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Recent advancements in machine learning have revolutionized polymer research, leading to the swift

integration of diverse computational techniques for de novo molecular design. A crucial aspect of these

processes is to expand the number of candidate polymer structures, as the currently known real polymer

structures are very limited. In contrast, small molecule databases are vast, offering extensive

opportunities for the design of new molecules, such as drug discovery. In this study, we collected

extensive small molecule compounds from GDB-17, GDB-13, and PubChem and selected polymerization

reaction pathways for eight types of polymers, including polyimide, polyolefin, polyester, polyamide,

polyurethane, epoxy, polybenzimidazole (PBI), and vitrimer. These small molecule datasets and

polymerization reactions enabled us to generate hundreds of quadrillions of hypothetical polymer

structures. For each of the eight polymers, along with one promising copolymer, poly(imide-imine), we

randomly generated over one million hypothetical structures, except for PBI, for which we created 10

000 structures. Chemical space visualization using t-distributed stochastic neighbor embedding and

synthetic accessibility scores were employed to assess the feasibility of synthesizing these new polymers.

Customized feedforward neural network models predicted thermal, mechanical, and gas permeation

properties for both real and hypothetical polymers. The results show that many hypothetical polymers,

especially polyimides, exhibit significant potential, often surpassing real polymers in performance,

particularly for high-temperature applications and gas separation. Our findings highlight the immense

potential of large-scale hypothetical polymer libraries for materials discovery and design. These libraries

not only aid in identifying promising polymer materials through high-throughput screening but also

provide valuable datasets for training advanced machine learning models, such as large language

models. This research also demonstrates the power of data-driven approaches in polymer science,

paving the way for the development of next-generation polymeric materials with superior properties for

diverse industrial applications.

1. Introduction

Polymeric materials are ubiquitous in our daily lives, found in

everything from common synthetic plastics such as polystyrene

to natural biopolymers such as DNA and proteins. Their

exceptional chemical, physical, biological, and mechanical

properties enable a wide range of applications in the biomed-

ical, chemical, and materials science elds.1–5 A polymer typi-

cally consists of long chains of covalently bonded organic

molecules, known as repeating units. The chemical and

molecular structures of these repeating units dictate the prop-

erties of these polymeric materials.

The advancement of materials design has undergone three

distinct stages. The rst stage involved traditional experimen-

tally driven and trial-and-error methods, relying heavily on

experience, intuition, and conceptual insights (domain knowl-

edge). However, this approach has inherent limitations. It

provides access to only certain macroscopic properties, with

many others being difficult to measure. Additionally, this

method oen relies on serendipitous discoveries, lacks gener-

alizability, and is extremely time-consuming, labor-intensive,

and costly. In the second stage of materials design, advances

in computational technologies have led to the dominance of

modeling and simulation in the eld. Computational methods,

such as density functional theory (DFT)6,7 and molecular

dynamics (MD),8,9 have enabled rapid materials design through

high-throughput virtual screening. These methods are particu-

larly effective for predicting material properties when no

analytical formula exists. However, computer simulations still
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face several challenges, including high computational cost in

terms of time and resources.

With the expansion of materials databases and the

advancement of data science and articial intelligence (AI)

techniques, we are entering a new era oen referred to as the

“fourth paradigm of science”10 or the “fourth industrial revo-

lution.”11 This progress has ushered materials design into its

third stage. Beyond experimental methods, theoretical

approaches, and computer simulations, data-driven materials

design has emerged as the “fourth pillar” of scientic research.

Numerous breakthroughs and research efforts are now our-

ishing in the de novo design of organic molecules and polymers

using data-driven methods.12–16 Successful polymer informatics

efforts have encompassed a variety of property predictions,

including polymers' glass transition temperatures,17–30 elec-

tronic bandgap,17,31 dielectric constant,32 and refractive index.33

Rapidly predicting these properties enables researchers to

identify optimal polymer structures with exceptional perfor-

mance or those that meet specic requirements from a vast

array of polymer candidates, thus facilitating the development

of high-performance polymers.

However, when researchers aim to develop high-

performance polymer materials using a de novo design

strategy, rapid predictions of polymer properties through

machine learning (ML) and polymer informatics are not the

only requirements. A large number of candidate polymer

structures are also needed for discovery and exploration.

Unfortunately, the number of polymer structures in the real

world is quite limited. As shown in Fig. 1, the PolyInfo dataset34

currently includes about 18 000 experimentally synthesized

polymer structures, with approximately 13 000 of these being

homopolymers. In stark contrast, there is a vast number of real

and hypothetical small molecule compounds. PubChem,35 for

instance, contains around 116 million real small compounds

that can be purchased. Additionally, hypothetical small mole-

cule compounds are abundant, with databases such as GDB-13

(ref. 36) and GDB-17 (ref. 37) containing nearly 977 million and

166 billion compounds, respectively. To expand the open source

data for polymer informatics, Ma and Luo trained a generative

model, based on the real polymer structures from PolyInfo, to

generate ∼1 million hypothetical polymers, namely PI1M.38 The

PI1M database spans a similar chemical space as PolyInfo but

signicantly populates regions where PolyInfo data are sparse.

In addition to generative models, various polymerization

reactions can serve as bridges between polymer structures and

small molecule compounds. Through this approach, a large

number of hypothetical polymer structures with well-dened

synthetic pathways can be generated based on these small

molecule compounds. Simultaneously, we can examine the

synthetic routes for generating these hypothetical structures, as

rule-based polymerization reactions have also been validated in

previous studies.

Using this strategy, Tao et al. generated 8 million hypothet-

ical polyimides and discovered many polyimides with a multi-

tude of outstanding thermal and mechanical properties.39 By

sourcing available diamine and dianhydride monomers from

the PubChem database, they generated hypothetical polyimides

following a predened polycondensation reaction. To efficiently

screen these compounds, they employed a ML method for high-

throughput screening and evaluation. Ultimately, they identi-

ed several multifunctional polyimides that outperformed

existing real polyimides and validated their properties through

all-atom molecular dynamics simulations. Furthermore, these

promising multifunctional polyimides were successfully

synthesized based on the proposed synthetic routes, and their

performance was further validated through experimental

testing. Wang et al. generated 110 types of polyimide-derived

polymer structures by combining 21 different diamine and

dianhydride compounds, resulting in a wide range of electrical

and thermal properties.40 They selected 12 representative poly-

mers, which were also successfully synthesized using the

proposed synthetic routes, all derived from commercial

precursors to facilitate large-scale production, and systemati-

cally investigated their structures and performance. By

Fig. 1 Comparison of real polymer and small molecule compound datasets and the role of polymerization reactions in generating a large

number of hypothetical polymer structures.
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analyzing the experimental results alongside computational

simulations, they quantitatively determined the impact of each

structural unit on the electrical and thermal properties of the

resulting polymers. This analysis revealed the key factors

inuencing capacitive performance at elevated temperatures for

these polymers.

In addition to polyimides, Kim et al. developed a generative

model for synthetically accessible polymer repeating units

using a rule-based polymerization reaction algorithm.41 With

this system, they created a database called the Open Macro-

molecular Genome (OMG), which contains highly synthesizable

virtual polymers. The OMG serves as an important resource for

data-driven polymer research, but there is room for improve-

ment in the denition of rule sets. From the perspective of

synthetic organic chemistry, the reactivity of a substrate is

inuenced by the steric and electronic effects of substituents at

the reaction center. Additionally, as highlighted in their work,

the selectivity of the reaction is affected by coexisting functional

groups in the reactant molecule. Therefore, it is necessary to

develop reaction rules that account for these factors. Ohno et al.

developed a virtual library generator for polymers that incor-

porates a comprehensive rule set for practically applied poly-

merization reactions using a Python open-source library called

Small Molecules into Polymers (SMiPoly).42 This generator

implements 22 reaction rules, which include six chain poly-

merization reactions and 16 step-growth polymerization reac-

tions. Overall, the system enables the synthesis of seven

different types of polymers. Additionally, Ferrari et al. used large

language models and ne-tuned the polymerization models for

both forward and backward prediction tasks, addressing both

homo-polymers and co-polymers consisting of up to two

monomers. Their model predicts reactants, as well as reagents,

solvents, and catalysts for each step of the retro-synthesis.43

However, previous studies based on polymerization reac-

tions have either focused on only one specic type of polymer or

on developing efficient algorithms for generating hypothetical

polymers, oen neglecting the analysis and property prediction

of large-scale hypothetical polymer structures generated from

various types of polymerization reactions. Therefore, in this

study, we aim to generate a wide range of hypothetical polymer

structures using polymerization reactions, targeting multiple

popular or promising classes of polymers, and subsequently

analyze and predict their properties through machine learning

techniques.

In this study, we selected eight popular and promising types

of polymers—polyimide, polyolen, polyester, polyamide,

polyurethane, epoxy, polybenzimidazole (PBI), and vitrimers—

along with one promising copolymer, poly(imide-imine) (PI-

PIM). Hundreds of quadrillions of hypothetical polymer struc-

tures can be generated based on small molecule compounds

from the GDB-17, GDB-13, and PubChem datasets and well-

dened polymerization reactions. For each type of polymer,

we randomly generated 1 million hypothetical structures,

except for PBI, for which only 10 000 hypothetical structures

were generated. The chemical space location of all generated

polymers was obtained, and the synthetic accessibility (SA)

score provides an estimation of their synthesis difficulty. Then,

ML methods are employed to predict various thermal and

mechanical properties, as well as several types of gas perme-

abilities. The distribution of the prediction results reveals the

distinct characteristics of different types of polymers. To

demonstrate the potential of the large number of hypothetical

polymer structures generated, we also identied the best real

polymer provided by PolyInfo and compared it to hypothetical

polymer structures that outperformed it. These results show-

case that many hypothetical polymers, especially polyimides,

exhibit signicant potential, oen surpassing real polymers in

performance, particularly for high-temperature applications

and gas separation.

2. Results & discussion
2.1 Polymer class

The correlation between the molecular structure and properties

is pivotal for advancing polymer science and engineering. This

research initiative has established a comprehensive database of

polymer structures to support innovations in their application

and development. The database encompasses a variety of

polymer types, each selected for its unique properties that are

essential for broad industrial applications.

For example, polyimides are recognized for their thermal

stability, derived from aromatic backbones and imide func-

tionalities, making them suitable for high-temperature envi-

ronments. Similarly, polyurethanes, with their segmented block

copolymer structure, are crucial for automotive and construc-

tion applications. Additionally, PI-PIMs exhibit rehealability

and recyclability enabled by dynamic imine bonds, while

retaining the excellent mechanical and thermal properties of

polyimide.44 These examples highlight how specic micro-

structural characteristics critically determine the functionalities

of these polymers.

Here, a large-scale library of polymer structures was gener-

ated by applying specic polymerization reactions. Guided by

the fundamental principles of polymerization,45,46 condensation

reactions were used to generate polyimides, polyamides, poly-

urethanes, polyesters, PBIs, and PI-PIMs via step-growth

mechanisms that link monomers and facilitate the removal of

small molecules. Ring-opening reactions were employed to

produce epoxy and vitrimers, transforming cyclic monomers

into network structures. Additionally, both single and dual

monomer addition polymerizations were implemented for

polyolens, capturing a spectrum from simple linear polymers

to complex copolymers. Monomers were selected based on the

necessary functional groups for these polymerizations,

ensuring that the dataset accurately reects a diverse array of

polymer structures and aligns with specic synthesis pathways,

as depicted in Fig. 2 and Table 1.

2.2 Small molecule compound datasets

The small molecule compounds used to generate specic types

of hypothetical polymers based on the polymerization reactions

were selected from the GDB-17, GDB-13, and PubChem data-

bases according to the functional groups required. GDB-13 and

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 2465–2478 | 2467
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GDB-17 are extensive datasets of hypothetical small molecules.

GDB-13 includes molecules containing up to 13 atoms of

carbon, nitrogen, oxygen, sulfur, and chlorine, following rules

for chemical stability and synthetic feasibility, comprising 977

468 314 structures.36 GDB-17 extends this enumeration to

molecules with up to 17 atoms of carbon, nitrogen, oxygen,

sulfur, and halogens, resulting in a total of 166.4 billion mole-

cules, with only 50 million structures publicly available.37

PubChem is an open chemistry database maintained by the

National Institutes of Health (NIH). PubChem contains a vast

array of chemical data, including small molecules, nucleotides,

carbohydrates, lipids, peptides, and chemically modied

macromolecules. It provides comprehensive information on

chemical structures, identiers, chemical and physical proper-

ties, biological activities, patents, health, safety, and toxicity

data.35

Fig. 2 Examples of generated polymers from small molecule compounds for each polymer class—polyimide, polyolefin, polyester, polyamide,

polyurethane, epoxy, polybenzimidazole, and vitrimers—along with their polymerization reactions. For vitrimers, only the reaction between

epoxides and carboxylic acids is used because these two functional groups are common and abundant.

Table 1 Selected polymer types and corresponding small molecule compounds used for synthesis

Polymer class Monomer class

Polyimide Polycarboxilic acid anhydride and polyamine

Polyolen Vinylidene and cyclic olen

Polyester Lactone, hydroxy carboxylic acid, polyol and thiol, carbon monoxide, polycarboxylic acid and acid halide, and epoxide

Polyamide Lactam, amino acid, polycarboxylic acid and acid halide, and polyamine
Polyurethane Polyisocyanate, polyol and thiol

Epoxy Epoxide and polyamine

PBI Polycarboxylic acid and acid halide and 3,30,4,40-tetraaminodiphenyl

Vitrimers Epoxide, polycarboxylic acid and acid halide

2468 | Digital Discovery, 2024, 3, 2465–2478 © 2024 The Author(s). Published by the Royal Society of Chemistry
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GDB-17 and GDB-13 were chosen because they offer exten-

sive coverage of chemical space, and PubChem was selected

because it contains easily accessible real small compounds.

Besides these three chosen datasets, there are many other small

molecule datasets available for researchers, such as ChEMBL,47

ZINC,48 ChemSpider,49 and DrugBank.50 These datasets can also

be used to generate hypothetical polymer structures. The

selected small molecules include amino acids, cyclic olens,

epoxides, hydroxy carboxylic acids, lactams, lactones, poly-

carboxylic acids and acid halides, polyamines, polycarboxylic

acid anhydrides, polyisocyanates, polyols and thiols, and

vinylidenes. Fig. 3 illustrates the quantities of these small

molecule compounds within the three small molecule datasets,

respectively (see ESI Table S1 for detailed counts and ESI Tables

S2–S4† for information about more functional groups).

From Fig. 3, it is evident that the GDB-13 database contains

a signicantly higher quantity of cyclic olens, polyamines, and

vinylidene monomers compared to other compounds. Overall,

GDB-13 appears to have the highest overall quantity of small

molecules, which is closely related to the fact that the GDB-13

dataset contains signicantly more small molecules than the

other two datasets. The GDB-17 dataset theoretically should

include far more small molecules than GDB-13, but currently,

only 50 million have been made publicly available. This also

makes the distribution of the GDB-17 dataset appear somewhat

more balanced compared to GDB-13. The GDB-13 and GDB-17

datasets both have relatively low quantities of polycarboxylic

acids and acid halides. Furthermore, it is also important to note

that there are some small molecules missing from the GDB-17

and GDB-13 datasets. GDB-13 does not include any poly-

isocyanates. Additionally, GDB-17 lacks not only this type of

small molecule but also polycarboxylic acid anhydrides.

The PubChem database, however, shows a more balanced

distribution across different compounds. The balanced

distribution in the PubChem dataset is due to its source, as it

collects a wide variety of small molecules that are both real and

purchasable. This balanced distribution is especially important

given the absence of certain types of small molecules in the

GDB-13 and GDB-17 datasets. However, we can observe that,

similar to the previously mentioned GDB-13 and GDB-17 data-

sets, the PubChem dataset also has relatively low quantities of

polycarboxylic acid anhydrides and polyisocyanates.

Table 2 shows the total number of unique structures for each

type of small molecule from the three datasets, representing the

variety of molecules that are readily available for use. This

distribution of small molecules across these databases high-

lights their utility in generating diverse hypothetical polymer

structures for further research. They can provide an enormous

number of hypothetical polymer structures. For example, poly-

imides, which can be generated from polycarboxylic acid

anhydride and polyamine small molecule compounds, have

9253 polycarboxylic acid anhydrides and 207 640 913 poly-

amines are available. This means that we can generate

approximately 2 trillion hypothetical polyimide structures.

Similarly, polyolens, which can be generated from vinylidene

and cyclic olen small molecule compounds, have 193 219 664

vinylidenes and 207 640 913 cyclic olens available. This allows

for the generation of around 120 quadrillion hypothetical

polyolen structures. However, for PBI, which can be generated

from polycarboxylic acid and acid halide and 3,30,4,40-tetraa-

minodiphenyl, there are only 550 440 polycarboxylic acid and

acid halide monomers available. As a result, the number of

hypothetical PBI structures that can be generated is relatively

limited. Table 3 shows the theoretical maximum number of

hypothetical structures generated for each polymer class using

the three small molecule datasets previously described.

These vast quantities of hypothetical polymer structures

have immense potential for utilization. Researchers can use

Fig. 3 Quantities of small molecule compounds within the three datasets, including amino acids, cyclic olefins, epoxides, hydroxy carboxylic

acids, lactams, lactones, polycarboxylic acids and acid halides, polyamines, polycarboxylic acid anhydrides, polyisocyanates, polyols and thiols,

and vinylidenes.
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high-throughput screening methods to identify promising

polymer materials. Additionally, they can be employed to train

generative models or large language models, as these ML

models require extensive polymer structure information for

training data. Furthermore, since we also have the polymeri-

zation reaction pathways and small molecule information for

these hypothetical polymer structures, combining them with

polymer informatics offers even more possibilities for

researchers.

2.3 Generation of hypothetical polymer structures

Using the polymerization reaction pathways and small molecule

datasets, we randomly selected small molecules and generated

1 million hypothetical polymer structures for each type of

polymer, except for PBI, for which we generated 10 thousand

hypothetical polymer structures. Fig. 4(a) illustrates the chem-

ical space visualization of real polymers from the PolyInfo

dataset along with all the hypothetical polymers for each type of

polymer as well as PI-PIM. T-distributed Stochastic Neighbor

Embedding (TSNE) is a technique used for embedding high-

dimensional data into two-dimensional spaces.51 TSNE is

a popular nonlinear dimensionality reduction and data visual-

ization method that preserves nonlinear similarities between

data points. It works by rst calculating the similarity between

high-dimensional data points using a Gaussian distribution,

then calculating the similarity between data points in the low-

dimensional space using a t-distribution, and nally mini-

mizing the difference between the high-dimensional and low-

dimensional similarities. It is evident that the structures of

each type of polymer are relatively clustered in the chemical

space, with each polymer type generally occupying a specic

region. Additionally, since PI-PIM is a copolymer that includes

polyimide, its chemical space overlaps with that of polyimide.

On the other hand, the real polymers in the PolyInfo dataset

encompass many types, resulting in a much more dispersed

distribution throughout the chemical space.

Furthermore, we incorporated the SA score index to assess

the feasibility of synthesizing these hypothetical polymers. The

SA score index is a method that characterizes the synthetic

accessibility of molecules, assigning a score between 1 (easy to

make) and 10 (very difficult to make). Fig. 4(b) illustrates the SA

score distributions of all the hypothetical polymers for each type

Table 2 Number of unique structures for each type of small molecule from the three datasets, GDB-13, GDB-17, and PubChem

Monomer class Count Monomer class Count

Amino acid 7 256 230 Polycarboxylic acid and acid halide 550 440

Cyclic olen 204 472 259 Polyamine 207 640 913

Epoxide 14 825 849 Polycarboxylic acid anhydride 9253

Hydroxy carboxylic acid 4 226 491 Polyisocyanate 17 631
Lactam 11 626 974 Polyol and thiol 14 676 768

Lactone 13 266 515 Vinylidene 193 219 664

Table 3 Theoretical maximum number of hypothetical structures

generated for each polymer class using three small molecule datasets,

GDB-13, GDB-17, and PubChem

Polymer class Theoretical maximum number

Polyimide 1 921 301 367 989

Polyolen 120 568 894 750 259 696

Polyester 18 136 241 831 465

Polyamide 166 946 749 591 594
Polyurethane 258 766 096 608

Epoxy 3 078 452 822 360 137

PBI 550 440
Vitrimers 8 160 740 323 560

Fig. 4 (a) Chemical space visualization and (b) SA score distributions of the real polymer data set from PolyInfo and generated hypothetical

polyimide, polyolefin, polyester, polyamide, polyurethane, epoxy, PBI, PI-PIM, and vitrimers.
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of polymer as well as PI-PIM. It can be seen that most of the

hypothetical polymer structures have SA scores ranging between

4 and 8. It is important to note that the calculation of the SA

score is highly related to the complexity of the small molecules.

In this study, the use of a large number of small molecule

compounds from GDB-13 and GDB-17 resulted in higher SA

scores for the hypothetical polymer structures. If the goal is to

obtain more easily synthesizable hypothetical polymer struc-

tures, using small molecule compounds solely from PubChem

would be feasible.

2.4 ML for high-throughput screening of real and

hypothetical polymer datasets

We then implemented customized feedforward neural network

(FNN) models, based on our previous benchmark study,52 to

screen the real polymer dataset (PolyInfo) and all generated

hypothetical polymers, with a particular focus on thermal,

mechanical, and gas permeation properties, based on our

previous studies.39,52–55 For thermal properties, we predicted

glass transition temperature (Tg), melting temperature (Tm),

and decomposition temperature (Td). For mechanical proper-

ties, we predicted Young's modulus (E), yield strength (sy), and

breaking strength (sb). For gas permeation properties, we

focused on six gases: helium (He), hydrogen (H2), oxygen (O2),

nitrogen (N2), carbon dioxide (CO2), and methane (CH4).

The polymer structures were represented using polymer-

simplied molecular input line entry system (p-SMILES)

strings generated using RDKit.56 In this system, SMILES

strings were used to dene the structures of the repeat units,

and a pair of asterisks (‘*’) was employed to indicate the two

endpoints of the repeat unit, representing the polymerization

points. For predicting the three thermal properties, the Morgan

Fingerprint with Frequency (MFF), which is efficient and robust

in generating an interpretable molecular representation of

polymers,52,53 was employed as the input to the FNN model. The

datasets for Tg, Tm, and Td are detailed in ESI Fig. S1,† and the

training results for Tg, Tm, and Td are detailed in ESI Fig. S2.†

For mechanical properties except sb and gas permeation prop-

erties, models from our previous work were used for predic-

tions.54,55 The dataset for E, sy, and sb are detailed in ESI

Fig. S3,† and the training results for E, sy, and sb are detailed in

ESI Fig. S4.† The Tg prediction results are validated with

molecular dynamics simulation and detailed in ESI† titled

“Details of molecular dynamics verication.”

2.4.1 Thermal properties. Thermal properties of polymers,

such as Tg, Tm, and Td, are crucial for several reasons. These

properties determine the polymer's behavior and stability under

different temperature conditions, which directly impact their

mechanical performance, processing, and safety. Tg is a critical

property that controls the phase transition of polymers, thereby

inuencing their applications.57 Tm denes the processing

conditions, allowing for shaping and forming of the polymer.

Tm is one of the most important thermal properties of polymers,

as it signicantly impacts both the thermodynamics and phys-

ical behavior of the polymer during processing, as well as the

nal morphology of the product. Several studies have noted that

the values of Tm and Tg are generally approximately propor-

tional to each other.57 Td provides information on the polymer's

thermal stability and safety, ensuring it does not degrade

prematurely. Once Td is exceeded, themolecular structure of the

polymer irreversibly changes, leading to a signicant decline in

its properties or the production of gases, liquids, or other

chemical byproducts.

In general, for most polymers, Tg is lower than the Tm
because Tg primarily involves the movement of polymer chain

segments, while Tm corresponds to the melting of the entire

structure.58 Furthermore, Td of polymers is typically higher than

Tm, as chemical decomposition generally requires more energy

than the melting of polymer chains. Understanding these

thermal properties helps us in selecting appropriate polymers

for various applications, optimizing manufacturing processes,

and ensuring the material's performance and longevity.

Fig. 5(a)–(c) display the distribution of Tg, Tm, and Td
prediction values for real polymers from PolyInfo and for each

type of generated hypothetical polymer. It can be observed that

for each type of polymer, the predicted values for the three

thermal properties are quite continuous, with most displaying

a near-Gaussian distribution. This aligns with the distribution

of polymer property values in the real world. By comparing the

predicted results across different types of polymers, it is evident

that the predicted value range for polyimides is higher than that

for other types of polymers. A signicant number of hypothet-

ical polyimide structures are distributed in the high-

temperature region (>300 °C). This observation aligns with

real-world knowledge that polyimides are high-performance

engineering plastics known for their excellent strength and

stiffness, exceptional heat resistance, and chemical stability.

Their attractive mechanical and thermal properties are widely

utilized in the aerospace, automotive, and electronics

industries.59–64 Some polyimides can withstand temperatures of

up to 400 °C and maintain excellent mechanical properties

across a broad temperature range (−269 °C to 400 °C).39

Fig. 5(d) displays the structure of the real polymer with the

highest combined predicted values of Tg, Tm, and Td from the

PolyInfo dataset (shown within the gray box), alongside the

structure with the highest combined predicted values from all

generated hypothetical polymer structures. (The Tg prediction

results are validated using molecular dynamics simulation and

are detailed in the ESI† section titled “Details of Molecular

Dynamics Verication.”) This top-performing structure comes

from the 1 million hypothetical polyimide structures. The radar

chart compares their predicted performance, and on the far

right, the small molecule compounds used to synthesize this

hypothetical polyimide structure are shown. It is evident that

the predicted performance of this hypothetical polyimide

structure surpasses that of the real polymer in all aspects,

showcasing the potential of these hypothetical polymer struc-

tures for high-temperature applications. Additionally, an

explainable machine learning technique, SHapley Additive

exPlanations (SHAP) analysis,65 was further employed to eval-

uate the impact of substructures on the Tg of the hypothetical

polyimide (ESI Fig. S5†). The SHAP analysis revealed that the

high Tg value of the promising structure is primarily due to the
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introduction of fused aromatic rings and an increase in the

number of chlorine atoms.

2.4.2 Mechanical properties. Mechanical properties are

crucial because they determine how a polymer material

responds to various forces and stresses, directly inuencing its

suitability for different applications. Key mechanical properties,

such as E, sy, and sb, provide insights into the material's stiff-

ness, elasticity, and overall durability. E is a measure of

a material's elastic properties, dened as the ratio of stress to

strain within the elastic deformation range. A higher E value

indicates that the material resists deformation more effectively

under small strains, exhibiting a stiffer or harder characteristic.

sy of a polymer is the maximum stress that the material can

withstand before yielding occurs. Yielding refers to the point at

which the material transitions from elastic deformation to

plastic deformation. Beyond the yield strength, the material

undergoes irreversible deformation and cannot return to its

original shape. Most engineering materials have a strong

correlation between sy and E.

sb of a material is the maximum stress it can endure before

failure or fracture occurs. When the applied stress reaches the

sb, thematerial will break or fail. sy is the level of stress at which

a material begins to undergo plastic deformation and is typi-

cally lower than sb. This is because, aer yielding, the material

can still withstand additional stress until it ultimately fractures

or fails.

These properties are essential for ensuring the material can

withstand mechanical loads without deforming or failing,

making them vital for applications in the construction, auto-

motive, aerospace, and other industries where structural

integrity and performance under stress are critical.

Understanding and optimizing mechanical properties enable

the development of materials that meet specic performance

requirements, enhancing safety, reliability, and functionality in

their intended applications.

Fig. 6(a)–(c) display the distribution of E, sy, and sb predic-

tion values for real polymers from PolyInfo and for each type of

generated hypothetical polymer. The overall distribution is

similar to that of the thermal properties, with each type of

polymer exhibiting a nearly normal distribution. A detailed

analysis of each polymer's performance reveals that polyimide

continues to demonstrate signicant potential, consistent with

our previous ndings. Additionally, we observed that PI-PIM

also shows promising results, particularly in the predicted

values for sy, and sb. PI-PIM is a class of polymers that combine

the advantageous properties of polyimides and imine-based

polymers. These materials are known for their unique combi-

nation of thermal stability, mechanical strength, and chemical

resistance, making them highly suitable for various advanced

applications. Because of the dynamic nature of the imine bond,

the resulting PIM–PIs are malleable, rehealable, and recyclable.

The mechanical and thermal properties can be ne-tuned by

varying the monomer structures. The study demonstrated that

using more rigid monomer precursors, primarily determined by

the amine moiety in the imide, resulted in better mechanical

performance.44

Fig. 6(d) showcases two polymer structures: the real polymer

from the PolyInfo dataset with the highest combined predicted

values of E, sy and sb (highlighted within the gray box), and the

top-performing hypothetical polymer structure from the 1

million generated hypothetical polyimide structures. The radar

chart compares the predicted performance of both polymers,

Fig. 5 Distributions of (a) Tg, (b) Tm, and (c) Td prediction results of real polymers from the PolyInfo dataset and each kind of hypothetical

polymer. (d) The real polymer with the highest predicted Tg, Tm, and Td values in the PolyInfo dataset, and a hypothetical polyimide with predicted

Tg, Tm, and Td values exceeding this performance, along with the small molecule compounds used for its synthesis.
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while the far right of the gure presents the small molecule

compounds used to synthesize the hypothetical polyimide. This

comparison clearly demonstrates that the hypothetical poly-

imide structure outperforms the real polymer in all evaluated

aspects, underscoring the signicant potential of these newly

generated hypothetical polymer structures. Similarly, SHAP was

employed to evaluate the impact of substructures on the E and

sy of the hypothetical polyimide (ESI Fig. S6 and S7†). The SHAP

analysis revealed that the high E value of the promising struc-

ture is primarily attributed to the introduction of fused

aromatic rings and the absence of oxygen atoms bonded to the

carbon atoms on the phenyl rings via carbon-oxygen single

bonds. In addition to these two factors, the high sy value of the

promising structure is also attributed to the high number of

carbon-oxygen double bonds and nitrogen atoms.

Developing structure–function relationships for polymeric

materials is inherently challenging due to the need to balance

competing properties. For instance, increasing a polymer's

strength or stiffness oen reduces its exibility or impact

resistance, while enhancing thermal stability may adversely

affect processability or toughness. These trade-offs are driven by

complex interactions between the molecular structure,

morphology, and external conditions, which can simulta-

neously inuence multiple properties. Therefore, designing

polymer structures that meet multiple property requirements is

a highly challenging task, such as designing a polyimide with

high Tg, E and ss.
39 This highlights the necessity of having

a large hypothetical polymer library to serve as the design space.

2.4.3 Gas permeability. Polymer membranes offer a versa-

tile, cost-effective, and easily processable solution for various

separation technologies that play vital roles in addressing

climate change (e.g., carbon capture) and enhancing resilience

(e.g., water treatment). In gas separation, polymer membranes

are extensively utilized in numerous industrial processes such

as oxygen enrichment, biogas purication,66 and post-

combustion carbon capture.67 Carbon capture, in particular, is

gaining signicant attention as a means to reduce environ-

mental emissions. Membrane technologies are advantageous

for their high energy efficiency and operational simplicity,

owing to their exibility and scalability.68 Key separation

processes in different combustion processes—CO2/N2 in post-

combustion, CO2/H2 in pre-combustion, and O2/N2 in oxy-

combustion—are critical for environmental conservation.55

In membrane-based gas separation, a gas mixture is typically

driven through a membrane by applying pressure, and separa-

tion is achieved due to differences in the permeabilities of the

individual gases.69 The performance of these membrane

processes is primarily determined by the membrane's perme-

ability for a specic gas species, denoted as Pi, where i species

the type of gas. When evaluating the performance of separating

gas A from gas B, another crucial measure is the membrane's

selectivity, a, dened as a = PA/PB. An ideal membrane for

a particular binary gas separation would exhibit both high

permeability and high selectivity. Enhancing gas permeability

and selectivity in these membranes would lead to more efficient

industrial processes by increasing throughput, reducing energy

costs, and achieving a purer product.70,71 However, there exists

a well-known trade-off between permeability and selectivity for

polymer gas separation membranes, delineated by the Robeson

upper bound.72

It is important to note that not all types of polymers are

suitable for gas separation. Therefore, in this section, we

Fig. 6 Distributions of (a) E, (b) sy, and (c) sb prediction results of real polymers from the PolyInfo dataset and each kind of generated hypothetical

polymer. (d) The real polymer with the highest predicted E, sy, and sb values in the PolyInfo dataset, and a hypothetical polyimide with predicted

E, sy, and sb values exceeding this performance, along with the small molecule compounds used for its synthesis.
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considered only polyimide, polyester, polyamide, and real

polymers from the PolyInfo dataset. The predicted permeabil-

ities of these types of hypothetical and real polymers are plotted

for O2/N2, CO2/CH4, CO2/N2, and H2/CO2 separation in Fig. 7.

We can see that in the predictions for all four types of gas

separation processes, different types of hypothetical polymers

exhibit varying performances across the different gas pairs. The

predicted results for hypothetical polyimides, polyesters, and

polyamides include many structures that are closer to the

Robeson upper bound compared to the real polymers from

PolyInfo. As shown in Fig. 7(a), numerous hypothetical poly-

imides and polyamides even surpass the 2008 values of the

Robeson upper bound. Similarly, as shown in Fig. 7(b), some

hypothetical polyimides exceed the Robeson upper bound. This

demonstrates that our generated hypothetical polymer struc-

tures not only have signicant potential for developing high-

performance materials in terms of thermal and mechanical

properties, but they also offer substantial benets for applica-

tions such as gas separation. These polymer structures can

greatly assist researchers in advancing separation technologies

for natural gas processing, hydrogen production and purica-

tion, carbon capture and storage, biogas upgrading, etc.

3. Conclusions and outlook

In this study, we successfully demonstrated the generation,

analysis, and prediction of properties for a vast array of hypo-

thetical polymer structures, leveraging advances in polymer

informatics and ML techniques. Hundreds of quadrillions of

hypothetical polymer structures can be generated using small

compounds from the GDB-17, GDB-13, and PubChem datasets,

combined with well-dened polymerization reactions. We

generated millions of hypothetical polymer structures across

various classes, including polyimides, polyolens, polyesters,

polyamides, polyurethanes, epoxies, PBIs, vitrimers, and PI-

PIMs. The TSNE plot shows that the structures of each poly-

mer type are relatively clustered in the chemical space, with

each type generally occupying a specic region.

Through the prediction of glass transition temperature,

melting temperature, and decomposition temperature, we

identied hypothetical polyimide structures that surpass the

highest-performing real polymers, demonstrating signicant

potential for high-temperature applications. The prediction of

Young's modulus, yield strength, and breaking strength

revealed that hypothetical polyimides and PI-PIMs exhibit

superior mechanical performance compared to existing real

polymers, indicating their suitability for demanding applica-

tions requiring high strength and durability. The evaluation of

gas permeabilities for separation processes such as O2/N2, CO2/

CH4, CO2/N2, and H2/CO2 showed that many hypothetical pol-

yimides and polyamides approach or exceed the Robeson upper

bound, highlighting their potential for efficient gas separation

technologies.

The comprehensive analysis and high-throughput screening

conducted in this study showcase the immense potential of

data-driven methods in polymer science. By identifying high-

performance hypothetical polymers, we pave the way for

future experimental validation and the development of new

materials with tailored properties for specic applications. This

Fig. 7 Visualization of predicted gas permeabilities for real polymers from PolyInfo and hypothetical polymers, including polyimide, polyester,

and polyamide. The data are visualized for the following separation processes: (a) O2/N2, (b) CO2/CH4, (c) CO2/N2, and (d) H2/CO2. Dashed lines

represent the updated 2008 values of the Robeson upper bound. Units of permeability are given in Barrers.
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research not only advances our understanding of polymer

properties but also provides a valuable open resource database

for the scientic community, fostering innovation in materials

design and application.

4. Computational methods
4.1 Hypothetical polymer structure generation

The generation of all types of hypothetical polymer structures

was implemented using Python and relevant toolkits. For pol-

yimide, polyolen, polyester, polyamide, and polyurethane, the

hypothetical polymer structures were generated using the

SMiPoly toolkit. For epoxy, PBI, vitrimers, and PI-PIM, the

hypothetical polymer structures were synthesized using the

RDKit toolkit.

4.2 Machine learning model

For the FNN model used for Tg, Tm and Td prediction, the MF

with frequency was employed for polymer feature representa-

tion. This method identies substructures within a circle of

radius RM and assigns each substructure a numerical identier.

In this study, the p-SMILES notation of the repeat unit for each

sample was utilized, and the ngerprint algorithm was imple-

mented in RDKit with RM set to 3. A total of 8831 substructures

were detected, but to reduce the dimensionality of the input

vectors for the FNN model, only 1176 prominent substructures

shared by most polymers were retained. An ensemble model,

which averages the predictions of twelve FNN models, was used

to achieve better prediction performance. The Tg model was

optimized through hyperparameter tuning to include four

hidden layers with 256, 64, 2048, and 512 neurons, respectively.

The Tmmodel was optimized through hyperparameter tuning to

include four hidden layers with 256, 32, 1024, and 1024

neurons, respectively. The Td model was optimized through

hyperparameter tuning to include four hidden layers with 32,

32, 512, and 256 neurons, respectively.

For predicting E, sy, and sb prediction, the FNN model

utilized the MF with frequency for feature representation, with

RM set to 3. Out of a total of 8831 detected substructures, only

129 prominent substructures shared by most polymers were

retained to reduce the dimensionality of the input vectors. For

each polymer, vectors were created where each bit represents

the presence of a detected substructure. An ensemble model,

averaging the predictions of twelve FNN models, was employed

to enhance prediction performance. Specically, the model for

E was optimized to include a single hidden layer with 40

neurons. The model for sy was optimized to have four hidden

layers with 8, 8, 8, and 16 neurons, respectively. The model for

sb was optimized with four hidden layers containing 16, 512,

512, and 1024 neurons, respectively.

For predicting gas permeabilities, the FNN model utilized

the MF with frequency for feature representation, with RM set to

3. From a total of 3209 detected substructures, only 114 prom-

inent substructures shared by most polymers were retained to

reduce the dimensionality of the input vectors. Themodels were

optimized with ve hidden layers containing 64, 64, 32, 16, and

8 nodes, respectively. The details of the training for all models

and the datasets are provided in the ESI† titled “Details of

Network Training and Dataset.”

Data availability

The categorized small molecule datasets used in this study for

hypothetical polymer structure generations can be found at:

https://github.com/ytl0410/PolyUniverse. The codes for the

generation of polyimide, polyolen, polyester, polyamide, and

polyurethane can be found at: https://github.com/PEJpOhno/

SMiPoly. The codes for the generation of epoxy, PBI, vitrimer,

and PI-PIM can be found at: https://github.com/ytl0410/

PolyUniverse.
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