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Abstract

Recent empirical studies have quantified correlation between survival and recov-
ery by estimating these parameters as correlated random effects with hierarchical
Bayesian multivariate models fit to tag-recovery data. In these applications, increas-
ingly negative correlation between survival and recovery has been interpreted as
evidence for increasingly additive harvest mortality. The power of these hierarchal
models to detect nonzero correlations has rarely been evaluated, and these few stud-
ies have not focused on tag-recovery data, which is a common data type. We assessed
the power of multivariate hierarchical models to detect negative correlation between
annual survival and recovery. Using three priors for multivariate normal distribu-
tions, we fit hierarchical effects models to a mallard (Anas platyrhychos) tag-recovery
data set and to simulated data with sample sizes corresponding to different levels of
monitoring intensity. We also demonstrate more robust summary statistics for tag-
recovery data sets than total individuals tagged. Different priors led to substantially
different estimates of correlation from the mallard data. Our power analysis of simu-
lated data indicated most prior distribution and sample size combinations could not
estimate strongly negative correlation with useful precision or accuracy. Many cor-
relation estimates spanned the available parameter space (-1,1) and underestimated
the magnitude of negative correlation. Only one prior combined with our most in-
tensive monitoring scenario provided reliable results. Underestimating the magnitude
of correlation coincided with overestimating the variability of annual survival, but
not annual recovery. The inadequacy of prior distributions and sample size combina-
tions previously assumed adequate for obtaining robust inference from tag-recovery
data represents a concern in the application of Bayesian hierarchical models to tag-
recovery data. Our analysis approach provides a means for examining prior influence
and sample size on hierarchical models fit to capture-recapture data while emphasiz-

ing transferability of results between empirical and simulation studies.
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1 | INTRODUCTION

Modernapproaches to quantifying relationships among demographic
parameters include modeling temporal variation in vital rates as cor-
related random effects drawn from multivariate normal distributions
(Fay et al., 2021; Link & Barker, 2005; Riecke et al., 2019). This ap-
proach allows the correlation between parameters to be estimated
without bias from sampling covariation between parameters (Otis
& White, 2004). Bayesian modeling frameworks offer a more trac-
table approach to fitting relatively complex random effects struc-
tures when compared to Frequentist approaches, thereby Bayesian
estimation is a natural choice when fitting multivariate hierarchical
models (Royle & Link, 2002). While Bayesian estimation is advan-
tageous when fitting complex random effects structures, Bayesian
inference includes the influence of prior distributions on posterior
distributions (Gelman et al., 2014).

In both conservation and management settings, demographic
observations are often obtained through capture-recapture meth-
ods (Williams et al., 2002). Multivariate hierarchical models specific
to capture-recapture data have estimated correlations between
survival and recruitment (Link & Barker, 2005), juvenile and adult
survival (Riecke et al., 2019), survival and reproduction (Paterson
et al., 2018), reproductive effort and reproductive frequency
(Badger et al., 2020), and parameters estimated with integrated pop-
ulation models (Koons et al., 2017; Schaub et al., 2013). Additionally,
some studies have focused on quantifying the impact of harvest on
vital rates like annual survival (or natural mortality) by estimating
correlation between random effects from tag-recovery data, which
is a capture-recapture data type in which individuals are reencoun-
tered after experiencing mortality (Arnold et al., 2016; Bartzen &
Dufour, 2017; Koons et al., 2014; Servanty et al., 2010). Tag-recovery
data are advantageous in that the harvest of tagged individuals pro-
vides information on cause-specific mortality so that both survival
probability and tag-recovery probability can be estimated from this
single data type (Brownie et al., 1985; Otis & White, 2004).

With capture-recapture data, statistical power depends on both
total tags deployed and the portion of those individuals reencoun-
tered after initial tagging (Williams et al., 2002). For waterfowl spe-
cies in North America, it is common for <10% of tagged individuals to
be recovered by hunters (Cooch et al., 2014). Thereby, it is conceiv-
able to have apparently large data sets (tens of thousands of tagged
individuals) but to still have limited data from which parameters can
be estimated (Sheaffer & Malecki, 1995). Despite wide use of tag-
recovery and other capture-recapture data types, a congruent ap-
proach to quantifying and reporting the sample sizes associated with
resighting, recapturing, or recovering tagged individuals is lacking.

Bayesian analysis, capture-recapture, harvest assessment, hierarchical models, multivariate
normal distribution, random effects
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With tag-recovery data, total years that tagged individuals are
known to be alive before being recovered (known-fate years) is a
function of total animals tagged along with both the expected
lifespan and recovery probability of tagged individuals. With tag-
recovery data, direct recoveries do not contribute to known-fate
years, as these recoveries occur immediately following initial tagging
when no natural mortality is assumed to occur (Brownie et al., 1985).
Even though direct recoveries are required for parameter identi-
fiability and improve the precision of parameter estimates by in-
creasing the number of individuals for which a fate is known, these
recoveries do not offer much information about the probability of
survival for one or more periods in which mortality is assumed to
occur (Williams et al., 2002). In the case of waterfowl, indirect re-
coveries are those that occur after one hunting season and one year
have elapsed after being banded.

Available data in the form of total recoveries and known-fate
years (which come from indirect recoveries) affect parameter esti-
mation when modeling tag-recovery data, but in Bayesian models,
prior distributions can also affect posterior distributions and may
interact with available data to reduce the precision and accuracy of
parameter estimates (Gelman et al., 2014). In the context of multi-
variate normal distributions, prior choice is an important consider-
ation as recent research has shown that correlation between random
effects is sensitive to the priors used (Riecke et al., 2019). In these
applications, the covariance matrix of a multivariate normal distribu-
tion (¥) contains the standard deviations of random effects (o) and
correlation between random effects (p). Previous simulation re-
search focused on modeling capture-recapture data with Cormack-
Jolly-Seber models has shown the magnitude of correlation between
random effects is underestimated when placing Wishart priors on
the precision matrix (2:‘1) used to estimate correlated random ef-
fects (Riecke et al., 2019). These authors also report a prior formula-
tion for the variance-covariance matrix that placed Uniform
priors on the standard deviations of random effects and the correla-
tion parameter estimated correlation with less bias than the Wishart
prior these authors assessed (Riecke et al., 2019).

Correlations between demographic parameters have long been
recognized as biologically meaningful (Anderson & Burnham, 1976;
Nichols & Hines, 1983), and in the context of harvest management,
negative correlation between the random effects of year on survival
andharvestcanbeinterpreted asevidence forharvestmortality thatis
additive to natural mortality (Arnold, Afton, et al., 2017). Specifically,
posterior distributions of correlation between survival and recovery
have been interpreted as providing evidence for strongly additive
(p < —0.7), moderately additive ( — 0.7 < p < —0.5), weakly addi-
tive (— 0.5 < p < —0.3), or compensatory ( — 0.3 < p < 0.3) harvest
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mortality (Arnold, Afton, et al., 2017). While it should be expected
that the interaction between priors and effective sample size will
interact along a spectrum when calculating posterior estimates of
correlation between random effects (Gelman et al., 2014), guidelines
like those suggested by Arnold, Afton, et al. (2017) have been rec-
ommended without assessing whether the data have enough power
to robustly support these interpretations. We suggest an under-
standing of these interactions may be of key importance when inter-
preting correlation parameters for the purpose of informing harvest
management.

Here, we assess the power of multivariate hierarchical models fit
with Bayesian estimation to detect negative correlations between
annual survival and recovery when these parameters are estimated
as random effects. For our case study, we use banding and recovery
data from the midcontinent mallard (Anas platyrhychos) population,
one of the largest tag-recovery data sets in the world, for the years
1961-1996. We focus on tag-recovery data and the widely imple-
mented model of Brownie et al. (1985) given its frequent application
to bird and fish populations experiencing harvest or other docu-
mentable forms of anthropogenic mortality. Specifically, we evalu-
ate model performance when choosing Wishart or Uniform priors
for multivariate normal distributions (Riecke et al., 2019), along with
Gamma priors like those implemented in Program MARK for multi-
variate normal distributions (White & Burnham, 1999). We also sum-
marize known-fate years for both empirical and simulated data sets
while quantifying the power of our models to detect strongly neg-
ative correlation with respect to different monitoring scenarios and
the three prior formulations we used to initialize Bayesian models fit
to the mallard data (Johnson et al., 2015). Our case study focuses on
female mallards, as we show unexpected data limitations associated
with the female data when compared to the male data.

2 | METHODS

2.1 | Mallard banding data

We began our case study using data from mallards banded in the
Central and Mississippi flyways (hereafter midcontinent mallards) as
defined by the U.S. Fish and Wildlife Service [USFWS] (2017) from
1961-1996; these years were chosen because reporting probability

TABLE 1 Summary of tag-recovery
data for midcontinent mallards captured,
banded, and recovered from 1961 to 1996
FHY

F AHY
M HY
M AHY
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of harvested mallards wearing metal leg bands varied little and
ranged from 0.3 to 0.4 during these years (Arnold et al., 2020).
The mid-1990s also coincides with the implementation of Adaptive
Harvest Management for mallards, which led to a change in the
decision-making process used to recommend harvest regulations
for this population (USFWS, 2020). We acquired banding records for
mallards marked with regular metal bands between 1 June and 30
September from the USGS Bird Banding Lab (BBL; Laurel, MD, USA).
With the BBL banding coordinates (GISBLat, GISBLong), Program
R (R Core Team, 2021) and the R package sf (Pebesma, 2018), we
then filtered banding records to only include midcontinent mallards
(USFWS, 2017). We included records for hatch-year (juvenile; B_
AGE_CODE = 2) and after-hatch year (adult; B_AGE_CODE =1, 5, 6,
8) mallards, but we excluded locals (B_AGE_CODE = 4) and individu-
als of unknown age class.

For these mallards, we also obtained recovery records for those
individuals that were recovered by hunters (BBL code HOW = 1) be-
tween 1 September and 30 April. We excluded recoveries reported
in Alaska, northern and eastern Canadian provinces (provinces NB,
NL, NS, NT, NU, PE, and YT), and Mexico because recoveries from
these regions were rare or band reporting probabilities are either un-
known or lower than the rest of North America (Arnold et al., 2020).
With these banding and recovery data, we constructed m-arrays
M, ..
(columns) for each age and sex class of mallards for analysis with

) that summarize recoveries by cohort (rows) and recovery year

multinomial models (Brownie et al., 1985). The m-array is square for
y years of tagging and recovery data (Y = 36) with total unrecov-
ered individuals per cohort included in the m-array as an additional,
last column so that there are y rows and y + 1 columns. Each m-array
contains two recovery types: direct and indirect. Direct recoveries
are found along the main diagonal of each m-array and are those
occurring during the hunting season beginning in the same year as
tagging when no mortality is assumed to occur. Indirect recoveries
are found to the right of the main diagonal of the m-array (and to the
left of the final column) and are those recoveries occurring at least
y+ lyears after tagging.

To complement our empirical analysis (Table 1) and power anal-
yses (Table 2), we report conventional summary statistics for tag-
recovery data in the form of total releases, total direct recoveries,
and total indirect recoveries. In addition, we report a metric of avail-
able data in the form of total known-fate years, average known-fate

Known Per Per
Releases fate year release Direct Indirect
322,257 29,023 806 0.090 19,984 12,985
310,295 25,787 716 0.083 10,739 1S o7
375,574 80,474 2235 0.214 30,262 28,569
584,851 127,710 3548 0.218 26,422 45,600

Note: Data are organized by sex, female (F) or male (M), and age at time of capture and banding,
juvenile (HY), or adult (AHY). Total releases (releases), total known-fate years (known fate), known-
fate years divided by years of study (per year), known-fate years per individual (per individual),
direct recoveries, and indirect recoveries are organized by release age and sex.

25U suoww o)) AN ajqeandde ay £q PAUIAAOT a1 SANIE YO SN J0 SN Joj AIIqET AuuQ LA U0 (SUONIPUOd-pup-sIIN/W0 L Amiqiaunuoyssdin ) suonipuey) pue suia L aq 298 “[$20Z/Z0/50] U0 ATIqrT AunuO AAIA ‘SYURQIE L BYSTIY JO AUSIDATUN £q LESE'£29/T001°0110pwmod Aaj1a Anquaunuoyy:sdny woly paprojumo] ¢ ‘€207 ‘8SLLSTOT



DEANE ET AL

4of15 Wi LEY‘ECOIOgy and Evolution

TABLE 2 Summary of tag-recovery data for the 50 tag-recovery realizations corresponding to each sampling scenario we included in our

power analysis.

Cohort size Known-fate years Per year
HY550 902 (57) 25(2)
HY 55.3.57503 805 (49) 22 (1)
HY3 000 6608 (145) 184 (4)
HY10000 32,967 (337) 916 (9)
AHY g5 2618 (89) 73(2)
AHY 555, 5105043 2549 (81) 71(2)
AHY; 500 6546 (154) 182 (4)
AHY10,600 32,741(309) 909 (9)

Per release Direct Indirect
0.100 (0.006) 601 (25) 406 (19)
0.089 (0.005) 546 (25) 361 (18)
0.092 (0.002) 4363 (75) 2971 (49)
0.092 (0.001) 21,848 (141) 14,822 (116)
0.091 (0.003) 950 (30) 1184 (36)
0.089 (0.003) 970 (25) 1149 (30)
0.091 (0.002) 2380 (38) 2952 (57)
0.091 (0.001) 11,861 (119) 14,759 (103)

Note: Rows are organized by release age, juvenile (HY) or adult (AHY), while being subscripted by annual cohort size. Columns are organized to display
average known-fate years per data set (known-fate years), average known-fate years per year (per year), and average known-fate years per released
individual (per release), total direct recoveries (direct), and total indirect recoveries (indirect) are displayed for each monitoring scenario. The standard

deviation of each summary statistic is included within parentheses.

years per year, and known-fate years per individual tagged. We
define known-fate years as the number of years an individual was
known to be alive. For example, an individual tagged in the summer
of year y and harvested during the period of harvest beginning in
year y+1 would contribute one year of known-fate data; with this
approach, direct recoveries do not contribute to known-fate year
calculations.

2.2 | Correlation models

We parameterized the multinomial formulation of the Brownie
et al. (1985) band-recovery model in a Bayesian framework to es-
timate annual survival (5) and recovery (f) probabilities for two age
classes (Brownie et al., 1985, Kéry & Schaub, 2012 pp. 248-255), ju-
venile (i.e., hatch year; HY) and adult (i.e., after-hatch year; AHY). A
common notation for this model structure would be Sagwar fage!yw;
we exclude “sex” from the notation as we analyzed the female and
male data separately. With this model formulation, the recovery pa-
rameter (f) is the joint probability of being shot, retrieved, and re-
ported (Brownie et al., 1985). We note the models specified by Kéry
and Schaub (pp. 248-255) implement the Seber r parameterization
in place of the Brownie f parameterization, which is a difference re-
garding the estimation of recovery probability (Cooch et al., 2014
pp. 246-248). When specifying the Brownie f parameterization, we
did not distinguish between direct recovery probability and indi-
rect recovery probability. We did not parameterize models with the
Seber r formulation (Sedinger et al., 2010) as this method is prone
to providing incorrect inference when temporal variation in natural
mortality exceeds variation in harvest mortality (Figure 1; Code avail-
able in supporting information online). While future work could fur-
ther assess the Seber r parameterization for correlation analyses, the
mathematical difficulties demonstrated in Figure 1 preclude us from
further considering this parametrization here.

We estimated the probability of observed tag-recovery data
(Mggey.1:v ) using multinomial distributions with success probabilities

for juveniles (@) and adults (#) and the total individuals released (Rage)

during each year (Equation 1).

My 1.v+1) ~Multinomial (e, 1.y, Ry, ) W
Manyy1en ~ Multinomial (ﬂy,l:Y' RAHY,y)

We defined the age-specific cell probabilities as a function of an-
nual survival and recovery probability. Cell-probabilities correspond-
ing to direct recoveries (along the main diagonal) are a function of
annual recovery probabilities while cell probabilities corresponding
to indirect recoveries (off the main diagonal) are a function of annual
survival and recovery probabilities. Age-specific cell probabilities
corresponding to release year i (rows) and recovery year j (columns)
are displayed in Equation 2. Note, the m-arrays do not contain data
below and left of the main diagonal (i > j).

fhy_;: i =.|:
Shy.f'fahy,i’ i+1 =j

k=j-1
=1 s,w( IT Sahy_k)fa,,yJ,i+1<j<Y+1

k=i+1 ¢
=Y .
1= aei=Y+1
0,i>] 2)

-

fahy‘[: i=j

k=j-1
( H Sﬂhy-k)fahyj’ i+1<j<¥+1
k=i
k=y
il Zk:l Bii=Y+1

0,i>j

Bij=1

We estimated annual survival and recovery probabilities on the
logit scale while using random effects to model annual variation in
survival (55,) and recovery (sfy) relative to the hierarchical mean
survival (us) and recovery (u;) probability for each age class
(Equations 3, 4). Neither the hierarchal means nor random effects
were shared between age classes, thereby we omit the age notation
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FIGURE 1 Two scenarios of additive harvest demonstrating different behavior of the Seber r recovery formulation relative to the
Brownie f formulation. Each figure displays the relationship between survival probability (S) and four metrics of annual mortality: annual
harvest probability (h; dot-dash line in blue), Brownie f recovery probability when reporting probability is 0.5 (f; dashed line in gray), Seber r
recovery parameter (r; long-dash line in green), annual natural mortality (n; dash-short-dash line in red). The Brownie recovery probabilities
are the product of harvest and reporting probability (f = h x 0.5). The Seber recovery values are a function of survival and recovery (r = f/
(1 - S)). Natural mortality is the difference between 1, survival, and harvest (hn =1 - S - h). In panel 1a (Ah> An), both the Brownie or Seber
model parameterizations indicate a negative relationship between survival and harvest in Figure 1a. In Figure 1b (An> Ah), the Brownie
parameterization indicates a negative relationship, while the Seber parameterization indicates a positive relationship between survival and

harvest (which is the opposite of additive harvest).

from our equations for clarity. During initial modeling, our models
occasionally failed during the initial period of estimation; we avoided
this problem by choosing vague priors for mean survival (Equation 3)
and mean recovery (Equation 4) on the natural scale while restricting
these priors to a narrower range than the possible parameter space
of 0 and 1. These priors are uninformative relative to the range of
biologically plausible values of survival and recovery experienced by
mallards.

logit(S, ) = us+e,,
s =log(means/(1—means)) (3)
means~ Uniform(0.10,0.99)

logit(f, ) =y +eg
s =log(mean; /(1—mean;)) (4)
mean;~ Uniform(0.01, 0.30)

We drew random effects from multivariate normal distributions
with a mean of 0 and a variance-covariance matrix (£) or precision
matrix (2‘1) depending on which of the three priors we specified
for these matrices. Our decision to place priors on the variance-
covariance matrix or the precision matrix was due to practical limita-
tions in Program JAGS related to ensuring these matrices are
positive definite (Plummer, 2003). Here, we consider three models
that differ in the priors we used to initiate multivariate normal
distributions.

The first prior was a Wishart distribution (Link & Barker, 2005;
Riecke et al., 2019), which is a conjugate prior for the precision ma-
trix (2‘1) of a multivariate normal distribution (Equation 5). With
this Wishart prior, random effects were drawn from multivariate

normal distributions with a mean of 0 and a precision matrix (alterna-
tively, hierarchical mean survival and recovery could be used as the
mean values for these normal distributions instead of 0).

0
S |~ Normal o
0 (5)

E f,

=1~ Wishart(3,1)

Our second prior formulation was for individual parameters
within the covariance matrices. Specifically, we used a Uniform
prior for the standard deviations of random effects for survival and
recovery (o, and o, respectively) and a vague prior for correlation
between survival and recovery (p) as specified in Equation 6 (Riecke
et al., 2019). Our prior for correlation is vague like a single Uniform
distribution prior, but the use of a Beta distribution would allow for
a shaped prior if desired. When implementing these flat priors, ran-
dom effects for survival and recovery were drawn from multivariate
normal distributions with a mean of 0 and variance-covariance ma-
trix using the JAGS function dmnorm.vcov (Plummer, 2003).

£ 0
* |~ Normal ») (6)
£ 0
v
2
5= o os0¢p

2
o5op  of
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o~ Uniform(0, 5)
o~ Uniform(0, 5)

- (2 X pprior) -1

Pprior ~ Beta(1,1)

Our third prior formulation placed priors on components
of the precision matrix which is like the default priors specified
for multivariate normal distributions in Program MARK (White
& Burnham, 1999). In this case, we specified the distribution
Gamma(1.001,0.001) for the parameters found along the main
diagonal of the precision matrix (1/52) and a flat prior for the
equivalent of a correlation parameter (p*) for the precision matrix
(Equation 7). With this prior, random effects were estimated from
multivariate normal distributions with mean values of 0 and a pre-
cision matrix. Here, we calculated correlation from the variance-
covariance matrix after inverting the precision matrix in Program
JAGS (Plummer, 2003).

£ 0 o
¥ |~ Normal k> 7
(7)
£ 0
¥
sl 1/6§ 1/o(1/0¢)p"*
1/65(1/0f)p* ‘1/0’?

1/0%~ Gamma(1.001,0.001)

1/62~ Gamma(1.001,0.001)

o~ (2% Ay ) - 1

p;ﬂ.ﬂr ~ Beta(1,1)

Hereon, we refer to these three prior formulations as “Wishart”
(Equation 5), “Uniform” (Equation 6), or “Gamma” (Equation 7) priors.
For clarity, we consistently present results in order of juvenile fe-
males, adult females, juvenile males, and adult males.

We fit models in JAGS Version 4.3.0 (Plummer, 2003) in Program
R using the R packages coda (Plummer et al., 2006) and jagsUI
(Kellner, 2019) by running four MCMC chains for 50,000 iterations
while applying a thin rate of 10 after discarding the first 10,000
values of each chain, leaving us with a posterior sample of 16,000
values for each parameter. We assessed convergence by inspecting
trace plots for consistent chain mixing while also reviewing R values
(Gelman et al., 2014).

Sampling and estimation (left) | I Simulation process (right) I

e i o e o £l
I I

h) Assess power of models and data | a) Empirical analysis of real data |

LY SOmPAring P cge ' Prage _ _ i |

[ SEpEpp— " b) Simulate S, and f,,, based on

| g) Estimate parameters from : empirical results and hypothesis of
UM, s INCIUGING L | additive harvest (et oze)

_________ I 1
: f) Sample from CH,,,,,..; to get 50 ¢) Simulate population with

1
| realized datasets (i) for each : known-fate and observed capture
monitoring scenario (M, ,,; ,..) | histories (CHyowns CHopserved)

| moesoa 08 o) .. :

d) Calculate vital rates of simulated
population from CHyg,n ( Pg age)

e) Define 4 monitoring scenarios
(ms) varying by annual cohort size

FIGURE 2 Schematic depicting the steps of our power analysis.
Beginning in the upper right, simulation steps are displayed (blue
borders) starting at the top and moving clockwise. Beginning

at lower left, sampling and estimation steps are shown (purple
borders). Boxes with solid borders correspond to steps completed
once while boxes with dashed lines correspond to steps were
repeated 200 times (4 scenarios x 50 data realizations). The box
focusing on parameter estimation is shaded as it is usually the step
of greatest interest in both empirical and simulation studies.

2.3 | Power analysis

After fitting our models to the mallard data, we assessed our power
to detect negative correlation between survival and recovery with
the models we used for the empirical analysis (Figure 2); our ap-
proach was guided by a simple question, “will my study answer my
research question?” (Johnson et al., 2015). We began by simulating
age-specific survival and recovery probabilities for a 36-year period
using multivariate normal distributions and parameters we esti-
mated for female mallards with Uniform priors while also specify-
ing correlation between survival and recovery to be -0.8 for each
age class (Figure 2a). Our simulation of annual survival and recov-
ery probabilities used the following parameters we estimated for
juvenile female mallards; juvenile mean survival (fis, = 0.574) and
recovery (ﬁfnv =i 0.061), along with the standard deviations of the
random effects for juvenile survival (@5, =0.184) and recovery
(8, =0.269). For adults, we used mean survival (@5 =0.571)
and recovery (fi,, =0.032) and the standard deviations of the
random effects estimated for survival (8, = 0.131) and recovery
(&‘fw =0.312). For each age class, these simulated probabilities
were consistent with additive harvest mortality when quantified
using two metrics (Figure 2b): (1) correlation was strongly nega-
tive (pgimuatedry = — 0-801, pginuatedrany = — 0.792) and (2) the es-
timated relationship between survival and recovery () was about
-2.5 (Bsimutatearity = — 2420, Bimutatearany = — 2.408). The condition
f = — 2.5is consistent with the hypothesis of additive harvest mor-
tality when band-reporting probability is 0.4 (Appendix 51), which is
close to the estimated band-reporting probability during the years of
our study (Arnold et al., 2020).
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With the annual survival and recovery probabilities that we sim-
ulated for each class (Figure 3b, 4b), we simulated known-fate his-

tories for an entire population of individuals (CH ). From these

known
known-fate capture histories, we simulated observed capture his-
tories (CH
(Figure 2c). Because we developed our power analysis to emphasize
and CH

composed of histories for ¢ million individuals initially encountered

0bww_d) only containing initial encounters and recoveries

the importance of sampling (see below), CH 4 were

known observe:

in the juvenile or hatch-year age class (250,000 new individuals per
year) and 14.4 million individuals initially encountered in the adult
or after-hatch year age class (400,000 new individuals per year) so
that each simulated individual had a known fate and observed cap-
and CH
the realized annual survival and recovery probabilities for both age

ture history. After simulating CH .+ We calculated

known observe

classes from the known-fate capture histories (Figure 2d), as well
as realized correlation between age-specific survival and recovery
probabilities (pR!agE). We used the realized correlation values for each
age class (pR!HY = -0.801, pp 5y = —0.787) as reference values for
true correlation of our simulated population in subsequent steps of
our power analysis.

After all simulations were complete (Figure 2a-d), we then de-
fined four monitoring scenarios that differed in how many individuals
were sampled and tagged during each year of our simulation study
(Figure 2e). These four monitoring scenarios were (1) modest and
constant (HY,.,, AHY,); (2) modest and episodic in 3-yearcycles
(HY 55,3.3753- AHY 550,3:1050x3); (3) intermediate (HY, g0, AHY; 5o4):
and (4) intensive (HY.g 00, AHY g go0)- The modest scenarios are com-
parable to sample sizes available for female lesser scaup (Aythya affinis;
Arnold et al., 2016), the intermediate scenario is like sample sizes avail-
able for northern pintails (Anas acuta; Bartzen & Dufour, 2017), and the
intensive scenario is more like the sample sizes available for mallards.
We then randomly sampled capture histories from CH_, __ . using the
criteria of each monitoring scenario to obtain 200 realized data sets, 50
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for each monitoring scenario (Figure 2f). For data set i from monitoring
scenario ms, we summarized the sampled capture histories to m-array
format (M
set (M.

i,ms,age

i.mage). We sampled without replacement within each data

) and with replacement among data sets Mi,ms.age'

We then fit the same three Brownie models to each data set
M‘._m;,age (with Wishart, Gamma, and Uniform priors) to estimate the
same parameters as for the mallard data (Figure 2g), including cor-
relation between survival and recovery (5 msage - We evaluated our
power to detect strongly negative correlation by comparing median
(50th quantile) estimates of B g age 10 pg o0 We also calculated the
portion of the posterior estimates of correlation that fell within the
bins that associate values of correlation to varying degrees of addi-
tive mortality (Figure 2h) suggested by Arnold, Afton, et al. (2017).
Our power analysis focused on the combination of sampling and pa-
rameter estimation to capture truth of a population, which in our
case is PR age’ We did not focus on the ability of a model to estimate
parameters from a sample (Riecke et al., 2019). Both approaches
have merits depending on intention, and our intention was to focus
on our ability to detect strongly negative correlation; this goal is best

served by the approach we implemented here.

3 | RESULTS
3.1 | Mallard analysis

Based on age at banding, we obtained records for 322,257 hatch-
year females, 310,295 after-hatch year females, 375,574 individuals
as hatch-year males, and 584,851 after-hatch year males (Table 1).
On a per individual basis, there were twice as many known-fate
years for every male (=0.2) as there was for every female (=0.1), but
expected known-fate years per individual did not meaningfully vary
within sex by release age (Table 1).
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FIGURE 3 First-winter survival and recovery estimated for female midcontinent mallards banded as juveniles from 1961 to 1996.
Each figure is for the same data such that the difference between Figures 3a-c is a result of the prior used to initiate multivariate normal
distributions; Wishart (Figure 3a), Uniform (Figure 3b), and Gamma (Figure 3c). The real parameters we simulated for our power analysis are

displayed in Figure 3b (orange diamonds).
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FIGURE 4 Estimates of adult survival and recovery estimated for female midcontinent mallards banded from 1961-1996. Each figure is
for the same data such that the difference between Figures 4a-c is a result of the prior used to initiate multivariate normal distributions;
Wishart (Figure 4a), Uniform (Figure 4b), and Gamma (Figure 4c). The real parameters we simulated for our power analysis are displayed in

Figure 4b (orange diamonds).
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FIGURE 5 Posterior distributions of correlation between survival and recovery estimated for juvenile female (Figure 5a), adult female
(Figure 5b), juvenile male (Figure 5c¢), and adult male (Figure 5d) midcontinent mallards banded from 1961 to 1996. Posterior distributions
are displayed as density plots and horizontal boxplots while being color coded by prior; Wishart (blue), Uniform (gray), and Gamma (yellow).
From left to right, the minor x-axis ticks represent -0.7, -0.3, 0.3, and 0.7. The maximum density values for the Uniform and Gamma

posteriors in Figure 5c are =9.2 and =13.4, respectively.

All estimated and derived parameters converged (ﬁ <1.1),and im-
portantly, posterior distributions of survival and recovery (Figures 3,
4) as well as posterior distributions of correlation between random
effects were updated by the data such that the estimates did not
span the parameter space (Figure 5). Survival was generally esti-
mated to be between 0.5 and 0.7, which is near the middle of the
logit parameter space, while recovery was generally <0.1, which is
near the lower bound of the logit parameter space (Table 3).

If correlation between the annual random effects for
survival and

gested guidelines (Arnold, Afton, et al, 2017; Arnold, Clark,

recovery is interpreted using previously sug-
et al., 2017), our interpretation of additive mortality depended
on prior choice (Figure 5). With Wishart priors, harvest mortal-
ity would be interpreted as weakly additive for juvenile females
(A= — 0364 -0.632, —0026|), compensatory for adult fe-
males (7= —0.016 [ - 0.340,0.314] ), and moderately additive for
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TABLE 3 Survival (5) and recovery () probabilities we estimated for midcontinent mallards between 1961 and 1996.

7i;(BSD) Senin(BSD) Smax(BSD) 71;(BSD) Frnin(BSD) Frnax(BSD)
WF‘HY 0.576(0.013) 0.478 (0.025) 0.662 (0.036) 0.061 (0.003) 0.037 (0.002) 0.089 (0.003)
UEH\r 0.574 (0.010) 0.496 (0.022) 0.647 (0.028) 0.061 (0.003) 0.037 (0.002) 0.089 (0.003)
GEHV 0.573 (0.009) 0.509 (0.020) 0.640 (0.023) 0.061 (0.002) 0.037 (0.002) 0.089 (0.003)
WF‘AHY 0.572(0.011) 0.505 (0.026) 0.654 (0.031) 0.032 (0.002) 0.019 (0.001) 0.051 (0.002)
UEAHY 0.571 (0.006) 0.529 (0.021) 0.620 (0.024) 0.032 (0.002) 0.019 (0.001) 0.051 (0.002)
GF!AHY 0.571 (0.005) 0.536(0.019) 0.610(0.021) 0.033 (0.002) 0.019 (0.001) 0.051 (0.002)
WMH‘r 0.604 (0.013) 0.498 (0.018) 0.725 (0.024) 0.079 (0.003) 0.054 (0.002) 0.111 (0.003)
UMHY 0.603 (0.011) 0.500 (0.016) 0.711 (0.019) 0.080 (0.003) 0.054 (0.002) 0.111 (0.003)
GM'HV 0.602 (0.011) 0.502 (0.015) 0.706 (0.017) 0.080 (0.003) 0.054 (0.002) 0.111 (0.003)
WM'AHY 0.676 (0.009) 0.615 (0.016) 0.739 (0.015) 0.046 (0.002) 0.029 (0.001) 0.063 (0.002)
UM'AHY 0.676 (0.006) 0.617 (0.013) 0.730(0.014) 0.045 (0.002) 0.029 (0.001) 0.064 (0.002)
GM'AHY 0.676 (0.005) 0.618 (0.013) 0.730 (0.014) 0.045 (0.002) 0.029 (0.001) 0.064 (0.001)

Note: Results are for juvenile (HY) and adult mallards (AHY) of both sexes, female (F) and (M), and are organized by prior distribution (Wishart: W;
Gamma: G; Uniform: U). For both survival and recovery, respectively, we report the hierarchal mean of survival and recovery (ﬁs. By ) the minimum
annual estimate (gmin,?min ), and the maximum annual estimate (gma,,Fmax) The Bayesian standard deviation (BSD) of each parameter is displayed

after the point estimates.

juvenile males (5= —0.537 [— 0.733, —0.253] ), but weakly addi-
tive or compensatory for adult males (5= — 0.272 [ —0.548,0.061])
. Using Uniform priors and the same data, harvest mortality
appears moderately to strongly additive for juvenile females
(3= —0.737 [ - 0.940, — 0.388]), compensatory for adult females
(3= —0.082[-0.437,0.294] ), strongly additive for juvenile males
(3= —0919[-0.982, —0.784]), and moderately additive for
adult males (3= - 0591 [ - 0.789, — 0.274]). Gamma priors pro-
vided results generally similar to Uniform priors (Figure 5) with
harvest mortality appearing strongly additive for juvenile females
(7= —0876 - 0.987, — 0.539]), compensatory for adult females
(7= —0.116 [ - 0.473,0.271]), strongly additive for juvenile males
(7= —0.953[-0.991, — 0.846]), and moderately additive for adult
males (5 = — 0.625 [ -0.807, — 0.337]).

Inference about the variability of mean and annual mallard sur-
vival also depended on prior choice (Table 3). Annual survival esti-
mates were most variable when we fit models using Wishart priors
while models fit using Uniform priors were slightly more variable
than models fit using Gamma priors (Figures 3, 4, 6). This variability
was evident by (1) greater Bayesian standard deviations for mean
survival estimates (Table 3 column 1) and (2) greater differences be-
tween the minimum and maximum annual survival estimates relative
to the estimated hierarchal means (Table 3 columns 2-3); and (3)
less precisely estimated random effects (Figure 6). Unlike survival,
the variability of mean recovery and annual recovery estimates was
generally insensitive to prior choice (Figure 6, Table 3 columns 4-6).

3.2 | Power analysis

QOur power analysis indicated data from intensive moni-
toring and models fit with Uniform priors recovered our

reference values of correlation between survival and recovery
(Pruy = —0.801, pgany = — 0.787) with more reliability than any
other combination of monitoring scenario and prior choice (Table 4,
Appendix 52). With modest data, the opposite was true as we had
little, if any, power to detect negative correlation between survival
and recovery (Table 4, Appendix S2). Correlation was more likely to
be estimated with severe bias and higher sensitivity to both effec-
tive sample size and prior choice than mean survival (Figure 7). Prior
influence extended beyond estimates of correlation to estimates of
annual survival, but not annual recovery, with annual survival being
most variable when estimated using Wishart priors and less simi-
larly less variable when estimated with Uniform or Gamma priors
(Figure 8). Below, we summarize our results by the intensive, inter-
mediate, and modest monitoring scenarios.

3.2.1 | Intensive monitoring scenario

The median estimate of correlation from all data realizations corre-
sponding to our intensive monitoring scenario (10,000 tags per age

class annually) was close to our reference values for correlation

borgm= =0BOL; prae=-—0787)

when we used Uniform priors (pyy = — 0.841, 5y = — 0.753). With
Gamma priors, correlation estimates were more negative than when
we fit models using Uniform priors (pyy = — 0.928, 54y = —0.812)
with results for juveniles being more sensitive and more negative than
results for adults (Table 4). With intensive monitoring and Uniform
priors, about 83% and 64% of the posterior estimates of correlation
were in the range 5 < — 0.7 for juveniles and adults, respectively.
Implementing Gamma priors resulted in about 93% and 81% of
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FIGURE 6 Random effect estimates of first-winter survival
(Figure 6a) and recovery (Figure éb) for juvenile female
midcontinent mallards banded from 1968 to 1975. Estimates
differ by the prior distribution used to initiate multivariate
normal distributions; Wishart (blue), Uniform (gray), and Gamma
(yellow) priors. Note these values are on the logit scale and were
estimated relative to their hierarchal means.

posterior estimates of correlation for juveniles and adults, respectively,
falling in the range 5 < — 0.7. For these same 50 data realizations, me-
dian estimates of correlation substantially underestimated negative
correlation relative to our reference values when we fit models with
Wishart priors (yy = — 0.377, 5y = — 0.352). With Wishart priors
and intensive monitoring, the interpretation of weakly additive harvest
was most supported for juveniles and adults as 47% and 44% of the
posterior estimates of correlation fell in the range — 0.5 <5 < - 0.3,
respectively (Table 4). At the same time, the interpretation of compen-
satory harvest received similar levels of support as 32% of the cor-
relation estimates for juveniles and 38% of the correlation estimates
for adults fell in the range — 0.3 <% < 0.3. The posterior estimates
of correlation obtained from intensive data with Wishart priors are
peaked and do not span the parameter space of -1 and 1 despite sub-
stantially underestimating correlation relative to our reference values
(Appendix S2). With the intensive data realizations, we also evaluated
five formulations of the Gamma prior ranging from Gamma(1.1,0.1) to
Gamma(1.00001,0.00001); these 5 priors had remarkably variable in-
fluence on posterior inference (Appendix S3).

3.2.2 | Intermediate monitoring scenario

When cohort size was intermediate for both age classes (2000 tags
per age class annually), the median correlation estimate from all 50
data realizations was modestly underestimated using Uniform priors
(Py = — 0.708, 5,y = — 0.745) when compared to our reference
values of pgyy = — 0.801and pgayy = — 0.787. The portion of these
correlation estimates falling in the range 5 < — 0.7 was 57% for ju-
veniles and 51% for adults, thereby providing less support for the
interpretation of strongly additive harvest when compared to the
intensive monitoring scenario. Models fit with Gamma priors to the
same 50 data realizations provided more negative median correla-
tion estimates than Uniform priors (5., = — 0.937, 5,y = — 0.891)
and were more negative when compared to results from the com-
binations of intensive monitoring and Gamma priors or intermedi-
ate monitoring and Uniform priors (Table 4, Appendix 52). Of the
12 monitoring and prior combinations we considered, it was this
combination of Gamma priors and intermediate monitoring that pro-
duced the most negative values as 87% of the correlation estimates
for juveniles and 80% of the correlation estimates for adults fell in
the range p < — 0.7 (Table 4). For the same intermediate data in
which correlation between survival and recovery was approximately
-0.8 for both age classes, using Wishart priors resulted in median
correlation estimates of —-0.268 for juveniles and-0.283 for adults.
These posterior estimates appear to be well estimated as the poste-
rior distributions are peaked and do not span the parameter space
(Appendix 52) while substantially underestimating the magnitude of
negative correlation such that 56% of these estimates for juveniles
and 53% of these estimates of adults fell in the range— 0.3 < 5 < 0.3.

3.2.3 | Modest monitoring scenario

Our results did not meaningfully vary between constant and
episodic monitoring scenarios in which cohort size was mod-
est (Table 4), therefore we only summarize the modest scenario
with constant cohort sizes of 250 juveniles and 800 adults in the
text while presenting results for both modest scenarios (Table 4,
Appendix 52). The median estimates of age-specific correlation
from models with Uniform priors fit to our modest data realiza-
tions (pyy = — 0.304, 55y = — 0.577) were of substantially reduced
magnitude relative to our reference values of ppp, = —0.801 and
Prany = — 0.787. Neither of these results is conclusive as the pos-
terior distributions for most data realizations spanned the range
of possible values for these parameters (Appendix S2). For ex-
ample, 34% of the correlation estimates for juveniles fell in the
range p < — 0.7 but another 20% fell in the range — 0.3 <75 < 0.3
(Table 4), thereby providing similar levels of support to inter-
pretation of strongly additive harvest and compensation. When
models were fit with Gamma priors to these same modest and
constant data realizations, median values were more negative
(Pyy = —0.342, 5,y = — 0.865) when compared to Uniform pri-
ors, but these posterior distributions spanned the range of possible
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TABLE 4 Summary of age-specific correlation estimated for each monitoring scenario and prior distribution (Wishart, Uniform, Gamma)

that we considered in our power analysis

ﬁmedian ﬁ[<—0.7]
Hatch year
Wishart, s, -0.114 0.004
Uniform,,g, -0.304 0.225
Gamma,, -0.342 0.348
Wishart, ;s 33753 -0.121 0.006
Uniform, s, 3.575..3 -0.319 0.238
Gamma, ps, 3.375.3 -0.364 0.362
Wishart, ;44 -0.268 0.003
Uniform, 54, -0.745 0.568
Gammamoo -0.937 0.865
Wishart, o0 -0.377 0.006
Uniformy g9 -0.841 0.834
Gammayg 500 -0.928 0.947
After-hatch year
Wishart,z =0 217 0.004
Uniform,s, =05 0.365
Gammaysg -0.865 0.659
Wishartssg, 3105053 -0.187 0.004
Uniformssg, 3.1050x3 -0.546 0.352
Gammassgy 3.1050%3 -0.845 0.616
Wishart; g0 -0.283 0.005
Uniform, oo -0.708 0.512
Gamma, o4 -0.891 0.797
Wishart,; 0 -0.352 0.005
Uniformyg o0 -0.753 0.643
Gammay, g 55 -0.812 L7k

Pl>—07<-05] Pl>—05.<-03] P[>—03<03] Pl>03]
0.061 0.184 0.681 0.070
0.145 0.133 0.298 0.200
0.091 0.076 0.201 0.284
0.072 0.1921 0.652 0.080
0.145 0.129 0.292 0.197
0.089 0.071 0.185 0.294
0.096 0.337 0.561 0.004
0.220 0.117 0.084 0.011
0.068 0.029 0.028 0.009
0.200 0.473 0.320 0

0.139 0.023 0.004 0

0.046 0.006 0.001 0

0.092 0.267 0.616 0.021
0.210 0.155 0.213 0.056
0.087 0.052 0.099 0.102
0.083 0.240 0.639 0.034
0.179 0.138 0.235 0.089
0.084 0.054 0.113 0.132
0.120 0.342 0.528 0.005
0.244 0.129 0.106 0.008
0.108 0.046 0.042 0.007
0.168 0.444 0.383 0

0.283 0.063 0.011 0

0.174 0.027 0.004 0

Note: For each monitoring scenario (designated by cohort size in subscripts), the results for each prior correspond to the same 50 data sets. The
median correlation estimate from each monitoring and prior combination is displayed first followed by the portion of these estimates that fell within

the subscripted values. True correlation was pgy = — 0.801 (juveniles) and pg oy = — 0.787 (adults). Figures of these posterior distributions are

displayed in Appendix S2.

values and were bimodal (Appendix S2) such that 28% of the juve-
nile estimates and 10% of the adult estimates fell in the range 7 > 0.3
. Ironically, the most conclusive results with modest data came from
Wishart priors, but these results substantially underestimated cor-
relation (3, = — 0.105, 5,y = — 0.170) and were almost centered
on 0 when correlation was strongly negative. The portion of these
estimates falling in the range — 0.3 < % < 0.3 was 68% for juveniles
and 62% for adults (Table 4). Unlike the correlation estimates from
Uniform and Gamma priors, the combination of modest data and
Wishart priors provided estimated correlation parameters that were
peaked without spanning the parameter space, thereby not provid-
ing obvious evidence these data were inadequate (Appendix S2). If
we were to adopt an approach of rejecting additive harvest on the
criteria of the 95% credible interval overlapping 0, we would con-
clude harvest was compensatory 100% of the time with every mod-
est data realization (Table 4, Appendix 52) even though correlation

between survival and recovery was strongly negative.

4 | DISCUSSION

After using previously published methods for estimating and in-
terpreting correlation between survival and recovery (e.g. Arnold
et al., 2016), we advise against drawing strong conclusions for mal-
lards given the inferential issues we uncovered. This is despite mal-
lards being the most abundant duck species in North America and
the waterfowl species with the most abundant tag-recovery data.
Particularly for juvenile females and adult males, the imprecision of
these estimates precludes conclusions stronger than (1) correlation
is more negative than not and (2) correlation is not strongly negative.
Furthermore, our results depended on prior choice such that in the
absence of a power analysis or comparison of different priors, we
would not have any basis for concluding one prior to be more (or less)
capable of recovering true parameters than another.

It is only through our power analysis that we could conclude that
using Gamma priors will likely lead to overestimating the magnitude
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FIGURE 7 Median estimates of correlation displayed by each
prior distribution and monitoring scenario combination; Wishart
(blue), Uniform (gray), and Gamma (yellow). Fifty estimates are
displayed for each combination of age, monitoring scenario, and
prior distribution. Points are horizontally jittered by the difference
between the hierarchical mean survival estimate () for each

age class and the age-specific median survival probabilities of our
simulated population (S, = 0.576 and $,,,, = 0.572). For reference,
the mean survival estimates for juveniles in sampling scenario

1 estimated with Wishart priors ranges from 0.525 to 0.646,

and these points are jittered relative to the value of 0.576. The
horizontal lines (dashed) correspond to true correlation between
survival and recovery (pg ;v = —0.801, pp o,y = —0.787).

of negative correlation and Wishart priors likely underestimated the
magnitude of negative correlation between survival and recovery.
The discrepancies between results obtained with different priors
and sample sizes highlight the potential for compromised or mis-
leading inference from Bayesian analyses like ours when the mod-
el's behavior and power are not explored. Given the importance and
interpretation applied to such correlation estimates in management
and conservation contexts, we cannot overstate the potential for
data limitations and prior choice, seemingly idiosyncratic modeling
issues, to result in misleading inference that potentially leads to mis-
guided harvest management recommendations.

With Wishart priors, we would infer female survival is more re-
sponsive to environmental conditions, and thereby less sensitive to
harvest, when compared to results obtained using Gamma priors
or Uniform priors (Figure 6). If annual survival is more variable and
less precisely estimated with Wishart priors while annual recovery
is insensitive to prior choice (Figure 6), then underestimating the
magnitude of correlation with Wishart priors is an expected out-
come relative to Uniform and Gamma priors. Reduced sensitivity of
recovery estimates to prior choice is not entirely a surprise given
the proximity of recovery estimates to the more-precisely estimated
boundary of the parameter space (Gelman et al., 2014) and the direct
link between the data (recoveries) and recovery probability.

Overestimating the variability of survival and underestimating
correlation with Wishart priors is consistent with results from Fay
et al. (2021); these authors found heterogeneity among individuals
was overestimated and correlation between traits underestimated
with multivariate hierarchical models fit to capture-recapture data.
The sensitivity of annual survival estimates to prior choice has im-
plications beyond correlation analyses like ours to applications
like sensitivity and elasticity analyses of vital rates with Bayesian-
integrated population models (Arnold, Clark, et al., 2017; Koons
et al., 2017). Our results indicate that the contribution of survival
to population growth could be over- or underestimated if the priors
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FIGURE 8 Median values of annual survival and recovery of adults estimated from 50 data realizations corresponding to our intensive
monitoring (10,000 tags per age class deployed annually). In each figure, annual estimates of adult survival and recovery (filled circles) are
displayed by prior distribution such that there are 1800 points (36 years x 50 data realizations) in each plot. True adult survival and recovery
experienced by adults in our simulated population are shown as diamonds in each figure.
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for tag-recovery models within integrated population models led to
over- or underestimating the variability of annual survival.

Our results also demonstrate that biological plausibility of pa-
rameters like mean survival and recovery (Table 3) does not ensure
reliability of all the parameters estimated from a model, such as cor-
relation between survival and recovery. Especially with our modest
data realizations, mean survival estimates were biologically reason-
able when corresponding estimates of correlation severely underesti-
mated negative correlation between survival and recovery (Figure 7).
The tendency of correlation estimates to span the parameter space
when using models fit with Uniform or Gamma priors indicates data
are insufficient to estimate random effects that do not overlap 0. This
is problematic because similar sample sizes have been believed suf-
ficient in several published analyses, but it appears reliable inference
is not achievable with those modest sample sizes. Moreover, we are
usually restricted to a single data set from which to draw inference
and not the 50 realizations, such that the inadequacy of modest data
for obtaining inference unclouded by sampling variability is not ap-
parent when reviewing estimates of parameters like mean survival.
While others have recognized the inadequacy of some tag-recovery
data for obtaining parameter estimates useful for informing water-
fowl management (Sheaffer & Malecki, 1995), our findings about the
impact of sample sizes on posterior inference is at least as important
aresult as the somewhat more expected influence of Bayesian priors.
This is especially so because the sample sizes we found inadequate
for detecting negative correlation have been thought more than ad-
equate in recently published analyses despite previous cautions that
these correlation analyses may have low power to detect negative
correlation or additive mortality (Sedinger et al., 2010).

While power analyses or simulation studies should accompany
complex empirical analyses, carefully assessing the support for
multiple competing hypotheses applied to a posterior distribution
(Wade, 2000) can also help avoid overconfident interpretation of
results. In applications like ours, posterior distributions that span the
parameter space or are bimodal (Appendix S2) simultaneously lend
support to mutually exclusive ecological interpretations (Arnold,
Afton, et al., 2017) (Table 4). For example, our results from modest data
and Uniform priors could be interpreted as providing tentative support
for moderate-to-strongly additive harvest, support for compensatory
harvest (because the posterior distribution substantially overlaps 0),
or inconclusive due to inadequate data (Appendix S2). We believe the
latter interpretation—inadequate data—would be most appropriate.

The challenges we document in estimating correlation with ac-
curacy are partially attributable to the sparsity of tag-recovery data
for species like mallards (or other waterfowl more generally). Our cal-
culations of known-fate years revealed that only 0.1 and 0.2years of
known-fate data were obtained for every female and male mallard that
was released with a band, respectively (Table 1). Given the relative
sparsity of the female data, we focused our power analysis on female
vital rates and sample sizes like those available for female mallards,
northern pintail (Bartzen & Dufour, 2017), and lesser scaup (Arnold
et al,, 2016). Our example of 850 releases per year over 36years

provides a total sample of 28,800 adults (Table 2; AHY,_ ). Of these
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adults, an average of 70-75 adults were known to be alive during each
year of the study and our models relied on about 26 direct and about
33 indirect recoveries per year for parameter estimation (Table 2).
These summary statistics emphasize the modest nature of these data
sets, which may lead to less intrepid interpretations of parameters es-
timated from tag-recovery data sets. We note that the efforts of the
USGS Bird Banding Lab to increase reporting probability in the 1990s
approximately doubled band-reporting probability from an average of
0.3-0.4 to 0.7-0.8 (Arnold et al., 2020), thereby we expect statistical
power per banded mallard to have doubled in years since 19%96.

Instead of recommending these priors distributions (or others) for
future correlation analyses or trying to explain why a prior works bet-
ter for one analysis than another, we emphasize that variable prior
influence among different priors is an expected outcome of Bayesian
estimation. Careful consideration of the hypotheses associated with a
prior and simulation may be the only way to avoid incorrect inference
in some applications. In the case of the standard deviation of a random
effect (o), trying to interpret this parameter may help understand why
some priors are more useful than others. The hypothetical prior 6~ 0
(or an estimate of & = 0) could be interpreted as the observed data
and truth being the same. Similarly, the hypothetical prior 6~ oo (or
an estimate & = o) could be interpreted as the data being of such ex-
treme variability that they cannot be used to approximate truth. If we
implement models with priors closer to 6~ oo (the Wishart prior), then
correlation estimates tending toward O are an expected outcome; two
parameters estimated from a prior hypothesizing infinitely variable
data should not be expected to be highly correlated. Further, prior
influence should be expected to be greater when data are relatively
sparse (Gelman et al., 2014) and even more so when working with
presence-absence data instead of continuous data (Fay et al., 2021).

While there are more circumstances that impact Bayesian esti-
mation beyond prior choice than we can consider here, two aspects
of our results warrant brief mention. First, median correlation es-
timates from our power analysis were more negative for juveniles
than adults (Table 4). At the same time, juvenile survival and recov-
ery probabilities (Figure 3b) spanned a greater range of values than
for adults (Figure 4b). The range of values occupied by estimated
parameters relative to the uncertainty of these estimates should be
an important consideration when assessing the feasibility of esti-
mating nonzero correlations; as the true variation of two parameters
increases relative to sampling variation, correlation between these
parameters should be easier to detect. Second, our results indicate
survival probabilities were sensitive to prior choice, while recovery
probabilities were generally insensitive to prior choice (Figure 6). We
predict that prior choice would be less important if, for example, we
were focused on estimating correlation between juvenile and adult
recovery. Additionally, we predict correlation between juvenile and
adult recovery would be estimated with greater precision than cor-
relation between juvenile and adult survival, which were estimated
with less precision (Figure 6). Considerations like these highlight the
need for simulation work that closely matches the circumstances of
complex analyses of capture-recapture data (Fay et al., 2021; Riecke
et al., 2019), including tag-recovery data.
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TABLE 5 Possible paths to incorrect inference when negative correlation between survival and recovery is intepreted as support for
additive harvest mortality but may also result from confounding between liberalized harvest opportunity and increased natural mortality
when density dependent regulation increases with population size (Sedinger & Herzog, 2012).

Ecological process

Statistical inference

Insufficient power to detect negative correlation

Negative correlation detected

Our power analysis indicates previous correlation analyses be-
tween survival and recovery (Arnold, Afton, et al,, 2017; Arnold
et al., 2016; 2017; Bartzen & Dufour, 2017) applied ecological in-
terpretations to results that may not be statistically robust due to
unrecognized data insufficiency (Table 5). In both cases, these anal-
yses are characterized by a variety of potential deficiencies that led
us to suspect the power of these analyses should be reevaluated.
Future Bayesian analyses applying multivariate hierarchical models
to tag-recovery data to assess the impact of harvest on population
dynamics, including integrated population models with tag-recovery
models in the joint likelihood (Arnold, Clark, et al., 2017; Koons
et al., 2017), should include clearer descriptions of methods and
prior distributions. Similar studies should also demonstrate through
simulation or power analyses that the ecological questions being
assessed can be answered with the data and statistical methods
employed. We suspect some of the concerns identified in this man-
uscript are more broadly applicable to datatypes and hierarchi-
cal models beyond tag recoveries and the specific model type we
evaluated.
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