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Polyuniverse: generation of a large-scale polymer
library using rule-based polymerization reactions
for polymer informaticsy

Tianle Yue, Jianxin He and Ying Li(®*

Recent advancements in machine learning have revolutionized polymer research, leading to the swift
integration of diverse computational techniques for de novo molecular design. A crucial aspect of these
processes is to expand the number of candidate polymer structures, as the currently known real polymer
structures are very limited. In contrast, small molecule databases are vast, offering extensive
opportunities for the design of new molecules, such as drug discovery. In this study, we collected
extensive small molecule compounds from GDB-17, GDB-13, and PubChem and selected polymerization
reaction pathways for eight types of polymers, including polyimide, polyolefin, polyester, polyamide,
polyurethane, epoxy, polybenzimidazole (PBI), and vitrimer. These small molecule datasets and
polymerization reactions enabled us to generate hundreds of quadrillions of hypothetical polymer
structures. For each of the eight polymers, along with one promising copolymer, poly(imide-imine), we
randomly generated over one million hypothetical structures, except for PBI, for which we created 10
000 structures. Chemical space visualization using t-distributed stochastic neighbor embedding and
synthetic accessibility scores were employed to assess the feasibility of synthesizing these new polymers.
Customized feedforward neural network models predicted thermal, mechanical, and gas permeation
properties for both real and hypothetical polymers. The results show that many hypothetical polymers,
especially polyimides, exhibit significant potential, often surpassing real polymers in performance,
particularly for high-temperature applications and gas separation. Our findings highlight the immense
potential of large-scale hypothetical polymer libraries for materials discovery and design. These libraries
not only aid in identifying promising polymer materials through high-throughput screening but also
provide valuable datasets for training advanced machine learning models, such as large language
models. This research also demonstrates the power of data-driven approaches in polymer science,
paving the way for the development of next-generation polymeric materials with superior properties for
diverse industrial applications.

The advancement of materials design has undergone three
distinct stages. The first stage involved traditional experimen-

Polymeric materials are ubiquitous in our daily lives, found in
everything from common synthetic plastics such as polystyrene
to natural biopolymers such as DNA and proteins. Their
exceptional chemical, physical, biological, and mechanical
properties enable a wide range of applications in the biomed-
ical, chemical, and materials science fields." A polymer typi-
cally consists of long chains of covalently bonded organic
molecules, known as repeating units. The chemical and
molecular structures of these repeating units dictate the prop-
erties of these polymeric materials.
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tally driven and trial-and-error methods, relying heavily on
experience, intuition, and conceptual insights (domain knowl-
edge). However, this approach has inherent limitations. It
provides access to only certain macroscopic properties, with
many others being difficult to measure. Additionally, this
method often relies on serendipitous discoveries, lacks gener-
alizability, and is extremely time-consuming, labor-intensive,
and costly. In the second stage of materials design, advances
in computational technologies have led to the dominance of
modeling and simulation in the field. Computational methods,
such as density functional theory (DFT)*” and molecular
dynamics (MD),*® have enabled rapid materials design through
high-throughput virtual screening. These methods are particu-
larly effective for predicting material properties when no
analytical formula exists. However, computer simulations still
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face several challenges, including high computational cost in
terms of time and resources.

With the expansion of materials databases and the
advancement of data science and artificial intelligence (AI)
techniques, we are entering a new era often referred to as the
“fourth paradigm of science”*® or the “fourth industrial revo-
lution.”™* This progress has ushered materials design into its
third stage. Beyond experimental methods, theoretical
approaches, and computer simulations, data-driven materials
design has emerged as the “fourth pillar” of scientific research.
Numerous breakthroughs and research efforts are now flour-
ishing in the de novo design of organic molecules and polymers
using data-driven methods."* ¢ Successful polymer informatics
efforts have encompassed a variety of property predictions,
including polymers' glass transition temperatures,”° elec-
tronic bandgap,'”** dielectric constant,** and refractive index.*
Rapidly predicting these properties enables researchers to
identify optimal polymer structures with exceptional perfor-
mance or those that meet specific requirements from a vast
array of polymer candidates, thus facilitating the development
of high-performance polymers.

However, when researchers aim to develop high-
performance polymer materials using a de novo design
strategy, rapid predictions of polymer properties through
machine learning (ML) and polymer informatics are not the
only requirements. A large number of candidate polymer
structures are also needed for discovery and exploration.
Unfortunately, the number of polymer structures in the real
world is quite limited. As shown in Fig. 1, the PolyInfo dataset®*
currently includes about 18 000 experimentally synthesized
polymer structures, with approximately 13 000 of these being
homopolymers. In stark contrast, there is a vast number of real
and hypothetical small molecule compounds. PubChem,* for
instance, contains around 116 million real small compounds
that can be purchased. Additionally, hypothetical small mole-
cule compounds are abundant, with databases such as GDB-13
(ref. 36) and GDB-17 (ref. 37) containing nearly 977 million and
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166 billion compounds, respectively. To expand the open source
data for polymer informatics, Ma and Luo trained a generative
model, based on the real polymer structures from PolylInfo, to
generate ~1 million hypothetical polymers, namely PI1M.*® The
PI1M database spans a similar chemical space as PolyInfo but
significantly populates regions where PolyInfo data are sparse.

In addition to generative models, various polymerization
reactions can serve as bridges between polymer structures and
small molecule compounds. Through this approach, a large
number of hypothetical polymer structures with well-defined
synthetic pathways can be generated based on these small
molecule compounds. Simultaneously, we can examine the
synthetic routes for generating these hypothetical structures, as
rule-based polymerization reactions have also been validated in
previous studies.

Using this strategy, Tao et al. generated 8 million hypothet-
ical polyimides and discovered many polyimides with a multi-
tude of outstanding thermal and mechanical properties.** By
sourcing available diamine and dianhydride monomers from
the PubChem database, they generated hypothetical polyimides
following a predefined polycondensation reaction. To efficiently
screen these compounds, they employed a ML method for high-
throughput screening and evaluation. Ultimately, they identi-
fied several multifunctional polyimides that outperformed
existing real polyimides and validated their properties through
all-atom molecular dynamics simulations. Furthermore, these
promising multifunctional polyimides were successfully
synthesized based on the proposed synthetic routes, and their
performance was further validated through experimental
testing. Wang et al. generated 110 types of polyimide-derived
polymer structures by combining 21 different diamine and
dianhydride compounds, resulting in a wide range of electrical
and thermal properties.*® They selected 12 representative poly-
mers, which were also successfully synthesized using the
proposed synthetic routes, all derived from commercial
precursors to facilitate large-scale production, and systemati-
cally investigated their structures and performance. By
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Fig. 1 Comparison of real polymer and small molecule compound datasets and the role of polymerization reactions in generating a large

number of hypothetical polymer structures.
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analyzing the experimental results alongside computational
simulations, they quantitatively determined the impact of each
structural unit on the electrical and thermal properties of the
resulting polymers. This analysis revealed the key factors
influencing capacitive performance at elevated temperatures for
these polymers.

In addition to polyimides, Kim et al. developed a generative
model for synthetically accessible polymer repeating units
using a rule-based polymerization reaction algorithm.** With
this system, they created a database called the Open Macro-
molecular Genome (OMG), which contains highly synthesizable
virtual polymers. The OMG serves as an important resource for
data-driven polymer research, but there is room for improve-
ment in the definition of rule sets. From the perspective of
synthetic organic chemistry, the reactivity of a substrate is
influenced by the steric and electronic effects of substituents at
the reaction center. Additionally, as highlighted in their work,
the selectivity of the reaction is affected by coexisting functional
groups in the reactant molecule. Therefore, it is necessary to
develop reaction rules that account for these factors. Ohno et al.
developed a virtual library generator for polymers that incor-
porates a comprehensive rule set for practically applied poly-
merization reactions using a Python open-source library called
Small Molecules into Polymers (SMiPoly).*> This generator
implements 22 reaction rules, which include six chain poly-
merization reactions and 16 step-growth polymerization reac-
tions. Overall, the system enables the synthesis of seven
different types of polymers. Additionally, Ferrari et al. used large
language models and fine-tuned the polymerization models for
both forward and backward prediction tasks, addressing both
homo-polymers and co-polymers consisting of up to two
monomers. Their model predicts reactants, as well as reagents,
solvents, and catalysts for each step of the retro-synthesis.*

However, previous studies based on polymerization reac-
tions have either focused on only one specific type of polymer or
on developing efficient algorithms for generating hypothetical
polymers, often neglecting the analysis and property prediction
of large-scale hypothetical polymer structures generated from
various types of polymerization reactions. Therefore, in this
study, we aim to generate a wide range of hypothetical polymer
structures using polymerization reactions, targeting multiple
popular or promising classes of polymers, and subsequently
analyze and predict their properties through machine learning
techniques.

In this study, we selected eight popular and promising types
of polymers—polyimide, polyolefin, polyester, polyamide,
polyurethane, epoxy, polybenzimidazole (PBI), and vitrimers—
along with one promising copolymer, poly(imide-imine) (PI-
PIM). Hundreds of quadrillions of hypothetical polymer struc-
tures can be generated based on small molecule compounds
from the GDB-17, GDB-13, and PubChem datasets and well-
defined polymerization reactions. For each type of polymer,
we randomly generated 1 million hypothetical structures,
except for PBI, for which only 10000 hypothetical structures
were generated. The chemical space location of all generated
polymers was obtained, and the synthetic accessibility (SA)
score provides an estimation of their synthesis difficulty. Then,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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ML methods are employed to predict various thermal and
mechanical properties, as well as several types of gas perme-
abilities. The distribution of the prediction results reveals the
distinct characteristics of different types of polymers. To
demonstrate the potential of the large number of hypothetical
polymer structures generated, we also identified the best real
polymer provided by PolyInfo and compared it to hypothetical
polymer structures that outperformed it. These results show-
case that many hypothetical polymers, especially polyimides,
exhibit significant potential, often surpassing real polymers in
performance, particularly for high-temperature applications
and gas separation.

2. Results & discussion
2.1 Polymer class

The correlation between the molecular structure and properties
is pivotal for advancing polymer science and engineering. This
research initiative has established a comprehensive database of
polymer structures to support innovations in their application
and development. The database encompasses a variety of
polymer types, each selected for its unique properties that are
essential for broad industrial applications.

For example, polyimides are recognized for their thermal
stability, derived from aromatic backbones and imide func-
tionalities, making them suitable for high-temperature envi-
ronments. Similarly, polyurethanes, with their segmented block
copolymer structure, are crucial for automotive and construc-
tion applications. Additionally, PI-PIMs exhibit rehealability
and recyclability enabled by dynamic imine bonds, while
retaining the excellent mechanical and thermal properties of
polyimide.** These examples highlight how specific micro-
structural characteristics critically determine the functionalities
of these polymers.

Here, a large-scale library of polymer structures was gener-
ated by applying specific polymerization reactions. Guided by
the fundamental principles of polymerization,*>*® condensation
reactions were used to generate polyimides, polyamides, poly-
urethanes, polyesters, PBIs, and PI-PIMs via step-growth
mechanisms that link monomers and facilitate the removal of
small molecules. Ring-opening reactions were employed to
produce epoxy and vitrimers, transforming cyclic monomers
into network structures. Additionally, both single and dual
monomer addition polymerizations were implemented for
polyolefins, capturing a spectrum from simple linear polymers
to complex copolymers. Monomers were selected based on the
necessary functional groups for these polymerizations,
ensuring that the dataset accurately reflects a diverse array of
polymer structures and aligns with specific synthesis pathways,
as depicted in Fig. 2 and Table 1.

2.2 Small molecule compound datasets

The small molecule compounds used to generate specific types
of hypothetical polymers based on the polymerization reactions
were selected from the GDB-17, GDB-13, and PubChem data-
bases according to the functional groups required. GDB-13 and
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Fig.2 Examples of generated polymers from small molecule compounds for each polymer class—polyimide, polyolefin, polyester, polyamide,
polyurethane, epoxy, polybenzimidazole, and vitrimers—along with their polymerization reactions. For vitrimers, only the reaction between
epoxides and carboxylic acids is used because these two functional groups are common and abundant.

Table 1 Selected polymer types and corresponding small molecule compounds used for synthesis

Polymer class Monomer class

Polyimide Polycarboxilic acid anhydride and polyamine

Polyolefin Vinylidene and cyclic olefin

Polyester Lactone, hydroxy carboxylic acid, polyol and thiol, carbon monoxide, polycarboxylic acid and acid halide, and epoxide
Polyamide Lactam, amino acid, polycarboxylic acid and acid halide, and polyamine

Polyurethane Polyisocyanate, polyol and thiol

Epoxy Epoxide and polyamine

PBI Polycarboxylic acid and acid halide and 3,3',4,4'-tetraaminodiphenyl

Vitrimers Epoxide, polycarboxylic acid and acid halide

GDB-17 are extensive datasets of hypothetical small molecules.
GDB-13 includes molecules containing up to 13 atoms of
carbon, nitrogen, oxygen, sulfur, and chlorine, following rules
for chemical stability and synthetic feasibility, comprising 977
468314 structures.*® GDB-17 extends this enumeration to
molecules with up to 17 atoms of carbon, nitrogen, oxygen,
sulfur, and halogens, resulting in a total of 166.4 billion mole-
cules, with only 50 million structures publicly available.’”

2468 | Digital Discovery, 2024, 3, 2465-2478

PubChem is an open chemistry database maintained by the
National Institutes of Health (NIH). PubChem contains a vast
array of chemical data, including small molecules, nucleotides,
carbohydrates, lipids, peptides, and chemically modified
macromolecules. It provides comprehensive information on
chemical structures, identifiers, chemical and physical proper-
ties, biological activities, patents, health, safety, and toxicity
data.*

© 2024 The Author(s). Published by the Royal Society of Chemistry
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GDB-17 and GDB-13 were chosen because they offer exten-
sive coverage of chemical space, and PubChem was selected
because it contains easily accessible real small compounds.
Besides these three chosen datasets, there are many other small
molecule datasets available for researchers, such as ChEMBL,*
ZINC,* ChemSpider,* and DrugBank.*® These datasets can also
be used to generate hypothetical polymer structures. The
selected small molecules include amino acids, cyclic olefins,
epoxides, hydroxy carboxylic acids, lactams, lactones, poly-
carboxylic acids and acid halides, polyamines, polycarboxylic
acid anhydrides, polyisocyanates, polyols and thiols, and
vinylidenes. Fig. 3 illustrates the quantities of these small
molecule compounds within the three small molecule datasets,
respectively (see ESI Table S1 for detailed counts and ESI Tables
S2-S47 for information about more functional groups).

From Fig. 3, it is evident that the GDB-13 database contains
a significantly higher quantity of cyclic olefins, polyamines, and
vinylidene monomers compared to other compounds. Overall,
GDB-13 appears to have the highest overall quantity of small
molecules, which is closely related to the fact that the GDB-13
dataset contains significantly more small molecules than the
other two datasets. The GDB-17 dataset theoretically should
include far more small molecules than GDB-13, but currently,
only 50 million have been made publicly available. This also
makes the distribution of the GDB-17 dataset appear somewhat
more balanced compared to GDB-13. The GDB-13 and GDB-17
datasets both have relatively low quantities of polycarboxylic
acids and acid halides. Furthermore, it is also important to note
that there are some small molecules missing from the GDB-17
and GDB-13 datasets. GDB-13 does not include any poly-
isocyanates. Additionally, GDB-17 lacks not only this type of
small molecule but also polycarboxylic acid anhydrides.

The PubChem database, however, shows a more balanced
distribution across different compounds. The balanced

View Article Online
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distribution in the PubChem dataset is due to its source, as it
collects a wide variety of small molecules that are both real and
purchasable. This balanced distribution is especially important
given the absence of certain types of small molecules in the
GDB-13 and GDB-17 datasets. However, we can observe that,
similar to the previously mentioned GDB-13 and GDB-17 data-
sets, the PubChem dataset also has relatively low quantities of
polycarboxylic acid anhydrides and polyisocyanates.

Table 2 shows the total number of unique structures for each
type of small molecule from the three datasets, representing the
variety of molecules that are readily available for use. This
distribution of small molecules across these databases high-
lights their utility in generating diverse hypothetical polymer
structures for further research. They can provide an enormous
number of hypothetical polymer structures. For example, poly-
imides, which can be generated from polycarboxylic acid
anhydride and polyamine small molecule compounds, have
9253 polycarboxylic acid anhydrides and 207 640913 poly-
amines are available. This means that we can generate
approximately 2 trillion hypothetical polyimide structures.
Similarly, polyolefins, which can be generated from vinylidene
and cyclic olefin small molecule compounds, have 193 219 664
vinylidenes and 207 640 913 cyclic olefins available. This allows
for the generation of around 120 quadrillion hypothetical
polyolefin structures. However, for PBI, which can be generated
from polycarboxylic acid and acid halide and 3,3',4,4'-tetraa-
minodiphenyl, there are only 550 440 polycarboxylic acid and
acid halide monomers available. As a result, the number of
hypothetical PBI structures that can be generated is relatively
limited. Table 3 shows the theoretical maximum number of
hypothetical structures generated for each polymer class using
the three small molecule datasets previously described.

These vast quantities of hypothetical polymer structures
have immense potential for utilization. Researchers can use
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Fig. 3 Quantities of small molecule compounds within the three datasets, including amino acids, cyclic olefins, epoxides, hydroxy carboxylic
acids, lactams, lactones, polycarboxylic acids and acid halides, polyamines, polycarboxylic acid anhydrides, polyisocyanates, polyols and thiols,

and vinylidenes.
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Table 2 Number of unique structures for each type of small molecule from the three datasets, GDB-13, GDB-17, and PubChem

Monomer class Count Monomer class Count
Amino acid 7256230 Polycarboxylic acid and acid halide 550 440
Cyclic olefin 204 472 259 Polyamine 207 640913
Epoxide 14 825 849 Polycarboxylic acid anhydride 9253
Hydroxy carboxylic acid 4226491 Polyisocyanate 17 631
Lactam 11 626 974 Polyol and thiol 14 676 768
Lactone 13266515 Vinylidene 193219 664

Table 3 Theoretical maximum number of hypothetical structures
generated for each polymer class using three small molecule datasets,
GDB-13, GDB-17, and PubChem

Polymer class Theoretical maximum number

Polyimide 1921301367989
Polyolefin 120 568 894 750 259 696
Polyester 18136241 831465
Polyamide 166 946 749 591 594
Polyurethane 258 766 096 608

Epoxy 3078452822 360137
PBI 550440

Vitrimers 8160740 323 560

high-throughput screening methods to identify promising
polymer materials. Additionally, they can be employed to train
generative models or large language models, as these ML
models require extensive polymer structure information for
training data. Furthermore, since we also have the polymeri-
zation reaction pathways and small molecule information for
these hypothetical polymer structures, combining them with
polymer informatics offers even more possibilities for
researchers.

2.3 Generation of hypothetical polymer structures

Using the polymerization reaction pathways and small molecule
datasets, we randomly selected small molecules and generated
1 million hypothetical polymer structures for each type of
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polymer, except for PBI, for which we generated 10 thousand
hypothetical polymer structures. Fig. 4(a) illustrates the chem-
ical space visualization of real polymers from the PolyInfo
dataset along with all the hypothetical polymers for each type of
polymer as well as PI-PIM. T-distributed Stochastic Neighbor
Embedding (TSNE) is a technique used for embedding high-
dimensional data into two-dimensional spaces.”® TSNE is
a popular nonlinear dimensionality reduction and data visual-
ization method that preserves nonlinear similarities between
data points. It works by first calculating the similarity between
high-dimensional data points using a Gaussian distribution,
then calculating the similarity between data points in the low-
dimensional space using a t-distribution, and finally mini-
mizing the difference between the high-dimensional and low-
dimensional similarities. It is evident that the structures of
each type of polymer are relatively clustered in the chemical
space, with each polymer type generally occupying a specific
region. Additionally, since PI-PIM is a copolymer that includes
polyimide, its chemical space overlaps with that of polyimide.
On the other hand, the real polymers in the PolyInfo dataset
encompass many types, resulting in a much more dispersed
distribution throughout the chemical space.

Furthermore, we incorporated the SA score index to assess
the feasibility of synthesizing these hypothetical polymers. The
SA score index is a method that characterizes the synthetic
accessibility of molecules, assigning a score between 1 (easy to
make) and 10 (very difficult to make). Fig. 4(b) illustrates the SA
score distributions of all the hypothetical polymers for each type
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(a) Chemical space visualization and (b) SA score distributions of the real polymer data set from PolyInfo and generated hypothetical

polyimide, polyolefin, polyester, polyamide, polyurethane, epoxy, PBI, PI-PIM, and vitrimers.
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of polymer as well as PI-PIM. It can be seen that most of the
hypothetical polymer structures have SA scores ranging between
4 and 8. It is important to note that the calculation of the SA
score is highly related to the complexity of the small molecules.
In this study, the use of a large number of small molecule
compounds from GDB-13 and GDB-17 resulted in higher SA
scores for the hypothetical polymer structures. If the goal is to
obtain more easily synthesizable hypothetical polymer struc-
tures, using small molecule compounds solely from PubChem
would be feasible.

2.4 ML for high-throughput screening of real and
hypothetical polymer datasets

We then implemented customized feedforward neural network
(FNN) models, based on our previous benchmark study,” to
screen the real polymer dataset (PolyInfo) and all generated
hypothetical polymers, with a particular focus on thermal,
mechanical, and gas permeation properties, based on our
previous studies.****™* For thermal properties, we predicted
glass transition temperature (Ty), melting temperature (Ty,),
and decomposition temperature (T4). For mechanical proper-
ties, we predicted Young's modulus (E), yield strength (o), and
breaking strength (o},). For gas permeation properties, we
focused on six gases: helium (He), hydrogen (H,), oxygen (O,),
nitrogen (N,), carbon dioxide (CO,), and methane (CH,).

The polymer structures were represented using polymer-
simplified molecular input line entry system (p-SMILES)
strings generated using RDKit.>* In this system, SMILES
strings were used to define the structures of the repeat units,
and a pair of asterisks (‘*’) was employed to indicate the two
endpoints of the repeat unit, representing the polymerization
points. For predicting the three thermal properties, the Morgan
Fingerprint with Frequency (MFF), which is efficient and robust
in generating an interpretable molecular representation of
polymers,*>** was employed as the input to the FNN model. The
datasets for Ty, T, and Ty are detailed in ESI Fig. S1,7 and the
training results for Ty, Tr,, and Ty are detailed in ESI Fig. S2.7
For mechanical properties except g}, and gas permeation prop-
erties, models from our previous work were used for predic-
tions.***® The dataset for E, gy, and oy, are detailed in ESI
Fig. S3,1 and the training results for E, g, and oy, are detailed in
ESI Fig. S4.f The T, prediction results are validated with
molecular dynamics simulation and detailed in ESIf titled
“Details of molecular dynamics verification.”

2.4.1 Thermal properties. Thermal properties of polymers,
such as Ty, Tr, and Ty, are crucial for several reasons. These
properties determine the polymer's behavior and stability under
different temperature conditions, which directly impact their
mechanical performance, processing, and safety. T is a critical
property that controls the phase transition of polymers, thereby
influencing their applications.’” T;, defines the processing
conditions, allowing for shaping and forming of the polymer.
Th, is one of the most important thermal properties of polymers,
as it significantly impacts both the thermodynamics and phys-
ical behavior of the polymer during processing, as well as the
final morphology of the product. Several studies have noted that

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the values of T, and T, are generally approximately propor-
tional to each other.”” T4 provides information on the polymer's
thermal stability and safety, ensuring it does not degrade
prematurely. Once Ty is exceeded, the molecular structure of the
polymer irreversibly changes, leading to a significant decline in
its properties or the production of gases, liquids, or other
chemical byproducts.

In general, for most polymers, T, is lower than the T,
because T, primarily involves the movement of polymer chain
segments, while T, corresponds to the melting of the entire
structure.’® Furthermore, Ty of polymers is typically higher than
Tm, as chemical decomposition generally requires more energy
than the melting of polymer chains. Understanding these
thermal properties helps us in selecting appropriate polymers
for various applications, optimizing manufacturing processes,
and ensuring the material's performance and longevity.

Fig. 5(a)-(c) display the distribution of T, Tn,, and Ty
prediction values for real polymers from PolyInfo and for each
type of generated hypothetical polymer. It can be observed that
for each type of polymer, the predicted values for the three
thermal properties are quite continuous, with most displaying
a near-Gaussian distribution. This aligns with the distribution
of polymer property values in the real world. By comparing the
predicted results across different types of polymers, it is evident
that the predicted value range for polyimides is higher than that
for other types of polymers. A significant number of hypothet-
ical polyimide structures are distributed in the high-
temperature region (>300 °C). This observation aligns with
real-world knowledge that polyimides are high-performance
engineering plastics known for their excellent strength and
stiffness, exceptional heat resistance, and chemical stability.
Their attractive mechanical and thermal properties are widely
utilized in the aerospace, automotive, and electronics
industries.”** Some polyimides can withstand temperatures of
up to 400 °C and maintain excellent mechanical properties
across a broad temperature range (—269 °C to 400 °C).*®

Fig. 5(d) displays the structure of the real polymer with the
highest combined predicted values of Ty, T, and T4 from the
PolyInfo dataset (shown within the gray box), alongside the
structure with the highest combined predicted values from all
generated hypothetical polymer structures. (The T, prediction
results are validated using molecular dynamics simulation and
are detailed in the ESIf section titled “Details of Molecular
Dynamics Verification.”) This top-performing structure comes
from the 1 million hypothetical polyimide structures. The radar
chart compares their predicted performance, and on the far
right, the small molecule compounds used to synthesize this
hypothetical polyimide structure are shown. It is evident that
the predicted performance of this hypothetical polyimide
structure surpasses that of the real polymer in all aspects,
showcasing the potential of these hypothetical polymer struc-
tures for high-temperature applications. Additionally, an
explainable machine learning technique, SHapley Additive
exPlanations (SHAP) analysis,* was further employed to eval-
uate the impact of substructures on the T of the hypothetical
polyimide (ESI Fig. S51). The SHAP analysis revealed that the
high T value of the promising structure is primarily due to the
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introduction of fused aromatic rings and an increase in the
number of chlorine atoms.

2.4.2 Mechanical properties. Mechanical properties are
crucial because they determine how a polymer material
responds to various forces and stresses, directly influencing its
suitability for different applications. Key mechanical properties,
such as E, ay, and oy, provide insights into the material's stiff-
ness, elasticity, and overall durability. £ is a measure of
a material's elastic properties, defined as the ratio of stress to
strain within the elastic deformation range. A higher E value
indicates that the material resists deformation more effectively
under small strains, exhibiting a stiffer or harder characteristic.
oy of a polymer is the maximum stress that the material can
withstand before yielding occurs. Yielding refers to the point at
which the material transitions from elastic deformation to
plastic deformation. Beyond the yield strength, the material
undergoes irreversible deformation and cannot return to its
original shape. Most engineering materials have a strong
correlation between g, and E.

o}, of a material is the maximum stress it can endure before
failure or fracture occurs. When the applied stress reaches the
o1, the material will break or fail. o, is the level of stress at which
a material begins to undergo plastic deformation and is typi-
cally lower than o}, This is because, after yielding, the material
can still withstand additional stress until it ultimately fractures
or fails.

These properties are essential for ensuring the material can
withstand mechanical loads without deforming or failing,
making them vital for applications in the construction, auto-
motive, aerospace, and other industries where structural
integrity and performance under stress are critical.
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Understanding and optimizing mechanical properties enable
the development of materials that meet specific performance
requirements, enhancing safety, reliability, and functionality in
their intended applications.

Fig. 6(a)-(c) display the distribution of E, oy, and ¢y, predic-
tion values for real polymers from PolyInfo and for each type of
generated hypothetical polymer. The overall distribution is
similar to that of the thermal properties, with each type of
polymer exhibiting a nearly normal distribution. A detailed
analysis of each polymer's performance reveals that polyimide
continues to demonstrate significant potential, consistent with
our previous findings. Additionally, we observed that PI-PIM
also shows promising results, particularly in the predicted
values for oy, and oy,. PI-PIM is a class of polymers that combine
the advantageous properties of polyimides and imine-based
polymers. These materials are known for their unique combi-
nation of thermal stability, mechanical strength, and chemical
resistance, making them highly suitable for various advanced
applications. Because of the dynamic nature of the imine bond,
the resulting PIM-PIs are malleable, rehealable, and recyclable.
The mechanical and thermal properties can be fine-tuned by
varying the monomer structures. The study demonstrated that
using more rigid monomer precursors, primarily determined by
the amine moiety in the imide, resulted in better mechanical
performance.**

Fig. 6(d) showcases two polymer structures: the real polymer
from the PolyInfo dataset with the highest combined predicted
values of E, o, and o, (highlighted within the gray box), and the
top-performing hypothetical polymer structure from the 1
million generated hypothetical polyimide structures. The radar
chart compares the predicted performance of both polymers,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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while the far right of the figure presents the small molecule
compounds used to synthesize the hypothetical polyimide. This
comparison clearly demonstrates that the hypothetical poly-
imide structure outperforms the real polymer in all evaluated
aspects, underscoring the significant potential of these newly
generated hypothetical polymer structures. Similarly, SHAP was
employed to evaluate the impact of substructures on the E and
oy of the hypothetical polyimide (ESI Fig. S6 and S7). The SHAP
analysis revealed that the high E value of the promising struc-
ture is primarily attributed to the introduction of fused
aromatic rings and the absence of oxygen atoms bonded to the
carbon atoms on the phenyl rings via carbon-oxygen single
bonds. In addition to these two factors, the high o, value of the
promising structure is also attributed to the high number of
carbon-oxygen double bonds and nitrogen atoms.

Developing structure-function relationships for polymeric
materials is inherently challenging due to the need to balance
competing properties. For instance, increasing a polymer's
strength or stiffness often reduces its flexibility or impact
resistance, while enhancing thermal stability may adversely
affect processability or toughness. These trade-offs are driven by
complex interactions between the molecular structure,
morphology, and external conditions, which can simulta-
neously influence multiple properties. Therefore, designing
polymer structures that meet multiple property requirements is
a highly challenging task, such as designing a polyimide with
high Tg, E and 0,.*° This highlights the necessity of having
a large hypothetical polymer library to serve as the design space.

2.4.3 Gas permeability. Polymer membranes offer a versa-
tile, cost-effective, and easily processable solution for various
separation technologies that play vital roles in addressing

© 2024 The Author(s). Published by the Royal Society of Chemistry

climate change (e.g., carbon capture) and enhancing resilience
(e.g., water treatment). In gas separation, polymer membranes
are extensively utilized in numerous industrial processes such
as oxygen enrichment, biogas purification,”® and post-
combustion carbon capture.®” Carbon capture, in particular, is
gaining significant attention as a means to reduce environ-
mental emissions. Membrane technologies are advantageous
for their high energy efficiency and operational simplicity,
owing to their flexibility and scalability.®® Key separation
processes in different combustion processes—CO,/N, in post-
combustion, CO,/H, in pre-combustion, and O,/N, in oxy-
combustion—are critical for environmental conservation.*

In membrane-based gas separation, a gas mixture is typically
driven through a membrane by applying pressure, and separa-
tion is achieved due to differences in the permeabilities of the
individual gases.®® The performance of these membrane
processes is primarily determined by the membrane's perme-
ability for a specific gas species, denoted as P;, where i specifies
the type of gas. When evaluating the performance of separating
gas A from gas B, another crucial measure is the membrane's
selectivity, «, defined as a« = P,/Pg. An ideal membrane for
a particular binary gas separation would exhibit both high
permeability and high selectivity. Enhancing gas permeability
and selectivity in these membranes would lead to more efficient
industrial processes by increasing throughput, reducing energy
costs, and achieving a purer product.”®”* However, there exists
a well-known trade-off between permeability and selectivity for
polymer gas separation membranes, delineated by the Robeson
upper bound.”

It is important to note that not all types of polymers are
suitable for gas separation. Therefore, in this section, we

Digital Discovery, 2024, 3, 2465-2478 | 2473
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considered only polyimide, polyester, polyamide, and real
polymers from the PolyInfo dataset. The predicted permeabil-
ities of these types of hypothetical and real polymers are plotted
for O,/N,, CO,/CH,, CO,/N,, and H,/CO, separation in Fig. 7.
We can see that in the predictions for all four types of gas
separation processes, different types of hypothetical polymers
exhibit varying performances across the different gas pairs. The
predicted results for hypothetical polyimides, polyesters, and
polyamides include many structures that are closer to the
Robeson upper bound compared to the real polymers from
PolyInfo. As shown in Fig. 7(a), numerous hypothetical poly-
imides and polyamides even surpass the 2008 values of the
Robeson upper bound. Similarly, as shown in Fig. 7(b), some
hypothetical polyimides exceed the Robeson upper bound. This
demonstrates that our generated hypothetical polymer struc-
tures not only have significant potential for developing high-
performance materials in terms of thermal and mechanical
properties, but they also offer substantial benefits for applica-
tions such as gas separation. These polymer structures can
greatly assist researchers in advancing separation technologies
for natural gas processing, hydrogen production and purifica-
tion, carbon capture and storage, biogas upgrading, etc.

3. Conclusions and outlook

In this study, we successfully demonstrated the generation,
analysis, and prediction of properties for a vast array of hypo-
thetical polymer structures, leveraging advances in polymer
informatics and ML techniques. Hundreds of quadrillions of
hypothetical polymer structures can be generated using small

2474 | Digital Discovery, 2024, 3, 2465-2478

compounds from the GDB-17, GDB-13, and PubChem datasets,
combined with well-defined polymerization reactions. We
generated millions of hypothetical polymer structures across
various classes, including polyimides, polyolefins, polyesters,
polyamides, polyurethanes, epoxies, PBIs, vitrimers, and PI-
PIMs. The TSNE plot shows that the structures of each poly-
mer type are relatively clustered in the chemical space, with
each type generally occupying a specific region.

Through the prediction of glass transition temperature,
melting temperature, and decomposition temperature, we
identified hypothetical polyimide structures that surpass the
highest-performing real polymers, demonstrating significant
potential for high-temperature applications. The prediction of
Young's modulus, yield strength, and breaking strength
revealed that hypothetical polyimides and PI-PIMs exhibit
superior mechanical performance compared to existing real
polymers, indicating their suitability for demanding applica-
tions requiring high strength and durability. The evaluation of
gas permeabilities for separation processes such as O,/N,, CO,/
CH,, CO,/N,, and H,/CO, showed that many hypothetical pol-
yimides and polyamides approach or exceed the Robeson upper
bound, highlighting their potential for efficient gas separation
technologies.

The comprehensive analysis and high-throughput screening
conducted in this study showcase the immense potential of
data-driven methods in polymer science. By identifying high-
performance hypothetical polymers, we pave the way for
future experimental validation and the development of new
materials with tailored properties for specific applications. This

© 2024 The Author(s). Published by the Royal Society of Chemistry
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research not only advances our understanding of polymer
properties but also provides a valuable open resource database
for the scientific community, fostering innovation in materials
design and application.

4. Computational methods
4.1 Hypothetical polymer structure generation

The generation of all types of hypothetical polymer structures
was implemented using Python and relevant toolkits. For pol-
yimide, polyolefin, polyester, polyamide, and polyurethane, the
hypothetical polymer structures were generated using the
SMiPoly toolkit. For epoxy, PBI, vitrimers, and PI-PIM, the
hypothetical polymer structures were synthesized using the
RDKit toolkit.

4.2 Machine learning model

For the FNN model used for Ty, Ty, and Ty prediction, the MF
with frequency was employed for polymer feature representa-
tion. This method identifies substructures within a circle of
radius Ry and assigns each substructure a numerical identifier.
In this study, the p-SMILES notation of the repeat unit for each
sample was utilized, and the fingerprint algorithm was imple-
mented in RDKit with Ry, set to 3. A total of 8831 substructures
were detected, but to reduce the dimensionality of the input
vectors for the FNN model, only 1176 prominent substructures
shared by most polymers were retained. An ensemble model,
which averages the predictions of twelve FNN models, was used
to achieve better prediction performance. The T, model was
optimized through hyperparameter tuning to include four
hidden layers with 256, 64, 2048, and 512 neurons, respectively.
The T, model was optimized through hyperparameter tuning to
include four hidden layers with 256, 32, 1024, and 1024
neurons, respectively. The Ty model was optimized through
hyperparameter tuning to include four hidden layers with 32,
32, 512, and 256 neurons, respectively.

For predicting E, oy, and o}, prediction, the FNN model
utilized the MF with frequency for feature representation, with
Ry set to 3. Out of a total of 8831 detected substructures, only
129 prominent substructures shared by most polymers were
retained to reduce the dimensionality of the input vectors. For
each polymer, vectors were created where each bit represents
the presence of a detected substructure. An ensemble model,
averaging the predictions of twelve FNN models, was employed
to enhance prediction performance. Specifically, the model for
E was optimized to include a single hidden layer with 40
neurons. The model for g, was optimized to have four hidden
layers with 8, 8, 8, and 16 neurons, respectively. The model for
o, was optimized with four hidden layers containing 16, 512,
512, and 1024 neurons, respectively.

For predicting gas permeabilities, the FNN model utilized
the MF with frequency for feature representation, with Ry set to
3. From a total of 3209 detected substructures, only 114 prom-
inent substructures shared by most polymers were retained to
reduce the dimensionality of the input vectors. The models were
optimized with five hidden layers containing 64, 64, 32, 16, and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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8 nodes, respectively. The details of the training for all models
and the datasets are provided in the ESIT titled “Details of
Network Training and Dataset.”

Data availability

The categorized small molecule datasets used in this study for
hypothetical polymer structure generations can be found at:
https://github.com/ytl0410/PolyUniverse. The codes for the
generation of polyimide, polyolefin, polyester, polyamide, and
polyurethane can be found at: https://github.com/PEJpOhno/
SMiPoly. The codes for the generation of epoxy, PBI, vitrimer,
and PI-PIM can be found at: https://github.com/ytl0410/
PolyUniverse.
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