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Molecular generative models based on deep learning have increasingly gained attention for their ability in de

novo polymer design. However, there remains a knowledge gap in the thorough evaluation of these

models. This benchmark study explores de novo polymer design using six popular deep generative
models: Variational Autoencoder (VAE), Adversarial Autoencoder (AAE), Objective-Reinforced Generative
Adversarial Networks (ORGAN), Character-level Recurrent Neural Network (CharRNN), REINVENT, and
GraphINVENT. Various metrics highlighted the excellent performance of CharRNN, REINVENT, and
GraphINVENT, particularly when applied to the real polymer dataset, while VAE and AAE show more
advantages in generating hypothetical polymers. The CharRNN, REINVENT, and GraphINVENT models
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were successfully further trained on real polymers using reinforcement learning methods, targeting the

generation of hypothetical high-temperature polymers for extreme environments. The findings of this
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1 Introduction

Polymers represent an important class of materials, known for
their exceptional versatility in numerous properties, including
thermal, mechanical, optical, and dielectric characteristics."”
Plentiful studies are recently dedicated to the molecular design
of new polymers endowed with exceptional properties.®™** With
the recent advancements in deep learning and its application in
polymer science and engineering, de novo polymer design has
been recognized as a promising method to expedite the design
and discovery of new high-performance polymer materials.”****

A large number of hypothetical polymer structures can
provide a vast design space, which is crucial for the success of de
novo polymer design strategies. As shown in Fig. 1(a) and (b),
the PolyInfo'® database lists merely 18 697 polymer structures.
In comparison, there are around 116 million real small mole-
cule compounds documented in PubChem® and GDB-13 (ref.
17) offers us more than 900 million hypothetical small molecule
compounds, which provide us with a vast chemical space for
drug discovery. Fig. 1(c) illustrates that compared to the real
polymer dataset (represented by orange and green lines), the
ML-generated PI1M"® dataset offers researchers a large number
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study provide critical insights into the capabilities and limitations of each generative model, offering
valuable guidance for future endeavors in polymer design and discovery.

of promising high T, hypothetical candidates, as shown by the
red line."® Extensive research has been conducted on the de novo
design of polymers, with researchers adopting various
approaches, especially for proposing new hypothetical polymer
structures, as summarized in Fig. 1(d).

For example, Sharma et al. employed a polymer building
block approach and high-throughput density functional theory
(DFT) to design organic polymers with high energy storage
capabilities.”® Initially, repeat units were created using four
building blocks within each unit, with each block selected from
a pool comprising -CH,-, -C¢H,4—, -C,H,S—-, -NH-, -CO-, -O-,
and -CS-. These blocks were chosen due to their prevalence in
polymer backbones. This was followed by a multi-stage
screening process involving quantum mechanics-based
searches and molecular dynamics techniques. The final phase
included synthesizing and testing the most promising poly-
mers, validating this approach for material selection. Similarly,
Li et al. devised novel polysulfates by leveraging their knowledge
of known polymer structures and the characteristics of func-
tional groups.”® They then confirmed these structures' high
glass transition temperature (T,) and band gap (Eg) values
through experimental synthesis and characterizations. The
advantages of these two studies are that they allow for control
over the structural complexity of the hypothetical polymers and
enable the prediction of their overall properties based on the
characteristics of functional groups or substructures. However,
such a combination method of polymer building blocks
becomes quite challenging when there is a desire to obtain
a large number of candidates, in particular, on the order of
millions.
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(a) The number of real polymers is very limited in the literature. (b) In contrast, datasets for small molecule compounds contain many real

(e.g., PubChem) and hypothetical (e.g., GDB-13) compounds, providing ample opportunities for the development of new small compounds. (c)
Due to the limited number of real polymers, hypothetical polymer structures are essential in designing new polymers with exceptional properties.
(d) The four primary methods for generating these structures include manual design based on existing structures (associative construction),
assembly of building blocks, leveraging existing small molecule compounds and synthetic routes, and employing deep generative models.

To obtain candidates on a larger scale, another strategy for
generating hypothetical polymer structures is based on existing
small molecules and known polymerization reactions (or
synthetic routes). As we mentioned earlier, numerous studies
have contributed various datasets, including a vast number of
small molecule structures. Taking advantage of these existing
small molecules, Tao et al. generated an 8 million hypothetical
polyimides and uncovered polyimides that possessed a multi-
tude of outstanding thermal and mechanical properties
simultaneously.®*** Using diamine and dianhydride monomers
sourced from PubChem, hypothetical polyimides were gener-
ated following a predefined reaction route. To efficiently screen
these generated compounds, a machine learning method was
employed for high-throughput evaluation. In a similar vein,
Wang et al. generated 110 hypothetical polyimides by utilizing
diamine and dianhydride monomers, resulting in high-
temperature polymer dielectrics.® This approach can provide
a large number of candidates, but its chemical space is still
limited by the small molecules used.”

Digital Discovery

With the rise of deep learning, generative models, and
reinforcement learning, an increasing number of researchers
are utilizing deep generative methods to expand the chemical
space of various materials. This trend is particularly evident in
the fields of cheminformatics and drug discovery.>***” In poly-
mer informatics, Ma and Luo created the PI1M dataset,
comprising 1 million hypothetical polymers generated using an
RNN trained on actual polymers sourced from PolyInfo.** In
their study, they compiled 12 000 homopolymer structures from
the PolyInfo database to train an RNN model. This training
enabled the generation of 1 million new polymers, collectively
referred to as PI1M. It was observed that while PI1M encom-
passes a chemical space similar to PolyInfo, it also fills in gaps
where PolyInfo data is lacking, thereby offering a more
comprehensive view of the polymer landscape.

The other researchers have directly generated hypothetical
polymers with tailored properties using different deep genera-
tive models. For example, Wu et al. introduced Bayesian
molecular design to discover polymers with high thermal

© 2025 The Author(s). Published by the Royal Society of Chemistry
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conductivity.” Gurnani et al. employed graph-to-graph (G2G)
translation, called polyG2G, which can discern subtle chemical
differences (referred to as translations) leading to significant
property variations in polymeric materials.*®* A latent space
searching strategy is employed in this study to generate hypo-
thetical polymers with desired properties. They then used this
knowledge to sample and design new polymers with high E, and
electron injection barrier. Batra et al. utilized syntax-directed
VAE in conjunction with Gaussian process regression (GPR)
models to identify polymers expected to exhibit robustness
under extreme conditions, such as high temperatures, high
electric fields, and their combination.* Liu et al. employed an
invertible graph generative model to generate hypothetical
polymers with promising properties, particularly focusing on
high-temperature polymer dielectrics.® Kim et al. employed
a method of searching and decoding within the latent space
offered by a VAE to generate candidates with high polymer log P
values®** Huang et al. developed a surrogate deep neural
network model to predict thermal conductivity and compiled
a library of polymer units consisting of 32 sequences. They
utilized two advanced multi-objective optimization algorithms:
Unified Non-dominated Sorting Genetic Algorithm III (U-NSGA-
II) and Q-Noisy Expected Hypervolume Improvement, for
designing sequence-ordered polymers that not only exhibit high
thermal conductivity but also possess feasible synthetic
potential.*

When researchers intend to employ generative models in de
novo polymer design, the initial step involves selecting a suit-
able model. However, at present, there is no work dedicated to
assisting in the selection of generative models for hypothetical
polymer structures. In contrast, numerous studies have been
conducted to compare the performance of various models on
small drug-like molecules, greatly aiding researchers in the field
of drug discovery. One notable example of such a benchmarking
platform is Molecular Sets (MOSES), which was developed to
standardize the training and comparison of generative models
for small molecules.”® Zhang et al. conducted a benchmark
study with a focus on functional groups and ring systems.**
Weng et al. performed a benchmark specifically centered
around biological properties.*® Recently, Nigam et al. created
a set of practical benchmark tasks called “Tartarus”, which
relies on physical simulations of molecular systems to emulate
real-world challenges in molecular design for materials, drugs,
and chemical reactions.*®

Compared to small molecules, generating polymer struc-
tures involves unique complexities that demand specialized
approaches and considerations. While small molecules are fully
represented by their complete structures in SMILES, polymers
typically consist of very large and intricate architectures.
Consequently, the representation of polymers—particularly
linear homopolymers—relies on identifying their repeating
units and using wild cards (e.g., “*”) to denote polymerization
points. On the surface, this strategy appears similar to
describing small compounds. However, in practice, wild cards
like “*” are not simply placeholders for arbitrary bonds. Rather,
they capture specific chemical bonding patterns and the
connectivity between repeating units. Therefore, models must

© 2025 The Author(s). Published by the Royal Society of Chemistry
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handle the additional complexity introduced by these wild cards
during the generation process. Treating “*” as a generic wild
card can lead to inaccuracies in depicting polymer topologies
and connectivity, resulting in invalid molecular design. As
a result, conclusions drawn from studies on small molecules
cannot be directly applied to the generation of hypothetical
polymer structures. Therefore, there is a timely need to develop
specific benchmarks and methodologies tailored to the unique
challenges and requirements of the generative design of
polymers.

In this study, we initially used three different polymer data-
sets: real polymers from PolyInfo," and hypothetical polyimides
generated based on GDB-13 (ref. 17) and PubChem,*”*® to train
six different generative models — VAE, AAE, ORGAN, CharRNN,
REINVENT, and GraphINVENT. These models were trained on
each dataset and generated about 10 million hypothetical
polymer structures. We then evaluated these hypothetical
polymer structures using the fraction of valid polymer struc-
tures f,, the fraction of unique polymer structures from
a sample of 10 000 f;,x, the Nearest Neighbor Similarity (SNN),
the Internal Diversity (IntDiv) metric, and the Fréchet ChemNet
Distance (FCD). These five metrics are provided by the MOSES
platform. Furthermore, the t-distributed Stochastic Neighbor
Embedding (t-SNE) method was employed to visualize their
chemical space distribution.

We further used reinforcement learning techniques, target-
ing the Tg, to train CharRNN, REINVENT, and GraphINVENT
models to design hypothetical polymer structures with high T,
values. These three models are selected because of their
outstanding performance based on the previous evaluation. All
these models demonstrated success in generating hypothetical
polymers with high T, values after 1000-generation training.
Overall, CharRNN provided us with the most favorable results.
On the other hand, the effective hypothetical polymer structures
generated by REINVENT show an outstanding distribution in
the predicted values but have the lowest efficiency. The results
of this study demonstrate the immense potential of generative
models in the field of polymer informatics. They also provide
valuable insights into the capabilities and limitations of various
generative models within the realm of polymer science and
engineering. This understanding is crucial for researchers when
it comes to selecting the most appropriate generative model for
their specific needs.

2 Results and discussion
2.1 Dataset and deep generative models

In this study, we focus on hypothetical linear homopolymer
structures. Three datasets were employed, including real
homopolymers manually collected from PolyInfo, hypothetical
polyimides generated using small molecules (polycondensation
between diamine and dianhydride/diisocyanate monomers)
from PubChem, and GDB-13, as discussed in our previous
study.?” The real polymer dataset includes approximately 13 000
homopolymer structures out of a total of 18000 polymer
structures, while generative models typically require more
training data. For example, Polykovskiy et al utilized
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approximately 4.5 million samples for their work on MOSES,**
and Zhang et al. used around one million samples for their
study.> Therefore, we also utilized two hypothetical polyimides
datasets for this purpose. The hypothetical polyimides gener-
ated using small molecules from PubChem and GDB-13 include
a large number of structures, from which we randomly selected
approximately 10 million for model training. There are no
shared polymer structures among the three datasets. None of
the three datasets were subjected to any preprocessing or
cleaning.

Besides the difference in the number of samples in these
datasets, these three datasets also vary in molecular weight and
the number of types of atoms. It's important to note that the
molecular weight values mentioned refer specifically to the
repeat unit molecular weight of the polymer. This distinction is
crucial because the repeat units serve as the input for analysis
and modeling in these studies.

Repeat units of real polymers from the PolyInfo database
exhibit an average molecular weight of 443.7 and an average of
34.1 atoms per sample, encompassing 25 different types of
atoms. In contrast, repeat units of hypothetical polyimides
derived from PubChem show an average molecular weight of
530.4 and an average of 40.7 atoms, but with a limited variety of
only 5 types of atoms. Repeat units of hypothetical polyimides
created based on the GDB-13 have a higher average molecular
weight of 645.8 and an average of 48.5 atoms per sample,
featuring 18 different types of atoms. Tables S1-S3 in the ESIT
provide a detailed count of each atom type present in these
datasets. These factors could significantly impact the training
and performance of generative models. Specifically, the average
number of atoms directly affects the size of the strings and
graphs used for network input, while the variety of atomic types
influence the molecular design of polymers by using different
deep generative models. Utilizing these three diverse datasets
enable us to better explore how different generative models
perform in polymer informatics. Polymer-Simplified Molecular
Input Line Entry System (p-SMILES) strings are specialized
string representations used to depict the chemical structures of
polymers. These strings are instrumental in data-driven tasks
related to polymer discovery, design, or prediction. The format
of a p-SMILES string is based on the standard SMILES syntax as
defined by OpenSMILES.> However, p-SMILES introduces
a unique feature to represent polymers: it includes two stars ([*]
or *) within the string. These stars signify the endpoints of the
polymer’s repeat unit (for linear homopolymers, there are two
endpoints), effectively marking the boundaries of the repeating
segment in the polymer chain.

At present, large-scale generative models like Generative Pre-
Trained Transformers (GPT)*® have attracted widespread
attention, but their scale and cost may be daunting for some
researchers, particularly those who only wish to obtain some
candidates in polymer design research. In these cases, smaller-
scale generative models are still a more practical and accessible
option. At the same time, due to the inherent differences
between polymers and small molecules, such as higher
complexity, larger molecular weight, and the use of p-SMILES,
not all techniques applicable for generative models of small
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molecules are suitable for the generation of polymer structures.
For example, a structural representation method like SELFIES,*
specifically designed for small compound generation, cannot
represent the repeat unit structures of polymers. Additionally,
models like LatentGAN,*” developed for small compound
generation tasks, are not capable of processing p-SMILES
strings. In this study, as shown in Fig. 2, we selected the
following six networks: VAE, AAE, ORGAN, CharRNN, REIN-
VENT, and GraphINVENT, which are briefly discussed below.

2.1.1 VAE. VAE is a class of machine learning models that
focuses on data generation and latent space learning. As shown
in Fig. 2(a), a VAE consists of two main components: the
encoder and the decoder. The input encoder takes data x and
maps it to a latent space representation, characterized by
a distribution with mean y and variance ¢°. The VAE imposes
a regularization by encouraging the latent distribution to
resemble a standard Gaussian distribution N(0,I), where I is the
identity matrix. This is expressed in the objective function as
the maximization of the similarity max sim(N(u,c?), N(0,I)),
which typically involves minimizing the Kullback-Leibler (KL)
divergence (Dx;,) between the two distributions. From the latent
space, a sample z is drawn and passed to the decoder, which
attempts to reconstruct the original input, producing x. The
training process involves minimizing Dy, and the reconstruc-
tion error, the loss function can be formulized as L = wg Dy, +
|lx — x||, making the decoded output as close as possible to the
original input data. Our VAE model is implemented using the
MOSES package and p-SMILES is used as input x and output X
representations.

2.1.2 AAE. AAE is a machine learning model that merges
the concepts of Autoencoders (AE) and Generative Adversarial
Networks (GANSs). It can be observed from Fig. 2(b) that in the
AAE framework, the input encoder receives raw data x and
encodes it into a latent representation z. This latent represen-
tation is intended to follow a predefined probability distribu-
tion, typically a standard normal distribution. The AAE includes
a discriminator, which distinguishes whether the latent repre-
sentations z generated by the encoder follow the set distribu-
tion. The output z from the encoder is then passed to the
decoder, whose task is to reconstruct the input x to produce x,
with the goal of minimizing the reconstruction error min||x —
x|| and adversarial loss, which ensures the latent space distri-
bution matches the target distribution. During training, the
reconstructed output incrementally approaches the original
input. We implement the AAE model using the MOSES package
as well.

2.1.3 ORGAN. ORGAN is a variant of the traditional GAN
that incorporates objective reinforcement for improved gener-
ation of complex data. In the ORGAN framework, the generator
creates synthetic data (represented by z) which is intended to
mimic real data samples. The discriminator, on the other hand,
evaluates the synthetic data against real samples. Its goal is to
distinguish between the two, effectively learning to tell apart
genuine data from the imitations created by the generator. The
twist in ORGAN compared to a standard GAN is the inclusion of
a reinforcement signal, denoted by A, which adjusts the gener-
ator's objectives beyond merely fooling the discriminator. The

© 2025 The Author(s). Published by the Royal Society of Chemistry



Open Access Article. Published on 28 January 2025. Downloaded on 2/10/2025 9:13:12 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
(a) VAE

N(O, D€ z~N(u,c?)
KL divergence

Sample
—

Input Encoder Decoder Output

(b) AAE

N(0,I) €= Z"-’N(ﬂ, 0'2)
Discriminator

H

Input Encoder Decoder Output

(c) ORGAN

®

Real Samples

Synthetic data Discriminator Generator

(f) GraphINVENT

View Article Online

Digital Discovery

(d) CharRNN

LSTM/GRU

(e) REINVENT

l_t_l

0 0 000
N

Embedding /GRU JGRU Linear Softmax

C )

LSTM LSTM

0
Q o

MLP

Output

Fig. 2 Architectures of six types of deep generative models: (a) VAE, (b) AAE, (c) ORGAN, (d) CharRNN, (e) REINVENT, and (f) GraphINVENT.

final reward function R can be expressed as a linear combina-
tion of the discriminator D and domain-specific objectives O: R
= AD + (1 — 2)0.** The ORGAN is implemented with the MOSES
package, chemical validity and uniqueness are used as rewards,
with A = 0.7 applied because this is the default value in MOSES.

2.1.4 CharRNN. CharRNN is a type of neural network
specifically designed for sequence prediction problems. This
architecture is particularly useful for handling tasks where the
input and/or output is a sequence of characters, such as text
generation or in this case, p-SMILES generation. As shown in
Fig. 2(e), a CharRNN utilizes either Long Short-Term Memory
(LSTM) or Gated Recurrent Unit (GRU) cells, both of which are
variants of RNNs that are capable of learning long-term
dependencies. The network depicted here processes the input
sequence one character at a time (xq, X,, X3, ...), with each
character being fed into the LSTM/GRU cell. These cells then
produce an output sequence, where each output character is
influenced by the previous characters in the sequence of p-
SMILES. We use the MOSES package to implement the
CharRNN.

2.1.5 REINVENT. REINVENT is a sequence-based genera-
tive model that utilizes reinforcement learning for the genera-
tion of novel chemical entities, such as drug molecules or
polymers. At the beginning of the sequence generation, each

© 2025 The Author(s). Published by the Royal Society of Chemistry

token x, of the encoded p-SMILES string is sequentially fed into
an embedding layer, which transforms the discrete chemical
symbols into continuous vectors. These vectors are then fed into
a series of LSTM or GRU layers. Both LSTM and GRU are types of
RNN cells capable of capturing long-term dependencies in
sequential data. The recurrent cells process the input sequence,
maintaining an internal state H, that contains information
about the sequence processed thus far. This state is updated
with each new input symbol and is used to predict the next
symbol in the sequence. After the LSTM/GRU layers, a linear
layer followed by a softmax activation function produces
a probability distribution over possible next symbols A, from
which the next symbol x,, is sampled.”® In this study, the
embedding size is set to 256, the number of layers to 3, and each
GRU layer has a size of 512.

2.1.6 GraphINVENT. In GraphINVENT, a graph is gener-
ated through a structured, step-by-step process that builds
molecular structures by iteratively adding atoms (nodes) and
bonds (edges). The process begins with an initial molecular
fragment or monomer, which is an input into a Graph Neural
Network (GNN). The GNN processes this initial structure,
capturing essential features and relationships between nodes
and edges within the molecular graph. After the GNN processes
the input, its output is passed to a Multilayer Perceptron (MLP).

Digital Discovery
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This MLP interprets the extracted features and makes predic-
tions about the next steps in the molecule’s construction. It
determines, based on these features, whether to add a new node
(atom), connect existing nodes with an edge (bond), or termi-
nate the graph generation. This iterative decision-making
continues until the graph reaches a complete molecular struc-
ture. An additional parallel MLP layer may also be employed to
process separate features or impose specific constraints, such
as ensuring the chemical validity or optimizing certain molec-
ular properties.®***

2.2 Evaluation metrics of deep generative models

Once each model was trained, 10 million hypothetical polymers
were sampled from each trained model. To demonstrate their
effectiveness, we carefully selected five crucial metrics from the
MOSES platform to evaluate the performance of these genera-
tive models. These metrics include the fraction of valid polymer
structures f,, which measures the percentage of chemically valid
structures generated by the model. The chemical validity of the
hypothetical polymer structure is determined by using RDKit
package and the count of *. The RDKit package attempts to
convert the p-SMILES string into a molecular structure to check
its validity, while also ensuring that [*] appears exactly twice for
P-SMILES of linear homopolymers. We also considered the
fraction of unique polymer structures from a sample of 10 000
fiok, assessing the model's ability to generate diverse chemical
structures.

Additionally, the Nearest Neighbor Similarity (SNN) was used
to calculate the average similarity of the generated polymers to
the closest polymer in the test set, providing an insight into how
the generated polymers compared to known structures. SNN
represents the average Tanimoto similarity T(myx, my). This
similarity is calculated between the fingerprints of a polymer my
in the generated set X and its closest neighboring polymer my in
the reference dataset Y

1
SNN(X, Y) = m ma)§T(mX,mY)7
mxemeE

nmx&my
nmx + nmy + nmx &my

T(mX,le) =

where n,,_ is the count of bits “on” in polymer my's fingerprint
but not in polymer my's fingerprint, n,, is the count of bits “on”
in polymer my's fingerprint but not in polymer my's fingerprint,
and 7, sm, is the count of bits “on” both in polymer my's
fingerprint and in polymer my's fingerprint.

The Internal Diversity (IntDiv) metric, representing the
average pairwise similarity among generated polymers, was
included to gauge the diversity within the generated polymer
structures.” IntDiv assesses the chemical diversity within the
generated set of polymers X:

1
IntDiV,,(X):l(/W > Tlmx,my),
my mpeX

where p = 1 is used in this study.
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Lastly, the Fréchet ChemNet Distance (FCD) was employed to
quantify the difference in the distribution of the last layer
activations of ChemNet,* which is trained to predict bioactiv-
ities of about 6000 assays available in three major drug
discovery databases (ChEMBL,*” ZINC,* PubChem®), effectively
measuring the disparity between the generated polymer distri-
bution and a reference set.*® For two sets of polymers dataset X
and dataset Y, FCD is defined as

1
FCD(X,Y) = uy —puy*> + Tr| By + By — 2(Zx Zy)?

where uy, uy are mean vectors and Xy, Xy are full covariance
matrices of activations for polymers from sets X and Y, respec-
tively. The reference dataset Y for SNN and FCD calculation is
the test set from the training process.

After all, both t-SNE and Tanimoto similarity metrics were
employed to assist in comparing differences between various
polymer structures. t-SNE, a widely used technique for
nonlinear dimensionality reduction and data visualization,
effectively maintains nonlinear similarities between data
points. It operates by initially determining the similarity
between high-dimensional data points using a Gaussian
distribution. Subsequently, it assesses the similarity among
data points in a reduced, low-dimensional space based on a t-
distribution. The goal of t-SNE is to minimize the disparity
between these high-dimensional and low-dimensional similar-
ities. These selected metrics will be employed in the initial
phase of comparison to sieve out the generative models that
demonstrate superior performance.

2.3 Performance and coverage of generative models

Fig. 3 shows the performance of the six generative models when
applied to the real polymer dataset from PolyInfo. In terms of f,,
the CharRNN model achieved the highest result, nearly reach-
ing 0.9. Both the GraphINVENT and REINVENT models ach-
ieved greater than 0.5. However, the VAE, AAE, and ORGAN
models obtained notably lower scores. These outcomes indicate
a comparatively lower effectiveness of these models in gener-
ating valid polymer structures (or p-SMILES) compared to other
models. For the metric fjox, AAE, ORGAN, REINVENT, and VAE
exhibit good performance, with scores around 0.8. CharRNN
and GraphINVENT, while not performing as well as the afore-
mentioned models, still achieve results greater than 0.5, which
is considered acceptable.

In evaluating the performance of generative models using
the SNN and IntDiv metrics, higher values are generally sought
after. These metrics provide insights into the models' ability to
generate both diverse and chemically relevant polymer struc-
tures. It can be observed that all models, except for ORGAN,
exhibit results that closely resemble those in the training set.

For the FCD metric, lower values are generally preferred.
This metric measures the difference in distributions between
the generated polymers and a reference set, with a lower score
indicating that the generated polymers are more chemically
similar to real polymers. The observations indicate that, similar

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 A comparison of the performance of the six generative models on the real homopolymer dataset collected from the PolyInfo, as well as

the chemical space distribution of the generated polymers.

to the SNN metric, VAE, REINVENT, and CharRNN achieved
relatively low FCD scores. AAE and GraphINVENT obtained
higher scores, while ORGAN exhibited a significantly higher
FCD score.

Considering all the metrics collectively, it appears that
CharRNN, REINVENT, and GraphINVENT deliver the best
performance, while AAE and VAE follow behind. However,
ORGAN's performance leaves much to be desired. This result
bears similarity to previous benchmark work based on small
molecules. In MOSES, Polykovskiy et al. found that among
a wide array of models, CharRNN currently outperforms others
in terms of these key metrics.”® In RediscMol, Weng et al.
observed that CharRNN, VAE, and REINVENT yield superior
results, followed by AAE and ORGAN.>* Additionally, in studies
considering ring system coverage and functional group
coverage, AAE, REINVENT, VAE, CharRNN, and GraphINVENT
all exhibit better performance compared to ORGAN.**

CharRNN consistently shows remarkable results in these
benchmark studies, while the performance of AAE and VAE tends
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to be less impressive in our result. This could be attributed to the
fact that the PolyInfo dataset is significantly smaller than data-
sets for small molecules. Additionally, the structural differences
between real polymers and small molecules also play a role. The
ZINC Clean Leads™ used in the MOSES project have molecular
weights ranging from 250 to 350 Daltons.>® However, the
molecular weight (of the repeat unit) in the real polymer dataset
varies widely, ranging from 14 to 2202 dalton. This variation is
due to the presence of polymers with complex structures as well
as those with very simple repeat units. For example, polyethylene,
the simplest polymer, has a p-SMILES representation of just
“*C*. The t-SNE visualization further corroborates the analysis
derived from these metrics, providing a graphical representation
of how well each model captures the chemical space of polymers.
The individual t-SNE results for each model can be found in the
ESIt for better visual comparison.

Fig. 4 presents the performance of six different generative
networks when applied to the hypothetical polyimide dataset
based on GDB-13. For f,, the REINVENT model achieved the

TSNE 2

Fig. 4 A comparison of the performance of the six generative models on the hypothetical polyimide dataset synthesized based on GDB-13, as

well as the chemical space distribution of the generated polymers.
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highest result, nearly equal to 1. In comparison, the AAE, VAE,
and CharRNN models show a similar performance level, with
their values clustered around 0.7. On the other hand, the
ORGAN and GraphINVENT models have considerably lower
scores, below 0.2.

In fiox part, several models exhibited impressive results.
REINVENT, AAE, VAE, and CharRNN all achieved a result of 1. It
indicates an excellent ability of these models to generate
a diverse set of polymer structures, with no duplicates in
a sample of 10 000 p-SMILES strings. GraphINVENT, while not
reaching a perfect score, still performed commendably, with its
value being close to 0.9. However, ORGAN scored below 0.7,
indicating less diversity in its generated polymer structures.

For the SNN metric, it was observed that, apart from ORGAN
and GraphINVENT, the other four models showed similar
performance. Regarding IntDiv, all models except for ORGAN
exhibited closely matched performances. These observations
suggest that REINVENT, AAE, VAE, CharRNN, and Graph-
INVENT are capable of producing a wide variety of polymer
structures, demonstrating a good internal diversity among the
generated hypothetical polymers.

Observations show that, similar to the SNN metric, the
models AAE, VAE, REINVENT, and CharRNN achieved relatively
low FCD scores. GraphINVENT recorded a somewhat higher
FCD score, indicating less chemical similarity between its
generated structures and the training dataset. ORGAN exhibited
a significantly higher FCD score, implying a larger disparity
between its generated structures and the real-world polymers.

Fig. 5 denotes the performance of the same six generative
models when applied to the hypothetical polyimide dataset
derived from PubChem. It is observed that the performance and
comparative results of these six models are almost consistent
with those outcomes from training on the hypothetical poly-
imide based on GDB-13, which means the REINVENT model
demonstrated the best performance. However, the performance
of the ORGAN model was notably worse, to the point of being
considered unacceptable for the task at hand. The specific
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* REINVENT

VAE
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scores for all these models and datasets are provided in ESI
Tables S6-S8.F

Table 1 summarizes the performance of six models under
various challenges. All the above results show that the REIN-
VENT model shows the most favorable performance. The AAE,
CharRNN, and VAE models follow closely, while GraphINVENT
and ORGAN demonstrate a much worse performance. It should
be noted that the performance of these six generative models
varies across the three datasets, which is related to the charac-
teristics of each dataset. Compared to the real polymer dataset,
PolyInfo, the AAE and VAE show significant improvement on
the hypothetical polyimide datasets. Despite the larger average
atom count per repeat unit in these hypothetical datasets,
which implies more complex molecular structures and longer
SMILES strings, this improvement suggests that these models
require a substantial amount of training data to achieve high-
quality generative performance. With abundant data, they can
learn more robust latent representations. Additionally, models
based on variational techniques perform better on datasets
derived from PubChem, which generally have simpler atomic
types and lower diversity. These models excel in scenarios with

Table 1 Comparison of six generative models across different
molecular design scenarios. The number of stars indicates the effec-
tiveness of the model, with more stars signifying better performance.
“Low data volume” corresponds to the Polyinfo dataset, "high atomic
count” corresponds to two hypothetical polyimide datasets, and
“complex types of atoms” corresponds to a hypothetical polyimide
dataset synthesized based on GDB-13

Low data High atomic Complex types
Models volume count of atoms
AAE * * * * %
CharRNN %k Kk %k k * %
GraphINVENT * %k K * *
ORGAN * * *
REINVENT * % * ok k * ok k
VAE * *k *k

10

TSNE 2
o
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-10

-10 -5 0 5
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Fig.5 A comparison of the performance of the six generative models on the hypothetical polyimide dataset synthesized based on PubChem, as

well as the chemical space distribution of the generated polymers.
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limited atom types, as they likely rely more on capturing global
molecular features and latent representations, which can be
challenging to learn in datasets with high atomic diversity.

GraphINVENT performs better on the real polymer dataset
compared to the other two datasets. This is likely due to the real
polymer dataset having a smaller average molecular weight and
number of atoms, resulting in smaller and simpler graph data
structures. GraphINVENT, which rely on GNNs, are inherently
well-suited to handle molecular structures directly as graphs.
This gives GraphINVENT an advantage on datasets with simpler
graph structures, such as the real polymer dataset, where
molecular weights and atomic counts are lower. However, GNN-
based models may encounter challenges when dealing with
larger or more complex structures, as the molecular graph data
scale of the repeat unit increases significantly with the number
of atoms it contains. This is also related to the network's
parameter settings. For datasets with larger molecular weights,
using a larger k-hop neighbor size may improve the network's
performance.

As for the two RNN-based generative networks, REINVENT
demonstrates outstanding performance on both hypothetical
polyimide datasets, proving its ability to handle such tasks
when sufficient data is available. CharRNN, however, shows
weaker performance on the polyimide dataset based on GDB-13
compared to the other two datasets. RNN-based models process
molecules as continuous SMILES strings. When the average
number of molecules in the dataset increases, this often results
in longer string lengths, and when the diversity of molecular
types increases, it means a greater variety of characters in the
string. Both of these factors increase the complexity of the task.
The polyimide dataset based on GDB-13 has the largest number
of atom types and atomic counts, making it the most chal-
lenging task for RNN-based models. This explains the perfor-
mance drop of CharRNN on this dataset, while REINVENT's
results demonstrate the effectiveness of its design, which first
transforms discrete chemical symbols into continuous vectors
before processing them through a series of LSTM or GRU layers.

ORGAN demonstrates weaker performance across most
datasets, possibly due to challenges in balancing the generative
adversarial training process. GANs are known to be sensitive to
training stability, especially with complex and diverse data.
ORGAN may be overfitting or struggling to maintain a stable
learning process, particularly on the datasets with more atomic
diversity or larger molecular sizes.

We also observed that these findings align closely with the
results of work of Zhang et al., particularly in their results
regarding ring system coverage. In their study, they utilized the
GDB-13 dataset as a training set, which happens to be one of the
sources we used to generate hypothetical polyimides for our
research.**

In addition to p-SMILES notation for polymers, new methods
for representing polymer structures have been developed as
related research progresses. One example is BigSMILES nota-
tion, which provides a more robust approach for describing
polymeric systems.””” BigSMILES is particularly advantageous
for describing network polymer systems, which are challenging
for p-SMILES to capture comprehensively. Therefore, we

© 2025 The Author(s). Published by the Royal Society of Chemistry
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performed benchmark tests on five models—AAE, VAE, ORGAN,
CharRNN, and REINVENT—using BigSMILES on a real polymer
dataset. The results indicate that using BigSMILES with the
ORGAN and AAE models leads to improved outcomes, sug-
gesting that BigSMILES may be more suitable for models that
incorporate a discriminator. However, performance declined
with the REINVENT and CharRNN models, likely due to the
increased complexity of the character set in BigSMILES.
Detailed results can be found in ESI Material Table S9.7 Since
this work primarily focuses on linear homopolymers, BigS-
MILES does not fully demonstrate its advantages here.

2.4 Deep generative design with reinforcement learning

The learning algorithms
empowers generative models with the capability to design
hypothetical polymer structures possessing specific properties.
This method represents a transformative step towards more
efficient and purpose-driven material discovery and design.
Fig. 6 illustrates the fundamental architecture of reinforcement
learning as applied to these generative models. In this frame-
work, the agent, which is the generative model, initiates the
process by generating a set of candidate polymer structures. The
evaluation of these candidates follows a specific scoring
mechanism.

Firstly, the generated p-SMILES strings are converted into
1024-bit Morgan Fingerprint (MF). These MFs are then used as
input to a Feed-Forward Neural Network (FNN), which is tasked
with predicting the T, values of these candidates. Detailed
information about the FNN is available in the ESI.{ After
obtaining the T, predictions, a sigmoid function is applied to
these values. The output of this sigmoid function is treated as
the reward, which is fed back to the agent. The feedback

introduction of reinforcement

Predictor

P %,
& %,
3 ®
Q.

Agent » Candidate

Generation

Fig. 6 The core framework of reinforcement learning with deep
generative model, and the specific data flow utilized in this study.
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received in the form of rewards is then used by the agent to
further train and optimize its performance. Specifically, the
reward informs the agent's policy updates, encouraging it to
generate structures that yield higher T, values, thereby refining
its sampling strategy over successive iterations (ESI Fig. S67).

According to the previous results, particularly the compar-
ison of generative models trained on the PolyInfo dataset, we
selected REINVENT, CharRNN, and GraphINVENT as our
models of choice for generative design of new polymers.
Employing reinforcement learning, we used PolyInfo as the
training dataset with the goal of training these models to
generate hypothetical polymer structures that exhibit high T,
values.

Fig. 7 presents the performance of these three models
undergoing reinforcement learning. The leftmost part of the
figure shows the change in the predicted average T, of the
generated hypothetical polymer structures across training
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generations, along with the predicted T, distribution of poly-
mers generated at the 200th, 600th, and 1000th training steps as
well as the training set (Oth step). As training iterations
increased, it was observed that the predicted T, values of the
hypothetical polymer structures generated by all three genera-
tive models showed an upward trend. Notably, CharRNN ach-
ieved the highest average predicted T, value at the 1000th step,
while REINVENT and GraphINVENT exhibited similar perfor-
mance. Additionally, the distribution of the predicted T, values
for all generated hypothetical polymers shifted towards higher
values. This outcome demonstrates the capability of reinforce-
ment learning to effectively steer the generative process towards
specific target properties, in this case, achieving higher T; in the
hypothetical polymer structures.

In the middle of Fig. 7, t-SNE plot, illustrates the area covered
by the training set in grey. The red, green, and yellow points
represent the chemical spaces of structures generated at the
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Fig.7 Performance of three generative models, (a) REINVENT, (b) CharRNN, and (c) GraphINVENT, combined with reinforcement learning. (Left)
Depiction of how the predicted average T4 of the generated hypothetical polymer structures evolves over various training generations. This
includes a detailed view of the T4 distributions for structures produced at the 200th, 600th, and 1000th training steps, as well as those in the
training set. (Middle) The central t-SNE plot visualizes the chemical space: the area covered by the training set is shown in grey, while the red,
green, and yellow points represent the chemical spaces for structures generated at the 200th, 600th, and 1000th steps, respectively. (Right) The
graphs displaying the Tanimoto similarity between the hypothetical polymer structures generated at the 200th, 600th, and 1000th steps and the
training set provide critical insights into the dynamics of the training process.
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200th, 600th, and 1000th steps, respectively. The chemical
space of polymer structures generated over training epochs
ranging from 0 to 1200 are detailed in ESI Fig. S7.1 This color
gradient visually represents the evolution of the generated
polymers’ chemical space throughout the reinforcement
learning process.

For REINVENT and GraphINVENT, it was observed that the
chemical space of the newly generated polymers remained
within the bounds of the chemical space covered by the original
training set. As training progressed, there was a noticeable shift
from larger purple-red regions to smaller, more concentrated
yellow areas. Similar to REINVENT and GraphINVENT, the
CharRNN model also exhibited a gradual concentration of the
chemical space of the generated polymer structures during the
training process. However, a distinct behavior was observed in
CharRNN's approach. Unlike the other two generative models,
CharRNN began within the chemical space covered by the
original training set and progressively expanded its search into
chemical spaces beyond what was covered in the training set. As
a result, the hypothetical polymers generated by CharRNN
occupied a much larger area in the chemical space.

The right panel of Fig. 7 illustrates the Tanimoto similarity
between the hypothetical polymer structures generated at the
200th, 600th, and 1000th training steps and the training set,
reveals an important aspect of the training process. This
observation suggests that, as the models are trained, the
generated polymer structures maintain a certain level of struc-
tural resemblance to those found in the initial training set. The
absence of a convergence towards zero in the Tanimoto simi-
larity indicates that the models are not diverging significantly
from the structural characteristics of real polymers.

This pattern suggests that as the number of training epochs
increased, both REINVENT and GraphINVENT models started
to focus on generating polymer structures within specific, more
defined regions of the chemical space (exploitation). This
convergence towards certain areas within the training set's
chemical space could indicate that the models are focusing on
regions that are more likely to yield polymers with the desired
high T, values. This demonstrates that reinforcement learning
strategies are effectively guiding generative models in exploring
the polymer chemical space.

Meanwhile, it was observed that the results from the REIN-
VENT and GraphINVENT models remained within the chemical
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space defined by the training dataset, while CharRNN showed
an expansion beyond the initial training set boundaries
(exploration). It's important to note that the different chemical
space distributions observed do not affect the similarity of the
generated hypothetical polymer structures to the training set.
This is because the hypothetical polymer structures generated
by the CharRNN, REINVENT, and GraphINVENT models exhibit
a Tanimoto similarity that is essentially consistent with each
other. The REINVENT and GraphINVENT models are particu-
larly adept at controlling the generated structures within the
confines of the training set, making them suitable choices for
researchers who desire such candidates. As for CharRNN, the
expansion beyond the initial training set boundaries suggests
that it was exploring more novel regions of the chemical space,
potentially leading to the discovery of new polymer structures
with higher T, values. This exploration outside the known
chemical space is a key factor in why CharRNN's generated
hypothetical polymers had overall higher mean predicted T,
values during the training.

However, as previously discussed, the limited number of
polymer structures in the real polymer dataset can lead to
decreased effectiveness. Ma et al. utilized RNNs and a rein-
forcement learning algorithm to generate hypothetical polymer
structures with high thermal conductivity. They used a signifi-
cantly larger training dataset (PI1M), consisting of 1 million
samples, which far exceeds the size of the real polymer data-
set.'® A larger dataset provides more comprehensive coverage of
the chemical space in their study, allowing models to learn
a wider range of patterns and features. This can lead to the
generation of more unique and diverse polymer structures,
enhancing the potential for discovering novel materials with
desirable properties. In their study, the visualization of gener-
ated polymers alongside real polymers from PolyInfo using t-
SNE showed a pattern similar to that of CharRNN's results
here. The newly generated molecules show an expansion
beyond the initial boundaries of the training set, indicating
exploration into new areas of the chemical space. Additionally,
Moret et al. have demonstrated the generation of novel small
molecules with bespoke properties and structural diversity
using an RNN. The chemical space explored in their research
exhibits a pattern similar to what we have observed in other
studies, highlighting the RNN's capability to navigate and
innovate within the chemical space.”
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Iteration Steps

800 1000

Fig. 8 Effect of iteration steps on the validity and redundancy rates of three generative models, CharRNN, GraphINVENT, and REINVENT, during

the reinforcement learning process.
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Fig.9 (a) Normalized probability density distribution of predicted T values (at 1000th training step) and the (b) chemical space distribution of the
hypothetical valid unique polymers generated by CharRNN (red), GraphINVENT (blue), REINVENT (green), and the real polymers (grey).

Furthermore, graph-based generative networks for polymers,
such as PolyG2G, have also exhibited outstanding perfor-
mance.*® Instead of using reinforcement learning, their network
employed a latent space-searching strategy to generate hypo-
thetical polymers with desired properties. The same concept of
latent space utilization is also evident in VAEs based on the
inclusion of a latent space in these models' architecture.****
Similarly, Liu et al. utilized a graph-based invertible molecular
generative model along with a latent space strategy for the
design of high-temperature polymer dielectrics.>® Observations
of these two graph-based generated models employing latent
space strategies reveal that the main frameworks of the gener-
ated repeat units often bear resemblance to certain structures
within the training set. This similarity might be a contributing
factor to the close alignment of the chemical space of the
generated hypothetical polymers with that of the training set.

The size of the training dataset also significantly impacts the
efficiency and uniqueness of the hypothetical polymer struc-
tures generated by these models, both of which are critical
factors for practical applications. Fig. 8 illustrates the compar-
ison of these two metrics - the efficiency and non-redundancy
rates — for the three networks at the 200th, 600th, and 1000th
steps, as well as their overall trends throughout the training
process.

Then the 1,000th-training-iteration models are used for 100
000 hypothetical polymers generation. Fig. 9(a) displays the
normalized probability density distribution of predicted T,
values of these hypothetical valid unique polymers. When the
models are employed to generate a large number of hypothet-
ical polymer structures, there is a slight shift in the mean
prediction values. It is evident that the probability distributions
of the three generative models are significantly different from
the training set, favoring higher T, values. Generative models
based on RNN and GNN architectures have been effectively used
to directly create hypothetical polymer structures with desired
properties, achieving commendable results. Among them,
REINVENT has the highest mean and the smallest variance in

Digital Discovery

its probability density distribution, indicating that it can more
stably generate many high T, hypothetical polymer structures.
CharRNN and GraphINVENT are less effective in comparison.
However, it is important to note, as shown in Fig. 8, that the
unique rate and validity rate of REINVENT model are relatively
low. In contrast, CharRNN is considered as the best option.

Fig. 9(b) showcases the chemical space distribution of these
hypothetical, valid, and unique polymers. The results align with
those presented in Fig. 7, showing that among the three
generative models, CharRNN generates hypothetical polymers
(red points) that are the most distinct from real polymers (grey
points) in terms of distance. In contrast, the polymers generated
by the other two models are interspersed within the distribution
of real polymers.

From these results, it is evident that CharRNN demonstrates
a distinct advantage in both efficiency and uniqueness. This
superiority is likely connected to its broader exploration of the
polymer chemical space. As previously discussed in compari-
sons and discussions of various generative models, CharRNN
has shown the best performance with real polymers collected
from PolyInfo and a variety of small molecule tests. While
REINVENT exhibits the best normalized probability density
distribution, its unique rate should be considered. Hence,
REINVENT becomes the optimal choice specifically when there
is a requirement to generate a substantial volume of candidates,
ranging from hundreds to thousands.

3 Concluding remarks

This study conducts a comprehensive evaluation of generative
models within the context of polymer informatics, highlighting
both their potential and limitations. Initially, six generative
models — AAE, VAE, CharRNN, REINVENT, GraphINVENT, and
ORGAN - were tested and trained using datasets of hypothetical
polyimides based on PubChem and GDB-13, as well as real
polymer datasets collected from PolyInfo. The performance of
these generative models was assessed using various metrics: the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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fraction of valid structures, the fraction of unique structures
from a sample of 10 000, SNN, IntDiv, and FCD. It was observed
that CharRNN, REINVENT, and GraphINVENT produced supe-
rior results when trained with the PolyInfo dataset. Meanwhile,
REINVENT demonstrated outstanding performance when
trained with the two hypothetical polyimide datasets, with AAE,
VAE, and CharRNN also showing commendable outcomes. This
difference in performance may be attributed to the more
complex structures and larger molecular weights of hypothet-
ical polyimides.

Subsequently, CharRNN, REINVENT, and GraphINVENT
were combined with reinforcement learning algorithms using
the PolyInfo dataset to generate hypothetical polymer structures
with higher T, values. All three models performed impressively,
but with notable differences in their capabilities. CharRNN
displayed a unique ability to extend beyond the chemical space
of the training set, generating polymers with higher predicted
T, values. After training, REINVENT demonstrates the most
outstanding probability distribution in its generated results.
However, compared to CharRNN and GraphINVENT, it has
a lower unique rate and valid outcomes.

The study underscores the need for specific benchmarks and
methodologies tailored to the unique challenges of polymer
design. The integration of reinforcement learning proved
effective in guiding the generative process toward the desired
properties, highlighting the potential of these models in future
materials design and discovery. This work also leverages the
power of computational modeling and machine learning,
paving the way for more targeted and efficient development of
new polymeric materials, such as organic photovoltaics, poly-
mer membranes, and dielectrics.

4 Experimental procedures
4.1 Model training

For the PolyInfo dataset, approximately 11 000 homopolymers
were randomly selected to constitute the training set, while
around 1200 were designated as the test set. Regarding the
other two hypothetical polyimide datasets based on PubChem
and GDB-13, a subset of 0.8 million polyimides was randomly
chosen and utilized as the training set for all the generative
models. Furthermore, two additional sets of 0.2 million poly-
imides were specifically selected to serve as the validation sets.
For the implementation of REINVENT and GraphINVENT in
this study, the hyperparameters were directly sourced from
their respective GitHub repositories. The code of REINVENT
model (version 2eeca2d73e197943bc7f704022d30eee14c49cb6)
is available at https://github.com/undeadpixel/reinvent-

randomized/tree/
2eeca2d73e197943bc7f704022d30eee14¢49cb6, and the code of
GraphINVENT model (version

6ef587ddb983f0c853dc8bc7b418f43cb69420c9) is available at
https://github.com/MolecularAl/GraphINVENT/tree/

6ef587ddb983f0c853dc8bc7b418f43cb69420c9. In the case of
CharRNN, AAE, VAE, and ORGAN, the hyperparameters were
adopted from the models’ configuration files available in the
MOSES GitHub repository (version

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

dd7ed6ab38e23afd3ef5371d67939a1760bd8599):
github.com/molecularsets/moses/tree/
dd7ed6ab38e23afd3ef5371d67939a1760bd8599. All details of
the model parameters are provided in the ESIf titled “Details
of model parameters.”

The CharRNN model integrated with reinforcement learning
was utilized, with its code accessible at the GitHub repository
(version b112b811616bee01fb3348e867b7406e4e6a62f4):
https://github.com/aspuru-guzik-group/Tartarus/tree/
b112b811616bee01fb3348e867b7406e4e6a62f4. The REINVENT
model (version 99b8f28c2a76196017eabf23118195ae546f5714),
incorporating reinforcement learning, was employed, with its
code available at https://github.com/MolecularAl/Reinvent/
tree/99b8f28c2a76196017eabf23118195ae546f5714. The
GraphINVENT model, integrated with reinforcement learning
(version 99b8f28c2a76196017eabf23118195ae546f5714), was
utilized in this study. Its code is accessible at https://
github.com/olsson-group/RL-GraphINVENT/tree/
d4629a3c411c¢793e1ed1682592d5bf67937564a1. This ongoing
process of generation, evaluation, and feedback allows the
generative models to progressively improve in its ability to
design hypothetical polymer structures that closely match the
targeted properties, thus enhancing the efficiency and
effectiveness of the materials design process.

https://

4.2 Technical details

The training of generative models from the MOSES platform
was conducted using the Docker container “molecular sets/
moses”. This training took place on Linux workstations equip-
ped with NVIDIA Quadro RTX 8000 graphics cards, utilizing
CUDA 12.1 for computational acceleration. For the Graph-
INVENT model, the training environment comprised Python
3.6.8 and PyTorch 1.3.1. This model was also trained on Linux
workstations, but with NVIDIA Quadro P6000 graphics cards,
again leveraging CUDA 12.1 for enhanced processing capabil-
ities. Regarding the REINVENT model, it was trained using
Python 3.7.7 and PyTorch 1.7.0. This model's training was
performed on Linux workstations equipped with NVIDIA RTX
A6000 graphics cards, utilizing the same 12.1 version of CUDA,
12.1, for computational support.

Code availability

The code of this work is available at https://github.com/ytl0410/
Polymer-Generative-Models-Benchmark/tree/
ccc047eac7e0ec1d298a7142331d7f271£300a63.

Data availability

The real homopolymers dataset used in this study for generative
models training can be found at: https://github.com/ytl0410/
Polymer-Generative-Models-Benchmark/tree/

34f57dc1d87a6828c2¢c02ecbb0463e924df43fa1/MOSES. The
hypothetical polyimides datasets used in this study for
generative models training can be found at: https://
zenodo.org/records/13821449. The code of this work is
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available at https://github.com/ytl0410/Polymer-Generative-
Models-Benchmark/tree/
ccc047eac7e0ec1d298a7142331d7f271£300a63 (DOL:  https://
doi.org/10.5281/zenodo.14735412). The code of CharRNN,
AAE, VAE, and ORGAN models is available at https://
github.com/molecularsets/moses/tree/
dd7ed6ab38e23afd3ef5371d67939a1760bd8599. The code of
REINVENT model is https://github.com/
undeadpixel/reinvent-randomized/tree/
2eeca2d73e197943bc7f704022d30eee14c49cb6. The code of
GraphINVENT model is available at https://github.com/
MolecularAl/GraphINVENT/tree/
6ef587ddb983f0c853dc8bc7b418f43cb69420c9. The code of the
CharRNN model integrated with reinforcement learning is
available at https://github.com/aspuru-guzik-group/Tartarus/
tree/b112b811616bee01fb3348e867b7406e4e6a62f4. The code
of the REINVENT model integrated with reinforcement
learning is available at https://github.com/MolecularAl/
Reinvent/tree/99b8f28c2a76196017eabf23118195ae546f5714.
The code of GraphINVENT model, integrated with
reinforcement learning is accessible at https://github.com/
olsson-group/RL-GraphINVENT/tree/
d4629a3c411¢793e1ed1682592d5bf67937564a1. The
models in this work can be found at https://github.com/
ytl0410/Polymer-Generative-Models-Benchmark/tree/
ccc047eac7e0ec1d298a7142331d7f271£300a63  (DOI:  https://
doi.org/10.5281/zenodo.14735412) and  https://zenodo.org/
records/12734266 (only for GraphINVENT, DOIL https://
doi.org/10.5281/zenodo.12734266). All generation results can
be found at https://zenodo.org/records/12636925 (DOI: https://
doi.org/10.5281/zenodo.12636925), and the generation results
for reinforcement learning can be accessed at https:/
zenodo.org/records/12728016 (DOIL:  https://doi.org/10.5281/
zenodo.12728016). This study was carried out using publicly
available data from GDB-13 at https://gdb.unibe.ch/
downloads/, as well as PubChem at  https:/
pubchem.ncbi.nlm.nih.gov/.
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