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Abstract: Many algorithms for data processing use batched or recursive methods of compu-
tation where the resulting manipulation of data has a topological structure similar to a tree;
examples include FFTs, windowed averaging, and many core image processing methods (SIFT,
HOG, SURF, etc.). As data sets requiring these methods grow, deploying such algorithms
on single or multiple processors can be challenged by accessing data from storage into the
processor, for example, data from databases. This work develops and explains a method of using
a database organizational structure itself to implement data manipulations (grouping, addition,
averaging, etc.) that have intentional algorithm behavior, specifically, the implementation of
Allan VARiance (AVAR) using B*-tree data structures is developed.

AVAR is a key algorithm to determine the computational limits on data accuracy imposed by
real-world noise sources. Unfortunately, the typical time required to compute AVAR increases
quickly with the quantity of the time-series data. In the previous work, the authors proposed
Fast Allan VARiance (FAVAR) algorithms inspired by the FFT to improve computation speed
by up to four orders of magnitude. These FAVAR algorithms apply to data sets manageable
on a computer (MB to GB in memory) but can be difficult to deploy on “big data”, e.g., data
sets that cannot fit in main memory. Notably, B*-trees index one-dimensional data similar to
FAVAR, i.e., using data aggregations that scale in size as a function of tree order. This paper
utilizes the similarity in BT-trees and FAVAR to use the database’s operational process to
automatically deploy an algorithm to estimate AVAR using a B¥t-tree for data corrupted by
common noise types - white noise and random walk. Comparing AVAR estimates to algorithm-

targeted BT-tree data calculations, the results match within 95% confidence bounds.
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1. INTRODUCTION

Many algorithms for data processing use batched or re-
cursive methods of computation where the resulting ma-
nipulation of data has a topological structure similar to
a tree; examples include FFTs, windowed averaging, and
many core image processing methods (SIFT, HOG, SURF,
etc.). As data sets requiring these methods grow, deploying
such algorithms on single or multiple processors can be
challenged by accessing data from storage into the pro-
cessor, for example moving data in or out of databases.
This work develops and explains a method of using a
database organizational structure itself to implement data
manipulations (grouping, addition, averaging, etc.) that
have intentional algorithm behavior, specifically, the im-
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plementation of Allan VARiance (AVAR) using BY-tree
data structures is demonstrated.

Allan VARiance (AVAR) is a key method to characterize
the stability of data over test dimensions, for example
over time. It was first developed to quantify the frequency
stability of atomic clocks, see Allan (1966); Barnes et al.
(1971). In addition, it is used to quantify the stability of
oscillators and lasers as in Giles et al. (1989); Abramski
et al. (1990). It is also used to characterize noise in inertial
sensors and other MEMS as in Malkin (2016); Jerath et al.
(2018). Typical AVAR algorithms calculate changes in
means between differently-sized groupings of data. They
thus are useful in many data aggregation processes: to
select the appropriate window length or timescales for
estimating the moving average of a signal as in Haeri
et al. (2021), to find the minimum variance of a signal, to
determine optimal data reduction in Sinanaj et al. (2022),
or to estimate the change in variance of a signal with
complex noise contributions as a function of the number of
collected data points in Galleani and Tavella (2008, 2015).



This paper is motivated by a project requiring database-
mediated friction analysis for autonomous vehicles aggre-
gating information over large road networks. The goal
is to maintain a “lean” database by forgetting any data
that become irrelevant, and by grouping data in time
and spatial scales to minimize the variance in aggregated
data. The amount of data representative of highly con-
nected vehicle data sharing is quite large. A simulation of
approximately 3000 connected vehicles sharing roadway
information over a small town’s roadway network (State
College, Pennsylvania) generates about 900 million data
measurements per hour during peak travel hours. Sinanaj
et al. (2022) proposed a granular data reduction technique
for temporal databases based on AVAR.

The insights into the combined usage of databases with
algorithms whose data manipulations follow a tree-like
structure motivated this study into methods of utilizing
the database itself for computational algorithm implemen-
tations. Specifically, this work presents AVAR estimation
using B¥-trees and its inherent similarity with the FAVAR
algorithm. This article is organized as follows: Section 2
introduces tree data structures, particularly B*-trees. Sec-
tion 3 describes the FAVAR algorithm. Section 4 presents
BT-tree implementation of AVAR and its similarity with
FAVAR. Finally, section 5 compares the AVAR estimated
using the B*-tree with those estimated using FAVAR.

2. TREE DATA STRUCTURES

The database format considered in this work is a tree
data structure consisting of nodes and edges representing
hierarchical data. Consistent with typical notation for
database trees, a node is a structure that contains data
and is connected to other nodes by edges. The root node is
the topmost node with no parent node, and the leaf nodes
are the bottom-most with no children. All the intermediate
nodes are internal nodes, defined in (Knuth (1998a)).
Tree structures provide a very efficient method of search,
insert and delete operations on the data by reducing the
time complexity of the algorithms see Knuth (1998b), and
thus have a wide range of applications ranging from file
systems to classification algorithms. Multiple tree data
structures like Binary search trees in Nievergelt (1972),
B-trees by Bayer and McCreight (1972); Graefe (2004),
B*-trees defined by Comer (1979); Jensen et al. (2004),
and R-trees in Guttman (1984); Beckmann et al. (1990)
are widely used in storage systems.

Bt-tree  The specific type of tree structure utilized in
this work is a B-tree, a generalized binary search tree
allowing nodes to have more than two children, introduced
in the historical work by Bayer and McCreight (1972). In
a binary search tree, a key stored in each node divides
the ‘key space’ into two pieces. Similarly, in an n-way
search tree, each node containing n — 1 keys divides the
‘key space’ into n pieces, with each subtree holding keys
in those pieces. A B-tree of order n is characterized by
properties presented in Knuth (1998b).

BT-trees are like B-trees that store all the data at the
leaf level, as proposed in Comer (1979). In addition to
references to data records, leaf nodes have pointers to the
next leaf node. All the internal nodes act as the pointers
to the leaf-level data, and these pointers are hierarchically

placed based on the order of the occurrence of search-keys
in leaf data. The BT-tree structure has particular benefit in
this work as the algorithm implementation presented here
requires multiple children and a balanced tree structure,
both of which are easily implemented via BT -trees.

3. FAST ALLAN VARIANCE

The AVAR of signal y(¢) is a measure of how the signal’s
variance changes across averaging intervals and is typically
plotted as variance (y-axis) versus correlation time (x-
axis). The AVAR function dependence on correlation time
7 uses form originally defined in Allan (1966) and Barnes
et al. (1971), given by equation (1).
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where 0% [7] is AVAR, E is the expectation operator, and
¥ is given by equation (2).
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The expectation operator in equation (1) is approxi-
mated as a time average so that the AVAR of data

{yi} (i =1,2,...,N) as a function of correlation interval
m can be estimated using equation (3) as in Allan (1987).
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where 0% [m] is AVAR, N is the data length, and g is given

by equation (4).
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which is easily recognizable as a local, windowed average
of data. One can recognize that AVAR is, therefore, a
measure of the variance of local averages relative to each
other across different windows produced by a selected
correlation time. Equation (5) defines the relationship
between the correlation time 7, correlation interval m, and
the sampling interval 7.

T =mT (5)
The computational time to estimate AVAR increases very
quickly with the increasing quantity/length of data, but
modifications to the AVAR algorithm can greatly reduce
these computations. Dynamic Allan VARiance (DAVAR)
is an extension of AVAR for changing signals, and exam-
ples include the study of changing characteristics of atomic
clock behavior in the Galileo satellite system. In turn,
with the work from Galleani (2010), DAVAR decreases the
computation time by exploiting the fact that the DAVAR
is a moving AVAR. Maddipatla et al. (2021) presents the
FAVAR algorithms which increase the computation speed
of AVAR up to four orders of magnitude by exploiting
the significant similarities between the calculation of the
Fast Fourier Transform (FFT) and AVAR. Specifically,
the results utilize the power-of-2 structure of the FFT
to identify a similar structure in AVAR calculations. To
illustrate the similarities, note that the FFT evaluates the
Fourier transform using a recursive process of multiplica-
tion followed by addition, thereby considerably decreasing
the computation time (Cooley and Tukey (1965); Brigham
and Morrow (1967)).



Estimating AVAR using the FAVAR algorithm is similar
to FFT, as demonstrated in Maddipatla et al. (2021)
and Fig. 1. Level-0 corresponds to the correlation interval
m = 29, and Level-1 corresponds to the correlation interval
m = 2!, Similarly, Level-i corresponds to the correlation
interval m = 2¢. ‘Base data’ at Level-i is defined such
that AVAR at Level-i or correlation interval m = 2° is
estimated as the mean square of the differences of ‘Base
data’. As described here, FAVAR involves recursive steps
of averages, i.e., addition followed by division in power-
of-2 groupings. ‘Base data’ at Level-0 is the same as the
signal. ‘Base data’ at Level-1 is the mean of consecutive
points in the ‘base data’ at Level-0. ‘Base data’ at Level-
2 is the average of two points separated by 2! indices in
the ‘base data’ at Level-1. Similarly, ‘base data’ at Level-i
is the average of two points separated by 2'~! indices in
the ‘base data’ at Level-i — 1, as demonstrated in line 8 of
algorithm 1 in Maddipatla et al. (2021).
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Fig. 1. Fast Allan VARiance algorithm.

At Level-0, AVAR is the mean square of the difference
between successive points in the ‘base data.” Furthermore,
at Level-1, AVAR is the mean square of the difference
between points separated by 2! indices in the ‘base data.’
Similarly, at Level-i, AVAR is the mean square of the
difference between points separated by 2¢ indices in the
‘base data’ as in line 14 in algorithm 1 in Maddipatla et al.
(2021).

4. Bt-TREE IMPLEMENTATION OF AVAR

BT-tree inherently organizes data like the FAVAR algo-
rithm. In FAVAR, data are grouped in sizes of power-of-2
as described in the above section, whereas the grouping
size in the B*-tree is a function of the tree order. In a
BT-tree, all data are referred to by keys in leaf nodes. A
leaf node in a B¥-tree of order n contains a minimum of
5 keys and a maximum of n — 1 keys. So a leaf node in a
BT -tree refers to a minimum of 5 and a maximum of n—1
data records. In AVAR estimation, the data grouping size
is equivalent to the AVAR correlation interval. On average,
leaf nodes in a Bt-tree typically group data in sizes of 5
which means the minimum possible correlation interval is
. In contrast, internal nodes in level L group data in

( + 1) sizes because each internal node typically has
5 + 1 children. At the leaf level, L = 0. The value of L
1ncrements by one at each increasing level, traversing from
the leaf to the root level.

30[3 w\:

In the AVAR implementation of this work using a B¥-tree,
the keys represent time and leaf nodes point to friction

estimates for time-domain friction data. This work used
a BT-tree of order 4, as this is the simplest tree with
non-infinite variance at the lowest nodes, because with
a tree of order 2 there may be branches partially filled
and containing only one data point making within-branch
variance calculations impossible. However, order 2 could
work for AVAR implementation if special consideration is
given to the likely conditions that, at the bottom-most
level, there will be nodes with 1 data record, resulting in
undefined variance for the means of the node.

3,5\7
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Fig. 2. BT-tree of order 4 with keys from 1 to 9.

While the brevity of the paper does not allow complete
explanation of the BT-tree formation, illustrations are
provided for those who are somewhat familiar already with
BT or similar trees. Figures 2, 3, and 4 demonstrate data
insertion into a B*-tree of order 4. Figure 3 shows the BT-
tree in Fig. 2 after inserting key 10. As the new key 10 is
more than 9, it is inserted into the rightmost leaf node. As
the leaf node in a B+ tree of order 4 cannot contain more
than three keys, it splits into two leaf nodes, one with keys
7, 8 and the other with keys 9, 10. Key 9 is inserted into
the root node as the leaf node splits. As the total number
of keys in the root node will be more than 3, the root
node splits into two internal nodes, creating a new root
node with key 7.
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Fig. 3. BT-tree of order 4 with keys from 1 to 10.

Figure 4 shows the BT-tree in Fig. 3 after inserting key 11.
As before, the key is inserted into the rightmost leaf node.
The number of keys in the rightmost leaf node equals three,
so the insertion is complete. To visualize data insertion and
deletion in a B+ tree, see https://www.cs.usfca.edu/
~galles/visualization/BPlusTree.html. Moreover, ir-
respective of the order of the data received by the
database, BT-tree inherently sorts the data. For example,
if the data is received as two packets (1,2,7,8) and then
(3,4,5,6), all the data will be sorted after receiving both
packets. However, the AVAR estimate from the first packet
of 4 data points may not accurately represent the first four
(1,2,3,4) data points or even the eight data points until
the ordered data is inserted. In other words, the database
implementation of AVAR has a very useful property in
that it will automatically sort out-of-order data entries,
but to match AVAR behavior, the database must contain
the same data as used in typical AVAR calculations.
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Fig. 4. BT-tree of order 4 with keys from 1 to 11.

.1 Allan variance estimation using BT -tree
4 9

To estimate AVAR of regularly sampled data, a Bt-tree’s
operation is studied and customized from bottom to top,
i.e., from the leaf to the root level. Bt-tree organizes
regularly sampled data irregularly across leaf nodes. For
example, the rightmost leaf node of the Bt-tree in Fig.
5 refers to three data records, whereas all the other
leaf nodes refer to only two data records. So estimating
the AVAR of regularly sampled data using a B*-tree is
equivalent to estimating the AVAR of irregularly sampled
data. Haeri et al. (2021) presented AVAR estimation of
irregularly sampled data using equation (6).
2
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where the summation is performed on a finite set of

instances ¢t € S. gy and w; are given by equations (7a)

and (7b) respectively.
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where C; = {y, : t — 7 < t; < t} and |Cy| is cardinal
number of the set C;.
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Fig. 5. BT-tree of order 4 with keys from 1 to 17 to
demonstrate AVAR estimation.

For this work, two leaf nodes are said to be successive
if one points to another. Two internal nodes are said to
be successive if the rightmost leaf node in the subtrees
of an internal node point to the leftmost leaf node in the
subtrees of another. Based on the formulation in equation
(6) to estimate AVAR of irregularly sampled data, AVAR
estimation of regularly sampled data using a B¥-tree
involves three steps:

(1) At each level, estimate the mean of data and the
number of data records referred by a node and all
its children.

(2) Evaluate the difference in the average of data referred
by successive nodes and their children.

(3) AVAR is the weighted mean of squares of differences
evaluated in the above step.

AVAR of regularly sampled data at level L or correlation
interv.al 5 (% + 1)L estimated using a BT-tree is given by
equation (8).
1 et 2
0124 [L] = wL Z wisz‘L+1 (@L - 371'L+1) (8)
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where N, is the number of nodes at level L, 3 is the mean
of data pointed by node i at level L and all its children,
wF is the number of data records referred by node i at
level L and its children. w” is given by equation (9).

Np—1
wh =Y wiw, (9)
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The above methodology of estimating AVAR using a B™-
tree is demonstrated using an example in Fig. 5. Figure
5 shows a BT-tree of order 4 with 17 data records where
nl indicates node i in level L. At the leaf level, the mean
of the data and the number of data records referred to by
nodes n? and ng are given by equations (10a) and (10b),

respectively.

1
yp = 0 (Y13 + y14) wy =2 (10a)
7
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Similarly, the mean of the data and the number of data
records referred to by node n} are given by equation (11).
The estimation of averages happens recursively from the
leaf to the root level.

(11)

After estimating the averages, successive differences are
calculated, followed by the weighted mean of squared
differences as AVAR. AVAR at level L = 1 for a BT-tree
in Fig. 5 is given by equation (12).

1
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5. RESULTS

A summary analysis comparing the accuracy of AVAR
estimated using the BT-tree data structure against the
FAVAR algorithm is presented here for three signals:
white noise, random walk, and white noise added to a
random walk. Considering the main memory requirement
and computation time of the FAVAR algorithm, a data
length of 2'® is used for demonstration. Furthermore, a
Bt-tree of order 4 is used, as described in the section
4. Figure 6 shows white noise with a power spectral

density of O.OOOZIU”T“2 synthesized at 50H z as described
in Jerath et al. (2018). AVAR of white noise is estimated
using B*-tree by equation (8). It is compared against the
AVAR estimated using the FAVAR algorithm developed
in Maddipatla et al. (2021). AVAR has a chi-squared
distribution, so the confidence bounds depend on the
confidence coefficient and degrees of freedom and are
estimated by equation (13) (Galleani (2011)).

v[m v[m

o m) < B [ m] < 2l o3

X2 X1
where p is the confidence coefficient, and we obtain x? and
X3 from the cumulative distribution function F' (XQ) of the
chi-squared probability distribution so that

(13)



F(xi) = —— (14a)
F(3) = 132 (14b)
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Fig. 6. White noise with a power spectral density of
.2
0.0004U”T” synthesized at a frequency of 50H z.

Figure 7 shows that the AVAR estimate using B¥-tree lies
within the 95% confidence lower (LB) and upper (UB)
bounds of the FAVAR estimate.
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Fig. 7. AVAR of white noise estimated using BT-tree lies
within the confidence bounds of the FAVAR estimate.

Random walk, a second signal as an example with a ran-
dom walk coefficient of O.OQUL;t synthesized at a frequency
of 50H z, is shown in Fig. 8. Figure 9 reiterates that AVAR
estimated using a Bt-tree data structure lies within the

95% confidence bounds of AVAR estimated using FAVAR.

o
IS

o
[N}

M

Measurement [Unit]
&
N o

°
o~

0 5 10 15 20
Time [s]

Fig. 8. Random walk with a random walk coefficient of
0.02% synthesized at a frequency of 50H 2.
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Fig. 9. AVAR of random walk estimated using B*-tree lies
within the confidence bounds of the FAVAR estimate.

Figure 10 concludes that AVAR estimated using BT-tree
data structure lies within the 95% confidence bounds of
AVAR estimated using FAVAR with a signal synthesized
by adding white noise in Fig. 6 to a random walk in Fig.
8.
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10. AVAR of white noise added to random walk
estimated using the B¥-tree lies within the confidence
bounds of the estimate using FAVAR.
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6. CONCLUSION

This paper shows how B*-tree data structure can organize
data inherently similar to the FAVAR algorithm enabling
the estimation of AVAR of large datasets with low compu-
tational costs. B*-tree implementation of AVAR presented
in this work is within the 95% confidence bounds of the
estimate using FAVAR. The accuracy of AVAR estimation
using BT -trees is demonstrated using three common noise
signals: white noise, random walk, and white noise added
to a random walk. These idealized signals are chosen for
clarity in presentation, and there are no obvious algorith-
mic challenges in extending the work to ordered arbitrary
signals. In the case of unordered signals, the AVAR esti-
mate using Bt-tree will have errors for a brief duration.
However, once the database receives all the data, BT-
tree inherently sorts them and provides accurate AVAR
estimates. Similar to errors that can arise with irregularly-
sampled AVAR implementations, the tree implementation
will also have errors at the lowest levels because of the un-
equal number of children between nodes at the same level.
Future work can explore the magnitude of the estimation
error caused by the asymmetry in the tree structure.
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