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Abstract: In an era where data volume is growing exponentially, effective data management techniques are more crucial

than ever. Traditional methods typically manage the size of large datasets by reducing or aggregating data

using a pre-specified granularity. However, these methods often face challenges in retaining vital information

when dealing with large and complex datasets, especially when such datasets reside in databases. We propose

a novel and innovative approach called Adaptive Granulation that addresses this issue by performing data

reduction or aggregation at the database level itself. A key concern that arises in the data reduction process

is the potential trade-off between the reduction of data volume and the preservation of prediction accuracy.

This is particularly relevant in scenarios where the primary goal is to leverage the reduced dataset for predic-

tive modeling. Our method employs Allan variance, originally developed for frequency stability analysis of

atomic clocks, to dynamically adjust the granularity of data aggregation based on the inherent structure and

characteristics of the dataset. By minimizing bias across different scales, Adaptive Granulation effectively

manages trade-offs between diverse aspects of the data such as underlying patterns, noise levels, and sampling

density. This paper outlines the algorithmic strategies for implementing Adaptive Granulation at the database

level and assesses its performance through the reduction of the training set size for a downstream regression

task on a variety of real-world and synthetic datasets. The results indicate that our method can adaptively

optimize granule sizes to effectively balance data patterns, noise levels, and sample densities across the entire

data space. Adaptive Granulation thus represents a significant advancement for efficient data management and

reduction in the big data era.

1 Introduction

Data reduction methods are increasingly becoming

vital in our data-driven world. As the proliferation

of big data continues across various sectors, includ-

ing healthcare (Raghupathi and Raghupathi, 2014),

finance (Hasan et al., 2020), social media (Sahatiya,

2018), e-commerce (Akter and Wamba, 2016), traf-

fic (Lv et al., 2015; Kim and Jerath, 2022) and more

(Chen et al., 2014), the sheer volume of data we gen-

erate is staggering. For example, in healthcare, pa-

tient records, wearable device outputs, and genomic

data produce immense amounts of data. Social me-

dia platforms like Facebook and Twitter generate mil-

lions of posts and interactions daily. Retail giants like

Amazon collect data about customer behavior, prefer-
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ences, and purchasing habits on a massive scale. It is

estimated that we are generating more than 2.5 quin-

tillion bytes of data each day (Zicari, 2012), and this

rate is only expected to increase with advancements

in technology and increased internet accessibility. By

2025, it is projected that there will be more than 180

zettabytes of data in the world (Holst, 2021).

Utilizing such large amounts of data for inference,

as well as storing them in databases, is increasingly

becoming an untenable exercise. While big data can

provide valuable insights and aid decision-making, it

can also overwhelm our computational and memory

resources, thus hindering effective analysis. While

studies have explored the use of cloud-based and

edge-based units, training data-driven models on ex-

tensive datasets presents multiple challenges. Firstly,

we require significant computational resources, in-

cluding substantial processing power and memory.

This potentially constrains usage by individuals or or-

ganizations with limited computational capabilities.



Secondly, the time to train a model can substantially

increase with larger datasets, causing potential delays

in the implementation and deployment of models that

may be critical for time-sensitive applications. Fi-

nally, while more data generally reduces overfitting,

if the dataset contains a high degree of noise or ir-

relevant features, models could potentially overlearn

these aspects, negatively impacting performance on

unseen data.

Therefore, data reduction methods, which seek to

reduce the volume of data while preserving its criti-

cal information, are becoming increasingly important.

These methods allow us to manage and analyze large

datasets more efficiently and effectively, thereby un-

locking the potential of big data while avoiding the

pitfalls of data overload. Then, data reduction is not

just a practical necessity; it is a critical step in trans-

forming raw data into meaningful insights.

To address these complexities induced by big data,

we present a novel and innovative approach to data re-

duction at the database level itself, which we term as

Adaptive Granulation (AG). Our approach provides

a systematic way to balance the competing desires to

maintain high data fidelity (and hence increase model

predictive power) and to reduce the size of the data

(and hence speed up training times). Our novel ap-

proach is inspired by the concept of Allan variance,

which was originally developed to manage similar

competing interests while examining the frequency

stability of atomic clocks (Allan, 1966). As an addi-

tional advantage, this approach enables the reduction

of the database size as well, resulting in faster approx-

imate query response times. Thus, Adaptive Granula-

tion excels in the context of big data by offering an

efficient and effective means to manage and process

large volumes of data for training data-driven models,

while leveraging the capabilities of the database itself.

2 Related Work

Data reduction, especially in large datasets, is cru-

cial for improving the efficiency of data-driven mod-

els (Sandhu, 2021). Classical methods include simple

random sampling, stratified sampling (Zhang et al.,

2022), and reservoir sampling (Kim et al., 2020).

However, with the rise of big data, methods like

record-level and block-level sampling have gained

prominence (Hasanin et al., 2019). The former can

be less efficient on distributed data, while the latter,

using traditional partitioning, may not always provide

representative samples (Mahmud et al., 2020). In this

work, we introduce a new block-level sampling tech-

nique optimized for enhanced performance in regres-

sion tasks.

Researchers in the field of machine learning have

primarily approached this methodology from perspec-

tives that are specific to the machine learning al-

gorithms themselves, i.e., there exist data reduction

methods for specific applications to Support Vector

Machines (SVMs), decision trees, and neural net-

works, to name a few (Alwajidi, 2020; Mahmud et al.,

2020; ur Rehman et al., 2016). Here, we briefly re-

view some of these methods from the viewpoint of

the ML algorithms.

Support Vector Machines: For SVMs, one of the

main challenges is to reduce the number of support

vectors, which determine the decision boundary and

affect the computational cost and generalization abil-

ity of the model. Several approaches have been pro-

posed to select a subset of support vectors or training

samples that can approximate the original decision

boundary with minimal loss of accuracy (Birzhandi

et al., 2022). For example, prior works have demon-

strated the use of clustering-based techniques to iden-

tify and remove non-relevant samples that are far from

the decision boundary (Koggalage and Halgamuge,

2004; Yao et al., 2013; Santana et al., 2020). Ghaf-

fari has proposed a method to divide the training set

into boundary, non-boundary, and harmful patterns,

and then select representatives of non-boundary data

and combine them with boundary patterns to form a

reduced set (Ghaffari, 2021). Other methods include

using information entropy (Zhan and Shen, 2005),

chunking (Hsieh et al., 2008), or regression (Osuna

and Girosi, 1998) to reduce the number of training

samples for SVMs. Most of these data reduction

methods rely on a fundamental characteristic of the

SVM: that learning with the SVM algorithm is de-

pendent on only a few support vectors, as compared

to the totality of available data.

Decision Trees: For decision trees, one of the main

challenges is to manage the tree size and complex-

ity, which affect the interpretability and generaliza-

tion ability of the model. Several approaches have

been proposed to prune or simplify the tree structure

after or during the tree construction process. For ex-

ample, (Oates and Jensen, 1997) studied the effects

of training set size on decision tree complexity and

showed that increasing training set size often results

in a linear increase in tree size, even when that addi-

tional complexity results in no significant increase in

classification accuracy. They argued that random data

reduction is a baseline against which more sophisti-

cated data reduction techniques should be compared.

Other methods include using misclassification costs

(Bradford et al., 1998), Laplace correction (Brodley

and Friedl, 1999), or error-based pruning (Peng et al.,



2021) to prune decision trees.

Neural Networks: For neural networks, one of

the main challenges is to handle large-scale vision-

language pre-training tasks, which require huge

amounts of data and computational resources. Sev-

eral approaches have been proposed to reduce the data

size or complexity for such tasks. For example, (Jin-

peng Wang et al., 2023) proposed a method called

Too Large; Data Reduction for Vision-Language Pre-

Training (TL;DR), which uses a two-stage process to

select a subset of image-text pairs that are informative

and diverse for pre-training vision-language models.

They showed that their method can achieve compara-

ble or better performance than existing methods with

much fewer data and computation time.

Adaptive Granulation differs from the existing

data reduction methods in several ways. First, it is

a systematic preprocessing method that can be uti-

lized by any data-driven model, such as SVMs, de-

cision trees, or neural networks. Unlike the methods

that are tailored for specific models or tasks, Adap-

tive Granulation does not rely on any model-specific

assumptions or parameters. Second, it is a flexible

method that can dynamically adjust the granularity

level based on the underlying structure and charac-

teristics of the data using Allan variance. Unlike the

methods that use a fixed or uniform level of granular-

ity across the entire dataset, Adaptive Granulation can

accommodate variations in pattern complexity, noise,

and sampling density within different sections of the

dataset. Finally, our method has the additional advan-

tage that it fundamentally operates in and leverages

the database itself. This leads to a significant sim-

plification of data reduction, storage, and retrieval:

all precursors to subsequent machine learning steps.

These differences make Adaptive Granulation a pow-

erful and versatile data reduction method that can ef-

fectively reduce data volume while preserving crucial

information inherent in the dataset. In the next sec-

tion, we discuss the method in more detail.

3 Adaptive Granulation

Adaptive Granulation is an innovative approach to

data reduction that aims to effectively reduce data vol-

ume while preserving crucial information inherent in

the dataset. This method is particularly useful in the

context of big data, where handling and processing

large amounts of data efficiently and effectively be-

comes challenging.

By dynamically adjusting the granularity level,

Adaptive Granulation aggregates data points based on

their underlying structure and characteristics (Mad-

dipatla et al., 2023; Maddipatla et al., 2021). The

granularity here refers to the level of detail or scale

at which the data is considered or analyzed. For in-

stance, in a one-dimensional temporal dataset, granu-

larity might refer to whether the data is examined on a

yearly, monthly, daily, or hourly basis. It is important

to note that the algorithm automatically determines

the optimal level of granulation (Sinanaj et al., 2022;

Haeri et al., 2021; Haeri et al., 2022).

The overarching workflow of this study is de-

picted in Figure 1 which can be summarized as the

following. Initially, a vast assortment of data points

is incorporated as raw data into the database. These

data points subsequently serve as the foundation for

the creation of an R* tree, a spatial indexing mecha-

nism that facilitates hierarchical granulation or clus-

tering of data into nested minimum bounding rectan-

gles (MBRs). We then introduce Allan variance as

an innovative method to adaptively granulate the data

by pinpointing the optimal scale of data granularity.

This is achieved by identifying the level of granules

that exhibits the minimum Allan variance in compar-

ison to their parent and child granules, as will be dis-

cussed in Algorithm 1. The outcome of this procedure

is a series of non-nested granules that constitute a re-

duced dataset. In the final step of our approach, the re-

duced dataset is formed by computing the centroid as

well as the average value of the target attribute. This

transformation allows us to retain the most descriptive

characteristics of the data (i.e., information that can

be effectively used for a downstream prediction task)

while significantly reducing the volume, aiding in the

efficient analysis and modeling of large datasets.

3.1 R* tree as a Hierarchical Clustering

Data Structure

Adaptive Granulation leverages the R* tree structure

used to organize multi-dimensional large data sets.

First, data is inserted into an R* tree. This process

involves splitting and adjusting nodes in the tree to ac-

commodate the new data while maintaining the tree’s

balance and minimizing the overlapping area of the

MBRs. More details about the process of R* tree cre-

ation can be found in (Beckmann et al., 1990). The

R* tree structures data points into a nested set of Min-

imum Bounding Rectangles (MBR) where each MBR

represents a region in the multi-dimensional space

that contains one or more data points or other MBRs.

In the following discussion, we assume that x ∈ X
represents an input vector in a dx-dimensional feature

space, and y ∈ Y represent the target attribute vec-

tor in dy-dimensional space, which we are attempt-

ing to predict. Now, we begin with the large dataset
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Figure 1: Adaptive Granulation can be deployed at the database level in order to reduce the size of training data set.

D = {(xi,yi)} where i = {1,2, . . . ,N} and N is the

total number of data points in the original dataset.

Next, we seek to use the Adaptive Granulation al-

gorithm to create a representative reduced data set

Dred = {(Åx j, Åy j)} containing aggregated data points,

where j = {1,2, . . . ,Nred} and Nred denotes the total

number of data points in the reduced data set, with

the expectation that the AG algorithm will systemati-

cally lead to Nred≪ N. We define the reduction ratio

as ζ = 1−Nred/N, to represent the magnitude of data

that was removed from the original dataset.

Let M be the set of all the MBRs in the R*

tree. Each MBR, m ∈ M , is identified by a tuple

(rm,x
min
m ,xmax

m ,Cm, pm, Åym,σ
2
m), where

• rm ∈ {0,1,2, . . .} denotes the level of the MBR in

the R* tree. In our work, level r = 0 represents the

actual data points, and the level number increases

as we move from the tree leaves towards the root.

• xmin
m and xmax

m are dx-dimensional vectors repre-

senting the minimum and maximum bounds of the

MBR in the multi-dimensional feature space,

• Cm ⊂M is the set containing all the children of

MBR m, and the children themselves are MBRs

in the R* tree residing at level rm−1,

• pm ∈M represents the parent of the MBR m, and

the parent is also an MBR in the R* tree residing

at level rm +1,

• Åym is a dy-dimensional vector representing the av-

erage of the target attribute vectors of the children

of the MBR m,

• σ2
m ∈R

+ is the Allan variance of the MBR m, and

is a measure of the variability within the MBR

which is discussed in the next subsection.

3.2 Using Allan variance to Determine

the Granularity Level

The notion of Allan variance (AVAR) was first intro-

duced by David Allan as a way to study the statistics

of frequency stability in precision oscillators such as

atomic clocks (Allan, 1966). The fundamental idea

seeks to address the phenomenon where the oscilla-

tory behavior of such systems can be noisy as well

as drift at the same time. The competition between

noise and signal makes it difficult to determine the

optimal timescale that should be used to ascertain the

frequency of the atomic clock. In the context of the

current work, this can be thought of as being similar

to balancing two aspects: (a) minimizing the effects

of noise in the data reduction process, while (b) max-

imizing the ability to capture the underlying patterns

(or ‘drift’) present in the data, even as we reduce its

size. For example, if data reduction is performed via

aggregation at too small of a scale, then a significant

amount of noise will remain in the reduced data set,

representing a missed opportunity to further reduce

the size of the dataset (Yang et al., 2021). Similarly,

if data reduction is performed via aggregation at too

large of a scale, we will manage to significantly re-

duce the size of the data, but at the cost of poorer

predictive performance. In such scenarios, Allan vari-

ance can help us determine the optimal scale that min-

imizes the bias in the averaged signal (Jerath et al.,

2018; Haeri et al., 2021; Sinanaj, 2021; Haeri et al.,

2022), in effect providing a data reduction or aggre-

gation scale that optimally groups data points.

Thus, leveraging the principles of Allan vari-

ance, we can propose a measure of stability across

a dataset’s feature space. Prior studies have corrob-

orated the efficacy of Allan variance in discerning

the ideal granule size for temporal database granu-

lation (Sinanaj et al., 2022; Sinanaj, 2021). Fur-

ther, it has been demonstrated that employing this ap-

proach facilitates optimal averaging scales for mov-

ing average estimation tasks (Haeri et al., 2022; Haeri

et al., 2020). In the present work, we build on these

foundations, charting new territory in two main direc-

tions. As an important distinction from other previ-

ous works, we extend the concept of granulation to a



multi-dimensional data environment. Equally as im-

portantly, we introduce an adaptive mechanism to de-

termine the granularity scale, enabling dynamic data

reduction in heterogeneous characteristics observed

across the feature space of the dataset.

The Allan variance for the MBR m can be calcu-

lated as

σ2
m =

1

|Cm|
∑

c∈Cm

||Åym− Åyc||
2 (1)

where c is a child MBR in the set Cm, and Åyc is its

average target attribute. Further, for each MBR m, Åym

is obtained by

Åym =
1

|Cm|
∑

c∈Cm

Åyc. (2)

.

In this framework, Allan variance serves as a met-

ric to assess the variability in multi-dimensional data

specific to the level of an MBR. It is important to

highlight that, in our research, σ2
m signifies the vari-

ance of the average values from the child MBRs,

rather than the variance of individual data points

within that MBR. This variance provides insight into

the dispersion of the data points of child MBRs nested

within the MBR m. Depending on the characteristics

of the dataset, these calculations may produce differ-

ent values of the Allan variance (a) for MBRs at dif-

ferent levels r in the R* tree, but in the same general

region of the feature space, and (b) for MBRs at the

same level r, but in different regions of the feature

space. A large value of Allan variance in a specific

MBR at a specific level can be indicative of one or

more of the following phenomena:

(a) Rapid change in underlying data pattern. If the

data pattern is changing rapidly at a specific scale

and feature space region, the AVAR of the asso-

ciated MBR may be large. Using aggregated data

of this MBR as the reduced data point will lead

to a failure to capture the underlying pattern in

the dataset. This will produce smaller-sized, but

lower fidelity reduced datasets.

(b) Significant presence of noise. If the data is very

noisy at a specific scale and feature space region,

then the AVAR of the associated MBR may also

be large. Using aggregation to reduce data in

this situation will lead to capture of lot of noise

but less meaningful data patterns. This will pro-

duce higher fidelity, but larger datasets without

any meaningful data reduction.

By opting for the level of granulation linked with the

minimum Allan variance, this trade-off is effectively

managed ± striking a balance between data reduction

and preservation of essential information. We discuss

this further in Section 4. The overall procedure for

implementing Adaptive Granulation is depicted in Al-

gorithm 1. The algorithm begins by requiring a list

M of all the MBRs in the tree which are sorted in

ascending order according to their level, rm. In the

first loop the Allan variance of each MBR is calcu-

lated based on Equation (1) which itself requires cal-

culating averages using Equation (2). If the MBR is

at level 0 (indicating it is a leaf node), the granulation

flag is set to True; otherwise, it is set to False. This

initialization prepares the MBRs for the subsequent

steps of the algorithm. In the subsequent loop, for

each MBR in M , if every child of the current MBR

has its granulation flag marked as True, and the Al-

lan variance of this MBR is smaller than that of any

of its children, the current MBR’s granulation flag is

updated to True, while the flags of all its children

are reset to False. This step ensures the MBR that

is selected as a granule has a variance (as defined in

Equation 1) that is smaller than both its parent and

any of its children, and thus represents the optimal

granulation level. This process can also be thought

of as elevating the granulation flag to a higher level,

suggesting that the target attribute exhibits less vari-

ability at a broader granulation scale. The algorithm

then concludes by returning all MBRs whose granula-

tion flag is True. These selected MBRs represent the

data points that have been adaptively granulated, and

they form the reduced dataset for further analysis or

modeling tasks. According to Algorithm 1, each data

point in the R* tree will be encompassed by a singu-

lar MBR with the True granulation flag. This holds

as every data point starts with a true flag, and when

the algorithm opts to transfer this flag to the parent-

level MBR, all its child nodes relinquish their flags.

Such systematically-generated granules will provide

the best trade-off between data reduction (eliminating

noise) and data retention (keeping data patterns), irre-

spective of the eventual prediction algorithm that will

be used.

4 Results and Discussion

In this section, the performance of Adaptive Granula-

tion as a data reduction method is evaluated for three

synthetic and six real-world datasets. We benchmark

the efficacy of Adaptive Granulation against random

samplingÐa fundamental baseline in data reduction

that, despite its simplicity, has been demonstrated to

outperform many advanced sampling methods in the

literature (Oates and Jensen, 1997; Hasanin et al.,



(a) (b) (c)
Figure 2: A synthetic data aggregation scenario with varying underlying pattern complexity. (a) Input data points. (b)
Generated granules using Adaptive Granulation. (c) Granule centroids (y value denotes average granule target attribute).

(a) (b) (c)
Figure 3: A synthetic data aggregation scenario with varying noise characteristics along the x2 axis. (a) Input data points. (b)
Generated granules using Adaptive Granulation. (c) Granule centroids (y value denotes average granule target attribute).

(a) (b) (c)
Figure 4: A synthetic data aggregation scenario with varying data density along the x2 axis. (a) Input data points. (b)
Generated granules using Adaptive Granulation. (c) Granule centroids (y value denotes average granule target attribute).



Algorithm 1 Adaptive Granulation

Require: List of all MBRs, M , in the R* tree

1: for each ordered m in M do

2: Calculate σ2
m according to Eq. (1) and (2)

3: end for

4: Set m.is granule to True for MBRs at level 0

and to False for all others.

5: for each ordered m in M do

6: if all children c in Cm:

are granules, and have σ2
m < σ2

c then

7: m.is granule← True

8: for each c in Cm do

9: c.is granule← False

10: end for

11: end if

12: end for

13: return MBRs in M with is granule== True

2019).

Our experimental setup involves comparing the

Mean Absolute Error (MAE) of various machine

learning models. The complete dataset is initially

split into train and test datasets, with the test data

constituting 30% of the total. The Adaptive Gran-

ulation method is then applied to the training data,

using various fan-out values for the R* tree, which

represents the maximum number of children within

a single MBR. The centroids of the resulting gran-

ules serve as data points in the reduced dataset. As

a baseline comparison, an equivalent number of data

points are sampled randomly from the training data.

The evaluation process is performed 100 times for

each fan-out value, which varies from 8 to 64 with

a step size of 4. Model tuning is performed using the

RandomSearchCV function from the sklearn library,

with 100 iterations and 3-fold cross-validation.

4.1 Synthetic Scenarios

Unlike conventional data reduction techniques that

apply a fixed level of granularity across the entire

dataset, Adaptive Granulation is flexible. It recog-

nizes that different portions of the dataset might re-

quire different levels of granularity depending on their

underlying pattern complexity, noise, and density. In

this subsection, we assess the efficacy of Adaptive

Granulation through three synthetic datasets. For

these, data points are synthesized from the joint dis-

tribution f (x1,x2,y) where x1 and x2 are independent

features, drawn from distributions f1 and f2, respec-

tively. The target attribute, y, is produced in accor-

dance with a deterministic pattern function, supple-

mented by a stochastic noise function. In the subse-

quent sections, we outline the setup for these scenar-

ios and explore the influence of these three factors on

the determination of granule sizes.

1. Underlying pattern complexity: When the com-

plexity of the patterns in the data is high, small

granules (i.e., a finer granularity) may be needed

to capture the details of these patterns. High com-

plexity could be due to non-linear relationships

between variables, the presence of many interact-

ing variables, or rapidly changing patterns. In

such cases, a coarse granularity could oversim-

plify the data and fail to capture these complex-

ities, resulting in the loss of crucial information.

In this experimental scenario, f1 and f2 are in-

dependent uniform distributions (U(0,1)) and the

noise function is a zero mean Gaussian distribu-

tion which is consistent across both x1 and x2

dimensions (N (0,0.05I)). The target values y

are generated according to a squared exponential

Gaussian pattern function located at (0.5,0.5). As

shown in Figure 2, Adaptive Granulation selects

smaller granules in regions where the Gaussian

dome is rising, capturing the details of the pat-

tern. Conversely, in areas where the underlying

data pattern exhibits less variation, the Adaptive

Granulation process opts for larger granule sizes,

effectively balancing the granularity level with the

inherent complexity of the data.

2. Noise: Noise refers to random or irrelevant vari-

ation in the data. When the level of noise in

the dataset is high, it can be beneficial to use

larger granules (i.e., a coarser granularity). This

is because a finer granularity could risk overfit-

ting to the noise, leading to less accurate or less

meaningful results. By aggregating the data at a

coarser level, Adaptive Granulation can smooth

out the noise and reveal the underlying patterns

or trends in the data. Conversely, when the noise

level is low, a finer granularity may be used to

capture more detailed patterns. In this scenario,

f1 and f2 are independent uniform distributions

(U(0,1)). The target attribute, y, is determined by

a linear pattern function across the x2 dimension

(i.e., y = x2) and is supplemented by zero mean

Gaussian noise. This noise remains consistent

across the x1 dimension but varies along the x2

dimension, specifically conforming to N (0,x2).
As illustrated in Figure 3, Adaptive Granulation

tends towards the selection of larger granules as

the magnitude of noise escalates.

3. Sampling Density: Sampling density refers to the

number of data points in a given space. When the

sampling density is high, there are many closely

packed data points, and a finer granularity may be



needed to capture the variation within this dense

space. Conversely, when the sampling density is

low, the data points are sparse and spread out, and

a coarser granularity might suffice to capture the

essential characteristics of the data. By adjust-

ing the granule size based on the sampling den-

sity, Adaptive Granulation ensures that neither the

dense nor the sparse areas of the dataset are un-

der or over-represented. In this scenario, f1 is a

uniform distribution (U(0,1)), however, f2 is a

half-normal distribution (i.e., |N (0,0.2 x2)|). The

target attribute, y, is determined by a linear pat-

tern function across the x2 dimension (i.e., y = x2)

and is supplemented by zero mean Gaussian noise

which is consistent across both x1 and x2 dimen-

sions (N (0,0.2)).

4.2 Real-world Scenarios

In this subsection, we have evaluated Adaptive Gran-

ulation in six real-world datasets: (1) Abalone, en-

compassing 4,000 records (Nash et al., 1995); (2)

Air Quality, incorporating 9,000 records (Vito, 2016);

(3) Bike, containing 10,000 records (Fanaee-T and

Gama, 2014); (4) California Housing, which has

20,000 records (Pace and Barry, 1997); (5) Elevators,

with 16,000 records; and (6) Metro Interstate Traffic

Volume, comprising 48,000 records (Hogue, 2019).

To ensure the integrity of our data prior to analy-

sis, we employ a two-pronged preprocessing strategy.

First, we eliminate any outliers using the Interquar-

tile Range (IQR) rule, whereby data points more than

1.5 times the IQR distant from the first or third quar-

tiles are discarded. Second, we perform feature se-

lection based on the importance of each feature. The

importance is quantified by the mutual information,

calculated using the sklearn.feature selection

module. Both preprocessing steps are required since

the presence of outliers can distort the resultant gran-

ules, whereas the inclusion of non-informative fea-

tures could lead to the creation of suboptimal or ar-

bitrary granules. From the results of both synthetic

data (Figure 5) and real-world data (Figure 6), we

conclude that a model trained with Adaptive Granu-

lated data performs better than the same model trained

with randomly sampled data.

5 Concluding Remarks

In this study, we have introduced and evaluated Adap-

tive Granulation, a novel and efficient data reduc-

tion technique designed to handle the growing chal-

lenges presented by the enormous volumes of data in

our digital era. In this work, we have demonstrated

that Adaptive Granulation can successfully condense

large datasets into dynamically sized granules of ag-

gregated data. The uniqueness of this method lies in

its intelligent and systematic aggregation process that

takes into consideration the noise characteristics of

the dataset, the underlying data patterns, and the data

sample density. Importantly, the use of Allan vari-

ance in the granulation process helps produce a com-

pact and less demanding dataset while preserving the

fidelity of the original information. Perhaps equally

as importantly, we emphasize that Adaptive Granula-

tion can be implemented at the database level itself.

This feature offers the advantage of managing and re-

ducing data within the storage system, eliminating the

need to handle raw, unwieldy datasets directly. This

in-situ processing capability makes Adaptive Granu-

lation an attractive solution for efficient data manage-

ment in data-intensive applications. However, it is

important to note that our proposed method is con-

strained to numerical values, as outlined in this pa-

per, due to the inherent inability of the averaging pro-

cess to accommodate categorical fields. Our empiri-

cal evaluation reveals that the reduced datasets gener-

ated through Adaptive Granulation are highly effec-

tive for downstream inference tasks. Specifically, our

tests have shown that models trained on these refined

datasets perform comparably to those trained on ran-

domly sampled datasets, benefiting from a significant

decrease in training time and resource requirements.

The capacity of Adaptive Granulation to balance the

trade-off between data size and pattern preservation,

coupled with its ease of implementation within the

database, makes it a powerful tool for handling the

complexities of Big Data. We expect this approach

to enable more efficient utilization of large datasets in

training predictive models, ultimately leading to bet-

ter resource management and improved outcomes in

data-intensive domains.
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(a) Pattern varying scenario (b) Noise varying scenario (c) Density varying scenario

Figure 5: Mean Absolute Error comparison on synthetic datasets. The reported values represent the average results across
100 repeated runs.

(a) Abalone (b) Air Quality (c) Bike

(f) Metro Interstate Traffic(e) Elevators(d) California Housing

Figure 6: Mean Absolute Error comparison on real-world datasets
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