REVIEW ARTICLE

Advances in aptamer-based biosensors for monitoring foodborne pathogens

Tracy Ann Bruce-Tagoe 1 · Shyju Bhaskar 2 · Ruchita Rao Kavle 2 · Jaison Jeevanandam 3 · Caleb Acquah 4 · Godfred Ohemeng-Boahen 5 · Dominic Agyei 2 · Michael K. Danquah 1

Revised: 27 September 2023 / Accepted: 21 October 2023 © Association of Food Scientists & Technologists (India) 2023

Abstract Biosensors are analytical devices for detecting a wide range of targets, including cells, proteins, DNA, enzymes, and chemical and biological compounds. They mostly rely on using bioprobes with a high binding affinity to the target for specific detection. However, low specificity and effectiveness of the conventional biosensors has led to the search for novel materials, that can specifically detect biomolecules. Aptamers are a group of single-stranded DNA or RNA oligonucleotides, that can bind to their targets with high specificity and serve as effective bioprobes for developing aptamer-based biosensors. Aptamers have a shorter production time, high stability, compared to traditional bioprobes, and possess ability to develop them for specific target molecules for tailored applications. Thus, various aptasensing approaches, including electrochemical, optical, surface plasmon resonance and chip-dependent approaches, have been investigated in recent times for various biological targets, including foodborne pathogens. Hence, this article

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13197-023-05889-8.

- Michael K. Danquah mdanquah@utk.edu
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403, USA
- Department of Food Science, University of Otago, Dunedin 9056, New Zealand

Published online: 13 November 2023

- ³ CQM Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, UPO, Kumasi, Ghana

is an overview of various conventional foodborne pathogen detection methods, their limitations and the ability of aptamer-based biosensors to overcome those limitations and replace them. In addition, the current status and advances in aptamer-based biosensors for the detection of foodborne pathogens to ensure food safety were also discussed.

Keywords Aptamer · Food Safety · Foodborne pathogens · Aptasensor · Biosensor

Introduction

Food is an integral part of human existence, as it is the fuel that energizes the body by supplying nutrients, vitamins, and minerals (Sarojnalini and Hei 2019). Consequently, food safety is of prime importance and has health and general well-being implications (Kwol et al. 2020). A reduction in food quality has been a major challenge in recent years and has been the cause of food waste and foodborne disease outbreaks and deaths (Astill et al. 2019). It was estimated by the World Health Organization (WHO) that about 600 million foodborne disease cases are recorded each year, leading to the loss of about 420,000 lives globally. An estimated 30% of this number are children below the age of 5 years (World Health 2015). Thus, good food hygiene practices and quality assurance should be implemented followed by food testing for the presence of these pathogens and to eliminate them (Huang et al. 2020). It can be noted that in the U.S. alone, about 48 million cases of foodborne diseases yearly, with hospitalization of about 128,000 people and the death of 3000 people, according to the Food and Drugs Administration (FDA) in 2020. These foodborne diseases are caused by consuming food contaminated by pathogens, chemicals, or toxins (Jaklevic 2020). In general, foodborne pathogens are

bacteria, parasites, or viruses, where presence in food causes foodborne illness (Bintsis 2018). Among the pathogens, bacteria are the most common causative agent for foodborne diseases. Some examples of pathogenic bacteria include *Staphylococcus aureus*, *Escherichia coli*, *Listeria monocytogenes*, *Clostridium botulinum*, *Campylobacter jejuni*, *Salmonella* spp., *Shigella* spp., *Vibrio* spp., and *Yersinia enterocolitica* (Gourama 2020a; Pandhi et al. 2023). Other prominent foodborne parasites are *hepatitis* A, *norovirus*, *Toxoplasma gondii*, *Trichinella spiralis* and *Cyclospora cayetanensis* (Bintsis 2018). In addition to these microbes, environmental factors also increases the chance of contamination and microbial growth in food, if not controlled (Sheng and Wang 2021). Thus, food must be tested for the presence of these pathogens to eliminate them.

The traditional methods available for detecting these foodborne pathogens can be grouped into two, such as culture-based and independent of culture. The culture-based method is the most conventional approach for microbial food analysis and is also the "gold standard" (Foddai and Grant 2020). It is a preferred method because it is cheap, easy to perform, and can be used for various pathogens. This method involves preparing microbial culture by growing the pathogen on a suitable medium (e.g. agar plates) and observing certain physical and biochemical characteristics. The success of this process depends on the culturability or multiplication potential of the pathogen. Growth of the pathogen can take up to several days, making the method particularly slow. There is also the possibility of detecting false results, especially at a low pathogen level in the sample, because the food sample may have some indigenous bacteria that can interfere with the detection process (Foddai and Grant 2020; Law et al. 2015; Velusamy et al. 2010).

Culture-independent methods include immunologybased methods and polymerase chain reaction (PCR). Immunology-based detection methods take advantage of the antibody-antigen binding behaviour to detect the presence of pathogens in a sample. The most common immunologybased detection method is enzyme-linked immunosorbent assay (ELISA), and it has been used over the years to detect pathogens such as Vibrio parahaemolyticus (Kumar et al. 2011), Clostridium perfringens, E. coli, Botulinum, and Staphylococcus species (Aschfalk and Müller 2002; Zhao et al. 2014). Variations of this method have been developed for commercial use with better detection rates and full or partial automation (Glynn et al. 2006; Gómez-Govea et al. 2012; Meyer et al. 2011). However, the production of antibodies, the requirement of animal hosts, and the long reaction time (several weeks) cause process delays and are the major limitations of this method.

PCR can rapidly detect pathogens in food with high specificity and accuracy by amplifying the target pathogen instead of the signal. This ability reduces false positives, compared to culture-based methods in pathogen detection, and can detect a wide variety of pathogenic strains (Velusamy et al. 2010). However, PCR is expensive, requires skilled personnel, and cannot detect pathogen viability (Foddai and Grant 2020). Hence, researchers are in a quest to develop an efficient, rapid, portable, cheaper, simple, sensitive, and selective method for detecting food pathogenic microbes due to the numerous disadvantages of traditional detection methods (Law et al. 2015). Recently, biosensors have gained significant research focus for detecting foodborne pathogens.

Biosensors are analytical devices used as biological materials for recognising biological compounds (Liu et al. 2023). However, biosensors based on antibody bioaffinity approaches can have certain limitations, such as lack of stability, low selectivity, and sensitivity. Aptamers, which are a group of short-stranded DNA or RNA oligonucleotides, can bind to their targets with great sensitivity and specificity, and are often used as biosensors to overcome the specificity and selectivity limitations (Suliman Maashi 2023). Some of the advantages of aptamer-based biosensors include shorter production time, non-requirement of animal hosts, high stability, and the ability to develop to bind and detect specific targets (Long et al. 2022). Biosensors generally have two major parts, namely bioreceptors and transducers. The bioreceptor is the moiety that receives and interacts directly with the target (e.g., aptamer and antiobody bioreceptors). The transducer is the part of the biosensor that transforms biological recognition into a signal that can be measured and interpreted. The mechanism of transduction eventually determines the type of biosensing technique. Electrochemical, optical, surface plasmon resonance, and chip-based detection of biological targets (Geng and Bhunia 2006; Law et al. 2015; Zhang et al. 2019) are some examples of biosensing methods. This article discusses various aptamerbased biosensors for detecting foodborne pathogens. The molecular methods, considerations for selecting aptamers to detect foodborne pathogens, and their prospects are also discussed.

Global overview of foodborne pathogens and food safety

Food is a primary requirement for assuring health in humans and animals (Sousa 2008) but is also a common potent vehicle for transmitting illnesses. Although the challenges of food safety in developed countries differ substantially from those faced by developing countries, issues such as climate change, coupled with population growth and changing demographics, urbanization, migration, and increasing international travel, are all major contributing factors to changes in the global food system, and this change has implication in food security and safety (Sousa 2008; Velusamy et al.

2010). For instance, ready-to-eat foods are sold on the streets in most developing countries, while in technologically advanced countries, discussions on foodborne contamination may gain attention towards the processing and packaging of food (Sousa 2008).

Foodborne diseases may arise from physical hazards, such as the erosion of metals from cans, glass, or plastics. Other factors, such as food allergens, antibiotic resistance, mycotoxins and their derivatives, endocrine-active contaminants, and foodborne pathogens, threaten food safety (Flynn et al. 2019; Sousa 2008). Particularly, the emergence of new and re-emergence of old foodborne pathogens are changing the epidemiology of foodborne diseases (Flynn et al. 2019) and greatly affecting global food safety. The ability of food pathogens to evolve via gene transfer, coupled with the possibility of acquiring foreign DNA, has led to new phenotypes and genotypes (de Blackburn and McClure 2009). Additionally, the adaptation of microbes to the environment has also led to resistant strains of certain foodborne pathogens, as in the case of Salmonella typhimurium DT 104 (Holman et al. 2019).

According to the World Health Organization, about 600 million people globally fall ill from consuming contaminated food, with an associated death of 420000 every year (Mahmoud 2019). An estimated 23 million cases of foodborne illness and about 5000 associated deaths are recorded annually in Europe despite continuous investment (Lee and Yoon 2021). Although studies suggest that most cases are mild, chronic sequelae lead to billions of dollars in medical costs and lost productivity (Mulugeta 2010). This undoubtedly creates an enormous economic burden on any country and its citizens. For instance, an estimated \$152 billion is spent each year on foodborne diseases in the United States (Mulugeta 2010). The number of cases is expected to be higher in most developing regions, such as Africa and some parts of South America, where a combination of factors such as lack of technical and financial resources and a general lack of public awareness about food safety among the population exist (Desta 2020; Pires et al. 2021). In cases where the source of food contamination can be traced to an eatery or food company, the establishment may suffer drastic economic losses and closure due to damage to its reputation (Hussain and Dawson 2013). Foodborne pathogens (mostly microbes, including bacteria, fungi, viruses, and parasites) cause illnesses by secreting toxins into the intestinal tract of the person after ingestion of contaminated food or byreleaasing toxins into the food before ingestion (Abdul-Mutalib et al. 2015; Bintsis 2017).

Studies have shown that over 30 foodborne pathogens can lead to major human illness (Adley and Ryan 2016). Most foodborne illnesses and their outbreaks have been attributed to bacteria, of which *Campylobacter spp.*, *Salmonella spp.*, *Escherichia coli*, *Listeria monocytogenes*, *Vibrio cholera*,

and Staphylococcus aureus have been identified as the most common causative agents (Abdul-Mutalib et al. 2015; Adley and Ryan 2016; Velusamy et al. 2010). Most pathogenic food bacteria survive in moderate environmental conditions, even though some are capable of surviving in extreme conditions (Bintsis 2017). Further, most foods that acts as carriers for these pathogens are of animal origin, including egg and egg products, broiler meat and cheese, fish and fish products, milk and dairy products, and crustaceans (Bintsis 2017; Coral-Almeida et al. 2015). Recent studies have shown that foodborne bacteria can be transmitted at different stages of food preparation. At the farm, contamination can arise from animals already infected with a pathogenic microorganism or when animal-based food products, such as milk or meat, are contaminated (Heredia and García 2018). Moreover, transporting food products farther from the origin also increases the risk of food contamination (Stein and Chirilã 2017).

Generally, a microbe must be able to survive in the food for a foodborne pathogen to cause disease. The pathogen must also identify niches, multiply, and express virulence factors to cause host cell damage after entering human or animal hosts (Bhunia 2018). Therefore, the incidence of foodborne illnesses depends on interactions among the pathogen, host, food, and environment (Gourama 2020a). It is noteworthy that several groups, including elders, pregnant women, infants, patients with immune system diseases, and people under medication, such as proton pump inhibitors, and the malnourished are vulnerable to foodborne illnesses (Lund and O'Brien 2011). Typical symptoms of foodborne diseases include abdominal pain, diarrhoea, vomiting, nausea, fever, respiratory difficulties, and, in severe cases, death (Gourama 2020a). Further, foodborne diseases can potentially lead to chronic, life-threatening, and or neurological, gynaecological, or immunological disorders, as well as multi-organ failure, some cancers, and death (Grace 2015).

Several approaches, such as enhanced agricultural practices, manufacturing practices, and hazard analysis and critical control points (HACCP), are available to reduce toxigenic microbes in food to make food safe for consumption (Velusamy et al. 2010). However, detection and enumeration of these foodborne pathogens are vital steps to further strategies to contain them (Saravanan et al. 2021). Thus, novel approaches are required for the detection of foodborne pathogens with high selectivity and specificity.

Conventional and molecular methods for foodborne pathogen detection

Methods for detecting pathogens are in high demand in the food industry (Priyanka et al. 2016). These methods can

be classified into conventional and molecular methods, as shown in Fig. 1.

Culture-based methods

Conventional methods can be subclassified into traditional culture methods and isolation of single-species colonies for detecting and identifying foodborne microbes, especially bacteria and further characterization, as shown in Fig. 1. The identification is based on the morphological, physiological, and genetic (phenotype and genotype) characteristics of the microbe. Three main detection approaches, namely, (a) morphological observation, (b) gram staining, and (c) biochemical assays, are used in culture-based methods.

Conventional culturing methods are still considered the gold standard for pathogen detection due to their reliability, sensitivity, efficiency, and range of application. Traditional culture relies on the organism's capacity to metabolise substrates in growth media and form visible colonies following growth and multiplication (Foddai and Grant 2020). These techniques are still the primary option for various food testing laboratories as they are sensitive, affordable, and simple. They provide qualitative or quantitative information on the quantity and type of live microorganisms present in food samples (Doyle et al. 2020). However, traditional approaches are tedious and time-consuming to detect foodborne

pathogens (Zhao et al. 2014). Furthermore, aseptic practices must be strictly followed to avoid contamination. In addition, the non-uniform distribution of pathogens in the food, especially if they are present at very low titres, food matrix effects and complexities, and the existence of indigenous microorganisms that interfere with the results from culture-based approaches (Mandal et al. 2011). Therefore, culture-independent methods, such as molecular approaches, have been a recent alternative for detecting viable foodborne pathogens.

Molecular methods

Molecular methods depend on nucleotide hybridization techniques such as amplification (PCR, qPCR, and rt-PCR), DNA microarrays, and whole-genome sequencing (WGS) approaches, which utilizes genomic markers specific to nucleic acid sequences.

Amplification methods

The basic principle of PCR is the gene amplification of various pathogens, where specific and targeted primers are developed per gene. Since its discovery in 1985 (Priyanka et al. 2016), numerous variations of PCR have evolved, each with its nomenclature based on the original PCR's modified

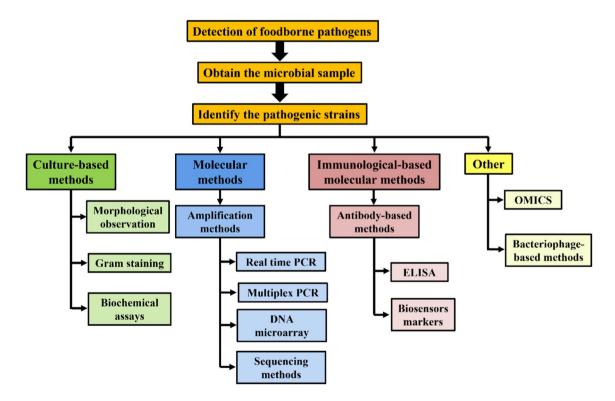


Fig. 1 Schematic representation of the methods for the detection of pathogens. ELISA Enzyme-linked immune-sorbent assay, PCR Polymerase chain reaction, RT Real-time

technique. The technique is rapid and sensitive, which is one of the main advantages of PCR compared to culturebased and immunoassay-based approaches. The amplified product can be obtained in ~30 min, and discrimination between strains has become easier due to the employment of several primer pairs. The detection limit for DNA amplicons is in the femtograms (10^{-15} g) range, but this can be improved (Holmqvist et al. 2009). This technique is a more time-saving and less labour-intensive, compared to culturebased methods (Radhika et al. 2014). Real-time and multiplex are the two sub-classes of PCR, that are widely used for foodborne pathogen dection. Real-time PCR enables target quantification and, when used with a rapid cycling platform, can give data after 30 min of the initiation of heat cycles (Zhou et al. 2022). Hence, real-time qPCR is the preferred technology for identifying and quantifying microbes, as they are rapid, highly sensitive, precise, and capable of simultaneously detecting several microbes, especially bacteria and virus, (Postollec et al. 2011). The major advantage of real-time PCR is its ability to provide quantitative data, high sensitivity for the detection of bacteria, and is cheaper, compared to culture-based methods (Privanka et al. 2016). Similarly, multiplex or multiple primer PCR is a technique that uses at least two primers to amplify various nucleic acid fragments (Boukharouba et al. 2022). Multiplex PCR is superior to the aforementioned PCR-based approaches as it enables the simultaneous identification of several bacteria species by using distinct primers to amplify DNA coding sections for targeting particular genes of each bacterial strain (Touron et al. 2005). In recent years, multiplex PCR methods have gained potential significance, especially in reducing genotyping costs and improving throughput (Chen et al. 2021). This method is also rapid, compared to other PCR methods, which is highly beneficial for the simultaneous detection of most foodborne pathogens such as Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus (Kim et al. 2007; Tao et al. 2020).

DNA microarray

DNA microarray is gaining attention among researchers for pathogenic microbial detection due to its speed, accuracy, specificity, and ability to do high-throughput analysis (Nehra et al. 2022). Numerous investigations identified that waterborne infections and pathogens in marine fish possess a significant concern indirectly due to fish consumption (Zeng et al. 2018). This DNA microarray approach was used to construct a nationwide genetic subtyping network for foodborne illness surveillance named Pulse Net, which is beneficial in the identification of each pathogen outbreak (Chao et al. 2007). Pulse Net was useful at laboratories run by municipal, state, and federal health and regulatory agencies

in the United States. This surveillance system primarily aids in reducing product recalls, restaurant closures, and other associated procedures while still being useful for detecting a foodborne epidemic outbreak (Chao et al. 2007). However, suboptimal design or probe selection and certain incorrect probe annotations and preparations are the limitations of DNA microarray (Berhanu and Dula 2020).

Sequencing methods

Whole Genome Sequence (WGS) can provide detailed information on bacterial species. This technique eases the identification of pathogens, antibiotic resistance gene, and the detection of bacterial epidemics (Bharadwaj et al. 2019; Hurley et al. 2019). WGS is advantageous due to its nonrequirement precise targets; compared to PCR, therefore, there is no need to build new primers depending on the evolution of bacteria. Next-generation sequencing (NGS) is better than WGS as they can sequence millions of fragments concurrently in each run. Currently, numerous reactions can be carried out on a microscale, and simultaneously on a single chip (Ronholm 2018). Further, metagenomics is a useful tool for detecting, analysing and characterising a wide range of pathogens in a single experiment without needing to culture the organisms first (Miller and Chiu 2022). On the other hand, specialised expertise is required for sample handling, sequencing of genome, and bioinformatics data analysis in other not to arrive at false positives (Ferone et al. 2020). Even though these approaches are quite informative, the amount of bioinformatic effort necessary to examine the data acquired from these methods, as well as the general shortage of employees with expertise in this field, are their primary limitations (Billington et al. 2022; Jagadeesan et al. 2019; Voelkerding et al. 2009).

Molecular immunoassays

Antibodies are a distinct natural family of immune system-related glycoproteins known as immunoglobulins created by differentiated B cells in response to an immunogen during an immunological response. The precise contacts and exceptionally high equilibrium association constants (1010/M and larger) were identified to be achieved by antibody and its associated antigen. Further, antibodies are highly sensitive and selective and this makes them useful in immunoassays (Farka et al. 2017). The incorporation of antibodies into biosensors provides a novel analytical technique with a wide area of application, including pathogen identification in food. The major limitation of antibody-based method is the requirement of purified antibodies for the detection of pathogens as a negligible level of impurity can lead to errors in the results (Celik Uzuner 2020).

Enzyme-linked immunosorbent assay (ELISA) is one of the most widely used molecular immunoassay methods as an alternative to antibody-based approach (Santiago-Felipe et al. 2014). Engvall and Perlmann (1972) initially described ELISA in 1972, and it is currently a widely used method for bacterial immunological identification (McMeekin 2003). ELISA technique can detect cell-surface displayed antigens, or toxins produced by a food pathogen (Ferone et al. 2020). In this method, the type of antibody utilized will determine the sensitivity and detection limits for the bacterial pathogens (Byrne et al. 2009). ELISA systems are rapid, easy to use, and are used to gather qualitative and quantitative food safety data. However, antibodies for ELISA are not always commercially available for all microbes of interest, which necessitates their ad hoc production. Further, ELISA technique have successfully screened for pathogens in poultry production materials such as feed, excrement, litter, water, and carcass washings (Ferone et al. 2020). On the other hand, ELISA method are susceptible to contamination by pollutants present in food. This drawback makes them unsuitable for online and real-time detection of microbial contamination in a non-destructive or non-invasive method.

Biosensor markers

Biosensors are among the most recent detection technologies, with certain higher detection limits, thereby reducing or eliminating the limitations of conventional PCR techniques (Zeng et al. 2018). Biosensors are pathogen detection devices that typically have three components, such as a biological capture molecule (i.e. probes and antibodies), a technique for turning the capture molecule, such as target interactions into a signal, and output data (Gould et al. 2013). Further, biosensors can detect pathogens with high specificity, high sensitivity, and low detection limits. However, this approach requires costly devices and suitable computer software, making the technique cost-prohibitive (Zeng et al. 2018).

Nanobiotechnology-based approaches are the most recent technique to enhance biosensor ability for pathogen detection. In this case, aptamers are gaining significant attention as a building block in the design of sensors for detecting a wide range of biomolecules, including proteins, DNA, and small molecules. For instance, a nucleic acid aptamer and polydiacetylene-based detection system picked up 98.5% of *E. coli* O157:H7, compared to the usual culture-based method (Zeng et al. 2018). The high affinity and specificity of aptamers make them suitable for coupling various nanoparticles to enhance their efficiency (Zhang et al. 2015). Recently, gold nanoparticles were employed in colourimetric methods due to their electrical, photonic, and catalytic properties to be utilized in unique applications. These nanobiotechnology-based biosensors are non-toxic and may

easily bind to antibodies due to their exclusive characteristics (Zhang et al. 2015). Furthermore, these biosensors can be included along with other methods, such as omics approaches.

Other methods

Foodomics was initially coined in 2009 as a field that uses modern omics techniques to study food and nutrition domains to increase customer well-being, health, and confidence (Cifuentes 2009). Cajka et al. (2014) suggested that foodomics methodologies can be useful in solving certain limitations of modern food safety and quality assessment requirements, such as the detection of food contaminants, food origin and traceability, and food fingerprints and biomarker discovery (Cajka et al. 2014). For instance, researchers can utilize various omic techniques (genomic, transcriptomic, and metabolomics) to investigate the impacts of food ingredient-derived molecules on body system components and the overall impact on human health. Food-omic techniques are also useful in addressing the challenges of microbiological food safety. Metagenomics methods were also identified to be useful for detecting food pathogens in foods and the microbial ecology during fermented food preparation. Moreover, omics technologies can be used to investigate the physiological condition of pathogens present in foods and their microbial response to physical, chemical, and biological food preservation methods. However, this method must be included with other methods to efficiently utilize omics approach for the detection of food contamination by microbes (Ferone et al. 2020). Similarly, phage-based therapies are beneficial in foodborne pathogen detection due to their extreme specificity and inherent affinity of bacteriophages to host cells. The knowledge that bacteriophages can only survive and reproduce when in living cell hosts means that phage-based approaches can be used to determine the viability of microorganisms (Richter et al. 2018). Schmelcher and Loessner (2014) examined the use of bacteriophages in identifying foodborne pathogens (Schmelcher and Loessner 2014). A combination of lytic plaque phase assay with an end-point detection approach (e.g. immunological or molecular tests) was used to identify progeny phages or phage DNA, which eventually allows rapid phagebased detection (Foddai and Grant 2020). Among all the methods, qPCR and biosensors are identified as one of the most potential approaches for foodborne pathogen detection. Their application, when used in conjunction with several phage-based lytic approaches has led to the effective detection of pathogens from various matrices, such as food (Anany et al. 2018) and clinical samples (Sergueev et al. 2010). Biosensors are highly beneficial in the detection of foodborne pathogens rapidly, compared to qPCR. However, the sensitivity of these biosensors are lower than qPCR and

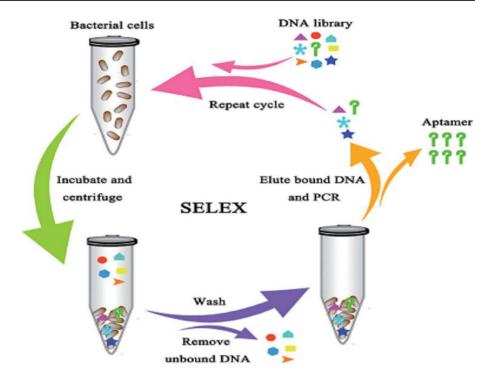
this can be improved by the incorporation of aptamers as bioprobes (Nassarawa et al. 2022), which is discussed in the consecutive sections.

Selection of aptamers against foodborne pathogens

Aptamers are considered as a new-age bioreceptor for biosensing and monitoring pathogens, are short-stranded DNA or RNA oligonucleotides that bind to their targets with excellent sensitivity and specificity. They are developed through a structured, iterative method established in 1990 called the systematic evolution of ligands by exponential enrichment (SELEX) (Ellington and Szostak 1990; Tuerk and Gold 1990). This process is based on the ability of the oligonucleotides to bind with the target. It has been used successfully in the selection of countless aptamers against various targets, ranging from small molecules, such as mycotoxins, bacteria, viruses, cocaine and organic dyes, to proteins, including tumour markers, thrombin and growth factors, in addition to even complex targets, including whole mammalian cells (Kolm et al. 2020). SELEX involves a series of iterative cycles consisting of three general stages, including (1) In vitro incubation of a DNA or RNA library with the target. In this stage, a massive library (up to 1015 sequences) of various nucleic acid molecules, called Initial oligonucleotide pool (IOP) is incubated with the pathogen for the selection of aptamer. This library is a chemically synthesized oligonucleotide group made up of two constant regions at 3' and 5' ends in between random region. (2) The bound sequences are separated from the unbound sequences, where the unbound aptamers are eliminated from the library through different buffer washing steps. (3) The bound sequences are eluted through application of heat or washing with a buffer solution. Later, they can undergo PCR amplification and become the new starting library. This process is repeated until a sequence with desirable binding characteristics is obtained, usually between 5 and 20 rounds, which were later cloned and sequenced (Fang et al. 2014; Hamula et al. 2006; Teng et al. 2016; Xu et al. 2021).

During the SELEX approach, the most significant and time-consuming steps are binding and separating bound from unbound sequences. These steps can significantly reduce the entire SELEX time if performed in real-time. Hence, various techniques, such as affinity chromatography columns, magnetic beads, and microfluidic chips, have been introduced in the SELEX approach for the rapid binding and separation of sequences. Among these methods, magnetic beads have gained attention due to their ability to ease the chemical-based modification of sequences with a rapid and effective separation mechanism (Duan et al. 2016b; Hünniger et al. 2014; Ma et al. 2018). Different modified SELEX methods can be combined in certain cases to achieve better

results. Hong et al. (2019) combined magnetic bead-based SELEX with a microfluidic system to select Ebola virus aptamers, which led to selecting an aptamer with a high affinity in three cycles (Hong et al. 2019).


SELEX has been used to select aptamers against both live bacteria and molecules from the surface of bacteria (Hamula et al. 2008; Shamah et al. 2008). The SELEX procedure uses purified bacterial targets to develop aptamers against live bacterial cells attached to a solid surface, such as a column, which ensures that the target molecule is immobilized. The bound sequence is separated from the unbound aptamers with ease via centrifugation. This solid surface is not an accurate representation of the target's indigenous surroundings, which may lead to an alteration in its configuration (Hamula et al. 2008).

A SELEX methodology that utilizes capillary electrophoresis (CE) separation is an upgraded version of the conventional methods used to select aptamers against bacterial cells. In this method, the bacteria and the initial oligonucleotide pool are incubated in solution, as shown in Fig. 2, eliminating the step of immobilizing the bacteria on a solid surface. Capillary electrophoresis is used to separate the bound sequences from the unbound aptamers. This protocol requires purified bacteria cells for every cycle of incubation. The purification process may alter the configuration of the cell from its indigenous form, and this technique may not work for unknown targets, such as the molecules present on a cell's surface (Hamula et al. 2008; Pestourie et al. 2006; Wang et al. 2003).

Live cells in suspension are used as targets for the oligonucleotides to select aptamers against live bacterial cells without purifying the bacterial target before incubation. This approach also can be used to separate the bound cells using simple centrifugation, and the technique has been reported for different bacterial cells, including Lactobacillus acidophilus (Hamula et al. 2008), Campylobacter jejuni (Dwivedi et al. 2010) and Staphylococcus aureus (Cao et al. 2009). Lorenz et al. (2006) developed a SELEX method called Genomic SELEX, where a genomic DNA library is utilized, unlike the chemically synthesized library used in the conventional SELEX. In this method, the IOP is obtained by adding specific primers to genomic DNA isolated from the target organism. A Klenow-fragment extension is performed on the new strand later, followed by the transcription of the IOP into RNA and the process of selection. A counter selection step is performed against immobilization matrix to initiate the process and the incubation of the target with the IOP. The oligonucleotides that are bound to the target undergo reverse transcription to become cDNA and they form the new IOP for the next cycle. After numerous cycles, the resultant sequences are obtained through high throughput sequencing (HTS) and mapping analysis

Fig. 2 Aptamer selection against live bacteria using whole-cell SELEX (Teng et al. 2016)

(Lorenz et al. 2010; Lorenz et al. 2006). Other modified SELEX methods were inspired from this SELEX method, such as transcriptomic SELEX (Fujimoto et al. 2012) and primer-free genomic SELEX (Wen and Gray 2004). Table 1 summarizes certain modified SELEX methods that have the potential to be utilized in desired commercial applications.

Applications of aptamers as foodborne pathogen biosensors

Staphylococcus aureus is one of the most resilient (grows at temperatures between 7 and 47.8 °C) pathogens that do not form spores and are present in the blood, skin, mouth, intestine or respiratory tract of infected mammals. They can survive outside living hosts, in the air, food, water and

Table 1 Summary of modified SELEX techniques for aptasensor application (Xu et al. 2021)

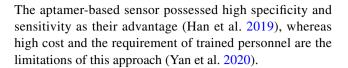
Methods	Characteristics	Advantages	
In vivo SELEX	This technique uses living animal models as the targets for aptamer selection	Aptamer selection is done in whole organisms, making it suitable for drug delivery	
Cell SELEX	The target for selection is a whole cell	No purification is needed prior to selection There is no alteration to the conformation of the target Aptamers can be selected without prior knowledge of the target on the cell surface It is a great method for the selection of aptamers against foodborne pathogens	
Capture SELEX	The oligonucleotides are immobilized on a solid substrate to capture the targets	The target maintains its natural configuration Immobilization of the target is not difficult Suitable for small molecular targets like foodborne pathogens	
Capillary Electrophoresis SELEX	The separation is based on the electrophoretic mobility difference between bounded and unbounded sequence	It is easy to operate, rapid, cheap and efficient	
High-throughput SELEX	This is a combination of conventional SELEX and high throughput sequencing system. Sequencing is done in each round, not only after the last round	It is efficient and applicable to many targets	
Magnetic bead-based SELEX	Target immobilization is done on the magnetic bead, and separation is also done by magnetic means	Cheap, shorter rounds, quick and simple	

dust, and generally cause weakness, nausea, chills and several other symptoms upon infection. Staphylococcus aureus species are usually present in animal-based protein sources, such as sausage, salmon, milk, turkey, oysters and shrimp (Bacon and Sofos 2003; Bintsis 2018). Escherichia coli is another mostly harmless bacterial strain, although there are a few pathogenic strains. These strains are spread through the faecal matter of infected humans and animals, which eventually enter into the food chain or water system (García et al. 2010). E. coli infection is a critical health issue because a small dose is all that is required for infection, but it can lead to several health consequences (Croxen et al. 2013). This bacterial strain thrives for a long time in the environment and can grow on and be transmitted through fresh products, such as vegetables and other foods (Bintsis 2018). Listeria monocytogenes is another bacteria species identified as a major cause of foodborne illnesses-related death for people with compromised immune systems (babies, older people, and pregnant women). It is a pathogen that thrives in soil, water, sewage, and decomposing food matter. It is usually transmitted through cold or undercooked food (meats and vegetables), and can cause gastroenteritis, meningitis, and septicemia (Buchanan et al. 2017). It has a high mortality rate compared to other pathogens and can survive well in cold and wet environments, making it difficult to get rid of it (Gandhi and Chikindas 2007; Jemmi and Stephan 2006). In addition to these bacterial strains, fungi, algae, viruses and other pathogens also contaminates food and causes diseases in humans. In the past decades, numerous technologies have been successfully developed to aid the detection of these foodborne pathogens. However, there has always been a requirement for rapid detection methods, which led to the development of immunosensors (biosensors whose biorecognition elements are antibodies) and aptamer-based biosensors (biosensors, utilizing aptamers as their biorecognition element). This section discusses some applications of various aptamer-based biosensors in pathogen detection and monitoring with emphasis on the food industry.

Optical sensors

Optical aptamer-based sensors are biosensors that use aptamers as their biorecognition elements and can receive and convert signals from various sources into light radiations (visible, ultraviolet (UV) or infrared (IR)) (Majdinasab et al. 2018; Zahra et al. 2021). Optical aptamer-based biosensors can be classified into fluorescence, chemiluminescence, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR) and colourimetric aptamer-based biosensors based on parameters such as absorption, dispersion, refraction and reflection (Holban and Grumezescu 2018; Rubab et al. 2018). This type of aptasensor exhibit rapid response with high simplicity, sensitivity and specificity

(Zahra et al. 2021). Recently, Liu et al. (2022) reported a novel liquid crystal-based optical aptasensor, which was formed by disorderly arranged nematic 4-cyano-4'-pentylbiphenyl molecules. Aptamers that can specifically bind with the target gram-negativ bacteria model (*E. coli*) were self-assembled on the interface of the liquid crystal to act as an optical sensor. The optical aptasensor exhibited 27 colony forming unit (cfu)/ml of ultralow detection limit of *E. coli* in food products such as soft drink and fruit juice (Liu et al. 2022). The major advantage of optical aptamer-based sensors is their ability to detect food-borne pathogens in a rapid, simple, specific manner at a low-cost (Chen et al. 2022). However, the requirement of bulky optical devices with surface modifications are the major limitations of optical aptamer-based sensors (Divya et al. 2022).


Colourimetry is the most common optical aptamer-based sensor technique widely used for pathogen detection due to its simplicity. Yi et al. (2019) developed an aptamer-based agglomerated gold nanoparticle colourimetry to detect Salmonella. The aptamer was immobilized on chitosan and bound to gold nanoparticles via electrostatic interactions. Combining the Salmonella with the fixed aptamer led to the 'striping' of aptamers from the nanoparticle and allowed the nanoparticles to agglomerate and give a colour change when a salt solution was added. An ultraviolet spectrophotometer can record this phenomenon as a marker of Salmonella detection. The recoveries of Salmonella from spiked milk samples was between 92.4 and 97.2%, further reasserting the utility of this method in detecting pathogens in real-life (Yi et al. 2019). Further, Zhu et al. (2021) prepared a novel ultrasensitive and label-free colorimetric aptasensor for the effective detection of S. aureus bacteria. In this study, SA31 aptamer was coated on octahedral manganese oxide nanoparticle surface, which binds with the bacteria and changes color from green to yellow. The aptasensor detected 10 to 2×10^5 cfu/ml of S. aureus in milk and pork samples with 3 cfu/ml low detecton limit (Zhu et al. 2021). In general, simplicity, high sensitivity and rapid detection are the major advantage of colourimetric aptamer-based sensors (Lerdsri et al. 2020). However, incomplete dissociation of the adsorbed non-target binding segments of the aptamer sequence upon target binding is the major limitation of this method (Alsager et al. 2018).

Surface-enhanced Raman Spectroscopy (SERS) is a less common optical aptasensor technique in foodborne pathogen detection. This method combines Raman spectroscopy and nanotechnology and is often used to detect protein biomarkers (Rubab et al. 2018). SERS works on the principle that nanomaterials and biomolecules bound to them may significantly enhance the Raman scattering of photons, thereby allowing for the detection of molecular signals (Schatz et al. 2006; Smolsky et al. 2017). Zhang et al. (2015) developed a SERS-based aptasensor for quantifying *S. aureus*. As a

signal probe, the authors modified gold nanoparticles with Raman signal molecules and then attached aptamers of S. aureus. the capture probe consisted of gold electrodes with immobilized aptamers. Aside from a relatively quick detection time of 3 h, the developed aptasensor was sensitive and selective and showed a 35 cfu/ml detection limit (Zhang et al. 2015). Similarly, Duan et al. (2016a, b) developed an aptasensor-based assay to detect and quantify S. typhimurium. The authors reported a limit of detection of 15 cfu/ml and a detection range spanning 15 and 1.5×10^6 cfu/ml. The authors used gold-silver core-shell nanoparticles modified with thiolated aptamer as the capture probe. X-rhodamine (ROX)-coupled aptamer was used for the Raman reporter probe. This system detected S. typhimurium spiked into milk samples and provided better results than conventional culturing methods (Duan et al. 2016a). Recently, Tian et al. (2023) utilized rolling cycle amplication to design a novel gold nanoparticle-based SERS aptasensor for the detection of E. coli O157:H7 bacterial strain. In this study, double stranded DNA were utilized as aptamer for the recognition, providing a Raman signal after binding with the bacteria. The results showed that the aptasensor possess 0.3 cfu/ ml detection limit with 10^2-10^7 cfu/ml of wide detection range (Tian et al. 2023). The major advantage of the SERS aptamer-based sensor was its rapid analysis ability and non requirement of qualified personnel for the detection of the foodborne pathogen (Zavyalova et al. 2021). However, lack of possibility for quantitative determination and the involvement of sophisticated and expensive approaches for the detection of foodborne pathogens are the limitations of SERS-based aptasensors (Gribanyov et al. 2021).

Chemiluminescence is considered as the most sensitive optical aptasensor method, due to its excellent results (Park et al. 2013). Chemiluminescence has become a promising optical aptasensor technique in food safety analysis, as a chemical reaction produces energy, and having an excitation source for sample radiation during a chemical reaction is unnecessary. A cost-effective optical aptasensor was developed by Khang et al. (2016) for the rapid quantification and monitoring of E. coli 0157:H7 using graphene oxide (GO)/ iron nanocomposites and guanine chemiluminescence detection. The results revealed that the limit of detection (LOD) was 4.5×10^3 cfu/ml, in a sample incubated for 1 h at 37 °C (Khang et al. 2016). Further, Gao et al. (2022) demonstrated the fabrication of a novel potentiometric aptasensor that can detect the presence of E. coli in food samples via eletrogenerated chemiluminescence. In this study, the electrode was modified with single-walled carbon nanotubes. The working electrode was made up of gold modified with Ru(bpy)₃²⁺ and an E. coli detecting specific aptamer was utilized as the reference electrode. The results showed that the aptasensor possessed 2 cfu/ml detection limit with 5-1000 cfu/ml of linear range for E. coli 0157:H7 detection (Gao et al. 2022).

Electrochemical aptamer-based biosensors

Electrochemical aptamer-based biosensors detect current or potential changes that results in redox reactions at the transducer surface (see Fig. 3). They are easy to operate, small in size, highly selective and sensitive, making them suitable for detecting foodborne pathogens (Hayat and Marty 2014). Various electrochemical methods, including voltametric, potentiometric, amperometric, impedimetric and conductometric, have been developed to transform the aptameranalyte interaction into a measurable signal (Radi 2011).

For the first time, a rapid electrochemical aptasensor was reported in 2010 to detect tetracyclines in milk (Arghya et al. 2012). Tetracyclines are a class of broad-spectrum antibiotics that can be hepatotoxic to pregnant women. The tetracycline aptamer was immobilized on the surface of glassy carbon (GC) electrodes as a specific affinity molecule. A detection limit of 1 ng/ml was achieved with a detection time of 5 min, and the linear relationship between the tetracycline concentration and the current was 0.1-100 ng/ml (Zhang et al. 2010). Likewise, an electrochemical method for detecting S. aureus detection was developed by Cai et al. (2021). The authors coupled an aptamer onto the magnetic bead to capture the pathogens and release complementary strand cDNA. The release and shutdown of the signal in the next step controlled the gold electrode that modified the triple-helix structure. This system detected pathogens in water and honey samples with a limit of detection of 8 cfu/ ml and a linear range of $30-3\times10^8$ cfu/ml (Cai et al. 2021).

Mishra et al. (2015) reported an impedimetric aptasensor for the rapid detection and quantification of OTA (Ochratoxin A) in cocoa beans (Mishra et al. 2015). OTA is a toxic mycotoxin towards a wide range of mammalian species and is usually present in agricultural products during storage (Sorrenti et al. 2013). Diazonium-coupling reaction mechanism for the immobilization of anti-OTAaptamer on screen printed carbon electrodes (SPCEs) was used for the development of this aptasensor. The sensor exhibited a LOD as low as 0.15 ng/ml, and an increase in electron transfer resistance, that are linearly proportional to OTA concentration in the range of 0.15–2.5 ng/ ml, as well as, an acceptable recovery percentage between 91 and 95% (Mishra et al. 2015). Further, an impedimetric aptasensor for the detection of Salmonella was fabricated using a nanocomposite of reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs), coated on the surface of glassy carbon electrode (GCE).

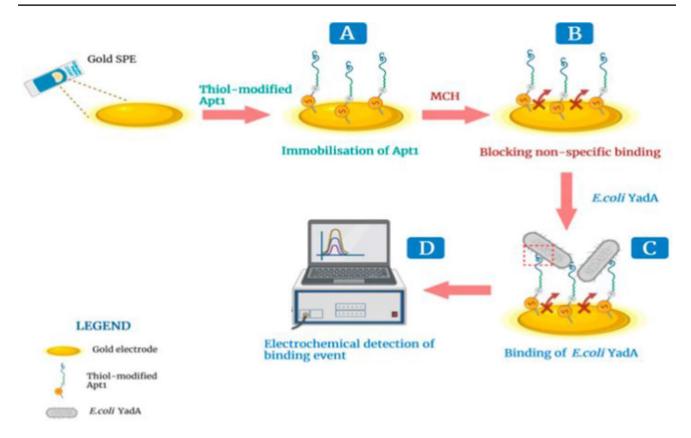
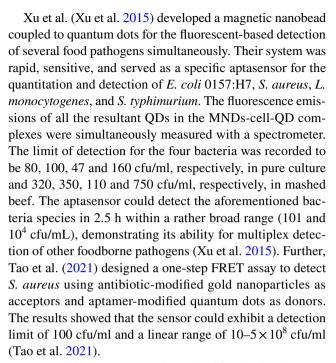


Fig. 3 Schematic representation of aptamer-based optical biosensor for the detection of virulence factor named YadA of *Yersinia enterocolitica*. Reproduced with permission from Sande et al. (2022), ©MDPI, 2022 (Sande et al. 2022)

Functionalisation of GCE was achieved using a mixture of carboxyl-modified MWCNTs and rGO in a one-step electrodeposition process. Following this, amino-modified aptamers selective for Salmonella was immobilized onto the surface of the rGO-MWCNTs/GCE. The resultant label-free aptasensor was able to detect Salmonella with a limit of detection of 25 cfu/ml and a linear range $75-7.5 \times 10^5$ cfu/ml (Jia et al. 2016). Recently, Nguyen and Gu (2023) utilized an ultrasensitive electrochemical aptasensor for the detection of S. aureus. In this study, SA37 aptamer was used to bind with bacterial cell, SA81@ HRP aptamer was utilized as a catalytic probe and a tyramide signal amplification system made up of biotinyltyramide and streptavidin-HRP was used as electrocatalytic signal tags. The results revealed that the aptasensor possessed 3 cfu/ml dection limit in buffer and 8 cfu/ml detection limit in tap water and beef broth (Nguyen and Gu 2023). Rapid response, high sensitivity, multi-analyte analysis, potential for miniaturization, low cost and high simplicity are the advantages of electrochemical aptamerbased sensor, similar to other aptamer-based sensors (Yuan et al. 2023). However, the limited selectivity of the sensing layer is a core limitations of the electrochemical aptamerbased sensors (Radi and Abd-Ellatief 2021).

Aptasensor-based lateral chromatography test strip


Lateral flow assays are a paper-based platform for detecting targets such as pathogenic bacteria. This method is applicable in diverse fields, such as health care, food safety and environmental health, due to their low cost, ease of use and rapid results. Further, they can also be applied to a wide range of biological samples (saliva, sweat, urine, blood, serum) (Jauset-Rubio et al. 2017). It works on the principle of affinity interaction, where a visible line is observed on a test strip after the detection of an analyte. A lateral flow aptasensor consists of a sample pad (which transports sample to other parts of the test strip), conjugate pad (which contains the labelled aptamer), nitrocellulose membrane (which contains test and control lines which determine the sensitivity of the test strip) and wicking or absorbent pad (which maintains liquid sample flow rate and prevents backflow), that are arranged on a plastic backing pad (Jauset-Rubio et al. 2017; Majdinasab et al. 2018).

Fang et al. (Fang et al. 2014) developed a lateral flow aptamer-based assay based on aptamer-mediated strand displacement signal amplification but without DNA extraction from the microbial cell. This assay detected Salmonella enteritidis in spiked milk with a detection limit of 10 cfu/ ml (Fang et al. 2014). Similarly, Wu et al. (Wu et al. 2015) quantitatively detected E. coli 0157:H7 using two aptamers selective for various E. coli cell membrane proteins. A limit of detection of 10 cfu/ml, a linear range of $10-1 \times 10^6$ cfu and a recovery range of 86.4-112% was obtained in this assay to detect the pathogen in food samples, such as milk, apple juice and water samples (Wu et al. 2015). Further, a rapid and simple method based on thermophilic helicasedependent amplification and a lateral flow assay for the detection of Salmonella was developed in 2017. A Salmonella detection limit of 1.3-1.9 cfu/ml was obtained in chicken products and infant cereal within 2 h. There was no cross-reaction with other types of bacteria, making this approach suitable for use in areas with limited equipment (Du et al. 2017). Song et al. (2023) prepared a single probe by combining gold nanoparticles with aptamer targeting aflatoxin B1 (carcinogenic metabolite secreted by Aspergillus species) to utilize them as a colorimetric aptasensor. This aptasensor was combined with a chromatographic strip for rapid dection of aflatoxin B1in corn samples. The study showed that the aptasensor possess 0.5–50 ng/ml of linear detection range with 0.5-500 ng/ml detection range and 51 ng/ml of semi-quantitative detection limit (Song et al. 2023). The technique possesses advantages such as affordability, specificity, sensitivity, rapidity, robustness, and userfriendliness (Jaisankar et al. 2022). However, the narrow linear range in tests can be a major limitations of this sensor type (Zhang et al. 2018).

Fluorescence detection aptamer-based biosensors

This method is used to quantify the target based on the fluorescence (emission of light by an excited molecule when returning to the ground state) intensity of the materials and it is generally used to detect low concentrations of analytes. Generally, fluorescence aptamer-based biosensors are fabricated with the combination of a fluorescent biorecognition element (aptamer) and an optical transducer. These aptamerbased biosensors are divided into labelled and label-free sensors, depending on the type of external fluorescent material, which is required to obtain a measurable signal as not all the aptamers are auto-fluorescent. Hence, a typically labelled fluorescence utilized Förster (Fluorescence) resonance energy transfer (FRET) method for the detection of pathogens. Fluorescence detection aptamer-based biosensors are often preferred due to their high efficiency, high sensitivity, simplicity and rapid analysis (Huang et al. 2021; Majdinasab et al. 2018; Rubab et al. 2018; Wang et al. 2021).

Duan et al. (2014) reported a method for the simultaneous detection of Vibrio parahaemolyticus, and S. typhimurium based on FRET with carbon nanoparticles as acceptors and green- and red-emitting quantum dots as donors. Aptamers for *V. parahaemolyticus* were modified with green-emitting quantum dots, and those for Salmonella were modified with red-emitting quantum dots. The LOD of the novel sensor was identified to be 25 cfu/ml and 35 cfu/mL for V. parahaemolyticus and S. typhimurium, respectively. There was also a linear correlation of the concentration of the two pathogens in the range of 50–10⁶ cfu/ml based on quantum dot fluorescence. This method was proposed to be beneficial in detecting pathogens in chicken and shrimp samples (Duan et al. 2015). In another study, dual recognition of S. aureus was proposed by Yu et al. (2017) in developing a FRET platform based on vancomycin and aptamer-based bimolecular interactions. This method was linear in the range of 20 and 108 cfu/mL and a detection limit of 10 cfu/mL (Yu et al. 2017). Further, efforts have been made to develop unique, culture-free, rapid, quantitative method for detecting S. aureus in minimally processed liquid samples with the help of a smartphone via aptamer-functionalized fluorescent magnetic NPs. Shrivastava et al. (2018) tagged S. aureus cells in a detection cassette for magnetic capture and the fluorescent images were created with a smartphone using LEDs as an excitation source. The minimum detectable concentration in peanut milk samples was as low as 10 cfu/ml within a detection time of 10 min (Shrivastava et al. 2018). Liu et al. (2021) prepared a novel fluorescence aptasensor for sensitive and rapid Listeria monocytogenes detection in tap water and pasteurized milk samples. In this study, upconversion nanoparticles functionalized with aptamers were utilized to

bind with the bacterial cell by providing a strong fluorescence signal. The results indicated that the aptasensor possessed 8 cfu/ml detection limit with 68 to 68×10^6 cfu/ml of detection range (Liu et al. 2021). High sensitivity with low signal-to-noise ratio and rapid turnaround time are the advantages of fluorescence detection aptamer-based sensors (Aslan et al. 2023). However, covalent labeling of aptamers with fluorophores can be time-consuming and expensiveness (E Wang et al. 2011; Zhang et al. 2023).

Surface plasmon resonance-based aptamer biosensors

The principle of surface plasmon resonance (SPR) has been incorporated into the design of various aptamer-based biosensors for detecting foodborne pathogens (Cooper 2003). This technique is shown in Fig. 4. Recently, Khateb et al. (2020) developed a portable, label-free aptasensor for detecting *S. aureus* in pure culture and artificially contaminated milk samples using nanostructured plasmonic elements. A detection limit of 10^3 cfu/ml was obtained for the milk samples in 120 secs without any pre-enrichment step (Khateb et al. 2020). Further, Wang et al. (2019) immobilized aptamers specific to *S. aureus* and *E. coli* on a planar gold substrate through a polyadenine-mediated immobilization technique, which resulted in surfaces with

SPR characteristics. The resultant SPR aptamer-based biosensors showed a limit of detection of 10⁵ cfu/ml for E. coli and 106 cfu/mL for S. aureus. However, it was established that a higher aptamer lateral density, together with other technical enhancements, such as decreasing the ionic strength of the aptamer solution, utilization of 10A-polyA as an anchoring group and bromine ion as a back filler, would yield a better result in capturing target bacteria (Wang et al. 2019). Dursun et al. (2022) developed a novel SPR-based aptasensor for the detection of Brucella melitensis bacterial pathogen in milk samples. In this study, B70 aptamer was used to specifically bind with the bacteria, which was immobilized with magnetic core-shell silica nanoparticles for the initial purification of the target bacteria in milk. The SPR sensor chip was prepared using B46 aptamers to instantly detect the bacteria in 1 mL of milk sample with a low detection of $27 \pm \text{cells}$ (Dursun et al. 2022). In general, SPR aptamer-based sensors help in the detection of food-borne pathogens with excellent chemical stability, high affinity and high selectivity towards specific targets as well as ease for chemical modification (Nguyen et al. 2015). However, limitations, such as multi-detection of analytes and non-specific binding of aptamers are prevalent in SPR-based aptamer sensors (Gaudreault et al. 2021).

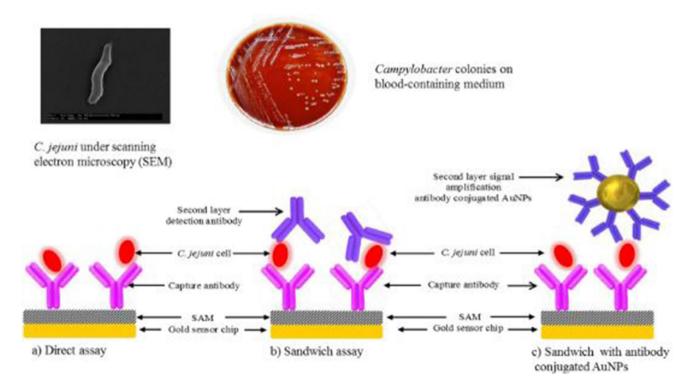


Fig. 4 Detection of Campylobacter jejuni using antibody-functionalized surface plasmon resonant gold nanoparticles as SPR-based aptamer-based biosensors via $\bf a$ direct assay; $\bf b$ Sandwich assay and $\bf c$

sandwich with antibody conjugated gold nanoparticles. Reproduced with permission from Masdor et al. (2017), ©MDPI, 2017 (Masdor et al. 2017)

Lab-on-chip aptamer-based biosensors

Lab-on-chip (LOC) aptamer-based biosensors are miniaturized aptamer-based biosensors integrated into a single chip to detect one or more analytes to be beneficial for the biochemical detection and sequencing of DNA (Dkhar et al. 2022). Weng and Neethirajan (2016) developed a rapid, simple and sensitive aptasensor for the detection of food allergen named Ara h1 (a homo-trimeric protein which is a major allergen in peanuts and accounted for 95% of all peanut-allergenicity reactions), using a microfluidic system integrated with quantum dots (QDs) aptamer and functionalized with graphene oxide (GO). The aptasensor used QDs-aptamer-GO composite as probes to undergo alterations in the presence of the target. The resultant miniaturized optical aptasensor exhibited a detection limit of 56 ng/ml within 10 min (Weng and Neethirajan 2016). The same group also developed nanomaterial-enhanced multipurpose paper-based microfluidic aptasensor for detecting food allergens and toxins, including egg white lysozyme, β-conglutin lupin, okadaic acid and brevotoxin. The resultant aptasensor was similar to the previous studies, where GO and specific aptamer functionalized QDs were employed as probes. The assay was performed on the paper-based microfluidic chip, which reduced the sample quantity (10 µL), required reagents and drastically reduced testing time (Weng and Neethirajan 2018). Moreover, a simple paper-based microfluidic aptasensor using a nitrocellulose membrane was developed to detect norovirus,

which is a leading cause of acute gastroenteritis and can be transmitted through food and drinks. The results showed that the aptasensor possesses a linear range of 13 ng/ml to 13 µg/ml and a LOD of 4.4 ng/ml and 3.3 ng/mL while utilizing multiwalled carbon nanotubes and graphene oxide, respectively (Weng and Neethirajan 2017). Recently, Costantini et al. (2019) prepared a novel label-free fluorescent aptasensor that are integrated in a lab-on-chip device for ochratoxin A (toxic metabolite released by certain fungal strains) detection in wheat and beer samples. The study showed that the conformation of the aptamer changed when the aptasensor interacts with the ochratoxin A, which eventually leads to a fluorophore release and a decrease in the fluorescent signal detected by the silicon photosensor array positioned underneath the microfluidic network. The lab-on-chip was reported to detect the toxic metabolite in a short time of 5 min with 1.3 ng/ml detection limit and 5-200 ng/ml detection range in food samples (Costantini et al. 2019). Reduced time for analysis, low reagent costs and high-throughput analysis are the advantages of LOC-based aptamer sensors (Nikoleli et al. 2018; Radhakrishnan et al. 2022). However, complexity in the fabrication of the chip with labor-intensive technique and requirement of both trained personnel and expensive equipment are the limitations of these sensor types. All these studies, as summarized in Table 2, showed that aptamers have the potential to detect foodborne pathogens as well as toxic metabolites released by microbes in food with high specificity, selectivity and efficiency.

Table 2 Recent aptamer-based biosensors for the detection of foodborne pathogens

Aptamer	Detection method	Microbe detected	Food product	Limit of detection	References
Peptide aptamer	Optical aptasensor	E. coli	Soft drink and fruit juice	27 cfu/ml	Liu et al. (2022)
Peptide aptamer	Colorimetry	Salmonella	Milk samples	_	Yi et al. (2019)
SA31	Colorimetry	S. aureus	Milk and pork	3 cfu/ml	Zhu et al. (2021)
Peptide aptamer	SERS	S. aureus	_	35 cfu/ml	Zhang et al. (2015)
Thiolated peptide aptamer	SERS	S. typhimurium	Milk	15 cfu/ml	Duan et al. (2016a)
dsDNA	SERS	E. coli O157:H7	_	0.3 cfu/ml	Tian et al. (2023)
Peptide aptamer	Chemiluminescence	E. coli	_	2 cfu/ml	Gao et al. (2022)
SA37 and SA81@HRP	Electrochemical	S. aureus	Tap water and beef broth	8 cfu/ml	Nguyen and Gu (2023)
Peptide aptamer	Lateral chromatogra- phy test strip	Aflotoxin B1 released by <i>Aspergillus</i> spe- cies	Corn	51 ng/ml	Song et al. (2023)
Peptide aptamer	Fluorescence detection	Listeria monocytogenes	Tap water and pasteur- ized milk	8 cfu/ml	Liu et al. (2021)
B70 and B46 aptamer	SPR	Brucella melitensis	Milk	27 cells	Dursun et al. (2022)
Peptide aptamer	Lab-on-chip	Ochratoxin A released by certain fungal strains	Wheat and beer	5–200 ng/ml	Costantini et al. (2019)

Future perspective

Food safety is vital in combating several foodborne infections. Hence, the quest for technologies and methods for rapidly detecting foodborne pathogens is a top priori ty in the research arena. The conventional methods for detecting foodborne pathogens, such as the culture-based methods, are cheap, easy to use and reliable. However, this method is usually slow and requires several days to obtain conclusive results. Further, the sensitivity of this method is greatly reduced in cases where there are low bacterial levels and cannot detect bacteria in the 'viable but non-culturable (VBNC) state (Oliver 2010). Furthermore, PCR is also rapid, accurate, sensitive and specific compared to culturebased methods. This method can even detect minute levels of targets. However, the amplification of extracellular DNA and the dead cells can increase the level of viable bacteria cells, which can lead to false results (Rudi et al. 2005; Umesha and Manukumar 2018). Moreover, reverse-transcriptase PCR (RT-PCR) and PCR combined with biological dyes are currently utilized to detect viable foodborne pathogen accurately (Zeng et al. 2016). In general, RT-PCR is used for mRNA detection with certain limitations, where RNA is tedious to handle, as it is prone to contamination. Also, there must be gene expression of the target pathogen for the process to be successful, but gene expression can change with variation in stress parameters (Barbau-Piednoir et al. 2014). Additionally, several distinct approaches have been developed for detecting foodborne pathogens, including multiplex PCR, DNA microarray, sequencing methods (whole genome and next generation), ELISA, and all its modifications. These methods also have limitations, such as low sensitivity and specificity, long detection time, requirement for purified samples, high cost and requirement of a huge labor force. The limitations of all these methods have demanded highly efficient monitoring techniques, such as aptamer-based biosensors for food pathogen detection (Grumezescu and Holban 2018) in the future. Even though, aptamers possess ability to detect foodborne pathogens, standalone aptamers cannot be employed as biosensors. Immobilization of aptamers onto nanoparticles and electrodes are required to enhance their ability for rapid detection. Thus, development in the field of nanoparticles or nanocomposites and immobilization techniques to combine aptamers with nanoparticles will help in improving the efficacy of aptamer-based biosensors in the future.

Conclusion

Biosensors are currently considered as a prospective future of foodborne pathogen detection due to their numerous advantages, such as excellent sensitivity, selectivity and specificity, rapidity, simplicity and low detection limit. Further, biosensors are used during in situ pathogen detection with accuracy and in real-time, making them suitable for point-of-care monitoring pathogen and industrial applications. However, conventional biosensing based on antibody technologies can have a significant setback. Antibodies require more time and a host to be developed, are temperature sensitive, expensive, and cannot be recovered after denaturation. These limitations have led to the emergence of chemically synthesized oligonucleotides named aptamers for the fabrication of biosensors called aptamerbased biosensors. Aptamers are identified as a solution to most of the limitations exhibited by antibodies. Aptasensor technologies, such as electrochemical, optical, SPR-based (surface plasmon-based), and mass-sensitive (quartz crystal microbalance and acoustic wave) approaches have been developed over the years. Several studies have reported that aptasensor technologies are beneficial for detecting foodborne pathogens on real samples. Thus, these recent studies indicated that aptamer-based biosensors can be developed to possess various advantages for monitoring foodborne pathogens.

Acknowledgements MKD and TABT wish to acknowledge the support of the National Science Foundation Grant (#2130658) for their contribution to this work. All the other authors acknowledge their respective universities and departments for their support during the preparation of this manuscript.

Author contributions TAB-T, SB, RRK, GO-B, CA—Preparation of initial draft, JJ, DA, MKD—Revision.

Funding Not applicable.

Declarations

Conflict of interest Authors declare that there is no conflict of interest

References

Abdul-Mutalib NA, Syafinaz AN, Sakai K, Shirai Y (2015) An overview of foodborne illness and food safety in Malaysia. Int Food Res J 22:896

Adley CC, Ryan MP (2016) The nature and extent of foodborne disease. In: Antimicrobial food packaging, pp. 1–10. Academic Press

Alsager OA, Alotaibi KM, Alswieleh AM, Alyamani BJ (2018) Colorimetric aptasensor of vitamin D3: a novel approach to eliminate residual adhesion between aptamers and gold nanoparticles. Sci Rep 8:12947

Anany H et al (2018) Print to detect: a rapid and ultrasensitive phagebased dipstick assay for foodborne pathogens. Anal Bioanal Chem 410:1217–1230

- Arghya S, Suradip D, Pragya S, Utpal B (2012) Aptasensors in health, environment and food safety monitoring. Open J Appl Biosensor. https://doi.org/10.4236/ojab.2012.12002
- Aschfalk A, Müller W (2002) Clostridium perfringens toxin types from wild-caught Atlantic cod (*Gadus morhua* L.), determined by PCR and ELISA. Can J Microbiol 48:365–368
- Aslan Y, Atabay M, Chowdhury HK, Göktürk I, Saylan Y, Inci F (2023) Aptamer-based point-of-care devices: emerging technologies and integration of computational methods. Biosensors 13:569
- Astill J, Dara RA, Campbell M, Farber JM, Fraser EDG, Sharif S, Yada RY (2019) Transparency in food supply chains: a review of enabling technology solutions. Trends Food Sci Technol 91:240–247
- Bacon RT, Sofos JN (2003) Characteristics of biological hazards in foods. Food Safety Handb 10:157–195
- Barbau-Piednoir E, Mahillon J, Pillyser J, Coucke W, Roosens NH, Botteldoorn N (2014) Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J Microbiol Methods 103:131–137
- Berhanu G, Dula TI (2020) Types, importance and limitations of DNA microarray. Glob J Biotechnol Biochem 15:25–31
- Bharadwaj S, Dwivedi VD, Kirtipal N (2019) Application of whole genome sequencing (WGS) approach against identification of foodborne bacteria. In: Microbial genomics in sustainable agroecosystems. Springer, pp 131–148
- Bhunia AK (2018) Introduction to foodborne pathogens. In: Foodborne microbial pathogens. Springer, pp 1–23
- Billington C, Kingsbury JM, Rivas L (2022) Metagenomics approaches for improving food safety: a review. J Food Prot 85:448–464
- Bintsis T (2017) Foodborne pathogens. AIMS Microbiol 3:529
- Bintsis T (2018) Lactic acid bacteria as starter cultures: an update in their metabolism and genetics. AIMS Microbiol 4:665
- Boukharouba A, González A, García-Ferrús M, Ferrús MA, Botella S (2022) Simultaneous detection of four main foodborne pathogens in ready-to-eat food by using a simple and rapid multiplex PCR (mPCR) assay. Int J Environ Res Public Health 19:1031
- Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC (2017) A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75:1–13
- Byrne B, Stack E, Gilmartin N, O'Kennedy R (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 9:4407–4445
- Cai R, Zhang Z, Chen H, Tian Y, Zhou N (2021) A versatile signalon electrochemical biosensor for *Staphylococcus aureus* based on triple-helix molecular switch. Sens Actuators B Chem 326:128842
- Cajka T, Vaclavikova M, Dzuman Z, Vaclavik L, Ovesna J, Hajslova J (2014) Rapid LC-MS-based metabolomics method to study the Fusarium infection of barley. J Sep Sci 37:912–919
- Cao X et al (2009) Combining use of a panel of ssDNA aptamers in the detection of *Staphylococcus aureus*. Nucleic Acids Res 37:4621–4628
- Celik Uzuner S (2020) Mitochondrial DNA methylation misleads global DNA methylation detected by antibody-based methods. Anal Biochem 601:113789. https://doi.org/10.1016/j.ab.2020. 113789
- Chao G, Zhou X, Jiao X, Qian X, Xu L (2007) Prevalence and antimicrobial resistance of foodborne pathogens isolated from food products in China. Foodborne Pathog Dis 4:277–284
- Chen Y, Wang Z, Shi Q, Huang S, Yu T, Zhang L, Yang H (2021) Multiplex PCR method for simultaneous detection of five pathogenic bacteria closely related to foodborne diseases. 3 Biotech 11:1–8
- Chen W, Lai Q, Zhang Y, Liu Z (2022) Recent advances in aptasensors for rapid and sensitive detection of *Staphylococcus Aureus*. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.889431

- Cifuentes A (2009) Food analysis and foodomics. J Chromatogr A 1216(43):7109. https://doi.org/10.1016/j.chroma.2009.09.018
- Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834–842
- Coral-Almeida M, Gabriël S, Abatih EN, Praet N, Benitez W, Dorny P (2015) Taenia solium human cysticercosis: a systematic review of sero-epidemiological data from endemic zones around the world. PLoS Negl Trop Dis 9:e0003919
- Costantini F et al (2019) Fluorescent label-free aptasensor integrated in a lab-on-chip system for the detection of ochratoxin a in beer and wheat. ACS Appl Bio Mater 2:5880–5887. https://doi.org/10.1021/acsabm.9b00831
- Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic *Escherichia coli*. Clin Microbiol Rev 26:822–880
- de Blackburn CW, McClure PJ (2009) Pathogenic Bacillus species. In: Foodborne pathogens. Elsevier, pp 844–888
- Desta B (2020) Estimating burden of foodborne diseases where public health impact is higher and data scarcer: a study in four African countries. Eur J Public Health 30:ckaa165-950
- Divya DDS, Kumari R, Mahapatra S, Kumar R, Chandra P (2022) Ultrasensitive aptasensors for the detection of viruses based on opto-electrochemical readout systems. Biosensors 12:81
- Dkhar DS, Kumari R, Malode SJ, Shetti NP, Chandra P (2022) Integrated lab-on-a-chip devices: fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal 223:115120
- Doyle MP, Diez-Gonzalez F, Hill C (2020) Food microbiology: fundamentals and frontiers. John Wiley & Sons, Hoboken
- Du X-j, Zhou T-j, Li P, Wang S (2017) A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay. Mol Cell Probes 34:37–44
- Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchimica Acta 181:647–653
- Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923
- Duan N, Chang B, Zhang H, Wang Z, Wu S (2016a) Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 218:38–43
- Duan Y, Gao Z, Wang L, Wang H, Zhang H, Li H (2016b) Selection and identification of chloramphenicol-specific DNA aptamers by Mag-SELEX. Appl Biochem Biotechnol 180:1644–1656
- Dursun AD, Borsa BA, Bayramoglu G, Arica MY, Ozalp VC (2022) Surface plasmon resonance aptasensor for Brucella detection in milk. Talanta 239:123074. https://doi.org/10.1016/j.talanta. 2021.123074
- Dwivedi HP, Smiley RD, Jaykus L-A (2010) Selection and characterization of DNA aptamers with binding selectivity to *Campylobacter jejuni* using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334
- E Wang R, Zhang Y, Cai J, Cai W, Gao T (2011) Aptamer-based fluorescent biosensors. Curr Med Chem 18:4175–4184
- Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822
- Engvall EO, Perlmann P (1972) Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzymelabeled anti-immunoglobulin in antigen-coated tubes. J Immunol 109(1):129–135
- Fang Z, Wu W, Lu X, Zeng L (2014) Lateral flow biosensor for DNA extraction-free detection of salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 56:192–197

- Farka Z, Jurik T, Kovář D, Trnkova L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042
- Ferone M, Gowen A, Fanning S, Scannell AGM (2020) Microbial detection and identification methods: bench top assays to omics approaches. Compr Rev Food Sci Food Saf 19:3106–3129
- Flynn K et al (2019) An introduction to current food safety needs. Trends Food Sci Technol 84:1–3
- Foddai ACG, Grant IR (2020) Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol 104:4281–4288
- Fujimoto Y, Nakamura Y, Ohuchi S (2012) HEXIM1-binding elements on mRNAs identified through transcriptomic SELEX and computational screening. Biochimie 94:1900–1909
- Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15
- Gao X, Jiang T, Qin W (2022) Potentiometric aptasensing of Escherichia coli based on electrogenerated chemiluminescence as a highly sensitive readout. Biosens Bioelectron 200:113923. https://doi.org/10.1016/j.bios.2021.113923
- García A, Fox JG, Besser TE (2010) Zoonotic enterohemorrhagic Escherichia coli: a One Health perspective. ILAR J 51:221–232
- Gaudreault J, Forest-Nault C, De Crescenzo G, Durocher Y, Henry O (2021) On the use of surface plasmon resonance-based biosensors for advanced bioprocess monitoring. Processes 9:1996
- Geng T, Bhunia AK (2006) Optical biosensors in foodborne pathogen detection. In: Smart biosensor technology. CRC Press, pp 527–542
- Glynn B, Lahiff S, Wernecke M, Barry T, Smith TJ, Maher M (2006) Current and emerging molecular diagnostic technologies applicable to bacterial food safety. Int J Dairy Technol 59:126–139
- Gómez-Govea M, Solís-Soto L, Heredia N, García S, Moreno G, Tovar O, Isunza G (2012) Analysis of microbial contamination levels of fruits and vegetables at retail in Monterrey, Mexico. J Food Agric Environ 10:152–156
- Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT, Hall AJ, Cole D (2013) Surveillance for foodborne disease outbreaks— United States, 1998–2008. Morb Mortal Wkly Rep Recomm Rep 62:1–34
- Gourama H (2020) Foodborne pathogens. In: Food safety engineering. Springer, pp 25–49
- Grace D (2015) Food safety in low and middle income countries. Int J Environ Res Public Health 12:10490–10507
- Gribanyov D, Zhdanov G, Olenin A, Lisichkin G, Gambaryan A, Kukushkin V, Zavyalova E (2021) SERS-based colloidal aptasensors for quantitative determination of influenza virus. Int J Mol Sci 22:1842
- Grumezescu AM, Holban AM (2018) Food control and biosecurity, vol 16. Academic Press, Cambridge
- Hamula CLA, Guthrie JW, Zhang H, Li X-F, Le XC (2006) Selection and analytical applications of aptamers. TrAC Trends Anal Chem 25:681–691
- Hamula CLA, Zhang H, Guan LL, Li X-F, Le XC (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819
- Han D et al (2019) An enzyme-free electrochemiluminesce aptasensor for the rapid detection of Staphylococcus aureus by the quenching effect of MoS_2 -PtNPs-vancomycin to $S_2O_8^{\;2-}/O_2$ system. Sens Actuators B Chem 288:586–593
- Hayat A, Marty JL (2014) Aptamer based electrochemical sensors for emerging environmental pollutants. Front Chem 2:41
- Heredia N, García S (2018) Animals as sources of food-borne pathogens: a review. Anim Nutr 4:250–255
- Holban AM, Grumezescu AM (2018) Preface for volume 16: food control and biosecurity. In: Food control and biosecurity. Elsevier, pp. xxiii–xxvi

- Holman DB et al (2019) Chlortetracycline enhances tonsil colonization and fecal shedding of multidrug-resistant *Salmonella enterica* serovar Typhimurium DT104 without major alterations to the porcine tonsillar and intestinal microbiota. Appl Environ Microbiol 85:e02354-e12318
- Holmqvist M, Stensjö K, Oliveira P, Lindberg P, Lindblad P (2009) Characterization of the hupSL promoter activity in Nostoc punctiformeATCC 29133. BMC Microbiol 9:1–12
- Hong S-L, Xiang M-Q, Tang M, Pang D-W, Zhang Z-L (2019) Ebola virus aptamers: from highly efficient selection to application on magnetism-controlled chips. Anal Chem 91:3367–3373
- Huang X et al (2020) AIEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Compr Rev Food Sci Food Saf 19:2297–2329
- Huang Z, Yu X, Yang Q, Zhao Y, Wu W (2021) Aptasensors for Staphylococcus aureus risk assessment in food. Front Microbiol 12:714265
- Hünniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal Chem 86:10940–10947
- Hurley D et al (2019) Whole-genome sequencing-based characterization of 100 Listeria monocytogenes isolates collected from food processing environments over a four-year period. Msphere 4:e00252-e1219
- Hussain MA, Dawson CO (2013) Economic impact of food safety outbreaks on food businesses. Foods 2:585–589
- Jagadeesan B et al (2019) The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol 79:96–115
- Jaisankar A, Krishnan S, Rangasamy L (2022) Recent developments of aptamer-based lateral flow assays for point-of-care (POC) diagnostics. Anal Biochem 655:114874
- Jaklevic MC (2020) FDA expands food safety collaboration with Mexico. JAMA 324:1934–1934
- Jauset-Rubio M, El-Shahawi MS, Bashammakh AS, Alyoubi AO, Ciara KO (2017) Advances in aptamers-based lateral flow assays. TrAC Trends Anal Chem 97:385–398
- Jemmi T, Stephan R (2006) Listeria monocytogenes: food-borne pathogen and hygiene indicator. Rev Sci Tech 25:571–580
- Jia F, Duan N, Wu S, Dai R, Wang Z, Li X (2016) Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim Acta 183:337–344
- Khang J, Kim D, Chung KW, Lee JH (2016) Chemiluminescent aptasensor capable of rapidly quantifying *Escherichia coli* O157: H7. Talanta 147:177–183
- Khateb H, Klös G, Meyer RL, Sutherland DS (2020) Development of a label-free LSPR-apta sensor for *Staphylococcus aureus* detection. ACS Appl Bio Mater 3:3066–3077
- Kim JS et al (2007) A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: *Escherichia coli* O157: H7, *Salmonella*, *Staphylococcus aureus*, *Listeria monocytogenes*, and *Vibrio parahaemolyticus*. J Food Prot 70:1656–1662
- Kolm C et al (2020) DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci Rep 10:1–16
- Kumar BK, Raghunath P, Devegowda D, Deekshit VK, Venugopal MN, Karunasagar I, Karunasagar I (2011) Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic *Vibrio parahaemolyticus* in seafood. Int J Food Microbiol 145:244–249
- Kwol VS, Avci T, Eluwole KK, Dalhatu A (2020) Food safety knowledge and hygienic-sanitary control: a needed company for public well-being. J Public Aff 20:e2067

- Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770
- Lee H, Yoon Y (2021) Etiological agents implicated in foodborne illness world wide. Food Sci Anim Resour 41:1
- Lerdsri J, Chananchana W, Upan J, Sridara T, Jakmunee J (2020) Label-free colorimetric aptasensor for rapid detection of aflatoxin B1 by utilizing cationic perylene probe and localized surface plasmon resonance of gold nanoparticles. Sens Actuators B Chem 320:128356
- Liu R et al (2021) Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 122:107808. https://doi.org/10.1016/j.foodcont.2020. 107808
- Liu M et al (2022) Liquid crystal-based optical aptasensor for the sensitive and selective detection of Gram-negative bacteria. Sci China Chem 65:2023–2030. https://doi.org/10.1007/s11426-022-1336-x
- Liu J, Xie G, Lv S, Xiong Q, Xu H (2023) Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. TrAC Trends Anal Chem 160:116953
- Long W, Patra I, Rahi Alhachami F, Akhrarovich Sherbekov U, Majdi A, Abed SA (2022) aptamer based nanoprobes for detection of foodborne virus in food and environment samples: recent progress and challenges. Crit Rev Anal Chem. https://doi.org/10. 1080/10408347.2022.2114785
- Lorenz C, Von Pelchrzim F, Schroeder R (2006) Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels. Nat Protoc 1:2204–2212
- Lorenz C et al (2010) Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res 38:3794–3808
- Lund BM, O'Brien SJ (2011) The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog Dis 8:961–973
- Ma Y, Li X, Li W, Liu Z (2018) Glycan-imprinted magnetic nanoparticle-based SELEX for efficient screening of glycoprotein-binding aptamers. ACS Appl Mater Interfaces 10:40918–40926
- Mahmoud B (2019) The most common food safety incidents related to developing countries. Food Safety Magazine 11(1–4). https://www.foodsafetymagazine.com/enewsletter/the-most-common-food-safetyincidents-related-to-developing-countries/
- Majdinasab M, Hayat A, Marty JL (2018) Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends Anal Chem 107:60–77
- Mandal PK, Biswas AK, Choi K, Pal UK (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87–102
- Masdor NA, Altintas Z, Tothill IE (2017) Surface plasmon resonance immunosensor for the detection of *Campylobacter jejuni*. Chemosensors 5:16
- McMeekin TA (2003) Detecting pathogens in food. Elsevier, Amsterdam
- Meyer C, Fredriksson-Ahomaa M, Sperner B, Märtlbauer E (2011) Detection of Listeria monocytogenes in pork and beef using the VIDAS® LMO2 automated enzyme linked immunoassay method. Meat Sci 88:594–596
- Miller S, Chiu C (2022) The role of metagenomics and next-generation sequencing in infectious disease diagnosis. Clin Chem 68:115–124
- Mishra RK, Hayat A, Catanante G, Ocaña C, Marty J-L (2015) A label free aptasensor for Ochratoxin A detection in cocoa beans: an application to chocolate industries. Anal Chim Acta 889:106–112
- Mulugeta K (2010) Food safety and foodborne disease in 21st century homes. Canada J Infect Dis 14(5):277–280

- Nassarawa SS, Luo Z, Lu Y (2022) Conventional and emerging techniques for detection of foodborne pathogens in horticulture crops: a leap to food safety. Food Bioprocess Technol 15:1248–1267
- Nehra M, Kumar V, Kumar R, Dilbaghi N, Kumar S (2022) Current scenario of pathogen detection techniques in agro-food sector. Biosensors 12:489
- Nguyen TT-Q, Gu MB (2023) An ultrasensitive electrochemical aptasensor using Tyramide-assisted enzyme multiplication for the detection of *Staphylococcus aureus*. Biosens Bioelectron 228:115199. https://doi.org/10.1016/j.bios.2023.115199
- Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510
- Nikoleli G-P, Siontorou CG, Nikolelis DP, Bratakou S, Karapetis S, Tzamtzis N (2018) Biosensors based on microfluidic devices lab-on-a-chip and microfluidic technology. Nanotechnol Biosens. https://doi.org/10.1016/B978-0-12-813855-7.00013-1
- Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425
- Pandhi S, Kumar A, Mishra S (2023) Foodborne diseases: causative agents and related microorganisms. In: Global food safety. Apple Academic Press, pp 39–55
- Park L, Kim J, Lee JH (2013) Role of background observed in aptasensor with chemiluminescence detection. Talanta 116:736–742
- Pestourie C et al (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16:323–335
- Pires SM et al (2021) Burden of foodborne diseases: think global, act local. Curr Opin Food Sci 39:152–159
- Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28:848–861
- Priyanka B, Patil RK, Dwarakanath S (2016) A review on detection methods used for foodborne pathogens. Indian J Med Res 144:327
- Radhakrishnan S, Mathew M, Rout CS (2022) Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Mater Adv 3:1874–1904
- Radhika M, Saugata M, Murali HS, Batra HV (2014) A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species. Braz J Microbiol 45:667–676
- Radi A-E (2011) Electrochemical aptamer-based biosensors: recent advances and perspectives. Int J Electrochem 2011:863196. https://doi.org/10.4061/2011/863196
- Radi A-E, Abd-Ellatief MR (2021) Electrochemical aptasensors: current status and future perspectives. Diagnostics 11:104
- Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R (2018) Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov Today 23:448–455
- Ronholm J (2018) Game changer-Next generation sequencing and its impact on food microbiology, vol 9. Frontiers Media, Lausanne
- Rubab M, Shahbaz HM, Olaimat AN, Oh D-H (2018) Biosensors for rapid and sensitive detection of *Staphylococcus aureus* in food. Biosens Bioelectron 105:49–57
- Rudi K, Moen B, Drømtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024
- Sande MG et al (2022) Electrochemical aptasensor for the detection of the key virulence factor YadA of *Yersinia enterocolitica*. Biosensors (basel). https://doi.org/10.3390/bios12080614
- Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira A (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81–87

- Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Kamalesh R, Sneha S, Yaashikaa PR (2021) Methods of detection of foodborne pathogens: a review. Environ Chem Lett 19:189–207
- Sarojnalini C, Hei A (2019) Fish as an important functional food for quality life u: functional foods. Lagouri, V, Ured, pp. 77–97
- Schatz GC, Young MA, Duyne RPV (2006) Electromagnetic mechanism of SERS. In: Surface-enhanced Raman scattering. Springer, pp 19–45
- Schmelcher M, Loessner MJ (2014) Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4:e28137
- Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA (2010) Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS ONE 5:e11337
- Shamah SM, Healy JM, Cload ST (2008) Complex target SELEX. Acc Chem Res 41:130–138
- Sheng L, Wang L (2021) The microbial safety of fish and fish products: recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 20:738–786
- Shrivastava S, Lee W-I, Lee N-E (2018) Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosens Bioelectron 109:90–97
- Smolsky J, Kaur S, Hayashi C, Batra SK, Krasnoslobodtsev AV (2017) Surface-enhanced Raman scattering-based immunoassay technologies for detection of disease biomarkers. Biosensors 7:7
- Song Z, Zhao Z, Ren W, He B (2023) Aptamer-based colorimetric and lateral flow chromatographic strip detection of Aflatoxin B 1 in corn samples. https://doi.org/10.21203/rs.3.rs-2667935/v1
- Sorrenti V, Di Giacomo C, Acquaviva R, Barbagallo I, Bognanno M, Galvano F (2013) Toxicity of ochratoxin A and its modulation by antioxidants: a review. Toxins 5:1742–1766
- Sousa CPd (2008) The impact of food manufacturing practices on food borne diseases. Braz Arch Biol Technol 51:615–623
- Stein RA, Chiril\(\tilde{a}\) M (2017) Routes of transmission in the food chain.
 In: Foodborne diseases. Elsevier, pp 65–103
- Suliman Maashi M (2023) CRISPR/Cas-based aptasensor as an innovative sensing approaches for food safety analysis: recent progresses and new horizons. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2023.2188955
- Tao J et al (2020) A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens. J Food Sci 85:744–754
- Tao X, Liao Z, Zhang Y, Fu F, Hao M, Song Y, Song E (2021) Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of *Staphylococcus aureus*. Chin Chem Lett 32:791–795
- Teng J et al (2016) Aptamer-based technologies in foodborne pathogen detection. Front Microbiol 7:1426
- Tian C, Zhao L, Qi G, Zhang S (2023) Trace detection of E. coli O157:H7 cells by an Au nanoparticle-based SERS aptasensor. ACS Appl Nano Mater 6:1386–1394. https://doi.org/10.1021/acsanm.2c05031
- Touron A, Berthe T, Pawlak B, Petit F (2005) Detection of Salmonella in environmental water and sediment by a nested-multiplex polymerase chain reaction assay. Res Microbiol 156:541–553
- Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510
- Umesha S, Manukumar HM (2018) Advanced molecular diagnostic techniques for detection of food-borne pathogens: current applications and future challenges. Crit Rev Food Sci Nutr 58:84–104
- Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol Adv 28:232–254

- Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658
- Wang C et al (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102:15–22
- Wang W-W, Han X, Chu L-Q (2019) Polyadenine-mediated immobilization of aptamers on gold substrate for direct detection of bacterial pathogens. Anal Sci. https://doi.org/10.2116/analsci.19P110
- Wang M, Zhang Y, Tian F, Liu X, Du S, Ren G (2021) Overview of rapid detection methods for Salmonella in foods: progress and challenges. Foods 10:2402
- Wen J-D, Gray DM (2004) Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX. Nucleic Acids Res 32:e182–e182
- Weng X, Neethirajan S (2016) A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 85:649–656
- Weng X, Neethirajan S (2017) Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim Acta 184:4545–4552
- Weng X, Neethirajan S (2018) Paper-based microfluidic aptasensor for food safety. J Food Saf 38:e12412
- World Health O (2015) WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference grou. World Health Organization, Geneva, pp 2007–2015
- Wu W, Zhao S, Mao Y, Fang Z, Lu X, Zeng L (2015) A sensitive lateral flow biosensor for *Escherichia coli* O157: H7 detection based on aptamer mediated strand displacement amplification. Anal Chim Acta 861:62–68
- Xu L, Callaway ZT, Wang R, Wang H, Slavik MF, Wang A, Li Y (2015) A fluorescent aptasensor coupled with nanobead-based immunomagnetic separation for simultaneous detection of four foodborne pathogenic bacteria. Trans ASABE 58:891–906
- Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B (2021) Systematic evolution of ligands by exponential enrichment technologies and aptamer-based applications: recent progress and challenges in precision medicine of infectious diseases. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.704077/full
- Yan X-L, Xue X-X, Luo J, Jian Y-T, Tong L, Zheng X-J (2020) Construction of chemiluminescence aptasensor platform using magnetic microsphere for ochratoxin A detection based on G bases derivative reaction and Au NPs catalyzing luminol system. Sens Actuators B Chem 320:128375
- Yi J et al (2019) A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of *Salmonella typhimurium*. Microchim Acta 186:1–8
- Yu M et al (2017) Dual-recognition förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem 89:4085–4090
- Yuan R, Cai J, Ma H, Luo Y, Wang L, Su S (2023) Recent progress in electrochemical aptasensors: construction and application. Chemosensors 11:488
- Zahra Q, Khan QA, Luo Z (2021) Advances in optical aptasensors for early detection and diagnosis of various cancer types. Front Oncol 11:632165
- Zavyalova E et al (2021) SERS-based aptasensor for rapid quantitative detection of SARS-CoV-2. Nanomaterials 11:1394
- Zeng D, Chen Z, Jiang Y, Xue F, Li B (2016) Advances and challenges in viability detection of foodborne pathogens. Front Microbiol 7:1833
- Zeng L, Wang L, Hu J (2018) Current and emerging technologies for rapid detection of pathogens. Biosens Technol Detect Pathog Prospect Way Anal 73178:6–19

- Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples. Molecules 23:291
- Zhang J, Zhang B, Wu Y, Jia S, Fan T, Zhang Z, Zhang C (2010) Fast determination of the tetracyclines in milk samples by the aptamer biosensor. Analyst 135:2706–2710
- Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and *Staphylococcus* aureus. Biosens Bioelectron 74:872–877
- Zhang Z, Zhou J, Du X (2019) Electrochemical biosensors for detection of foodborne pathogens. Micromachines 10:222
- Zhang T, Liu J, Zhang L, Irfan M, Su X (2023) Recent advances in the aptamer-based biosensors for potassium detection. Analyst 48(21):5340–5354. https://doi.org/10.1039/D3AN01053H
- Zhao X, Lin C-W, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24:297–312
- Zhou B et al (2022) Novel species-specific targets for real-time PCR detection of four common pathogenic *Staphylococcus spp*. Food Control 131:108478

Zhu S, Tang Y, Shi B, Zou W, Wang X, Wang C, Wu Y (2021) Oligonucleotide-mediated the oxidase-mimicking activity of Mn3O4 nanoparticles as a novel colorimetric aptasensor for ultrasensitive and selective detection of *Staphylococcus aureus* in food. Sens Actuators B Chem 349:130809. https://doi.org/10.1016/j. snb.2021.130809

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

