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Molecular generativemodels based on deep learning have increasingly gained attention for their ability in de

novo polymer design. However, there remains a knowledge gap in the thorough evaluation of these

models. This benchmark study explores de novo polymer design using six popular deep generative

models: Variational Autoencoder (VAE), Adversarial Autoencoder (AAE), Objective-Reinforced Generative

Adversarial Networks (ORGAN), Character-level Recurrent Neural Network (CharRNN), REINVENT, and

GraphINVENT. Various metrics highlighted the excellent performance of CharRNN, REINVENT, and

GraphINVENT, particularly when applied to the real polymer dataset, while VAE and AAE show more

advantages in generating hypothetical polymers. The CharRNN, REINVENT, and GraphINVENT models

were successfully further trained on real polymers using reinforcement learning methods, targeting the

generation of hypothetical high-temperature polymers for extreme environments. The findings of this

study provide critical insights into the capabilities and limitations of each generative model, offering

valuable guidance for future endeavors in polymer design and discovery.

1 Introduction

Polymers represent an important class of materials, known for

their exceptional versatility in numerous properties, including

thermal, mechanical, optical, and dielectric characteristics.1–5

Plentiful studies are recently dedicated to the molecular design

of new polymers endowed with exceptional properties.6–11 With

the recent advancements in deep learning and its application in

polymer science and engineering, de novo polymer design has

been recognized as a promising method to expedite the design

and discovery of new high-performance polymer materials.7,12–14

A large number of hypothetical polymer structures can

provide a vast design space, which is crucial for the success of de

novo polymer design strategies. As shown in Fig. 1(a) and (b),

the PolyInfo15 database lists merely 18 697 polymer structures.

In comparison, there are around 116 million real small mole-

cule compounds documented in PubChem16 and GDB-13 (ref.

17) offers us more than 900 million hypothetical small molecule

compounds, which provide us with a vast chemical space for

drug discovery. Fig. 1(c) illustrates that compared to the real

polymer dataset (represented by orange and green lines), the

ML-generated PI1M18 dataset offers researchers a large number

of promising high Tg hypothetical candidates, as shown by the

red line.19 Extensive research has been conducted on the de novo

design of polymers, with researchers adopting various

approaches, especially for proposing new hypothetical polymer

structures, as summarized in Fig. 1(d).

For example, Sharma et al. employed a polymer building

block approach and high-throughput density functional theory

(DFT) to design organic polymers with high energy storage

capabilities.20 Initially, repeat units were created using four

building blocks within each unit, with each block selected from

a pool comprising –CH2–, –C6H4–, –C4H2S–, –NH–, –CO–, –O–,

and –CS–. These blocks were chosen due to their prevalence in

polymer backbones. This was followed by a multi-stage

screening process involving quantum mechanics-based

searches and molecular dynamics techniques. The nal phase

included synthesizing and testing the most promising poly-

mers, validating this approach for material selection. Similarly,

Li et al. devised novel polysulfates by leveraging their knowledge

of known polymer structures and the characteristics of func-

tional groups.21 They then conrmed these structures' high

glass transition temperature (Tg) and band gap (Eg) values

through experimental synthesis and characterizations. The

advantages of these two studies are that they allow for control

over the structural complexity of the hypothetical polymers and

enable the prediction of their overall properties based on the

characteristics of functional groups or substructures. However,

such a combination method of polymer building blocks

becomes quite challenging when there is a desire to obtain

a large number of candidates, in particular, on the order of

millions.
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To obtain candidates on a larger scale, another strategy for

generating hypothetical polymer structures is based on existing

small molecules and known polymerization reactions (or

synthetic routes). As we mentioned earlier, numerous studies

have contributed various datasets, including a vast number of

small molecule structures. Taking advantage of these existing

small molecules, Tao et al. generated an 8 million hypothetical

polyimides and uncovered polyimides that possessed a multi-

tude of outstanding thermal and mechanical properties

simultaneously.8,22 Using diamine and dianhydride monomers

sourced from PubChem, hypothetical polyimides were gener-

ated following a predened reaction route. To efficiently screen

these generated compounds, a machine learning method was

employed for high-throughput evaluation. In a similar vein,

Wang et al. generated 110 hypothetical polyimides by utilizing

diamine and dianhydride monomers, resulting in high-

temperature polymer dielectrics.6 This approach can provide

a large number of candidates, but its chemical space is still

limited by the small molecules used.23

With the rise of deep learning, generative models, and

reinforcement learning, an increasing number of researchers

are utilizing deep generative methods to expand the chemical

space of various materials. This trend is particularly evident in

the elds of cheminformatics and drug discovery.24–47 In poly-

mer informatics, Ma and Luo created the PI1M dataset,

comprising 1 million hypothetical polymers generated using an

RNN trained on actual polymers sourced from PolyInfo.18 In

their study, they compiled 12 000 homopolymer structures from

the PolyInfo database to train an RNN model. This training

enabled the generation of 1 million new polymers, collectively

referred to as PI1M. It was observed that while PI1M encom-

passes a chemical space similar to PolyInfo, it also lls in gaps

where PolyInfo data is lacking, thereby offering a more

comprehensive view of the polymer landscape.

The other researchers have directly generated hypothetical

polymers with tailored properties using different deep genera-

tive models. For example, Wu et al. introduced Bayesian

molecular design to discover polymers with high thermal

Fig. 1 (a) The number of real polymers is very limited in the literature. (b) In contrast, datasets for small molecule compounds contain many real

(e.g., PubChem) and hypothetical (e.g., GDB-13) compounds, providing ample opportunities for the development of new small compounds. (c)

Due to the limited number of real polymers, hypothetical polymer structures are essential in designing new polymers with exceptional properties.

(d) The four primary methods for generating these structures include manual design based on existing structures (associative construction),

assembly of building blocks, leveraging existing small molecule compounds and synthetic routes, and employing deep generative models.
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conductivity.7 Gurnani et al. employed graph-to-graph (G2G)

translation, called polyG2G, which can discern subtle chemical

differences (referred to as translations) leading to signicant

property variations in polymeric materials.48 A latent space

searching strategy is employed in this study to generate hypo-

thetical polymers with desired properties. They then used this

knowledge to sample and design new polymers with high Eg and

electron injection barrier. Batra et al. utilized syntax-directed

VAE in conjunction with Gaussian process regression (GPR)

models to identify polymers expected to exhibit robustness

under extreme conditions, such as high temperatures, high

electric elds, and their combination.49 Liu et al. employed an

invertible graph generative model to generate hypothetical

polymers with promising properties, particularly focusing on

high-temperature polymer dielectrics.50 Kim et al. employed

a method of searching and decoding within the latent space

offered by a VAE to generate candidates with high polymer log P

values51,52 Huang et al. developed a surrogate deep neural

network model to predict thermal conductivity and compiled

a library of polymer units consisting of 32 sequences. They

utilized two advanced multi-objective optimization algorithms:

Unied Non-dominated Sorting Genetic Algorithm III (U-NSGA-

III) and Q-Noisy Expected Hypervolume Improvement, for

designing sequence-ordered polymers that not only exhibit high

thermal conductivity but also possess feasible synthetic

potential.53

When researchers intend to employ generative models in de

novo polymer design, the initial step involves selecting a suit-

able model. However, at present, there is no work dedicated to

assisting in the selection of generative models for hypothetical

polymer structures. In contrast, numerous studies have been

conducted to compare the performance of various models on

small drug-like molecules, greatly aiding researchers in the eld

of drug discovery. One notable example of such a benchmarking

platform is Molecular Sets (MOSES), which was developed to

standardize the training and comparison of generative models

for small molecules.26 Zhang et al. conducted a benchmark

study with a focus on functional groups and ring systems.54

Weng et al. performed a benchmark specically centered

around biological properties.55 Recently, Nigam et al. created

a set of practical benchmark tasks called “Tartarus”, which

relies on physical simulations of molecular systems to emulate

real-world challenges in molecular design for materials, drugs,

and chemical reactions.56

Compared to small molecules, generating polymer struc-

tures involves unique complexities that demand specialized

approaches and considerations. While small molecules are fully

represented by their complete structures in SMILES, polymers

typically consist of very large and intricate architectures.

Consequently, the representation of polymers—particularly

linear homopolymers—relies on identifying their repeating

units and using wild cards (e.g., “*”) to denote polymerization

points. On the surface, this strategy appears similar to

describing small compounds. However, in practice, wild cards

like “*” are not simply placeholders for arbitrary bonds. Rather,

they capture specic chemical bonding patterns and the

connectivity between repeating units. Therefore, models must

handle the additional complexity introduced by these wild cards

during the generation process. Treating “*” as a generic wild

card can lead to inaccuracies in depicting polymer topologies

and connectivity, resulting in invalid molecular design. As

a result, conclusions drawn from studies on small molecules

cannot be directly applied to the generation of hypothetical

polymer structures. Therefore, there is a timely need to develop

specic benchmarks and methodologies tailored to the unique

challenges and requirements of the generative design of

polymers.

In this study, we initially used three different polymer data-

sets: real polymers from PolyInfo,15 and hypothetical polyimides

generated based on GDB-13 (ref. 17) and PubChem,57,58 to train

six different generative models – VAE, AAE, ORGAN, CharRNN,

REINVENT, and GraphINVENT. These models were trained on

each dataset and generated about 10 million hypothetical

polymer structures. We then evaluated these hypothetical

polymer structures using the fraction of valid polymer struc-

tures fv, the fraction of unique polymer structures from

a sample of 10 000 f10k, the Nearest Neighbor Similarity (SNN),

the Internal Diversity (IntDiv) metric, and the Fréchet ChemNet

Distance (FCD). These ve metrics are provided by the MOSES

platform. Furthermore, the t-distributed Stochastic Neighbor

Embedding (t-SNE) method was employed to visualize their

chemical space distribution.

We further used reinforcement learning techniques, target-

ing the Tg, to train CharRNN, REINVENT, and GraphINVENT

models to design hypothetical polymer structures with high Tg
values. These three models are selected because of their

outstanding performance based on the previous evaluation. All

these models demonstrated success in generating hypothetical

polymers with high Tg values aer 1000-generation training.

Overall, CharRNN provided us with the most favorable results.

On the other hand, the effective hypothetical polymer structures

generated by REINVENT show an outstanding distribution in

the predicted values but have the lowest efficiency. The results

of this study demonstrate the immense potential of generative

models in the eld of polymer informatics. They also provide

valuable insights into the capabilities and limitations of various

generative models within the realm of polymer science and

engineering. This understanding is crucial for researchers when

it comes to selecting the most appropriate generative model for

their specic needs.

2 Results and discussion
2.1 Dataset and deep generative models

In this study, we focus on hypothetical linear homopolymer

structures. Three datasets were employed, including real

homopolymers manually collected from PolyInfo, hypothetical

polyimides generated using small molecules (polycondensation

between diamine and dianhydride/diisocyanate monomers)

from PubChem, and GDB-13, as discussed in our previous

study.22 The real polymer dataset includes approximately 13 000

homopolymer structures out of a total of 18 000 polymer

structures, while generative models typically require more

training data. For example, Polykovskiy et al. utilized

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery

Paper Digital Discovery

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

8
 J

an
u
ar

y
 2

0
2
5
. 
D

o
w

n
lo

ad
ed

 o
n
 2

/1
0
/2

0
2
5
 9

:1
3
:1

2
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



approximately 4.5 million samples for their work on MOSES,26

and Zhang et al. used around one million samples for their

study.54 Therefore, we also utilized two hypothetical polyimides

datasets for this purpose. The hypothetical polyimides gener-

ated using small molecules from PubChem and GDB-13 include

a large number of structures, from which we randomly selected

approximately 10 million for model training. There are no

shared polymer structures among the three datasets. None of

the three datasets were subjected to any preprocessing or

cleaning.

Besides the difference in the number of samples in these

datasets, these three datasets also vary in molecular weight and

the number of types of atoms. It's important to note that the

molecular weight values mentioned refer specically to the

repeat unit molecular weight of the polymer. This distinction is

crucial because the repeat units serve as the input for analysis

and modeling in these studies.

Repeat units of real polymers from the PolyInfo database

exhibit an average molecular weight of 443.7 and an average of

34.1 atoms per sample, encompassing 25 different types of

atoms. In contrast, repeat units of hypothetical polyimides

derived from PubChem show an average molecular weight of

530.4 and an average of 40.7 atoms, but with a limited variety of

only 5 types of atoms. Repeat units of hypothetical polyimides

created based on the GDB-13 have a higher average molecular

weight of 645.8 and an average of 48.5 atoms per sample,

featuring 18 different types of atoms. Tables S1–S3 in the ESI†

provide a detailed count of each atom type present in these

datasets. These factors could signicantly impact the training

and performance of generative models. Specically, the average

number of atoms directly affects the size of the strings and

graphs used for network input, while the variety of atomic types

inuence the molecular design of polymers by using different

deep generative models. Utilizing these three diverse datasets

enable us to better explore how different generative models

perform in polymer informatics. Polymer-Simplied Molecular

Input Line Entry System (p-SMILES) strings are specialized

string representations used to depict the chemical structures of

polymers. These strings are instrumental in data-driven tasks

related to polymer discovery, design, or prediction. The format

of a p-SMILES string is based on the standard SMILES syntax as

dened by OpenSMILES.59 However, p-SMILES introduces

a unique feature to represent polymers: it includes two stars ([*]

or *) within the string. These stars signify the endpoints of the

polymer's repeat unit (for linear homopolymers, there are two

endpoints), effectively marking the boundaries of the repeating

segment in the polymer chain.

At present, large-scale generative models like Generative Pre-

Trained Transformers (GPT)60 have attracted widespread

attention, but their scale and cost may be daunting for some

researchers, particularly those who only wish to obtain some

candidates in polymer design research. In these cases, smaller-

scale generative models are still a more practical and accessible

option. At the same time, due to the inherent differences

between polymers and small molecules, such as higher

complexity, larger molecular weight, and the use of p-SMILES,

not all techniques applicable for generative models of small

molecules are suitable for the generation of polymer structures.

For example, a structural representation method like SELFIES,61

specically designed for small compound generation, cannot

represent the repeat unit structures of polymers. Additionally,

models like LatentGAN,62 developed for small compound

generation tasks, are not capable of processing p-SMILES

strings. In this study, as shown in Fig. 2, we selected the

following six networks: VAE, AAE, ORGAN, CharRNN, REIN-

VENT, and GraphINVENT, which are briey discussed below.

2.1.1 VAE. VAE is a class of machine learning models that

focuses on data generation and latent space learning. As shown

in Fig. 2(a), a VAE consists of two main components: the

encoder and the decoder. The input encoder takes data x and

maps it to a latent space representation, characterized by

a distribution with mean m and variance s
2. The VAE imposes

a regularization by encouraging the latent distribution to

resemble a standard Gaussian distribution N(0,I), where I is the

identity matrix. This is expressed in the objective function as

the maximization of the similarity max sim(N(m,s2), N(0,I)),

which typically involves minimizing the Kullback–Leibler (KL)

divergence (DKL) between the two distributions. From the latent

space, a sample z is drawn and passed to the decoder, which

attempts to reconstruct the original input, producing x̂. The

training process involves minimizing DKL and the reconstruc-

tion error, the loss function can be formulized as L = wKLDKL +

‖x̂ − x‖, making the decoded output as close as possible to the

original input data. Our VAE model is implemented using the

MOSES package and p-SMILES is used as input x and output x̂

representations.

2.1.2 AAE. AAE is a machine learning model that merges

the concepts of Autoencoders (AE) and Generative Adversarial

Networks (GANs). It can be observed from Fig. 2(b) that in the

AAE framework, the input encoder receives raw data x and

encodes it into a latent representation z. This latent represen-

tation is intended to follow a predened probability distribu-

tion, typically a standard normal distribution. The AAE includes

a discriminator, which distinguishes whether the latent repre-

sentations z generated by the encoder follow the set distribu-

tion. The output z from the encoder is then passed to the

decoder, whose task is to reconstruct the input x to produce x̂,

with the goal of minimizing the reconstruction error min‖x̂ −

x‖ and adversarial loss, which ensures the latent space distri-

bution matches the target distribution. During training, the

reconstructed output incrementally approaches the original

input. We implement the AAE model using the MOSES package

as well.

2.1.3 ORGAN. ORGAN is a variant of the traditional GAN

that incorporates objective reinforcement for improved gener-

ation of complex data. In the ORGAN framework, the generator

creates synthetic data (represented by z) which is intended to

mimic real data samples. The discriminator, on the other hand,

evaluates the synthetic data against real samples. Its goal is to

distinguish between the two, effectively learning to tell apart

genuine data from the imitations created by the generator. The

twist in ORGAN compared to a standard GAN is the inclusion of

a reinforcement signal, denoted by l, which adjusts the gener-

ator's objectives beyond merely fooling the discriminator. The

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry
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nal reward function R can be expressed as a linear combina-

tion of the discriminator D and domain-specic objectives O: R

= lD + (1 − l)O.34 The ORGAN is implemented with the MOSES

package, chemical validity and uniqueness are used as rewards,

with l = 0.7 applied because this is the default value in MOSES.

2.1.4 CharRNN. CharRNN is a type of neural network

specically designed for sequence prediction problems. This

architecture is particularly useful for handling tasks where the

input and/or output is a sequence of characters, such as text

generation or in this case, p-SMILES generation. As shown in

Fig. 2(e), a CharRNN utilizes either Long Short-Term Memory

(LSTM) or Gated Recurrent Unit (GRU) cells, both of which are

variants of RNNs that are capable of learning long-term

dependencies. The network depicted here processes the input

sequence one character at a time (x1, x2, x3, .), with each

character being fed into the LSTM/GRU cell. These cells then

produce an output sequence, where each output character is

inuenced by the previous characters in the sequence of p-

SMILES. We use the MOSES package to implement the

CharRNN.

2.1.5 REINVENT. REINVENT is a sequence-based genera-

tive model that utilizes reinforcement learning for the genera-

tion of novel chemical entities, such as drug molecules or

polymers. At the beginning of the sequence generation, each

token xt of the encoded p-SMILES string is sequentially fed into

an embedding layer, which transforms the discrete chemical

symbols into continuous vectors. These vectors are then fed into

a series of LSTM or GRU layers. Both LSTM and GRU are types of

RNN cells capable of capturing long-term dependencies in

sequential data. The recurrent cells process the input sequence,

maintaining an internal state Ht that contains information

about the sequence processed thus far. This state is updated

with each new input symbol and is used to predict the next

symbol in the sequence. Aer the LSTM/GRU layers, a linear

layer followed by a somax activation function produces

a probability distribution over possible next symbols l, from

which the next symbol xt+1 is sampled.28 In this study, the

embedding size is set to 256, the number of layers to 3, and each

GRU layer has a size of 512.

2.1.6 GraphINVENT. In GraphINVENT, a graph is gener-

ated through a structured, step-by-step process that builds

molecular structures by iteratively adding atoms (nodes) and

bonds (edges). The process begins with an initial molecular

fragment or monomer, which is an input into a Graph Neural

Network (GNN). The GNN processes this initial structure,

capturing essential features and relationships between nodes

and edges within the molecular graph. Aer the GNN processes

the input, its output is passed to a Multilayer Perceptron (MLP).

Fig. 2 Architectures of six types of deep generative models: (a) VAE, (b) AAE, (c) ORGAN, (d) CharRNN, (e) REINVENT, and (f) GraphINVENT.
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This MLP interprets the extracted features and makes predic-

tions about the next steps in the molecule's construction. It

determines, based on these features, whether to add a new node

(atom), connect existing nodes with an edge (bond), or termi-

nate the graph generation. This iterative decision-making

continues until the graph reaches a complete molecular struc-

ture. An additional parallel MLP layer may also be employed to

process separate features or impose specic constraints, such

as ensuring the chemical validity or optimizing certain molec-

ular properties.63,64

2.2 Evaluation metrics of deep generative models

Once each model was trained, 10 million hypothetical polymers

were sampled from each trained model. To demonstrate their

effectiveness, we carefully selected ve crucial metrics from the

MOSES platform to evaluate the performance of these genera-

tive models. These metrics include the fraction of valid polymer

structures fv, which measures the percentage of chemically valid

structures generated by the model. The chemical validity of the

hypothetical polymer structure is determined by using RDKit

package and the count of *. The RDKit package attempts to

convert the p-SMILES string into a molecular structure to check

its validity, while also ensuring that [*] appears exactly twice for

p-SMILES of linear homopolymers. We also considered the

fraction of unique polymer structures from a sample of 10 000

f10k, assessing the model's ability to generate diverse chemical

structures.

Additionally, the Nearest Neighbor Similarity (SNN) was used

to calculate the average similarity of the generated polymers to

the closest polymer in the test set, providing an insight into how

the generated polymers compared to known structures. SNN

represents the average Tanimoto similarity T(mX, mY). This

similarity is calculated between the ngerprints of a polymermX

in the generated set X and its closest neighboring polymermY in

the reference dataset Y:

SNNðX ;Y Þ ¼
1

jX j

X

mX˛X

max
mY˛Y

TðmX ;mY Þ;

TðmX ;mY Þ ¼
nmX &mY

nmX
þ nmY

þ nmX &mY

where nmX
is the count of bits “on” in polymer mX's ngerprint

but not in polymermY's ngerprint, nmY
is the count of bits “on”

in polymer mY's ngerprint but not in polymer mX's ngerprint,

and nmX&mY
is the count of bits “on” both in polymer mX's

ngerprint and in polymer mY's ngerprint.

The Internal Diversity (IntDiv) metric, representing the

average pairwise similarity among generated polymers, was

included to gauge the diversity within the generated polymer

structures.65 IntDiv assesses the chemical diversity within the

generated set of polymers X:

IntDivpðX Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jX j2

X

m1 ;m2˛X

TðmX ;mY Þ
pp

s

;

where p = 1 is used in this study.

Lastly, the Fréchet ChemNet Distance (FCD) was employed to

quantify the difference in the distribution of the last layer

activations of ChemNet,66 which is trained to predict bioactiv-

ities of about 6000 assays available in three major drug

discovery databases (ChEMBL,67 ZINC,68 PubChem57), effectively

measuring the disparity between the generated polymer distri-

bution and a reference set.69 For two sets of polymers dataset X

and dataset Y, FCD is dened as

FCDðX ;YÞ ¼ mX � mY
2 þ Tr

2

4SX þ SY � 2ðSXSY Þ
1
2

3

5

where mX, mY are mean vectors and SX, SY are full covariance

matrices of activations for polymers from sets X and Y, respec-

tively. The reference dataset Y for SNN and FCD calculation is

the test set from the training process.

Aer all, both t-SNE and Tanimoto similarity metrics were

employed to assist in comparing differences between various

polymer structures. t-SNE, a widely used technique for

nonlinear dimensionality reduction and data visualization,

effectively maintains nonlinear similarities between data

points. It operates by initially determining the similarity

between high-dimensional data points using a Gaussian

distribution. Subsequently, it assesses the similarity among

data points in a reduced, low-dimensional space based on a t-

distribution. The goal of t-SNE is to minimize the disparity

between these high-dimensional and low-dimensional similar-

ities. These selected metrics will be employed in the initial

phase of comparison to sieve out the generative models that

demonstrate superior performance.

2.3 Performance and coverage of generative models

Fig. 3 shows the performance of the six generative models when

applied to the real polymer dataset from PolyInfo. In terms of fv,

the CharRNN model achieved the highest result, nearly reach-

ing 0.9. Both the GraphINVENT and REINVENT models ach-

ieved greater than 0.5. However, the VAE, AAE, and ORGAN

models obtained notably lower scores. These outcomes indicate

a comparatively lower effectiveness of these models in gener-

ating valid polymer structures (or p-SMILES) compared to other

models. For the metric f10k, AAE, ORGAN, REINVENT, and VAE

exhibit good performance, with scores around 0.8. CharRNN

and GraphINVENT, while not performing as well as the afore-

mentioned models, still achieve results greater than 0.5, which

is considered acceptable.

In evaluating the performance of generative models using

the SNN and IntDiv metrics, higher values are generally sought

aer. These metrics provide insights into the models' ability to

generate both diverse and chemically relevant polymer struc-

tures. It can be observed that all models, except for ORGAN,

exhibit results that closely resemble those in the training set.

For the FCD metric, lower values are generally preferred.

This metric measures the difference in distributions between

the generated polymers and a reference set, with a lower score

indicating that the generated polymers are more chemically

similar to real polymers. The observations indicate that, similar

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry
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to the SNN metric, VAE, REINVENT, and CharRNN achieved

relatively low FCD scores. AAE and GraphINVENT obtained

higher scores, while ORGAN exhibited a signicantly higher

FCD score.

Considering all the metrics collectively, it appears that

CharRNN, REINVENT, and GraphINVENT deliver the best

performance, while AAE and VAE follow behind. However,

ORGAN's performance leaves much to be desired. This result

bears similarity to previous benchmark work based on small

molecules. In MOSES, Polykovskiy et al. found that among

a wide array of models, CharRNN currently outperforms others

in terms of these key metrics.26 In RediscMol, Weng et al.

observed that CharRNN, VAE, and REINVENT yield superior

results, followed by AAE and ORGAN.55 Additionally, in studies

considering ring system coverage and functional group

coverage, AAE, REINVENT, VAE, CharRNN, and GraphINVENT

all exhibit better performance compared to ORGAN.54

CharRNN consistently shows remarkable results in these

benchmark studies, while the performance of AAE and VAE tends

to be less impressive in our result. This could be attributed to the

fact that the PolyInfo dataset is signicantly smaller than data-

sets for small molecules. Additionally, the structural differences

between real polymers and small molecules also play a role. The

ZINC Clean Leads70 used in the MOSES project have molecular

weights ranging from 250 to 350 Daltons.26 However, the

molecular weight (of the repeat unit) in the real polymer dataset

varies widely, ranging from 14 to 2202 dalton. This variation is

due to the presence of polymers with complex structures as well

as those with very simple repeat units. For example, polyethylene,

the simplest polymer, has a p-SMILES representation of just

‘*C*’. The t-SNE visualization further corroborates the analysis

derived from these metrics, providing a graphical representation

of how well eachmodel captures the chemical space of polymers.

The individual t-SNE results for each model can be found in the

ESI† for better visual comparison.

Fig. 4 presents the performance of six different generative

networks when applied to the hypothetical polyimide dataset

based on GDB-13. For fv, the REINVENT model achieved the

Fig. 3 A comparison of the performance of the six generative models on the real homopolymer dataset collected from the PolyInfo, as well as

the chemical space distribution of the generated polymers.

Fig. 4 A comparison of the performance of the six generative models on the hypothetical polyimide dataset synthesized based on GDB-13, as

well as the chemical space distribution of the generated polymers.
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highest result, nearly equal to 1. In comparison, the AAE, VAE,

and CharRNN models show a similar performance level, with

their values clustered around 0.7. On the other hand, the

ORGAN and GraphINVENT models have considerably lower

scores, below 0.2.

In f10k part, several models exhibited impressive results.

REINVENT, AAE, VAE, and CharRNN all achieved a result of 1. It

indicates an excellent ability of these models to generate

a diverse set of polymer structures, with no duplicates in

a sample of 10 000 p-SMILES strings. GraphINVENT, while not

reaching a perfect score, still performed commendably, with its

value being close to 0.9. However, ORGAN scored below 0.7,

indicating less diversity in its generated polymer structures.

For the SNN metric, it was observed that, apart from ORGAN

and GraphINVENT, the other four models showed similar

performance. Regarding IntDiv, all models except for ORGAN

exhibited closely matched performances. These observations

suggest that REINVENT, AAE, VAE, CharRNN, and Graph-

INVENT are capable of producing a wide variety of polymer

structures, demonstrating a good internal diversity among the

generated hypothetical polymers.

Observations show that, similar to the SNN metric, the

models AAE, VAE, REINVENT, and CharRNN achieved relatively

low FCD scores. GraphINVENT recorded a somewhat higher

FCD score, indicating less chemical similarity between its

generated structures and the training dataset. ORGAN exhibited

a signicantly higher FCD score, implying a larger disparity

between its generated structures and the real-world polymers.

Fig. 5 denotes the performance of the same six generative

models when applied to the hypothetical polyimide dataset

derived from PubChem. It is observed that the performance and

comparative results of these six models are almost consistent

with those outcomes from training on the hypothetical poly-

imide based on GDB-13, which means the REINVENT model

demonstrated the best performance. However, the performance

of the ORGAN model was notably worse, to the point of being

considered unacceptable for the task at hand. The specic

scores for all these models and datasets are provided in ESI

Tables S6–S8.†

Table 1 summarizes the performance of six models under

various challenges. All the above results show that the REIN-

VENT model shows the most favorable performance. The AAE,

CharRNN, and VAE models follow closely, while GraphINVENT

and ORGAN demonstrate a much worse performance. It should

be noted that the performance of these six generative models

varies across the three datasets, which is related to the charac-

teristics of each dataset. Compared to the real polymer dataset,

PolyInfo, the AAE and VAE show signicant improvement on

the hypothetical polyimide datasets. Despite the larger average

atom count per repeat unit in these hypothetical datasets,

which implies more complex molecular structures and longer

SMILES strings, this improvement suggests that these models

require a substantial amount of training data to achieve high-

quality generative performance. With abundant data, they can

learn more robust latent representations. Additionally, models

based on variational techniques perform better on datasets

derived from PubChem, which generally have simpler atomic

types and lower diversity. These models excel in scenarios with

Fig. 5 A comparison of the performance of the six generative models on the hypothetical polyimide dataset synthesized based on PubChem, as

well as the chemical space distribution of the generated polymers.

Table 1 Comparison of six generative models across different

molecular design scenarios. The number of stars indicates the effec-

tiveness of the model, with more stars signifying better performance.

“Low data volume” corresponds to the PolyInfo dataset, “high atomic

count” corresponds to two hypothetical polyimide datasets, and

“complex types of atoms” corresponds to a hypothetical polyimide

dataset synthesized based on GDB-13

Models
Low data
volume

High atomic
count

Complex types
of atoms

AAE + ++ ++

CharRNN +++ +++ ++

GraphINVENT +++ + +

ORGAN + + +

REINVENT ++ +++ +++

VAE + ++ ++
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limited atom types, as they likely rely more on capturing global

molecular features and latent representations, which can be

challenging to learn in datasets with high atomic diversity.

GraphINVENT performs better on the real polymer dataset

compared to the other two datasets. This is likely due to the real

polymer dataset having a smaller average molecular weight and

number of atoms, resulting in smaller and simpler graph data

structures. GraphINVENT, which rely on GNNs, are inherently

well-suited to handle molecular structures directly as graphs.

This gives GraphINVENT an advantage on datasets with simpler

graph structures, such as the real polymer dataset, where

molecular weights and atomic counts are lower. However, GNN-

based models may encounter challenges when dealing with

larger or more complex structures, as the molecular graph data

scale of the repeat unit increases signicantly with the number

of atoms it contains. This is also related to the network's

parameter settings. For datasets with larger molecular weights,

using a larger k-hop neighbor size may improve the network's

performance.

As for the two RNN-based generative networks, REINVENT

demonstrates outstanding performance on both hypothetical

polyimide datasets, proving its ability to handle such tasks

when sufficient data is available. CharRNN, however, shows

weaker performance on the polyimide dataset based on GDB-13

compared to the other two datasets. RNN-based models process

molecules as continuous SMILES strings. When the average

number of molecules in the dataset increases, this oen results

in longer string lengths, and when the diversity of molecular

types increases, it means a greater variety of characters in the

string. Both of these factors increase the complexity of the task.

The polyimide dataset based on GDB-13 has the largest number

of atom types and atomic counts, making it the most chal-

lenging task for RNN-based models. This explains the perfor-

mance drop of CharRNN on this dataset, while REINVENT's

results demonstrate the effectiveness of its design, which rst

transforms discrete chemical symbols into continuous vectors

before processing them through a series of LSTM or GRU layers.

ORGAN demonstrates weaker performance across most

datasets, possibly due to challenges in balancing the generative

adversarial training process. GANs are known to be sensitive to

training stability, especially with complex and diverse data.

ORGAN may be overtting or struggling to maintain a stable

learning process, particularly on the datasets with more atomic

diversity or larger molecular sizes.

We also observed that these ndings align closely with the

results of work of Zhang et al., particularly in their results

regarding ring system coverage. In their study, they utilized the

GDB-13 dataset as a training set, which happens to be one of the

sources we used to generate hypothetical polyimides for our

research.54

In addition to p-SMILES notation for polymers, newmethods

for representing polymer structures have been developed as

related research progresses. One example is BigSMILES nota-

tion, which provides a more robust approach for describing

polymeric systems.71–77 BigSMILES is particularly advantageous

for describing network polymer systems, which are challenging

for p-SMILES to capture comprehensively. Therefore, we

performed benchmark tests on ve models—AAE, VAE, ORGAN,

CharRNN, and REINVENT—using BigSMILES on a real polymer

dataset. The results indicate that using BigSMILES with the

ORGAN and AAE models leads to improved outcomes, sug-

gesting that BigSMILES may be more suitable for models that

incorporate a discriminator. However, performance declined

with the REINVENT and CharRNN models, likely due to the

increased complexity of the character set in BigSMILES.

Detailed results can be found in ESI Material Table S9.† Since

this work primarily focuses on linear homopolymers, BigS-

MILES does not fully demonstrate its advantages here.

2.4 Deep generative design with reinforcement learning

The introduction of reinforcement learning algorithms

empowers generative models with the capability to design

hypothetical polymer structures possessing specic properties.

This method represents a transformative step towards more

efficient and purpose-driven material discovery and design.

Fig. 6 illustrates the fundamental architecture of reinforcement

learning as applied to these generative models. In this frame-

work, the agent, which is the generative model, initiates the

process by generating a set of candidate polymer structures. The

evaluation of these candidates follows a specic scoring

mechanism.

Firstly, the generated p-SMILES strings are converted into

1024-bit Morgan Fingerprint (MF). These MFs are then used as

input to a Feed-Forward Neural Network (FNN), which is tasked

with predicting the Tg values of these candidates. Detailed

information about the FNN is available in the ESI.† Aer

obtaining the Tg predictions, a sigmoid function is applied to

these values. The output of this sigmoid function is treated as

the reward, which is fed back to the agent. The feedback

Fig. 6 The core framework of reinforcement learning with deep

generative model, and the specific data flow utilized in this study.
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received in the form of rewards is then used by the agent to

further train and optimize its performance. Specically, the

reward informs the agent's policy updates, encouraging it to

generate structures that yield higher Tg values, thereby rening

its sampling strategy over successive iterations (ESI Fig. S6†).

According to the previous results, particularly the compar-

ison of generative models trained on the PolyInfo dataset, we

selected REINVENT, CharRNN, and GraphINVENT as our

models of choice for generative design of new polymers.

Employing reinforcement learning, we used PolyInfo as the

training dataset with the goal of training these models to

generate hypothetical polymer structures that exhibit high Tg
values.

Fig. 7 presents the performance of these three models

undergoing reinforcement learning. The lemost part of the

gure shows the change in the predicted average Tg of the

generated hypothetical polymer structures across training

generations, along with the predicted Tg distribution of poly-

mers generated at the 200th, 600th, and 1000th training steps as

well as the training set (0th step). As training iterations

increased, it was observed that the predicted Tg values of the

hypothetical polymer structures generated by all three genera-

tive models showed an upward trend. Notably, CharRNN ach-

ieved the highest average predicted Tg value at the 1000th step,

while REINVENT and GraphINVENT exhibited similar perfor-

mance. Additionally, the distribution of the predicted Tg values

for all generated hypothetical polymers shied towards higher

values. This outcome demonstrates the capability of reinforce-

ment learning to effectively steer the generative process towards

specic target properties, in this case, achieving higher Tg in the

hypothetical polymer structures.

In themiddle of Fig. 7, t-SNE plot, illustrates the area covered

by the training set in grey. The red, green, and yellow points

represent the chemical spaces of structures generated at the

Fig. 7 Performance of three generativemodels, (a) REINVENT, (b) CharRNN, and (c) GraphINVENT, combined with reinforcement learning. (Left)

Depiction of how the predicted average Tg of the generated hypothetical polymer structures evolves over various training generations. This

includes a detailed view of the Tg distributions for structures produced at the 200th, 600th, and 1000th training steps, as well as those in the

training set. (Middle) The central t-SNE plot visualizes the chemical space: the area covered by the training set is shown in grey, while the red,

green, and yellow points represent the chemical spaces for structures generated at the 200th, 600th, and 1000th steps, respectively. (Right) The

graphs displaying the Tanimoto similarity between the hypothetical polymer structures generated at the 200th, 600th, and 1000th steps and the

training set provide critical insights into the dynamics of the training process.
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200th, 600th, and 1000th steps, respectively. The chemical

space of polymer structures generated over training epochs

ranging from 0 to 1200 are detailed in ESI Fig. S7.† This color

gradient visually represents the evolution of the generated

polymers' chemical space throughout the reinforcement

learning process.

For REINVENT and GraphINVENT, it was observed that the

chemical space of the newly generated polymers remained

within the bounds of the chemical space covered by the original

training set. As training progressed, there was a noticeable shi

from larger purple-red regions to smaller, more concentrated

yellow areas. Similar to REINVENT and GraphINVENT, the

CharRNN model also exhibited a gradual concentration of the

chemical space of the generated polymer structures during the

training process. However, a distinct behavior was observed in

CharRNN's approach. Unlike the other two generative models,

CharRNN began within the chemical space covered by the

original training set and progressively expanded its search into

chemical spaces beyond what was covered in the training set. As

a result, the hypothetical polymers generated by CharRNN

occupied a much larger area in the chemical space.

The right panel of Fig. 7 illustrates the Tanimoto similarity

between the hypothetical polymer structures generated at the

200th, 600th, and 1000th training steps and the training set,

reveals an important aspect of the training process. This

observation suggests that, as the models are trained, the

generated polymer structures maintain a certain level of struc-

tural resemblance to those found in the initial training set. The

absence of a convergence towards zero in the Tanimoto simi-

larity indicates that the models are not diverging signicantly

from the structural characteristics of real polymers.

This pattern suggests that as the number of training epochs

increased, both REINVENT and GraphINVENT models started

to focus on generating polymer structures within specic, more

dened regions of the chemical space (exploitation). This

convergence towards certain areas within the training set's

chemical space could indicate that the models are focusing on

regions that are more likely to yield polymers with the desired

high Tg values. This demonstrates that reinforcement learning

strategies are effectively guiding generative models in exploring

the polymer chemical space.

Meanwhile, it was observed that the results from the REIN-

VENT and GraphINVENT models remained within the chemical

space dened by the training dataset, while CharRNN showed

an expansion beyond the initial training set boundaries

(exploration). It's important to note that the different chemical

space distributions observed do not affect the similarity of the

generated hypothetical polymer structures to the training set.

This is because the hypothetical polymer structures generated

by the CharRNN, REINVENT, and GraphINVENTmodels exhibit

a Tanimoto similarity that is essentially consistent with each

other. The REINVENT and GraphINVENT models are particu-

larly adept at controlling the generated structures within the

connes of the training set, making them suitable choices for

researchers who desire such candidates. As for CharRNN, the

expansion beyond the initial training set boundaries suggests

that it was exploring more novel regions of the chemical space,

potentially leading to the discovery of new polymer structures

with higher Tg values. This exploration outside the known

chemical space is a key factor in why CharRNN's generated

hypothetical polymers had overall higher mean predicted Tg
values during the training.

However, as previously discussed, the limited number of

polymer structures in the real polymer dataset can lead to

decreased effectiveness. Ma et al. utilized RNNs and a rein-

forcement learning algorithm to generate hypothetical polymer

structures with high thermal conductivity. They used a signi-

cantly larger training dataset (PI1M), consisting of 1 million

samples, which far exceeds the size of the real polymer data-

set.18 A larger dataset provides more comprehensive coverage of

the chemical space in their study, allowing models to learn

a wider range of patterns and features. This can lead to the

generation of more unique and diverse polymer structures,

enhancing the potential for discovering novel materials with

desirable properties. In their study, the visualization of gener-

ated polymers alongside real polymers from PolyInfo using t-

SNE showed a pattern similar to that of CharRNN's results

here. The newly generated molecules show an expansion

beyond the initial boundaries of the training set, indicating

exploration into new areas of the chemical space. Additionally,

Moret et al. have demonstrated the generation of novel small

molecules with bespoke properties and structural diversity

using an RNN. The chemical space explored in their research

exhibits a pattern similar to what we have observed in other

studies, highlighting the RNN's capability to navigate and

innovate within the chemical space.78

Fig. 8 Effect of iteration steps on the validity and redundancy rates of three generative models, CharRNN, GraphINVENT, and REINVENT, during

the reinforcement learning process.
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Furthermore, graph-based generative networks for polymers,

such as PolyG2G, have also exhibited outstanding perfor-

mance.48 Instead of using reinforcement learning, their network

employed a latent space-searching strategy to generate hypo-

thetical polymers with desired properties. The same concept of

latent space utilization is also evident in VAEs based on the

inclusion of a latent space in these models' architecture.49,52

Similarly, Liu et al. utilized a graph-based invertible molecular

generative model along with a latent space strategy for the

design of high-temperature polymer dielectrics.50 Observations

of these two graph-based generated models employing latent

space strategies reveal that the main frameworks of the gener-

ated repeat units oen bear resemblance to certain structures

within the training set. This similarity might be a contributing

factor to the close alignment of the chemical space of the

generated hypothetical polymers with that of the training set.

The size of the training dataset also signicantly impacts the

efficiency and uniqueness of the hypothetical polymer struc-

tures generated by these models, both of which are critical

factors for practical applications. Fig. 8 illustrates the compar-

ison of these two metrics – the efficiency and non-redundancy

rates – for the three networks at the 200th, 600th, and 1000th

steps, as well as their overall trends throughout the training

process.

Then the 1,000th-training-iteration models are used for 100

000 hypothetical polymers generation. Fig. 9(a) displays the

normalized probability density distribution of predicted Tg
values of these hypothetical valid unique polymers. When the

models are employed to generate a large number of hypothet-

ical polymer structures, there is a slight shi in the mean

prediction values. It is evident that the probability distributions

of the three generative models are signicantly different from

the training set, favoring higher Tg values. Generative models

based on RNN and GNN architectures have been effectively used

to directly create hypothetical polymer structures with desired

properties, achieving commendable results. Among them,

REINVENT has the highest mean and the smallest variance in

its probability density distribution, indicating that it can more

stably generate many high Tg hypothetical polymer structures.

CharRNN and GraphINVENT are less effective in comparison.

However, it is important to note, as shown in Fig. 8, that the

unique rate and validity rate of REINVENT model are relatively

low. In contrast, CharRNN is considered as the best option.

Fig. 9(b) showcases the chemical space distribution of these

hypothetical, valid, and unique polymers. The results align with

those presented in Fig. 7, showing that among the three

generative models, CharRNN generates hypothetical polymers

(red points) that are the most distinct from real polymers (grey

points) in terms of distance. In contrast, the polymers generated

by the other twomodels are interspersed within the distribution

of real polymers.

From these results, it is evident that CharRNN demonstrates

a distinct advantage in both efficiency and uniqueness. This

superiority is likely connected to its broader exploration of the

polymer chemical space. As previously discussed in compari-

sons and discussions of various generative models, CharRNN

has shown the best performance with real polymers collected

from PolyInfo and a variety of small molecule tests. While

REINVENT exhibits the best normalized probability density

distribution, its unique rate should be considered. Hence,

REINVENT becomes the optimal choice specically when there

is a requirement to generate a substantial volume of candidates,

ranging from hundreds to thousands.

3 Concluding remarks

This study conducts a comprehensive evaluation of generative

models within the context of polymer informatics, highlighting

both their potential and limitations. Initially, six generative

models – AAE, VAE, CharRNN, REINVENT, GraphINVENT, and

ORGAN – were tested and trained using datasets of hypothetical

polyimides based on PubChem and GDB-13, as well as real

polymer datasets collected from PolyInfo. The performance of

these generative models was assessed using various metrics: the

Fig. 9 (a) Normalized probability density distribution of predicted Tg values (at 1000th training step) and the (b) chemical space distribution of the

hypothetical valid unique polymers generated by CharRNN (red), GraphINVENT (blue), REINVENT (green), and the real polymers (grey).
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fraction of valid structures, the fraction of unique structures

from a sample of 10 000, SNN, IntDiv, and FCD. It was observed

that CharRNN, REINVENT, and GraphINVENT produced supe-

rior results when trained with the PolyInfo dataset. Meanwhile,

REINVENT demonstrated outstanding performance when

trained with the two hypothetical polyimide datasets, with AAE,

VAE, and CharRNN also showing commendable outcomes. This

difference in performance may be attributed to the more

complex structures and larger molecular weights of hypothet-

ical polyimides.

Subsequently, CharRNN, REINVENT, and GraphINVENT

were combined with reinforcement learning algorithms using

the PolyInfo dataset to generate hypothetical polymer structures

with higher Tg values. All three models performed impressively,

but with notable differences in their capabilities. CharRNN

displayed a unique ability to extend beyond the chemical space

of the training set, generating polymers with higher predicted

Tg values. Aer training, REINVENT demonstrates the most

outstanding probability distribution in its generated results.

However, compared to CharRNN and GraphINVENT, it has

a lower unique rate and valid outcomes.

The study underscores the need for specic benchmarks and

methodologies tailored to the unique challenges of polymer

design. The integration of reinforcement learning proved

effective in guiding the generative process toward the desired

properties, highlighting the potential of these models in future

materials design and discovery. This work also leverages the

power of computational modeling and machine learning,

paving the way for more targeted and efficient development of

new polymeric materials, such as organic photovoltaics, poly-

mer membranes, and dielectrics.

4 Experimental procedures
4.1 Model training

For the PolyInfo dataset, approximately 11 000 homopolymers

were randomly selected to constitute the training set, while

around 1200 were designated as the test set. Regarding the

other two hypothetical polyimide datasets based on PubChem

and GDB-13, a subset of 0.8 million polyimides was randomly

chosen and utilized as the training set for all the generative

models. Furthermore, two additional sets of 0.2 million poly-

imides were specically selected to serve as the validation sets.

For the implementation of REINVENT and GraphINVENT in

this study, the hyperparameters were directly sourced from

their respective GitHub repositories. The code of REINVENT

model (version 2eeca2d73e197943bc7f704022d30eee14c49cb6)

is available at https://github.com/undeadpixel/reinvent-

randomized/tree/

2eeca2d73e197943bc7f704022d30eee14c49cb6, and the code of

GraphINVENT model (version

6ef587ddb983f0c853dc8bc7b418f43cb69420c9) is available at

https://github.com/MolecularAI/GraphINVENT/tree/

6ef587ddb983f0c853dc8bc7b418f43cb69420c9. In the case of

CharRNN, AAE, VAE, and ORGAN, the hyperparameters were

adopted from the models' conguration les available in the

MOSES GitHub repository (version

dd7ed6ab38e23afd3ef5371d67939a1760bd8599): https://

github.com/molecularsets/moses/tree/

dd7ed6ab38e23afd3ef5371d67939a1760bd8599. All details of

the model parameters are provided in the ESI† titled “Details

of model parameters.”

The CharRNNmodel integrated with reinforcement learning

was utilized, with its code accessible at the GitHub repository

(version b112b811616bee013348e867b7406e4e6a62f4):

https://github.com/aspuru-guzik-group/Tartarus/tree/

b112b811616bee013348e867b7406e4e6a62f4. The REINVENT

model (version 99b8f28c2a76196017eabf23118195ae546f5714),

incorporating reinforcement learning, was employed, with its

code available at https://github.com/MolecularAI/Reinvent/

tree/99b8f28c2a76196017eabf23118195ae546f5714. The

GraphINVENT model, integrated with reinforcement learning

(version 99b8f28c2a76196017eabf23118195ae546f5714), was

utilized in this study. Its code is accessible at https://

github.com/olsson-group/RL-GraphINVENT/tree/

d4629a3c411c793e1ed1682592d5bf67937564a1. This ongoing

process of generation, evaluation, and feedback allows the

generative models to progressively improve in its ability to

design hypothetical polymer structures that closely match the

targeted properties, thus enhancing the efficiency and

effectiveness of the materials design process.

4.2 Technical details

The training of generative models from the MOSES platform

was conducted using the Docker container “molecular sets/

moses”. This training took place on Linux workstations equip-

ped with NVIDIA Quadro RTX 8000 graphics cards, utilizing

CUDA 12.1 for computational acceleration. For the Graph-

INVENT model, the training environment comprised Python

3.6.8 and PyTorch 1.3.1. This model was also trained on Linux

workstations, but with NVIDIA Quadro P6000 graphics cards,

again leveraging CUDA 12.1 for enhanced processing capabil-

ities. Regarding the REINVENT model, it was trained using

Python 3.7.7 and PyTorch 1.7.0. This model's training was

performed on Linux workstations equipped with NVIDIA RTX

A6000 graphics cards, utilizing the same 12.1 version of CUDA,

12.1, for computational support.

Code availability

The code of this work is available at https://github.com/ytl0410/

Polymer-Generative-Models-Benchmark/tree/

ccc047eac7e0ec1d298a7142331d7f271f300a63.

Data availability

The real homopolymers dataset used in this study for generative

models training can be found at: https://github.com/ytl0410/

Polymer-Generative-Models-Benchmark/tree/

34f57dc1d87a6828c2c02ecbb0463e924df43fa1/MOSES. The

hypothetical polyimides datasets used in this study for

generative models training can be found at: https://

zenodo.org/records/13821449. The code of this work is
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available at https://github.com/ytl0410/Polymer-Generative-

Models-Benchmark/tree/

ccc047eac7e0ec1d298a7142331d7f271f300a63 (DOI: https://

doi.org/10.5281/zenodo.14735412). The code of CharRNN,

AAE, VAE, and ORGAN models is available at https://

github.com/molecularsets/moses/tree/

dd7ed6ab38e23afd3ef5371d67939a1760bd8599. The code of

REINVENT model is available at https://github.com/

undeadpixel/reinvent-randomized/tree/

2eeca2d73e197943bc7f704022d30eee14c49cb6. The code of

GraphINVENT model is available at https://github.com/

MolecularAI/GraphINVENT/tree/

6ef587ddb983f0c853dc8bc7b418f43cb69420c9. The code of the

CharRNN model integrated with reinforcement learning is

available at https://github.com/aspuru-guzik-group/Tartarus/

tree/b112b811616bee013348e867b7406e4e6a62f4. The code

of the REINVENT model integrated with reinforcement

learning is available at https://github.com/MolecularAI/

Reinvent/tree/99b8f28c2a76196017eabf23118195ae546f5714.

The code of GraphINVENT model, integrated with

reinforcement learning is accessible at https://github.com/

olsson-group/RL-GraphINVENT/tree/

d4629a3c411c793e1ed1682592d5bf67937564a1. The trained

models in this work can be found at https://github.com/

ytl0410/Polymer-Generative-Models-Benchmark/tree/

ccc047eac7e0ec1d298a7142331d7f271f300a63 (DOI: https://

doi.org/10.5281/zenodo.14735412) and https://zenodo.org/

records/12734266 (only for GraphINVENT, DOI: https://

doi.org/10.5281/zenodo.12734266). All generation results can

be found at https://zenodo.org/records/12636925 (DOI: https://

doi.org/10.5281/zenodo.12636925), and the generation results

for reinforcement learning can be accessed at https://

zenodo.org/records/12728016 (DOI: https://doi.org/10.5281/

zenodo.12728016). This study was carried out using publicly

available data from GDB-13 at https://gdb.unibe.ch/

downloads/, as well as PubChem at https://

pubchem.ncbi.nlm.nih.gov/.
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E. J. Bjerrum, O. Engkvist and H. Chen, A de novo

molecular generation method using latent vector based

generative adversarial network, J. Cheminf., 2019, 11, 1–13.

63 R. Mercado, T. Rastemo, E. Lindelöf, G. Klambauer,

O. Engkvist, H. Chen and E. J. Bjerrum, Graph networks

for molecular design, Mach. Learn.: Sci. Technol., 2021,

2(2), 025023.

64 R. Mercado, T. Rastemo, E. Lindelöf, G. Klambauer,

O. Engkvist, H. Chen and E. J. Bjerrum, Practical notes on

building molecular graph generative models, Appl. AI lett.,

2020, 1(2).

65 M. Benhenda, ChemGAN challenge for drug discovery, can

AI reproduce natural chemical diversity?, arXiv, 2017,

preprint, arXiv:1708.08227, DOI: 10.48550/arXiv.1708.08227.

66 A. Mayr, G. Klambauer, T. Unterthiner, M. Steijaert,

J. K. Wegner, H. Ceulemans, D.-A. Clevert and

S. Hochreiter, Large-scale comparison of machine learning

methods for drug target prediction on ChEMBL, Chem.

Sci., 2018, 9(24), 5441–5451.

67 A. P. Bento, A. Gaulton, A. Hersey, L. J. Bellis, J. Chambers,

M. Davies, F. A. Krüger, Y. Light, L. Mak and

S. McGlinchey, The ChEMBL bioactivity database: an

update, Nucleic Acids Res., 2014, 42(D1), D1083–D1090.

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

8
 J

an
u
ar

y
 2

0
2
5
. 
D

o
w

n
lo

ad
ed

 o
n
 2

/1
0
/2

0
2
5
 9

:1
3
:1

2
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



68 J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad and

R. G. Coleman, ZINC: a free tool to discover chemistry for

biology, J. Chem. Inf. Model., 2012, 52(7), 1757–1768.

69 E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov,

A. V. Aladinskaya, A. Aliper and A. Zhavoronkov,

Adversarial threshold neural computer for molecular de

novo design, Mol. Pharmaceutics, 2018, 15(10), 4386–4397.

70 T. Sterling and J. J. Irwin, ZINC 15–ligand discovery for

everyone, J. Chem. Inf. Model., 2015, 55(11), 2324–2337.

71 D. Walsh, W. Zou, L. Schneider, R. Mello, M. Deagen,

J. Mysona, T.-S. Lin, J. de Pablo, K. Jensen, and D. Audus,

CRIPT: A Scalable Polymer Material Data Structure, 2022.

72 W. Zou, A. M. Monterroza, Y. Yao, S. C. Millik, M. M. Cencer,

N. J. Rebello, H. K. Beech, M. A. Morris, T.-S. Lin and

C. S. Castano, Extending BigSMILES to non-covalent bonds

in supramolecular polymer assemblies, Chem. Sci., 2022,

13(41), 12045–12055.

73 L. Schneider, D. Walsh, B. Olsen and J. de Pablo, Generative

BigSMILES: an extension for polymer informatics, computer

simulations & ML/AI, Digital Discovery, 2024, 3(1), 51–61.

74 T.-S. Lin, C. W. Coley, H. Mochigase, H. K. Beech, W. Wang,

Z. Wang, E. Woods, S. L. Craig, J. A. Johnson and J. A. Kalow,

BigSMILES: a structurally-based line notation for describing

macromolecules, ACS Cent. Sci., 2019, 5(9), 1523–1531.

75 T.-S. Lin, N. J. Rebello, G.-H. Lee, M. A. Morris and

B. D. Olsen, Canonicalizing bigsmiles for polymers with

dened backbones, ACS Polym. Au, 2022, 2(6), 486–500.

76 N. J. Rebello, T.-S. Lin, H. Nazeer and B. D. Olsen,

BigSMARTS: A Topologically Aware Query Language and

Substructure Search Algorithm for Polymer Chemical

Structures, J. Chem. Inf. Model., 2023, 63(21), 6555–6568.

77 J. Shi, N. J. Rebello, D. Walsh, W. Zou, M. E. Deagen,

B. S. Leao, D. J. Audus and B. D. Olsen, Quantifying

Pairwise Similarity for Complex Polymers, Macromolecules,

2023, 56(18), 7344–7357.

78 M. Moret, L. Friedrich, F. Grisoni, D. Merk and G. Schneider,

Generative molecular design in low data regimes, Nat. Mach.

Intell, 2020, 2(3), 171–180.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery

Paper Digital Discovery

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

8
 J

an
u
ar

y
 2

0
2
5
. 
D

o
w

n
lo

ad
ed

 o
n
 2

/1
0
/2

0
2
5
 9

:1
3
:1

2
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online


	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k

	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k

	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k
	Benchmarking study of deep generative models for inverse polymer designElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00395k


