices, we hope to improve the quality and trustworthiness

of future EAM studies and to help users obtain valid and interpretable results from EAMs.
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