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Abstract Many different types of phases can form within

alloys, from highly-ordered intermetallic compounds, to

structurally-ordered but chemically-disordered solid solu-

tions, and structurally-disordered (i.e. amorphous) metallic

glasses. The different types of phases display very different

properties, so predicting phase formation is important for

understanding how materials will behave. Here, we review

how first-principles data from the AFLOW repository and

the aflow?? software can be used to predict phase for-

mation in alloys, and describe some general trends that can

be deduced from the data, particularly with respect to the

importance of disorder and entropy in multicomponent

systems.
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1 Introduction

A wide variety of phases can form within alloys,[1] from

highly-ordered intermetallic compounds,[2] to structurally-

ordered and chemically-disordered solid solutions,[3–7] and

structurally-disordered (i.e. amorphous) metallic

glasses[8–12] (Fig. 1). Different phase-types lead to very

different properties: intermetallics are hard but brittle; solid

solutions display solid-solution strengthening and can even

overcome the strength-ductility trade-off;[13,14] while

metallic glasses can be processed using thermoplastic

blow-molding.[15] Metallic engineering materials typically

contain multiple phases forming a carefully-engineered

microstructure: small plates or needles of harder inter-

metallic or ceramic compounds (e.g. cementite (Fe3C) in

steels, or the c’ phase in Ni-superalloys) embedded in a

softer, more ductile matrix. The dispersal of the inter-

metallic phases in the matrix is controlled by factors such

as the annealing time and quench rate, which limits the

extent of diffusion, and can lead to materials with good

combinations of strength and toughness. Other

microstructures can be formed by rapid unmixing processes

such as spinodal decomposition,[16,17] where the internal

stresses at the interface between phases impede the motion

of dislocations, increasing hardness.[18]

Due to the large effect of phase composition on alloy

properties, predicting which phases are most likely to form

under specific conditions, and which processing pathways

can give rise to desired combinations of phases, is an

important challenge. Experimental investigation of phase

formation can be expensive and slow, due to the time

needed for atoms to diffuse into the equilibrium

microstructure. Therefore, computational methods have

been developed to predict phase formation, including

CALPHAD (calculation of phase diagrams)[20,23] that

This invited article is part of a special tribute issue of the Journal of
Phase Equilibria and Diffusion dedicated to the memory of Thaddeus

B. ‘‘Ted’’ Massalski. The issue was organized by David E. Laughlin,

Carnegie Mellon University; John H. Perepezko, University of

Wisconsin-Madison; Wei Xiong, University of Pittsburgh; and JPED
Editor-in-Chief Ursula Kattner, National Institute of Standards and

Technology (NIST).

& Cormac Toher

cormac.toher@utdallas.edu

& Stefano Curtarolo

stefano@duke.edu

1 Department of Materials Science and Engineering, The

University of Texas at Dallas, Richardson, TX 75080

2 Department of Chemistry and Biochemistry, The University

of Texas at Dallas, Richardson, TX 75080

3 Department of Mechanical Engineering and Materials

Science, Duke University, Durham, NC 27708

4 Center for Extreme Materials, Duke University, Durham,

NC 27708

123

J. Phase Equilib. Diffus. (2024) 45:219–227

https://doi.org/10.1007/s11669-024-01084-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s11669-024-01084-0&amp;domain=pdf
https://doi.org/10.1007/s11669-024-01084-0


interpolates/extrapolates from existing experimental

data,[23,24] molecular dynamics simulations using either

empirical force-fields or ab initio calculations,[25] and first-

principles calculations of formation enthalpies that can be

combined with cluster expansion[26–28] or machine-learn-

ing[29] to generate large structure-energy ensembles for use

in Monte Carlo simulations[30–32] or statistical thermody-

namics models.[33]

The large data sets required to train cluster expansion or

machine-learning models require automated management

of first-principles calculations, such as that performed by

AFLOW.[34–46] AFLOW generates input files for density

functional theory (DFT) calculations[47–49] by decorating

structural prototypes from the in-built Library of Crystal-

lographic Prototypes,[50–52] monitors the calculations and

automatically detects and corrects any errors, and finally

extracts relevant information from the output files. Finally,

the extracted data is formatted and added to the AFLOW

database,[53–56] which is accessible using the AFLUX

search-API and AFLOW REST-API.[55,57] The AFLOW

database currently contains over 3.5 million entries, cov-

ering binary (1738), ternary (30,289) and quaternary

(150,659) systems. Here, we review how AFLOW data can

be used to predict the formation of disordered materials,

and to make general statements about the types of phases

that will form in multi-component materials.

2 The Inevitability of Disorder

The central role of entropy in the formation of multi-

component systems can be demonstrated using large

computational data sets. Analysis[58] of formation enthal-

pies for 202,261 binary, 974,808 ternary and 432,840

quaternary entries from the AFLOW.org ab-initio materi-

als repository with the associated tools[57] shows that the

gain in formation enthalpy from adding additional elements

decreases rapidly with increasing number of elements,

while the configurational entropy continues to grow

monotonically.

The formation enthalpy ‘‘gain’’[58] DH Nj 1; � � �;N�1f g½ �
of an N-element ordered compound with respect to com-

binations of f1; � � �;N�1g-element ordered sub-compo-

nents can be defined as the energetic distance of the

enthalpy of the N-element compound, H N½ �, below the

f1; � � �;N�1g convex-hull hyper-surface

Hhull f1; � � �;N�1g½ � generated from its f1; � � �;N�1g-ele-
ment components:

For binary compounds, DH 2j1½ � is equivalent to the usual

formation enthalpy; for N[ 2, the formation enthalpies

can be written as sums of the recursive gains. Physically,

DH Nj 1; � � �;N�1f g½ � represents the enthalpy gained by

creating an ordered N-species compound out of all the

combinations of ordered 1�; � � �;N�1f g-ones. The

expected enthalpy gains can be extracted from the metal

alloy phase diagrams generated with AFLOW.org data.

The expectation value of the enthalpy gain DHh i is

shown in Fig. 2(a) for N ¼ 2; 3; 4, with the cohesive

energy of the elemental reference phase shown for N ¼ 1.

DHh i is � 181 meV/atom for binaries, reducing to

� 7 meV/atom for ternaries, and effectively disappearing

(\0:1 meV/atom) for quaternaries. The frequency distri-

butions of enthalpy gains for all systems are displayed in

Fig. 2(b). 588 (59%) of binary systems show enthalpy gain,

forming a total of 1995 binary compounds; 2237 (16%) of

ternaries form a total of 3040 ternary compounds, and just

426 (0.3%) of quaternaries form quaternary compounds.

Fig. 1 Order and disorder in alloy space. Phases formed in alloys

range from structurally disordered metallic glasses (formed when

components have a large range of ionic radii—descriptor d), to

ordered intermetallic compounds, and solid solutions (formed when

components have a large ratio of mixing entropy DSmix to mixing

enthalpy DHmix). Figure is inspired by Fig. 1 in Ref. 19

DH Nj 1; � � �;N�1f g½ � �
Hhull f1; � � �;N�1g½ � � H N½ �; if H N½ �\Hhull f1; � � �;N�1g½ �;
0; otherwise :

�
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434 binary, 192 ternary but only 10 quaternary systems

have an enthalpy gain exceeding 100 meV/atom. There-

fore, as the number of elements in an alloy increases, the

likelihood of finding new materials consisting of single-

phase intermetallic compounds drops rapidly. Instead,

multi-component materials are dominated by disorder,

consisting of solid-solutions, metallic glasses and multiple

separate phases.[59]

While this analysis was performed for alloys composed

of 45 different metallic elements, this finding is expected to

generalize to other systems such as high-entropy ceram-

ics,[5,60,61] although formation enthalpy corrections[62,63] to

account for DFT inaccuracies will be required. Mixing

different types of bonding can generate additional enthalpic

stabilization, increasing the threshold number of elements

at which entropy dominates. Meanwhile, reciprocal sys-

tems might be able to reduce the threshold, due to the

additional entropic stabilization of every equivalent

sublattice.

3 Glass Formation

Metallic glasses are amorphous materials, lacking an

ordered crystal lattice and its associated defects, providing

them with a combination of excellent mechanical proper-

ties[64] and plastic-like processability,[15,65,66] rendering

them of great interest for a range of commercial and

industrial applications.[67–69]

A model based on the competition between different

ordered structures has been successfully used to predict the

glass forming ability (GFA) of metallic glasses.[70,71] The

model is based on the ansatz that, at a particular compo-

sition, if an alloy system has a large number of structures

that are similar to each other in energy, but different from

each other structurally, then competition between the

ordered phases during solidification will frustrate crystal-

lization and promote glass formation (Fig. 3a, b). Atomic

environment[72,73] comparisons determine the similarity of

ordered crystalline phases, enabling the formulation of a

quantitative descriptor that can be applied to the entire

AFLOW.org database. The different structures are

weighted according to a Boltzmann distribution to create

the GFA descriptor. The model has been applied to

AFLOW data for binary and ternary alloy systems, and

successfully predicts 73% of the glass forming composi-

tions for a set of 16 experimentally characterized binary

alloy systems. Notably, the model also predicts that 17% of

binary alloy systems should have a GFA greater than CuZr,

a well-known glass-former. Therefore, there are likely to

be many more glass-forming alloy compositions discov-

ered in the future.

A limitation of this model is the granularity of available

calculated formation enthalpy data: calculations are per-

formed for specific compositions that have structures with

reasonably-sized primitive cells. For compositions with 3

or more elements, this becomes a major issue, which can be

addressed by also considering competition between struc-

tures with different stoichiometries. Compositions with

stoichiometries in-between those of common ordered

structures can be considered as consisting of combinations

of local structures with different compositions,[70]

(a) (b)

Fig. 2 Enthalpy and entropy gains. (a) Expectation value of enthalpy

gain DH Nj 1; � � �;N�1f g½ �h i and ideal entropy contributions as

functions of the number of elements, N. Even at room temperature,

entropy eventually overwhelms enthalpy in determining the phase

stability of multi-component systems. (b) Enthalpy gain distribution

for N ¼ 2; 3; 4; gains decrease sharply with increasing number of

elements. Figure is adapted from Fig. 1 in Ref. 58
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representing local stoichiometric fluctuations within the

sample. Pseudo-structures can then be constructed as linear

combinations of the formation enthalpies and atomic

environments of the real structures (Fig. 3c). The GFA

descriptor can then be calculated using these pseudo-

structures for intermediate stoichiometries, allowing pre-

diction of glass formation across the entire composition

space.[70]

4 Solid Solutions and High-Entropy Alloys

In solid solutions, different elements occupy the same

crystallographic site on a lattice. High-entropy alloys are

solid solutions with multiple (usually at least 4 or 5)

components forming a single phase,[3,4,13,74–76] typically on

a simple fcc or bcc lattice. Similar to the method described

above for predicting glass formation, materials that form

high-entropy single-phases can be rapidly identified using a

descriptor (EFA, entropy-forming-ability) based on the

distribution of energies for a set of ordered configurations

based on a particular lattice.[61] A narrow distribution of

energies indicates miscibility leading to the formation of a

high-entropy single phase, while a broader distribution

corresponds to preferred ordered configurations leading to

phase separation.

The EFA descriptor is qualitative, only indicating which

compositions are most likely to form solid solutions.

Directly predicting the order–disorder transition tempera-

tures from first-principles for alloy systems requires Monte

Carlo simulations combined with ab initio calcula-

tions,[30–32] which can be computationally expensive. To

accelerate the prediction of phase diagrams, AFLOW data

was used to formulate a descriptor for the order–disorder

transition temperature,[33] incorporating formation enthalpy

calculations into a mean field statistical mechanics model,

and making use of order parameters for predicting the

transition temperature of a multi-component system into a

solid solution phase.

The main steps for method to predict the transition

temperature are:[33]

i. AFLOW data for binary alloy systems are leveraged to

train cluster expansion (CE)[26,77] models (Fig. 4(a)),

within the Alloy Theoretic Automated Toolkit (ATAT)[28]

implementation. The zero temperature energies ej of atomic

(a)

(b)

(c)

Fig. 3 Descriptor for glass forming ability. The glass forming ability

of metal alloy systems can be predicted from the spread of formation

energies of relevant ordered structures. (a) Different structural phases

with similar energies compete against each other during solidification,

frustrating crystallization and promoting glass formation. (b) A broad

distribution of energies implies a low glass forming ability, while a

narrow distribution indicates a high glass forming ability. (c) The

GFA of intermediate stoichiometries can be estimated by generating

pseudostructures / that are linear combinations of the real structures

w—particularly useful for ternary alloys. Panels (a) and (b) adapted

from Fig. 1 of Ref 46, and panel (c) adapted from Fig. 1 of Ref 70
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configurations based on derivative structures of fcc and bcc

lattices are then estimated using the CE models.

ii. The atomic configurations are then incorporated into

the generalized quasi-chemical approximation (GQCA)

mean field statistical mechanical model.[78,79] GQCA is

particularly suitable for solid solutions, where long-range

order is not expected to be important and the material is

spatially homogeneous.

The thermodynamic potential U within the GQCA

model is given by

U ¼ N �
X
j

ejPj � Ts�
X
k

lkXk

 !
; ðEq 1Þ

where Xk is the global atomic fraction of element k, lk is

the chemical potential of k, and s is entropy, which in the

large-system limit becomes

s ¼ kB �
X
k

Xk loge Xk �
1

n

X
j

Pj logeðPj= ~PjÞ
 !

ðEq 2Þ

Minimizing the thermodynamic potential subject to the

constraints
P

j Pj ¼ 1 and
P

j Pjxkj ¼ Xk, where xkj is the

atomic fraction of element k in configuration j, gives the

temperature-dependent population vector (see Fig. 4b)

Pj ¼
~Pj e

�nb �j�
P

k
lkxkjð Þ

P
j
~Pj e

�nb �j�
P

k
lkxkjð Þ ; ðEq 3Þ

where b ¼ 1=kBT .
In the high-temperature limit, this becomes the tem-

perature-independent population vector

Fig. 4 Outline of the method to predict order–disorder transitions. (a)

Statistical ensemble is constructed: atomic configurations are gener-

ated and their multiplicity is calculated. Their energies are then

estimated using cluster expansion with AFLOW energies serving as

the training set. (b) The GQCA model is solved for the population

vector PðX; TÞ. (c) Tc at equi-composition is evaluated as the

maximum temperature derivative point of the order parameter

aðXðecÞ;TÞ. (d) Boundary lines are found assuming

DKLðX;TcÞ � DKLðXðecÞ; T
ðecÞ
c Þ. Figure is adapted from Figures 1

and 2 in Ref 33
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~Pj ¼
gj
Q

k X
n� xkj
kP

j0
gj0
Q
k

X
n� xkj0
k

; ðEq 4Þ

iii. Comparison of the behavior of the thermodynamic

potentials and population vectors to experimental data

leads to the introduction of two order parameters to esti-

mate the transition temperature and miscibility gap. The

first order parameter is based on the angle between the

population vector as a function of temperature and the

population vector for the fully disordered high temperature

limit

a X; Tð Þ � P � ~P=jPjj~Pj: ðEq 5Þ

The maximum of the rate of change of this angle as a

function of temperature, max(oa=oT), is found to corre-

spond to the order–disorder transition temperature at equi-

atomic concentration (Fig. 4c). The second order parame-

ter is the relative entropy (Kullback–Leibler divergence[80])

DKL � 1

n

X
j

Pj logeðPj= ~PjÞ ðEq 6Þ

which is the entropy-loss due to ordering. The surface of

constant relative entropy is used to extrapolate the transi-

tion temperature at equi-atomic concentration to other

compositions, and thus generate the order–disorder transi-

tion boundary (Fig. 4d) to delineate the miscibility gap in

the phase diagram.

Defining a solid-solution-forming alloy as a composition

where the order–disorder transition temperature is lower

than the melting temperature (as obtained from experi-

mental data or CALPHAD predictions), 58 out of 117

(� 49:6%) investigated binary alloy systems are expected

to form solid solutions—56 of these were corroborated by

experimental reports. 148 out of 441 investigated ternary

systems were predicted to form solutions (� 33:6%), while

46% of the 1100 investigated quaternaries and 130

quinaries are expected to form high-entropy alloys.

5 Vibrational Contributions

The works reviewed above focus on the role of configu-

rational entropy in phase formation. To understand the role

of vibrations in phase formation in multi-component sys-

tems, the AFLOW-POCC (Partial Occupation)[38] and

AFLOW-APL (Automatic Phonon Library)[81] modules

were combined to calculate the contribution of vibrations

to the Gibbs free energy of formation for 3 recently syn-

thesized[61,82–85] high-entropy carbides: (HfNbTaTiV)C,

(HfNbTaTiW)C, and (HfNbTaTiZr)C. The results[81]

showed that for (HfNbTaTiV)C and (HfNbTaTiZr)C,

where all of the binary precursors were in the same rocksalt

structure as the multicomponent phase, the net contribution

of the vibrational energy to mixing was negligible. How-

ever for (HfNbTaTiW)C, the WC precursor is not rocksalt,

and the vibrational contribution was significant. Therefore,

vibrational contributions are likely to be most significant

when precursors or decomposition products have different

structures than the high-entropy phase.

6 Conclusion

Thermodynamic analyses of the AFLOW database leads to

the following general conclusions and predictions about the

distribution of different types of phases in alloy systems:

(i) disorder is inevitable for multi-component systems;[58]

(ii) competition between ordered structures plays an

important role in glass formation;[70,71] (iii) spectral

descriptors based on the energy distribution of ordered

structures can be used to predict the synthesizability of

high-entropy phases;[61] (iv) high-entropy alloy transition

temperatures can be predicted from the rate of change of

the population vector as a function of temperature;[33]

(v) vibrational contributions are important when the com-

ponents have different structures than the high-entropy

phase.[81]
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