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In an era where data volume is growing exponentially, effective data management techniques are more crucial
than ever. Traditional methods typically manage the size of large datasets by reducing or aggregating data
using a pre-specified granularity. However, these methods often face challenges in retaining vital information
when dealing with large and complex datasets, especially when such datasets reside in databases. We propose
a novel and innovative approach called Adaptive Granulation that addresses this issue by performing data
reduction or aggregation at the database level itself. A key concern that arises in the data reduction process
is the potential trade-off between the reduction of data volume and the preservation of prediction accuracy.
This is particularly relevant in scenarios where the primary goal is to leverage the reduced dataset for predic-
tive modeling. Our method employs Allan variance, originally developed for frequency stability analysis of
atomic clocks, to dynamically adjust the granularity of data aggregation based on the inherent structure and
characteristics of the dataset. By minimizing bias across different scales, Adaptive Granulation effectively
manages trade-offs between diverse aspects of the data such as underlying patterns, noise levels, and sampling
density. This paper outlines the algorithmic strategies for implementing Adaptive Granulation at the database
level and assesses its performance through the reduction of the training set size for a downstream regression
task on a variety of real-world and synthetic datasets. The results indicate that our method can adaptively
optimize granule sizes to effectively balance data patterns, noise levels, and sample densities across the entire
data space. Adaptive Granulation thus represents a significant advancement for efficient data management and
reduction in the big data era.

1 Introduction

Data reduction methods are increasingly becoming
vital in our data-driven world. As the proliferation
of big data continues across various sectors, includ-
ing healthcare (Raghupathi and Raghupathi, 2014),
finance (Hasan et al., 2020), social media (Sahatiya,
2018), e-commerce (Akter and Wamba, 2016), traf-
fic (Lv et al., 2015; Kim and Jerath, 2022) and more
(Chen et al., 2014), the sheer volume of data we gen-
erate is staggering. For example, in healthcare, pa-
tient records, wearable device outputs, and genomic
data produce immense amounts of data. Social me-
dia platforms like Facebook and Twitter generate mil-
lions of posts and interactions daily. Retail giants like
Amazon collect data about customer behavior, prefer-

(2 https://orcid.org/0000-0002-6772-6266
5@ nhttps://orcid.org/0000-0002-4146-3402
¢ https://orcid.org/0000-0002-8712-8108
4 nhttps://orcid.org/0000-0001-6356-9438

ences, and purchasing habits on a massive scale. It is
estimated that we are generating more than 2.5 quin-
tillion bytes of data each day (Zicari, 2012), and this
rate is only expected to increase with advancements
in technology and increased internet accessibility. By
2025, it is projected that there will be more than 180
zettabytes of data in the world (Holst, 2021).
Utilizing such large amounts of data for inference,
as well as storing them in databases, is increasingly
becoming an untenable exercise. While big data can
provide valuable insights and aid decision-making, it
can also overwhelm our computational and memory
resources, thus hindering effective analysis. While
studies have explored the use of cloud-based and
edge-based units, training data-driven models on ex-
tensive datasets presents multiple challenges. Firstly,
we require significant computational resources, in-
cluding substantial processing power and memory.
This potentially constrains usage by individuals or or-
ganizations with limited computational capabilities.



Secondly, the time to train a model can substantially
increase with larger datasets, causing potential delays
in the implementation and deployment of models that
may be critical for time-sensitive applications. Fi-
nally, while more data generally reduces overfitting,
if the dataset contains a high degree of noise or ir-
relevant features, models could potentially overlearn
these aspects, negatively impacting performance on
unseen data.

Therefore, data reduction methods, which seek to
reduce the volume of data while preserving its criti-
cal information, are becoming increasingly important.
These methods allow us to manage and analyze large
datasets more efficiently and effectively, thereby un-
locking the potential of big data while avoiding the
pitfalls of data overload. Then, data reduction is not
just a practical necessity; it is a critical step in trans-
forming raw data into meaningful insights.

To address these complexities induced by big data,
we present a novel and innovative approach to data re-
duction at the database level itself, which we term as
Adaptive Granulation (AG). Our approach provides
a systematic way to balance the competing desires to
maintain high data fidelity (and hence increase model
predictive power) and to reduce the size of the data
(and hence speed up training times). Our novel ap-
proach is inspired by the concept of Allan variance,
which was originally developed to manage similar
competing interests while examining the frequency
stability of atomic clocks (Allan, 1966). As an addi-
tional advantage, this approach enables the reduction
of the database size as well, resulting in faster approx-
imate query response times. Thus, Adaptive Granula-
tion excels in the context of big data by offering an
efficient and effective means to manage and process
large volumes of data for training data-driven models,
while leveraging the capabilities of the database itself.

2 Related Work

Data reduction, especially in large datasets, is cru-
cial for improving the efficiency of data-driven mod-
els (Sandhu, 2021). Classical methods include simple
random sampling, stratified sampling (Zhang et al.,
2022), and reservoir sampling (Kim et al., 2020).
However, with the rise of big data, methods like
record-level and block-level sampling have gained
prominence (Hasanin et al., 2019). The former can
be less efficient on distributed data, while the latter,
using traditional partitioning, may not always provide
representative samples (Mahmud et al., 2020). In this
work, we introduce a new block-level sampling tech-
nique optimized for enhanced performance in regres-

sion tasks.

Researchers in the field of machine learning have
primarily approached this methodology from perspec-
tives that are specific to the machine learning al-
gorithms themselves, i.e., there exist data reduction
methods for specific applications to Support Vector
Machines (SVMs), decision trees, and neural net-
works, to name a few (Alwajidi, 2020; Mahmud et al.,
2020; ur Rehman et al., 2016). Here, we briefly re-
view some of these methods from the viewpoint of
the ML algorithms.

Support Vector Machines: For SVMs, one of the
main challenges is to reduce the number of support
vectors, which determine the decision boundary and
affect the computational cost and generalization abil-
ity of the model. Several approaches have been pro-
posed to select a subset of support vectors or training
samples that can approximate the original decision
boundary with minimal loss of accuracy (Birzhandi
et al., 2022). For example, prior works have demon-
strated the use of clustering-based techniques to iden-
tify and remove non-relevant samples that are far from
the decision boundary (Koggalage and Halgamuge,
2004; Yao et al., 2013; Santana et al., 2020). Ghaf-
fari has proposed a method to divide the training set
into boundary, non-boundary, and harmful patterns,
and then select representatives of non-boundary data
and combine them with boundary patterns to form a
reduced set (Ghaffari, 2021). Other methods include
using information entropy (Zhan and Shen, 2005),
chunking (Hsieh et al., 2008), or regression (Osuna
and Girosi, 1998) to reduce the number of training
samples for SVMs. Most of these data reduction
methods rely on a fundamental characteristic of the
SVM: that learning with the SVM algorithm is de-
pendent on only a few support vectors, as compared
to the totality of available data.

Decision Trees: For decision trees, one of the main
challenges is to manage the tree size and complex-
ity, which affect the interpretability and generaliza-
tion ability of the model. Several approaches have
been proposed to prune or simplify the tree structure
after or during the tree construction process. For ex-
ample, (Oates and Jensen, 1997) studied the effects
of training set size on decision tree complexity and
showed that increasing training set size often results
in a linear increase in tree size, even when that addi-
tional complexity results in no significant increase in
classification accuracy. They argued that random data
reduction is a baseline against which more sophisti-
cated data reduction techniques should be compared.
Other methods include using misclassification costs
(Bradford et al., 1998), Laplace correction (Brodley
and Friedl, 1999), or error-based pruning (Peng et al.,



2021) to prune decision trees.

Neural Networks: For neural networks, one of
the main challenges is to handle large-scale vision-
language pre-training tasks, which require huge
amounts of data and computational resources. Sev-
eral approaches have been proposed to reduce the data
size or complexity for such tasks. For example, (Jin-
peng Wang et al., 2023) proposed a method called
Too Large; Data Reduction for Vision-Language Pre-
Training (TL;DR), which uses a two-stage process to
select a subset of image-text pairs that are informative
and diverse for pre-training vision-language models.
They showed that their method can achieve compara-
ble or better performance than existing methods with
much fewer data and computation time.

Adaptive Granulation differs from the existing
data reduction methods in several ways. First, it is
a systematic preprocessing method that can be uti-
lized by any data-driven model, such as SVMs, de-
cision trees, or neural networks. Unlike the methods
that are tailored for specific models or tasks, Adap-
tive Granulation does not rely on any model-specific
assumptions or parameters. Second, it is a flexible
method that can dynamically adjust the granularity
level based on the underlying structure and charac-
teristics of the data using Allan variance. Unlike the
methods that use a fixed or uniform level of granular-
ity across the entire dataset, Adaptive Granulation can
accommodate variations in pattern complexity, noise,
and sampling density within different sections of the
dataset. Finally, our method has the additional advan-
tage that it fundamentally operates in and leverages
the database itself. This leads to a significant sim-
plification of data reduction, storage, and retrieval:
all precursors to subsequent machine learning steps.
These differences make Adaptive Granulation a pow-
erful and versatile data reduction method that can ef-
fectively reduce data volume while preserving crucial
information inherent in the dataset. In the next sec-
tion, we discuss the method in more detail.

3 Adaptive Granulation

Adaptive Granulation is an innovative approach to
data reduction that aims to effectively reduce data vol-
ume while preserving crucial information inherent in
the dataset. This method is particularly useful in the
context of big data, where handling and processing
large amounts of data efficiently and effectively be-
comes challenging.

By dynamically adjusting the granularity level,
Adaptive Granulation aggregates data points based on
their underlying structure and characteristics (Mad-

dipatla et al., 2023; Maddipatla et al., 2021). The
granularity here refers to the level of detail or scale
at which the data is considered or analyzed. For in-
stance, in a one-dimensional temporal dataset, granu-
larity might refer to whether the data is examined on a
yearly, monthly, daily, or hourly basis. It is important
to note that the algorithm automatically determines
the optimal level of granulation (Sinanaj et al., 2022;
Haeri et al., 2021; Haeri et al., 2022).

The overarching workflow of this study is de-
picted in Figure 1 which can be summarized as the
following. Initially, a vast assortment of data points
is incorporated as raw data into the database. These
data points subsequently serve as the foundation for
the creation of an R* tree, a spatial indexing mecha-
nism that facilitates hierarchical granulation or clus-
tering of data into nested minimum bounding rectan-
gles (MBRs). We then introduce Allan variance as
an innovative method to adaptively granulate the data
by pinpointing the optimal scale of data granularity.
This is achieved by identifying the level of granules
that exhibits the minimum Allan variance in compar-
ison to their parent and child granules, as will be dis-
cussed in Algorithm 1. The outcome of this procedure
is a series of non-nested granules that constitute a re-
duced dataset. In the final step of our approach, the re-
duced dataset is formed by computing the centroid as
well as the average value of the target attribute. This
transformation allows us to retain the most descriptive
characteristics of the data (i.e., information that can
be effectively used for a downstream prediction task)
while significantly reducing the volume, aiding in the
efficient analysis and modeling of large datasets.

3.1 R* tree as a Hierarchical Clustering
Data Structure

Adaptive Granulation leverages the R* tree structure
used to organize multi-dimensional large data sets.
First, data is inserted into an R* tree. This process
involves splitting and adjusting nodes in the tree to ac-
commodate the new data while maintaining the tree’s
balance and minimizing the overlapping area of the
MBRs. More details about the process of R* tree cre-
ation can be found in (Beckmann et al., 1990). The
R* tree structures data points into a nested set of Min-
imum Bounding Rectangles (MBR) where each MBR
represents a region in the multi-dimensional space
that contains one or more data points or other MBRs.
In the following discussion, we assume that x € X
represents an input vector in a d,-dimensional feature
space, and y € 9 represent the target attribute vec-
tor in dy-dimensional space, which we are attempt-
ing to predict. Now, we begin with the large dataset
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Figure 1: Adaptive Granulation can be deployed at the database level in order to reduce the size of training data set.

D = {(xi,y;)} where i = {1,2,...,N} and N is the
total number of data points in the original dataset.
Next, we seek to use the Adaptive Granulation al-
gorithm to create a representative reduced data set
Dred = {(X;,¥;)} containing aggregated data points,
where j = {1,2,...,Neq} and Nq denotes the total
number of data points in the reduced data set, with
the expectation that the AG algorithm will systemati-
cally lead to Neq < N. We define the reduction ratio
as { =1 — Neeq/N, to represent the magnitude of data
that was removed from the original dataset.

Let M be the set of all the MBRs in the R*
tree. Each MBR, m € M, is identified by a tuple
(Fms X ™ X ™, m7pm>)_’ma631)’Where

* rm €{0,1,2,...} denotes the level of the MBR in
the R* tree. In our work, level r = 0 represents the
actual data points, and the level number increases
as we move from the tree leaves towards the root.

* x;)'"" and x)*™* are d,-dimensional vectors repre-

senting the minimum and maximum bounds of the
MBR in the multi-dimensional feature space,

* Cy C M is the set containing all the children of
MBR m, and the children themselves are MBRs
in the R* tree residing at level r,, — 1,

* pm € M represents the parent of the MBR m, and
the parent is also an MBR in the R* tree residing
atlevel r, +1,

* ¥,,1s a dy-dimensional vector representing the av-
erage of the target attribute vectors of the children
of the MBR m,

. 631 € R is the Allan variance of the MBR m, and

is a measure of the variability within the MBR
which is discussed in the next subsection.

3.2 Using Allan variance to Determine
the Granularity Level

The notion of Allan variance (AVAR) was first intro-
duced by David Allan as a way to study the statistics

of frequency stability in precision oscillators such as
atomic clocks (Allan, 1966). The fundamental idea
seeks to address the phenomenon where the oscilla-
tory behavior of such systems can be noisy as well
as drift at the same time. The competition between
noise and signal makes it difficult to determine the
optimal timescale that should be used to ascertain the
frequency of the atomic clock. In the context of the
current work, this can be thought of as being similar
to balancing two aspects: (a) minimizing the effects
of noise in the data reduction process, while (b) max-
imizing the ability to capture the underlying patterns
(or ‘drift’) present in the data, even as we reduce its
size. For example, if data reduction is performed via
aggregation at too small of a scale, then a significant
amount of noise will remain in the reduced data set,
representing a missed opportunity to further reduce
the size of the dataset (Yang et al., 2021). Similarly,
if data reduction is performed via aggregation at too
large of a scale, we will manage to significantly re-
duce the size of the data, but at the cost of poorer
predictive performance. In such scenarios, Allan vari-
ance can help us determine the optimal scale that min-
imizes the bias in the averaged signal (Jerath et al.,
2018; Haeri et al., 2021; Sinanaj, 2021; Haeri et al.,
2022), in effect providing a data reduction or aggre-
gation scale that optimally groups data points.

Thus, leveraging the principles of Allan vari-
ance, we can propose a measure of stability across
a dataset’s feature space. Prior studies have corrob-
orated the efficacy of Allan variance in discerning
the ideal granule size for temporal database granu-
lation (Sinanaj et al., 2022; Sinanaj, 2021). Fur-
ther, it has been demonstrated that employing this ap-
proach facilitates optimal averaging scales for mov-
ing average estimation tasks (Haeri et al., 2022; Haeri
et al., 2020). In the present work, we build on these
foundations, charting new territory in two main direc-
tions. As an important distinction from other previ-
ous works, we extend the concept of granulation to a



multi-dimensional data environment. Equally as im-
portantly, we introduce an adaptive mechanism to de-
termine the granularity scale, enabling dynamic data
reduction in heterogeneous characteristics observed
across the feature space of the dataset.

The Allan variance for the MBR m can be calcu-
lated as

1 .
ngzm Z ||ym_YL'H2 (1)
mi ceCy
where c is a child MBR in the set G, and ¥, is its
average target attribute. Further, for each MBR m, ¥,
is obtained by

y, = .. 2
Yo |Cm|Zyc 2

In this framework, Allan variance serves as a met-
ric to assess the variability in multi-dimensional data
specific to the level of an MBR. It is important to
highlight that, in our research, (5%1 signifies the vari-
ance of the average values from the child MBRs,
rather than the variance of individual data points
within that MBR. This variance provides insight into
the dispersion of the data points of child MBRs nested
within the MBR m. Depending on the characteristics
of the dataset, these calculations may produce differ-
ent values of the Allan variance (a) for MBRs at dif-
ferent levels r in the R* tree, but in the same general
region of the feature space, and (b) for MBRs at the
same level r, but in different regions of the feature
space. A large value of Allan variance in a specific
MBR at a specific level can be indicative of one or
more of the following phenomena:

(a) Rapid change in underlying data pattern. If the
data pattern is changing rapidly at a specific scale
and feature space region, the AVAR of the asso-
ciated MBR may be large. Using aggregated data
of this MBR as the reduced data point will lead
to a failure to capture the underlying pattern in
the dataset. This will produce smaller-sized, but
lower fidelity reduced datasets.

(b) Significant presence of noise. If the data is very
noisy at a specific scale and feature space region,
then the AVAR of the associated MBR may also
be large. Using aggregation to reduce data in
this situation will lead to capture of lot of noise
but less meaningful data patterns. This will pro-
duce higher fidelity, but larger datasets without
any meaningful data reduction.

By opting for the level of granulation linked with the
minimum Allan variance, this trade-off is effectively

managed — striking a balance between data reduction
and preservation of essential information. We discuss
this further in Section 4. The overall procedure for
implementing Adaptive Granulation is depicted in Al-
gorithm 1. The algorithm begins by requiring a list
M of all the MBRs in the tree which are sorted in
ascending order according to their level, r,,. In the
first loop the Allan variance of each MBR is calcu-
lated based on Equation (1) which itself requires cal-
culating averages using Equation (2). If the MBR is
at level O (indicating it is a leaf node), the granulation
flag is set to True; otherwise, it is set to False. This
initialization prepares the MBRs for the subsequent
steps of the algorithm. In the subsequent loop, for
each MBR in M, if every child of the current MBR
has its granulation flag marked as True, and the Al-
lan variance of this MBR is smaller than that of any
of its children, the current MBR’s granulation flag is
updated to True, while the flags of all its children
are reset to False. This step ensures the MBR that
is selected as a granule has a variance (as defined in
Equation 1) that is smaller than both its parent and
any of its children, and thus represents the optimal
granulation level. This process can also be thought
of as elevating the granulation flag to a higher level,
suggesting that the target attribute exhibits less vari-
ability at a broader granulation scale. The algorithm
then concludes by returning all MBRs whose granula-
tion flag is True. These selected MBRs represent the
data points that have been adaptively granulated, and
they form the reduced dataset for further analysis or
modeling tasks. According to Algorithm 1, each data
point in the R* tree will be encompassed by a singu-
lar MBR with the True granulation flag. This holds
as every data point starts with a true flag, and when
the algorithm opts to transfer this flag to the parent-
level MBR, all its child nodes relinquish their flags.
Such systematically-generated granules will provide
the best trade-off between data reduction (eliminating
noise) and data retention (keeping data patterns), irre-
spective of the eventual prediction algorithm that will
be used.

4 Results and Discussion

In this section, the performance of Adaptive Granula-
tion as a data reduction method is evaluated for three
synthetic and six real-world datasets. We benchmark
the efficacy of Adaptive Granulation against random
sampling—a fundamental baseline in data reduction
that, despite its simplicity, has been demonstrated to
outperform many advanced sampling methods in the
literature (Oates and Jensen, 1997; Hasanin et al.,
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Figure 2: A synthetic data aggregation scenario with varying underlying pattern complexity. (a) Input data points. (b)
Generated granules using Adaptive Granulation. (c¢) Granule centroids (y value denotes average granule target attribute).
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Figure 3: A synthetic data aggregation scenario with varying noise characteristics along the x; axis. (a) Input data points. (b)
Generated granules using Adaptive Granulation. (c¢) Granule centroids (y value denotes average granule target attribute).
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Figure 4: A synthetic data aggregation scenario with varying data density along the x; axis. (a) Input data points. (b)
Generated granules using Adaptive Granulation. (c¢) Granule centroids (y value denotes average granule target attribute).




Algorithm 1 Adaptive Granulation

Require: List of all MBRs, M, in the R* tree
1: for each ordered m in M do
2:  Calculate 6,2,, according to Eq. (1) and (2)
3: end for
4: Set m.is_granule to True for MBRs at level 0
and to False for all others.

5: for each ordered m in M do
6:  if all children ¢ in C,,:
are granules, and have 62, < 62 then
7: m.is_granule < True
8: for each c in C,, do
9: c.is_granule <-False
10: end for
11:  endif
12: end for

13: return MBRs in M with is_granule == True

2019).

Our experimental setup involves comparing the
Mean Absolute Error (MAE) of various machine
learning models. The complete dataset is initially
split into train and test datasets, with the test data
constituting 30% of the total. The Adaptive Gran-
ulation method is then applied to the training data,
using various fan-out values for the R* tree, which
represents the maximum number of children within
a single MBR. The centroids of the resulting gran-
ules serve as data points in the reduced dataset. As
a baseline comparison, an equivalent number of data
points are sampled randomly from the training data.
The evaluation process is performed 100 times for
each fan-out value, which varies from 8 to 64 with
a step size of 4. Model tuning is performed using the
RandomSearchCV function from the sklearn library,
with 100 iterations and 3-fold cross-validation.

4.1 Synthetic Scenarios

Unlike conventional data reduction techniques that
apply a fixed level of granularity across the entire
dataset, Adaptive Granulation is flexible. It recog-
nizes that different portions of the dataset might re-
quire different levels of granularity depending on their
underlying pattern complexity, noise, and density. In
this subsection, we assess the efficacy of Adaptive
Granulation through three synthetic datasets. For
these, data points are synthesized from the joint dis-
tribution f(x1,x2,y) where x; and x; are independent
features, drawn from distributions f| and f», respec-
tively. The target attribute, y, is produced in accor-
dance with a deterministic pattern function, supple-
mented by a stochastic noise function. In the subse-

quent sections, we outline the setup for these scenar-
ios and explore the influence of these three factors on
the determination of granule sizes.

1. Underlying pattern complexity: When the com-
plexity of the patterns in the data is high, small
granules (i.e., a finer granularity) may be needed
to capture the details of these patterns. High com-
plexity could be due to non-linear relationships
between variables, the presence of many interact-
ing variables, or rapidly changing patterns. In
such cases, a coarse granularity could oversim-
plify the data and fail to capture these complex-
ities, resulting in the loss of crucial information.
In this experimental scenario, f; and f, are in-
dependent uniform distributions (U (0, 1)) and the
noise function is a zero mean Gaussian distribu-
tion which is consistent across both x; and xp
dimensions (A((0,0.05I)). The target values y
are generated according to a squared exponential
Gaussian pattern function located at (0.5,0.5). As
shown in Figure 2, Adaptive Granulation selects
smaller granules in regions where the Gaussian
dome is rising, capturing the details of the pat-
tern. Conversely, in areas where the underlying
data pattern exhibits less variation, the Adaptive
Granulation process opts for larger granule sizes,
effectively balancing the granularity level with the
inherent complexity of the data.

2. Noise: Noise refers to random or irrelevant vari-
ation in the data. When the level of noise in
the dataset is high, it can be beneficial to use
larger granules (i.e., a coarser granularity). This
is because a finer granularity could risk overfit-
ting to the noise, leading to less accurate or less
meaningful results. By aggregating the data at a
coarser level, Adaptive Granulation can smooth
out the noise and reveal the underlying patterns
or trends in the data. Conversely, when the noise
level is low, a finer granularity may be used to
capture more detailed patterns. In this scenario,
f1 and f, are independent uniform distributions
(U(0,1)). The target attribute, y, is determined by
a linear pattern function across the x, dimension
(i.e., y = x») and is supplemented by zero mean
Gaussian noise. This noise remains consistent
across the x; dimension but varies along the x;
dimension, specifically conforming to A’(0,x7).
As illustrated in Figure 3, Adaptive Granulation
tends towards the selection of larger granules as
the magnitude of noise escalates.

3. Sampling Density: Sampling density refers to the
number of data points in a given space. When the
sampling density is high, there are many closely
packed data points, and a finer granularity may be



needed to capture the variation within this dense
space. Conversely, when the sampling density is
low, the data points are sparse and spread out, and
a coarser granularity might suffice to capture the
essential characteristics of the data. By adjust-
ing the granule size based on the sampling den-
sity, Adaptive Granulation ensures that neither the
dense nor the sparse areas of the dataset are un-
der or over-represented. In this scenario, fi is a
uniform distribution (U (0, 1)), however, f is a
half-normal distribution (i.e., |AL(0,0.2 x)|). The
target attribute, y, is determined by a linear pat-
tern function across the x, dimension (i.e., y = x»)
and is supplemented by zero mean Gaussian noise
which is consistent across both x; and x, dimen-

sions (A((0,0.2)).

4.2 Real-world Scenarios

In this subsection, we have evaluated Adaptive Gran-
ulation in six real-world datasets: (1) Abalone, en-
compassing 4,000 records (Nash et al., 1995); (2)
Air Quality, incorporating 9,000 records (Vito, 2016);
(3) Bike, containing 10,000 records (Fanaee-T and
Gama, 2014); (4) California Housing, which has
20,000 records (Pace and Barry, 1997); (5) Elevators,
with 16,000 records; and (6) Metro Interstate Traffic
Volume, comprising 48,000 records (Hogue, 2019).

To ensure the integrity of our data prior to analy-
sis, we employ a two-pronged preprocessing strategy.
First, we eliminate any outliers using the Interquar-
tile Range (IQR) rule, whereby data points more than
1.5 times the IQR distant from the first or third quar-
tiles are discarded. Second, we perform feature se-
lection based on the importance of each feature. The
importance is quantified by the mutual information,
calculated using the sklearn.feature_selection
module. Both preprocessing steps are required since
the presence of outliers can distort the resultant gran-
ules, whereas the inclusion of non-informative fea-
tures could lead to the creation of suboptimal or ar-
bitrary granules. From the results of both synthetic
data (Figure 5) and real-world data (Figure 6), we
conclude that a model trained with Adaptive Granu-
lated data performs better than the same model trained
with randomly sampled data.

5 Concluding Remarks

In this study, we have introduced and evaluated Adap-
tive Granulation, a novel and efficient data reduc-
tion technique designed to handle the growing chal-
lenges presented by the enormous volumes of data in

our digital era. In this work, we have demonstrated
that Adaptive Granulation can successfully condense
large datasets into dynamically sized granules of ag-
gregated data. The uniqueness of this method lies in
its intelligent and systematic aggregation process that
takes into consideration the noise characteristics of
the dataset, the underlying data patterns, and the data
sample density. Importantly, the use of Allan vari-
ance in the granulation process helps produce a com-
pact and less demanding dataset while preserving the
fidelity of the original information. Perhaps equally
as importantly, we emphasize that Adaptive Granula-
tion can be implemented at the database level itself.
This feature offers the advantage of managing and re-
ducing data within the storage system, eliminating the
need to handle raw, unwieldy datasets directly. This
in-situ processing capability makes Adaptive Granu-
lation an attractive solution for efficient data manage-
ment in data-intensive applications. However, it is
important to note that our proposed method is con-
strained to numerical values, as outlined in this pa-
per, due to the inherent inability of the averaging pro-
cess to accommodate categorical fields. Our empiri-
cal evaluation reveals that the reduced datasets gener-
ated through Adaptive Granulation are highly effec-
tive for downstream inference tasks. Specifically, our
tests have shown that models trained on these refined
datasets perform comparably to those trained on ran-
domly sampled datasets, benefiting from a significant
decrease in training time and resource requirements.
The capacity of Adaptive Granulation to balance the
trade-off between data size and pattern preservation,
coupled with its ease of implementation within the
database, makes it a powerful tool for handling the
complexities of Big Data. We expect this approach
to enable more efficient utilization of large datasets in
training predictive models, ultimately leading to bet-
ter resource management and improved outcomes in
data-intensive domains.
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