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Abstract

Recent works in amortized sublinear Private Information Retrieval

(PIR) have demonstrated great potential. Despite the inspiring

progress, existing schemes in this new paradigm are still faced

with various challenges and bottlenecks, including large client

storage, high communication, poor practical e�ciency, need for

non-colluding servers, or restricted client query sequences. We

present simple and practical amortized sublinear stateful private

information retrieval schemes without these drawbacks using new

techniques in hint construction and usage. In particular, we intro-

duce a dummy set to the client’s request to eliminate any leakage

or correctness failures. Our techniques can work with two non-

colluding servers or a single server. The resulting PIR schemes

achieve practical e�ciency. The online response overhead is only

twice that of simply fetching the desired entry without privacy. For

a database with 228 entries of 32-byte, each query of our two-server

scheme consumes 34 KB of communication and 2.7 milliseconds

of computation, and each query of our single-server scheme con-

sumes amortized 47 KB of communication and 4.5 milliseconds of

computation. These results are one or more orders of magnitude

better than prior works.
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1 Introduction

Private Information Retrieval (PIR) [8] allows a client to fetch an

entry from a public database on a server without revealing which

entry the client is interested in [8]. An e�cient PIR scheme enables

many privacy-preserving applications, such as password check [1],
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safe browsing [19], anonymous communication [2, 27], and private

media streaming [16].

Despite decades of research [1, 2, 6, 8, 11, 13–15, 20, 25, 26, 28],

PIR protocols are still quite expensive, especially in the single-server

setting that does not assume the existence of non-colluding servers.

This is due in large part to a well-known fundamental barrier that

limits the practical e�ciency of conventional PIR schemes: The

amount of server computation will be linear in the size of the

database. Intuitively, a PIR scheme must ask the server to touch

every entry in the database; otherwise, the server learns that the

untouched entries are not what the client is looking for.

Several directions have been explored to circumvent this funda-

mental barrier. A promising and fruitful recent attempt has been

the paradigm of stateful PIR, �rst proposed by Patel, Persiano, and

Yeo [31]. In this paradigm, the client stores hints (hence called state-

ful) and uses these hints to speed up queries. The hints, usually

in the form of parities of subsets of database entries, need to be

retrieved privately. This is done in an o�ine phase that can be fairly

expensive or may even require downloading the entire database.

After an expensive o�ine phase, the client can make many online

queries cheaply before having to rerun the o�ine phase. This makes

the stateful PIR scheme very e�cient in an amortized sense after

su�ciently many queries. Although the �rst stateful PIR scheme

still incurred linear server computation per query, the paradigm

proves promising.

Corrigan-Gibbs and Kogan [10] give the �rst stateful PIR scheme

with amortized sublinear server computation. Follow-up works

continue to make further improvements and unlock more poten-

tial of this paradigm [9, 19, 21, 22, 32–34]. Despite the inspiring

progress, existing amortized sublinear stateful PIR schemes are still

faced with various challenges, including large client storage, high

communication, and subpar practical e�ciency. Many schemes also

have to resort to heavy-weight theoretical tools [21, 32, 33], parallel

repetition [9, 21, 32, 33], or restricted client query sequences [34].

This paper presents simple and practical amortized sublinear

stateful PIR schemes that avoid most of the aforementioned draw-

backs. Our schemes achieve constant online response overhead,

take milliseconds of computation, rely only on pseudorandom func-

tions, need no repetition, and have no restrictions on client queries.

We could not address all the bottlenecks, though. Our schemes

still require relatively large client storage and moderate request

size, and the single-server variant still requires streaming the entire

database in the o�ine phase.

Overview of existing amortized sublinear stateful PIR. To better

explain our techniques and contributions, let us brie�y go over the

blueprint of amortized sublinear stateful PIR by Corrigan-Gibbs
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Table 1: Comparison with recent practical amortized sublinear stateful PIR schemes. Request size and client computation

are measured in words of size _ or log# . Response size, client storage, and server computation are measured in database

entry size (response is thus a blowup over the insecure baseline). Major performance bottlenecks are marked in red.

No. of Amortized communication Storage Amortized computation

Scheme Servers Request Response Client Client Server

Corrigan-Gibbs-Kogan [10] 2 $ (_
√
# ) $ (_) $ (_2

√
# ) $ (_

√
# ) $ (_

√
# )

Checklist [19] 2 $ (log# ) $ (1) $ (# ) $ (
√
# ) $ (

√
# )

TreePIR [22] 2 $ (log# ) $ (
√
# ) 1 $ (_

√
# ) $ (

√
# log# ) $ (

√
# log# )

This paper 2 $ (
√
# ) $ (1) $ (_

√
# ) $ (

√
# ) $ (

√
# )

Corrigan et al. [9] 1 $ (_
√
# ) $ (_) $ (_2

√
# ) $ (_

√
# ) $ (_

√
# )

Piano PIR 2 [34] 1 $ (
√
# ) $ (

√
# /_) $ (_

√
# ) $ (

√
# ) $ (

√
# )

This paper 1 $ (
√
# ) $ (

√
# /_) $ (_

√
# ) $ (

√
# ) $ (

√
# )

1 TreePIR [22] can invoke an extra single-server PIR to reduce the asymptotic response overhead, but a variant without this second PIR gives better

practical e�ciency and makes a fairer comparison.
2 Piano requires a stronger assumption than standard PIR, i.e., client queries must have no adversarial in�uence.

and Kogan [10]. The client privately retrieves hints in an o�ine

phase. Each hint involves a subset ( of
√
# random distinct indices

within [0, # − 1] where # is the number of entries in the database.

For each hint, the client stores the subset ( and the corresponding

parity
⊕

ğ∈ď DB[8] where DB[8] is the 8-th entry of the database,

and
⊕

represents XOR. In the online phase, if the client wants

to retrieve the 8-th entry, it �nds a subset ( that contains 8 . Since

the client stores the parity of entries in ( , ideally, it just needs to

ask the server for the parity of entries in ( \ {8}, from which it can

easily recover DB[8].
However, with the above high-level strategy, the client always

sends the server a subset that does not contain the queried index 8 .

This is insecure because the server learns that the queried entry is

not one of those in ( \ {8}. To �x this problem, Corrigan-Gibbs and

Kogan suggest that the client occasionally removes an index other

than 8 from ( . However, when the client does so, the client loses the

ability to retrieve the queried entry 8 . To compensate for this loss of

correctness, _ instances of their protocol are executed in parallel to

achieve an exponentially small (in _) failure probability. This blows

up all e�ciency metrics (communication, computation, and client

storage) by a factor of _ and renders the scheme impractical.

Two schemes have been proposed [19, 22] to avoid this _ fac-

tor blowup, but both come with notable drawbacks. First, both

schemes require two non-colluding servers, and there is no clear

way to extend them to single-server stateful PIR. Second, both

schemes make sacri�ces on e�ciency. The Checklist scheme by

Kogan and Corrigan-Gibbs [19] requires the client to pay either

¬(# ) storage or ¬(# ) computation per query, both of which are

clearly undesirable. The TreePIR scheme by Lazzaretti and Papa-

mathou [22] incurs a response overhead of Θ(
√
# ) on every query.

This large response overhead would be prohibitive for databases

with large entries. Though this problem could be mitigated in the-

ory by invoking another regular (i.e., not stateful) single-server PIR

scheme, that would not be e�cient in practice. We will explain this

in more detail in Section 5.

Another closely related recent work is Piano PIR by Zhou et

al. [34]. Their paper adapts the TreePIR scheme to the single-server

setting but has to make an extra assumption that the client queries

have no adversarial in�uence. While this extra restriction may

be justi�able in certain scenarios, it is not always valid and is a

departure from the standard PIR model. Section 2 discusses this

issue in more detail.

Our results. In this paper, we propose new techniques in hint

construction and usage to obtain simple and practical amortized

sublinear stateful PIR schemes. Our new hint system eliminates

the aforementioned leakage associated with removing the queried

index, thus obviating the need for parallel repetition. We achieve

constant online response—just twice that of simply fetching the

desired entry without privacy—as well as sublinear client storage

and sublinear client computation. Our method works for both the

two-server and the single-server settings. The two-server version

further achieves constant amortized response overhead, while the

single-server version has $ (
√
# /_) amortized response overhead

due to the need to stream the entire database in the o�ine phase.

Table 1 compares recent practical amortized sublinear PIR schemes

in terms of asymptotic e�ciency. We exclude schemes that rely on

heavy theoretical tools, such as those based on oblivious locally

decodable codes [5, 7, 23] or privately puncturable/programmable

pseudorandom functions [21, 32, 33]. The three major performance

bottlenecks in prior works are marked in red: _ factor repetition,

Θ(
√
# ) response overhead, and linear client storage. Our schemes

avoid all three bottlenecks. Compared with Piano PIR, our scheme

has the same asymptotic e�ciency but has better concrete e�ciency

and places no restriction on client queries.

Our scheme enjoys good concrete e�ciency. Take for example

an 8 GB database consisting of 228 entries where each entry is 32

bytes. Our two-server scheme requires 60 MB of client storage, and

consumes 34 KB of communication and 2.7 milliseconds of computa-

tion per query. In comparison, existing two-server schemes require

either over 1 GB of client storage or over 1 MB of communication.

For the same database, our single-server scheme requires 100 MB

of client storage, and consumes 47 KB of communication and 4.5

milliseconds of computation, amortized per query. In comparison,

the best prior scheme achieving the standard PIR correctness would



Simple and Practical Amortized Sublinear Private Information Retrieval using Dummy Subsets CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

be at least two orders of magnitude more expensive. Compared

with Piano PIR [34], our protocol o�ers up to 43% reduction in

client storage, up to 53% reduction in amortized communication,

and up to 73% reduction in amortized computation, in addition to

the stronger and standard PIR correctness.

2 Model and Preliminary

Private Information Retrieval (PIR). Given a database DB of #

entries and a query index 8 , the client wants to privately retrieve

the 8-th entry in the database. A PIR protocol should satisfy the

following two properties.

• Correctness: If the client and the server correctly execute

the protocol, then the client retrieves the queried entry.

• Privacy: The server learns nothing about the client’s query

index.

The privacy requirement of PIR can be more rigorously captured

by a game between the server, who is also the adversary, and the

client. The game resembles the standard message indistinguishabil-

ity game for encryption.

(1) The server picks two indices 8 and 8′, and send them to the

client.

(2) The client �ips a coin 1 ← {0, 1}. The client queries index 8
if 1 = 0 and queries index 8′ if 1 = 1.

(3) The server tries to guess 1.

If the server can guess 1 correctly with 0.5 + n probability where n

is non-negligible, then the PIR protocol is insecure.

Stateful PIR. We now extend the above PIR de�nition with a

single query to a stateful PIR that deals with a sequence of queries.

Given a database DB of # entries and a sequence of query indices

I = [81, 82, 83, . . .], the client makes any (polynomial) number of

queries one by one. A stateful PIR protocol should satisfy the fol-

lowing two properties.

• Correctness: If the client and the server correctly execute

the protocol, then the client retrieves the 8 Ġ -th entry in the

database at the end of the 9-th query.

• Privacy: The server learns nothing about the client’s se-

quence of query indices.

Similarly, the privacy requirement of stateful PIR can be more

rigorously captured by a game between the client and the server.

(1) The server picks two sequences of query indices I and I
′ of

equal length and send them to the client.

(2) The client �ips a coin1 ← {0, 1}. The client queries sequence
I if 1 = 0 and queries index I′ if 1 = 1.

(3) The server tries to guess 1.

If the server can guess 1 correctly with 0.5 + n probability where n

is non-negligible, then the stateful PIR protocol is insecure.

Note that we let the server choose the two sequences of query

indices it wants to distinguish, similar to the indistinguishability

game for encryption. Likewise, correctness should also hold for

any query sequence, including ones chosen by the adversary. We

could make the server (adversary) even more powerful by letting

it choose the query sequences adaptively, i.e., it can choose the

next pair of query indices after interacting with the client for the

previous query in the sequence. Likewise, correctness can also

be stated for any adaptively constructed sequence. Most existing

stateful PIR schemes, including ours, are correct and secure even

for adaptively constructed sequences of queries.

Importance of supporting arbitrary query sequences. Piano PIR [34],

however, does not satisfy the above de�nition (even for statically

constructed queries) because it requires the client query sequence

to have no adversarial in�uence. This assumption may be justi�able

in some use cases but not always. It is not hard to conceive scenarios

in which the client’s query sequence is in�uenced by a malicious

third party (who is di�erent from the honest but curious server).

As a concrete example, consider DNS lookup, which is a primary

application that Piano PIR targets. The threat model of DNS typi-

cally assumes that the client may visit a malicious webpage that

can trigger DNS queries of the adversary’s choosing, e.g., as in the

Kaminsky attack. This immediately breaks the assumption of no

adversarial in�uence on the client queries. Such an adversary can

easily make Piano PIR fail in correctness (see Section 5). If an upper-

level application behaves di�erently when a PIR query succeeds vs.

fails, a correctness failure can lead to a privacy violation.

Pseudorandom functions. We assume the server is computation-

ally bounded. We will make use of pseudorandom functions (PRF).

PRF is one of the most common cryptographic primitives and can

be instantiated from any one-way function, including the standard-

ized and widely used AES block cipher and SHA cryptographic

hash functions. A PRF takes a secret key and an input. For conve-

nience, we will omit writing the secret key since there should be

no confusion in our schemes that the client holds the secret key

(and shares the secret key with one of the servers in the two-server

setting). The input to the PRF is often a concatenation of multiple

values. For example, a PRF call in our algorithms will be written as

PRF(G ∥ ~ ∥ I).

3 Algorithms

3.1 Overview

The key idea is a new type of hint that eliminates the information

leakage due to the absence of the queried index. This immediately

obviates the need for parallel repetition because there will be no

(non-negligible) correctness failure. Our techniques can be applied

to the original sublinear scheme of Corrigan-Gibbs and Kogan [10]

or the partition-based hints of TreePIR [22]. We will describe our

techniques on top of the partition-based hints because they o�er

advantages in compact hint storage and fast membership testing.

In this context, our techniques help avoid the large responses and

the need for non-colluding servers in TreePIR’s partition paradigm.

Construction of our hints. A database of size # is divided into√
# partitions each of size

√
# . For convenience, we assume

√
# is

an even integer. The database can always be padded to the square

of the next even integer with very small extra overhead.

Let R denote the following distribution: �rst, select
√
# /2 + 1

random distinct partitions (i.e., sample without replacement) out of

the
√
# total partitions; then pick one random index from each of

these
√
# /2 + 1 partitions. Each hint in our algorithm consists of a

sample from R and its corresponding parity. Hence, a hint contains√
# /2 + 1 random indices from

√
# /2 + 1 random partitions, one
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index per partition. Note that the number of partitions we select in a

hint is exactly one more than half of the total number of partitions.

For correctness, the client needs to store " hints (" will be

speci�ed later). For each 9 = 0, 1, 2, . . . , " − 1, the client samples

( Ġ ← R and stores ( Ġ along with
∑
ğ∈ď Ġ

DB[8] as one hint.
Usage of the hint also resembles previous works in principle.

When the client makes a query to the 8-th entry of the database,

the client looks for a hint whose subset ( Ġ contains index 8 . The

client sends ( Ġ \ {8} to the server. We will call it the query subset.

The server returns the parity for ( Ġ \ {8}. The client easily recovers

DB[8] since it has been storing the parity for ( Ġ . We need" = _
√
#

where _ is a security parameter so that a subset containing the

queried index can be found with all but exponentially small (in _)

probability.

Eliminating the leakage. We now tackle the main challenge men-

tioned in Section 1. With the approach described so far, the query

subset sent by the client involves
√
# /2 random partitions and

contains one random index from each of them. However, since the

client always removes the queried index, the query subset will not

contain any index from the partition to which the queried entry

belongs. Thus, the server learns that the queried entry is de�nitely

not in any of the
√
# /2 partitions in the query subset.

Our main idea to address this leakage is for the client to addition-

ally send a dummy subset of indices. The dummy subset contains

one random index from each of the
√
# /2 partitions that do not

appear in the query subset. The client also randomly swaps the

two subsets. I.e., with half probability, the client sends the query

subset followed by the dummy subset, and with the other half prob-

ability, the dummy subset followed by the query subset. This way,

the server cannot distinguish between the query subset and the

dummy subset.

Note that this dummy subset is precisely what is needed to elim-

inate the aforementioned leakage: the two subsets together cover

every partition! We next give a proof sketch. The full security proof

is given in Section 3.5. The client sends two subsets that together

cover all
√
# partitions. A random index is picked from each parti-

tion, so we only need to show that the grouping of the partitions

leaks no information. The grouping of the partitions is indistin-

guishable from a random arrangement. The dummy subset bundles

the partition of interest with
√
# /2−1 other random partitions, and

the query subset covers the remaining
√
# /2 partitions. A purely

random arrangement would anyway group the partition of interest

with
√
# /2 − 1 other random partitions and leave the rest as the

other group.

The online phase. The online phase of our stateful PIR protocol

follows naturally from the above hint system. Upon an input query

index 8 , the client �nds a hint whose subset contains the query

index 8 . The client removes 8 from the subset (this is the real query

subset). The client then constructs a dummy subset that consists of

one random index from each partition not represented in the real

query subset. The client now sends the two subsets, permuted, to

the server. Figure 1 illustrates this process.

The server returns the two parities corresponding to the two

subsets. The client discards the dummy parity and uses the parity

of the real query subset to recover the desired entry. As a result,

Figure 1: An illustration of the hint system and the client’s request.

The database hasĊ = 36 entries and is divided into
√
Ċ = 6 partitions.

Each hint selects
√
Ċ /2+1 = 4 random partitions and picks a random

index from each. The queried index is removed to produce the real

query subset. A dummy subset is constructed by picking one random

index from each of the remaining three partitions.

the response overhead of our scheme is close to optimal: only twice

that of simply fetching the desired entry without privacy.

Hint replenishment and the o�ine phase. After each query in the

online phase, the client needs to replenish one hint since it has

just consumed one. The replenished hint must follow the same

distribution as the one just consumed, i.e., contains index 8 in the

subset. How we carry out the hint replenishment and how we run

the o�ine phase depend on whether we have a single server or two

non-colluding servers. We will describe the two variants in detail

later in the section.

3.2 Details of Hints and Online Phase

Sampling a subset of exact size. A step that warrants more clar-

i�cation is how we sample a subset of size exactly
√
# /2 + 1 out

of the
√
# partitions. For reasons that will become clear later and

involve hint replenishment, we will sample a subset of size exactly√
# /2 and then supply one extra index.

To sample exactly half of the partitions, we compute a pseu-

dorandom value using PRF for each hint-partition combination,

i.e.,

E Ġ,ġ = PRF(“select” ∥ 9 ∥ :)
for the :-th partition of a hint with ID 9 . The pre�x “select” is

added because we later need another pseudorandom value for each

hint-partition combination.

For each hint 9 , compute VĠ = [E Ġ,0, E Ġ,1, E Ġ,2, . . . , E Ġ,√Ċ−1] . We

then �nd a cuto� value Ê Ġ to divide VĠ into two equal-sized halves,

i.e., exactly
√
# /2 elements in VĠ are smaller than Ê Ġ and exactly√

# /2 elements in VĠ are larger than Ê Ġ . A natural choice of Ê Ġ
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is the median of VĠ . Since we assume
√
# is an even integer, the

median is the average of two elements in VĠ . We save this cuto�

median value alongside the hint ID for each hint. This will give

us an e�cient method to check if a partition is selected by a hint,

using $ (1) time and $ (1) client storage per hint.
Next, we need to pick one more index from a random partition

among the
√
# /2 unselected partitions. An easy and e�ective way

to do so is to keep picking random indices and checking if the

corresponding partition has already been selected, until hitting an

unselected partition.

Hint storage. Each hint is stored as a tuple ( 9, Ê Ġ , 4 Ġ , % Ġ ) where
9 is a unique hint ID, Ê Ġ is the cuto� median value, 4 Ġ is the extra

index, and % Ġ is the parity.

With the hint construction and storage details in place, we can

now give more details of the algorithm for the online phase, shown

in Algorithm 2.

Finding a suitable hint. Upon input query index 8 , the client com-

putes ℓ = +8/
√
# ,, which is the partition that index 8 belongs to.

The client then goes through the hints to �nd one whose subset

contains 8 . There are two cases a hint’s subset contains 8 . A straight-

forward case is that the extra index 4 Ġ equals 8 . The other case is

when partition ℓ is selected and index 8 is picked from partition ℓ

for that hint. For each hint 9 , the client computes E Ġ,ℓ and checks

if E Ġ,ℓ is smaller than the median cuto� Ê Ġ . If so, the client further

computes a pseudorandom o�set for the partition,

A Ġ,ℓ = PRF(“o�set” ∥ 9 ∥ ℓ),

and checks if A Ġ,ℓ = 8 mod
√
# . If both checks pass, or if the extra

index 4 Ġ = 8 , then index 8 is included in the subset of hint 9 .

We remark that this step showcases the bene�t of partition-based

hints: the partitioning allows us to test in$ (1) timewhether a hint’s

subset includes a particular index, as we only need to check the

corresponding partition.

Constructing and encoding the two subsets. After �nding a hint

that contains the query index 8 , the client reconstructs the hint’s

subset and then removes the query index 8 to obtain the query

subset. The client also constructs a dummy subset that contains

one random index from each partition that is not in the query

subset. Note that a random index (possibly 8) will be drawn from

the partition of interest. This index will certainly be part of the

dummy subset, but the server cannot tell which subset is the dummy

one once the client permutes the two subsets.

Although we write our pseudocode to send two subsets for sim-

plicity, there is an equivalent and more compact way to encode the

two subsets. We can use a bit vector b = [10, 11, . . . , 1√Ċ−1] and
an o�set vector r = [A0, A1, . . . , A√Ċ−1]. The o�set vector encodes
which index is picked from each partition. Concretely, Bġ = Aġ+:

√
#

is the index picked from partition : . The bit vector encodes whether

each partition is part of the �rst or the second subset. In other words,

let (0 and (1 denote the two subsets of indices that the client would

have sent in the pseudocode of Algorithm 2. Then, Bġ ∈ (0 if 1ġ = 0

and Bġ ∈ (1 if 1ġ = 1. We note again that the two subsets are per-

muted by the client, so the real subset may be either (0 or (1, with

half-half probability.

It is not hard to see that this encoding is equivalent to sending (0
and (1 as done in the pseudocode of Algorithm 2, but is slightlymore

e�cient. Sending (0 and (1 directly would cost
√
# log# bits. The

encoding using b and r costs
√
# +
√
# log

√
# = (

√
# /2 + 1) log#

bits, roughly reducing the client’s request size by half.

3.3 The Two-Server Scheme

When there are two non-colluding servers, we use one server for the

o�ine phase and hint replenishment and the other for the online

queries. For convenience, we call the two servers the o�ine server

and the online server, even though the o�ine server also helps with

the hint replenishment step during the online phase.

The o�ine phase only needs to run once at the beginning of

the entire protocol to help the client start with su�ciently many

hints. After that, the client invokes hint replenishment on the �y

at the end of each online query. The pseudocode of the complete

two-server stateful PIR protocol is given in Algorithms 1, 2, and 3.

The o�ine phase. The o�ine phase is shown in Algorithm 1 and

is fairly straightforward. The client initiates the o�ine phase by

sending its PRF evaluation key to the o�ine server. This allows

the o�ine server to fully construct the hints. For each hint, exactly

half of the partitions are selected using the cuto� median method

described in Section 3.2, and a random index is picked from each

selected partition. After that, an extra index is picked from a par-

tition that has not been selected yet. The o�ine server can easily

compute the parity of these entries. Lastly, the o�ine server sends

the cuto�, the extra index, and the parity for each hint to the client.

This completes the o�ine phase.

Hint replenishment. To replenish a hint after querying index 8 ,

the client asks the o�ine server to run Algorithm 3. Since the o�ine

server has the PRF evaluation key, it can construct a new hint using

the next available hint ID, similar to what it did in the o�ine phase.

But there are two new catches. First, the o�ine server does not add

the extra index because the client needs to add index 8 , the index

that is just queried, so that the replenished hint follows the same

distribution as the consumed one, i.e., has 8 in the subset. Second,

we do not want the o�ine server to learn the new hint’s subset,

because that would reveal some information to the o�ine server

about the query the client just made. Therefore, we let the o�ine

server compute the parities of both halves and send both parities

to the client along with the new hint ID and median cuto�.

Upon receiving the above from the o�ine server, the client

chooses the half that does not select the partition of 8 as the real half.

To do so, the client may have to rede�ne the operator < for this hint.

In other words, the client stores a bit that indicates whether this

hint chooses all partitions whose pseudorandom values (E Ć ,ġ ) are

smaller or larger than the median cuto�. This essentially permutes

the two halves and makes them indistinguishable to the o�ine

server. The client then adds index 8 to the hint’s subset as the ex-

tra index and adds DB[8] (which the client has just retrieved) to

the parity. The new hint is now fully constructed and replaces the

consumed hint.
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Algorithm 1 The o�ine algorithm with two non-colluding servers, run by the o�ine server

1: for 9 = 0, 1, 2, . . . , " − 1 do
2: Initializes parity % Ġ = 0

3: Compute VĠ = [E Ġ,0, E Ġ,1, E Ġ,2, . . . , E Ġ,√Ċ ] where E Ġ,ġ = PRF(“select” ∥ 9 ∥ :)
4: Find the median Ê Ġ of VĠ as the cuto� for selection

5: ( = {: | E Ġ,ġ < Ê Ġ } ² the set of partitions selected by this hint

6: % Ġ =
⊕

ġ∈ď DB[A Ġ,ġ + :
√
# ] where A Ġ,ġ = PRF(“o�set” ∥ 9 ∥ :) ² one random index per selected partition

7: Set the extra index 4 Ġ to a random index from a random partition not in (

8: % Ġ = % Ġ · DB[4 Ġ ]
9: Send ( 9, Ê Ġ , 4 Ġ , % Ġ ) to the client to be stored

10: end for

11: Set � = " , the next available hint ID ² � will be strictly increasing

Algorithm 2 The online algorithm, run by the client

1: Input: queried index 8 ² E Ġ,ġ , A Ġ,ġ , ℎ Ġ , Ê Ġ , 4 Ġ , % Ġ as de�ned in Algorithm 1 or 4

2: ℓ = +8/
√
# , ² ℓ is the partition that 8 belongs to

3: Find main hint 9 such that E Ġ,ℓ < Ê Ġ and A Ġ,ℓ == 8 mod
√
# ² hint 9 contains 8

4: Initialize ( = ∅ and ( ′ = ∅ ² ( will be the real subset and ( ′ will be the dummy subset

5: for : = 0 :
√
# − 1 do

6: if E Ġ,ġ < Ê Ġ then

7: ( = ( ∪ {A Ġ,ġ + :
√
# }

8: else if 4 Ġ belongs to partition : then

9: ( = ( ∪ {4 Ġ }
10: else

11: ( ′ = ( ′ ∪ {rand() + :
√
# } ² add a random index from partition : to the dummy subset

12: end if

13: end for

14: ( = ( \ {8} ² remove the queried index from the real subset

15: ( ′ = ( ′ ∪ {rand() + ℓ
√
# } ² add a random index from partition ℓ to the dummy subset

16: Send ((, ( ′) or (( ′, () to the server with half-half probability ² permute the real and dummy subsets

17: Receive the two subset parities % and % ′ from the server ² in the order ( and ( ′ are sent
18: Return % · % Ġ as DB[8]
19: Replenish a hint that contains index 8 from partition ℓ using Algorithm 3 or 5

Algorithm 3 The hint replenish algorithm with two non-colluding servers, run by the o�ine server and the client

1: Use the next available hint ID � ² The client asks the o�ine server to start hint replenishment

2: Initializes parity % Ć = % ′
Ć
= 0

3: Compute VĆ = [E Ć ,0, E Ć ,1, E Ć ,2, . . . , E Ć ,√Ċ−1]
4: Find the median Ê Ć of VĆ

5: ( = {: | E Ć ,ġ < Ê Ć }
6: % Ć =

⊕
ġ∈ď DB[A Ć ,ġ + :

√
# ] ² recall A Ġ,ġ = PRF(“o�set” ∥ 9 ∥ :)

7: % ′
Ć
=
⊕

ġ∉ď DB[A Ć ,ġ + :
√
# ]

8: Send � , Ê Ć , % Ć , %
′
Ć
to the client ² The rest of the algorithm is run by the client

9: if E Ć ,ℓ < Ê Ć then ² pick the half that does not select partition ℓ

10: % Ć = % ′
Ć

11: Set a bit to rede�ne < to be “greater than” for this hint ² Algorithm 2 should check this bit and interpret < accordingly for each

hint, but we omitted these details in Algorithm 2 for readability of the pseudocode

12: end if

13: Replace hint 9 with new hint (� , Ê Ć , 8, % Ć · DB[8]) ² add 8 as the extra index to the new hint �



Simple and Practical Amortized Sublinear Private Information Retrieval using Dummy Subsets CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 4 The streaming o�ine algorithm with a single server, run by the client

1: for 9 = 0, 1, 2, . . . , 1.5" − 1 do ² " main hints and 0.5" pairs of backup hints

2: Initialize parity % Ġ = 0, and additionally initialize % ′Ġ = 0 if 9 g " ² backup hints come in pairs

3: Compute VĠ = [E Ġ,0, E Ġ,1, E Ġ,2, . . . , E Ġ,√Ċ−1] where E Ġ,ġ = PRF(“select” ∥ 9 ∥ :)
4: Find and store the median Ê Ġ of VĠ as the cuto� for partition selection

5: if 9 < " then ² main hints

6: Set the extra index 4 Ġ to a random index from a random partition not in {: | E Ġ,ġ < Ê Ġ }
7: end if

8: end for

9: for : = 0 :
√
# − 1 do

10: Download DB[:
√
# : (: + 1)

√
# − 1] from the server ² download partition :

11: for 9 = 0, 1, 2, . . . , 1.5" − 1 do
12: G = DB[A Ġ,ġ + :

√
# ] where A Ġ,ġ = PRF(“o�set” ∥ 9 ∥ :) ² a pseudorandom entry is picked from partition :

13: if E Ġ,ġ < Ê Ġ then ² partition : is selected by hint 9

14: % Ġ = % Ġ · G
15: else if 9 g " then

16: % ′Ġ = % ′Ġ · G ² also construct the backup hint in the pair

17: end if

18: if +4 Ġ/
√
# , == : then ² the extra index 4 Ġ is in partition :

19: % Ġ = % Ġ · DB[4 Ġ ]
20: end if

21: end for

22: end for

Algorithm 5 The hint replenish algorithm with a single server, run by the client

1: Let � be the ID of the next unused pair of backup hints

2: if E Ć ,ℓ > Ê Ć then ² pick the half that does not select partition ℓ

3: % Ć = % ′
Ć

4: Set a bit to rede�ne < to be “greater than” for this hint ² Algorithm 2 checks this bit to interpret <

5: end if

6: ℎ Ġ = �

7: 4 Ġ = 8

8: % Ġ = % Ć · DB[8]
9: Replace hint 9 with backup hint (� , Ê Ć , 8, % Ć · DB[8]) ² add 8 as the extra index to the new main hint �

3.4 The Single-Server Scheme

Hint replenishment using backup hints. With a single server, we

no longer have the luxury of replenishing a hint on the �y. Instead,

we will use the idea of backup hints from [9]. The client retrieves

additional backup hints in the o�ine phase so that the client can

replenish a hint during the online phase without contacting the

server. Since backup hints will eventually run out, the o�ine phase

needs to be run periodically. The pseudocode of our complete single-

server stateful PIR protocol is given in Algorithms 4, 2, and 5.

In the o�ine phase, the client retrieves not only the _
√
# primary

hints but also _
√
# backup hints. A backup hint does not have the

extra index and thus contains one fewer index in its subset than a

main hint. After the client makes a PIR query for index 8 , it �nds

a backup hint that does not select 8’s partition. The client then

adds index 8 to the subset as the extra index and adds DB[8] to the

parity. The new subset and parity now form a regular main hint

that follows the same distribution as the consumed one, i.e., has 8

in the subset.

A simple strategy is to have _
√
# independent backup hints.

Then, there are in expectation 0.5_
√
# backup hints that skip any

given partition. So the client can make close to, but fewer than,

0.5_
√
# (say 0.4_

√
# ) online queries before having to rerun the

o�ine phase. Even if the client keeps querying entries from the

same partition, it will not run out of backup hints that skip that

partition, except for exponentially small (in _
√
# ) probability.

A more clever strategy is to have backup hints in pairs, similar

in spirit to the two-server hint replenishment algorithm. This is the

strategy taken in the pseudocode of Algorithm 5. From a backup

hint ID � , the client computes VĆ as well as the cuto� Ê Ć . The cuto�

Ê Ć divides the partitions into two equal-sized halves. The client will

store the parities of both halves. When it is time to replenish a hint

that contains index 8 , the client picks the half that does not select

the partition ℓ that index 8 belongs to, and then adds 8 as the extra

index. Like the two-server scheme, the client needs to store a bit

indicating whether < is rede�ned to be “greater than” for this hint.

This way, the client only needs one pair of backup hints per query,

as one of the two halves will certainly meet the need. The client
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can now store _
√
# /2 pairs of backup hints and can make exactly

_
√
# /2 online queries before having to rerun the o�ine phase.

O�ine phase. In the o�ine phase, the client needs to retrieve

main hints and backup hints in a private manner. This can be done

in a few ways. The simplest and most practical way is perhaps to

stream the entire database, one partition at a time. The pseudocode

of the streaming o�ine phase is given in Algorithms 4. The extra

index of each main hint can be sampled in the same way described

in Section 3.2: keep picking a random partition and checking if it is

already selected. This is now done by the client prior to streaming

the database. After downloading a partition, it is straightforward

to use E Ġ,ġ and A Ġ,ġ to determine, for each main or backup hint 9 ,

which index, if any, should be drawn from the current partition : .

For each main hint, the client also checks if its extra index is from

the current partition. For each backup hint pair, the client updates

the parity corresponding to the correct half based on whether E Ġ,ġ
is smaller or larger than the median cuto�.

3.5 Correctness and Privacy Analysis

We will �rst focus on the very �rst query after the o�ine phase

and then extend the analysis to subsequent queries.

Correctness. For correctness, we need to prove that, upon an in-

put query index 8 , the client will be able to �nd, with overwhelming

probability, a hint whose subset includes 8 . To this end, we �rst

observe the following simple fact.

Lemma 1. Each hint in our construction has at least 1

2
√
Ċ

proba-

bility of containing a particular index.

Proof. A hint contains a particular index 8 if the hint selects 8’s

partition and picks 8 from that partition. The former happens with

(
√
# /2 + 1)/

√
# > 1/2 probability (the plus one is due to the extra

index), and the latter happens with 1/
√
# probability. □

For correctness to be violated, none of the _
√
# main hints con-

tains the query index. This happens with less than (1− 1

2
√
Ċ
)Č
√
Ċ

<

4−Č/2 probability. For a su�ciently large _, this probability is astro-

nomically small.

Privacy. We need to prove that the two subsets sent by the client

reveal no information about the query index. We will carry out

the proof as if the PRF is perfectly random. The privacy of our PIR

protocol is then reduced to the pseudorandomness of the PRF.

It is more convenient to reason about privacy with the more

compact encoding described in Section 3.2. Recall that the client

sends a bit vector b grouping partitions into two subsets along with

an o�set vector r encoding the index picked from each partition.

First, observe that the o�set vector r consists of pseudorandom

values that are independent of the query index.

• For partitions not selected by the hint, a fresh pseudorandom

dummy o�set is used (Line 11 of Algorithm 2).

• For the partition that contains the query index 8 , 8 is removed

and is replaced with a fresh pseudorandom dummy o�set

(Line 15 of Algorithm 2).

• For the remaining partitions that are selected by the hint, the

o�sets are picked pseudorandomly during the o�ine phase,

and this is the �rst (and only) time they are revealed to the

(online) server.

Thus, from the (online) server’s perspective, all
√
# o�sets are fresh,

pseudorandom, and independent of the query index.

The crux of the proof is to show that the bit vector b reveals no

information about the query index. Formally, we will prove that the

distribution of b is not a�ected by, and hence reveals no information

about, the query index.

Lemma 2. For any two query indices 8 and 8′, Pr(b | 8) = Pr(b | 8′).

Proof. Let ℓ denote the partition index 8 belongs to and ℓ′ denote
the partition index 8′ belongs to. When the query index is 8 , an index

from partition ℓ is added to the dummy subset. For the client to send

b, two events must happen. First, the bit 1ℓ represents the dummy

subset (as opposed to the opposite bit 1 − 1ℓ ). This happens with
1/2 probability. Second, besides partition ℓ , the set of partitions

selected by this hint are those marked by the opposite bit, i.e.,

) = {: | 1ġ ≠ 1ℓ }. Since each hint selects
√
# /2 + 1 partitions at

random, the probability for the other
√
# /2 selected partitions to

be those in ) is g =
(√Ċ−1√

Ċ /2
)−1

. These two events are independent,

so Pr(b | 8) = g/2. By the exact same argument, we have

Pr(b | 8′) = g/2 = Pr(b | 8). □

Lemma 2 is su�cient to establish the privacy of our protocol. But

to make things more explicit, we can derive the following simple

facts from Lemma 2.

Pr(b) =
∑

ğ

Pr(b | 8) · Pr(8) = g/2 ·
∑

ğ

Pr(8) = g/2.

Thus, for all query index 8 ,

Pr(8 | b) = Pr(8, b)
Pr(b) =

Pr(b | 8) · Pr(8)
Pr(b) = Pr(8) .

The fact that Pr(8 | b) = Pr(8) for all 8 means that observing b does

not change an observer’s prior on the query index, which is to say

b does not reveal any information about the query index. Therefore,

the server will have no advantage in distinguishing the two queries

in the privacy game.

Extension to subsequent queries. The above completes the correct-

ness and privacy proofs for the �rst query after the o�ine phase.

Next, we extend the proofs to subsequent queries. For this step,

we need to show that after a query consumes and replenishes a

hint, the distribution of the main hints remains the same. Then, our

privacy proof above would apply directly to all subsequent queries,

and the correctness failure probability over a sequence of queries

can be upper bounded by a simple union bound.

Let � Ġ,ġ be the random variable representing the index picked

from partition : in hint 9 . If hint 9 does not select from partition

: , � Ġ,ġ = §. Then, the following matrix of random variables fully

describes the main hints.

H =



−→
�0−→
�1

...
−−−−→
�ĉ−1



=



�0,0 �0,1 . . . �
0,
√
Ċ−1

�1,0 �1,1 . . . �
1,
√
Ċ−1

...
...

. . .
...

�ĉ−1,0 �ĉ−1,1 . . . �
ĉ−1,

√
Ċ−1





Simple and Practical Amortized Sublinear Private Information Retrieval using Dummy Subsets CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Let H represent the main hints before the current query and H
′

represent the main hints after the current query. We want to show

that H′ and H are identically distributed.

Each hint (row vector) in H is drawn from the distribution R de-

scribed in Section 3.1. LetRğ be the distribution of a hint conditioned
on the event that it contains index 8 . Let R−ğ be the distribution of

a hint conditioned on the event that it does not contains index 8 .

Suppose we scan the main hints from 0 to " − 1 to look for

the query index 8 . Each hint independently has a probability @ =√
Ċ /2+1√
Ċ
· 1√

Ċ
to contain 8: partition ℓ needs to be selected and 8

needs to be picked from partition ℓ . Let � be the hint consumed. �

follows a geometric distribution with parameter @. (The event that

no hint contains 8 is a negligible one, and for convenience, we can

assume no hint is consumed or replenished in that case.) Thus,

Pr(� > 9) = (1 − @) Ġ+1,
Pr(� = 9) = (1 − @) Ġ@,

Pr(� < 9) =
Ġ−1∑

Ģ=0

(1 − @)Ģ@ = 1 − (1 − @) Ġ .

Both the consumed and the replenished hints follow distribution

Rğ . All the other hints are unmodi�ed. Moreover, all the hints

prior to � follow distribution R−ğ , and all the hints after � follow

distribution R.
Let us now focus on any particular hint 9 in H

′. Given the dis-

tribution of � , we can think of hint 9 in H
′ to be sampled in the

following manner: with 1− (1−@) Ġ probability, sample from R; for
the remaining (1−@) Ġ probability, sample from Rğ with probability

@ and sample from R−ğ with probability (1 − @) Ġ+1.
Observe that the @ vs. 1 − @ ratio is exactly the likelihood that

an original hint in H does vs. does not contain index 8 , or equiv-

alently, follows Rğ vs. R−ğ . Thus, every hint 9 in H
′ follows the

same distribution as the hint 9 in H. This shows that the main

hints after a query are identically distributed as they were before

the query. Then, by transitivity, the main hints at any point are

identically distributed as their original states right after the o�ine

phase. Therefore, our correctness and privacy proofs apply to all

subsequent queries.

3.6 E�ciency Analysis

The two-server scheme. The o�ine phase costs $ (_
√
# ) commu-

nication and $ (_# ) computation at the o�ine server. But because

the o�ine phase runs only once, these costs do not factor into the

amortized costs after su�ciently many queries. Hence, the amor-

tized cost of our two-server scheme only depends on the online

phase and the hint replenishment step. The online request size

is (
√
# /2 + 1) log# bits using the compact encoding of the two

subsets. The online response overhead is $ (1), or 4× to be precise,

since the online server and the o�ine server both send back two

parities.

The expected computation cost of the client is $ (
√
# ) due to

searching for a hint and reconstructing the hint’s subset. Because

each hint has at least 1

2
√
Ċ

probability of containing a particular

index by Lemma 1, the client will �nd a suitable hint after checking

2
√
# hints in expectation (and each check takes $ (1) time). The

computation cost of the server is $ (
√
# ) due to computing the

parities. These give the two-server results in Table 1.

The single-server scheme. The online phase is very similar to the

two-server scheme: each online query costs $ (
√
# ) bits in request,

$ (1) overhead in response,$ (
√
# ) client computation, and$ (

√
# )

server computation. The streaming o�ine phase costs # communi-

cation and$ (_# ) computation, and needs to be run every 0.5_
√
#

online queries. This leads to the single-server results in Table 1.

The only di�erence from the two-server case is that the response

overhead is $ (
√
# /_) because the $ (# ) o�ine communication is

amortized over 0.5_
√
# online queries.

4 Evaluation

4.1 Implementation Details

We implemented our scheme in C++. The implementation is avail-

able at https://github.com/renling/S3PIR/. Due to the simplicity of

our schemes, the two-server version of our implementation com-

prises about 600 lines of code and the single-server version com-

prises about 500 lines of code. We set the parameter _ to 80. We

use AES as the pseudorandom function. We use CryptoPP’s imple-

mentation of AES, which leverages Intel’s AES-NI instructions. We

break up a single 128-bit AES output into four to eight pseudoran-

dom numbers (i.e., E Ġ,ġ and A Ġ,ġ in the algorithms) across di�erent

hints or partitions to save computation.

We use 32-bit numbers for elements in VĠ to save client storage

and computation. It is worth noting that this gives rise to a corner

case where two or more elements in VĠ are equal to the median.

When this happens, the median alone does not give a way to evenly

divide VĠ into two equal-sized halves. We could add additional

metadata to handle this corner case, but because this corner case

happens with a very small probability, we simply consider such a

hint invalid and discard it. We have omitted the handling of this

corner case from the pseudocode for readability.

The median �nding procedure, if implemented nal̈ively, would

be the bottleneck of the single-server scheme’s o�ine phase. We

could directly use introselect [30] or a similar linear time selection

algorithm. But we can take advantage of the fact that elements of VĠ

are uniformly random. We can �lter out elements that are too large

or too small, i.e., outside two heuristic bounds, and run introselect

on the reduced array. We keep count of the number of �ltered

elements. If we �lter out- small elements, we use introselect to �nd

the (
√
# /2−- −1)-th and (

√
# /2−- )-th smallest elements among

the remaining elements. These will be the two middle elements

that give the median of VĠ . With appropriately selected bounds, the

probability of �ltering out one of these two elements is very small.

(And when that happens, we simply consider this hint invalid and

discard it.) We think of the random values as 32-bit �xed-point

numbers between 0 and 1, and choose the two �ltering bounds

as 1
2 ±

1
16 . In expectation, this �lters out 7/8 of the elements. The

probability that one of the middle elements is �ltered out is 6×10−5
for a database of size 220, and this probability keeps decreasing with

the size of the database.

When log# does not exceed 32, we use 32-bit integers for the

extra indices. The hint IDs in our single-server version can also use

32-bit numbers since they will reset periodically upon o�ine phases.
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In the two-server version, however, hint IDs can grow unbounded,

so we use 64-bit integers for them.

4.2 Experimental Setup

Baselines. We compare with several practical two-server and

single-server schemes, which we brie�y describe below.

Two-server baselines include:

• The protocol of Boyle, Gilboa, and Ishai [4] based on distributed

point functions (DPF) is the state-of-the-art two-server PIR scheme

that uses linear server computation. It has a logarithmic request

size and a constant response overhead. We use their C++ imple-

mentation.1

• The protocol of Kogan and Corrigan-Gibbs for checklists [19]

is the �rst two-server amortized sublinear PIR scheme that is

implemented. Their scheme has a logarithmic request size and

a constant response overhead but requires either linear client

computation or linear client storage. Their implementation in

Go2 uses linear client storage.

• TreePIR by Lazzaretti and Papamathou [22] is the state-of-the-

art two-server amortized sublinear PIR scheme. Their scheme

uses sublinear client storage and client computation and has a

logarithmic request size. The downside of their scheme is the

$ (
√
# ) response overhead. We use their implementation in Go.3

Single-server baselines include:

• Spiral PIR by Menon and Wu [26] is the latest single-server

single-query PIR. It is based on lattice-based leveled FHE and

needs to perform a linear amount of homomorphic operations at

the server. We use their C++ implementation.4

• SimplePIR by Henzinger et al. [17] is a single-server stateful PIR

scheme that still uses linear arithmetic operations on the server.

We use their implementation in Go.5

• Piano PIR by Zhou et al. [34] is the latest single-server stateful PIR.

We discuss it in detail in Section 5. We use their implementation

of the updated version in Go.6

Experimental setup. We run all experiments on anAWSm5.8xlarge

instance equipped with a 3.1 GHz Intel Xeon processor and 128

GB RAM. Our instance runs Ubuntu 22.04, GCC 11.3, and Golang

1.18. We run our scheme and all baselines with a single thread. We

test the performance of our scheme and the baseline schemes with

databases of varying entry counts and entry sizes. We �rst test

databases with 220, 224, and 228 entries while �xing the entry size

to 32 bytes. We then �x the database to 228 entries and test 8-byte

and 256-byte entry sizes.

4.3 Evaluation Results

Two-server schemes. Table 2 gives a performance comparison of

two-server PIR and stateful PIR schemes. The o�ine phases of the

three stateful PIR schemes are run only once, so their amortized

per-query costs are simply the online costs after su�ciently many

queries are made. The checklist implementation crashed in our

1https://github.com/dkales/dpf-cpp
2https://github.com/dimakogan/checklist
3https://github.com/alazzaretti/treePIR
4https://github.com/menonsamir/spiral
5https://github.com/ahenzinger/simplepir
6https://github.com/wuwuz/Piano-PIR-new

last experiment, so its results for the 64 GB database are missing.

The DPF implementation does not support 256-byte entries, so its

computation result for the 64 GB database is estimated.

DPF-PIR requires no o�ine phase or client storage. It also has

e�cient communication ranging from 0.91 KB to 1.52 KB in our

tests. Its computation is linear in database size and grows from 2.5

milliseconds on a 32 MB database to 5960 milliseconds on a 64 GB

database. Overall, DPF-PIR is very e�cient in all aspects for small

databases but is costly in computation for large databases.

In comparison, the three stateful PIR schemes require o�ine

phases and client storage and, in return, achieve orders of magni-

tude lower per-query computation.

The checklist scheme boasts the lowest communication cost

among the schemes we test. It also has a low online computation

cost that is comparable to our scheme. Its biggest downside is the

linear client storage. This cost is manageable for small databases

but becomes prohibitive for large databases. For example, on the

8 GB database, the checklist scheme’s client storage is over 1 GB,

about one-eighth of the entire database and g 20× of TreePIR and

our scheme.

TreePIR requires the smallest client storage among the three

but has a high per-query communication cost that is two orders

of magnitude larger than our scheme. Its per-query computation

is also around 3.8 − 12.8× higher than our scheme. We also test

TreePIR with an extra single-server PIR call (not shown in the

table). Its communication would improve to around 30 KB (refer

to the Spiral result in Table 3), but its computation would worsen

signi�cantly (refer to the discussion in Section 5).

Our scheme achieves a balance of low client storage, low com-

munication, and low computation for all database parameters, by

avoidingmajor bottlenecks in previous schemes such as linear client

storage, linear server computation, or high communication.

Single-server schemes. Table 3 gives a performance comparison

of single-server PIR and stateful PIR schemes. The amortized per-

query cost of Piano and our scheme are calculated as the o�ine

cost divided by the number of queries supported per o�ine, plus

the online cost. Spiral has no o�ine phase, and SimplePIR has

a one-time o�ine phase, so their amortized per-query costs are

simply the online costs after su�ciently many queries are made.

Spiral crashed in our last experiment, so its results for the 64 GB

database are missing. The SimplePIR implementation’s o�ine phase

also crashed in our last experiment; luckily, their implementation

provides a way to test online e�ciency without running the o�ine

phase (and naturally, without correctness).

Spiral’s communication cost remains relatively stable at di�erent

database parameters. Its linear server computation, however, is

expensive even for small databases and becomes prohibitive for

large databases. Concretely, its per-query computation is over 3

seconds for a 512 MB database and over 30 seconds for an 8 GB

database. In comparison, our scheme is thousands of times faster

than Spiral in per-query computation: just 4.5 milliseconds on the

same 8 GB database. In terms of per-query communication, our

scheme is better than Spiral on small databases but becomes worse

on large databases due to the ¬(
√
# ) request size.

SimplePIR’s online server computation is a constant factor bet-

ter than Spiral’s, but it is still linear and still very expensive for
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Table 2: Comparison of two-servers PIR schemes.

Database Client Storage O�ine Online

Parameters (MB) Comm. (MB) Compute (s) Comm. (KB) Compute (ms)

DPF-PIR - - - 0.91 2.5

Checklist 220 32-byte entries 7.07 2.88 3.3 0.50 0.17

TreePIR 32 MB in total 2.88 2.88 1.0 65.9 0.45

This paper 3.76 3.76 2.3 2.26 0.12

DPF-PIR - - - 1.1 47

Checklist 224 32-byte entries 78.60 11.53 73 0.56 0.72

TreePIR 512 MB in total 11.53 11.53 23 262.6 4.9

This paper 15.04 15.04 41 8.64 0.54

DPF-PIR - - - 1.21 182.4

Checklist 228 8-byte entries 1085.27 11.53 1394 0.52 1.9

TreePIR 2 GB in total 11.53 11.53 398 262.6 20

This paper 30.16 30.16 636 34.0 2.19

DPF-PIR - - - 1.31 745

Checklist 228 32-byte entries 1119.74 46.14 1141 0.64 1.8

TreePIR 8 GB in total 46.14 46.14 430 1049.6 14

This paper 60.16 60.16 842 34.1 2.7

DPF-PIR 228 256-byte entries - - - 1.52 5960

TreePIR 64 GB in total 369.09 369.09 1843 8389.6 67

This paper 340.16 340.16 2242 35.0 5.23

Table 3: Comparison of single-server PIR schemes.

Database Client Storage O�ine Online Amortized per query

Parameters (MB) Comm. (MB) Compute (s) Comm. (KB) Compute (ms) Comm. (KB) Compute (ms)

Spiral - - - 28 767 28 767

SimplePIR 220 32-byte entries 20.9 20.9 4.8 40 14 40 14

Piano 32 MB in total 7.32 32 5.4 4.03 0.54 6.34 0.92

This paper 6.25 32 4 2.18 0.14 2.99 0.25

Spiral - - - 34.0 3177 34.0 3177

SimplePIR 224 32-byte entries 86.8 86.6 154 168 103 168 103

Piano 512 MB in total 32.97 512 96 16.03 1.35 23.73 2.8

This paper 25 512 65 8.56 0.62 11.76 1.0

Spiral - - - 34.5 8427 34.5 8427

SimplePIR 228 8-byte entries 173.4 173.4 623 338 319.1 338 319.1

Piano 2 GB in total 70.5 2048 1565 64 4.1 70.6 9.0

This paper 40 2048 989 34.02 2.4 37.22 3.9

Spiral - - - 35.0 30273 35.0 30273

SimplePIR 228 32-byte entries 352.98 352.98 2788 688 1123 688 1123

Piano 8 GB in total 144.75 8192 1822 64.03 3.8 90.41 9.6

This paper 100 8192 1146 34.06 2.7 46.86 4.5

SimplePIR 228 256-byte entries 983.64 983.64 failed 1965 7935 1965 7935

Piano 64 GB in total 837.75 65536 2775 64.25 5.3 275.3 14.0

This paper 660 65536 2327 34.5 4.2 136.9 7.8

large databases. Piano, being a sublinear scheme, addresses the

server computation bottleneck, but it has to weaken the correctness

guarantee of PIR.

Our scheme achieves better communication and computation

than these two stateful PIR schemes. Compared with SimplePIR,

the state-of-the-art scheme that provides the same standard PIR

correctness, our scheme is 9 − 14× better in communication and

hundreds of times faster in computation. Compared with the latest

version of Piano PIR, which is concurrent with our work, our com-

munication is about 2× better, and our amortized computation is

1.7 − 3.7× better. Moreover, we achieve these improvements while

providing a stronger correctness guarantee.
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Our single-server scheme does have a drawback (shared by Pi-

ano): o�ine communication is very high for large databases due to

streaming the whole database. Even though this can be amortized

over many online queries, it is still undesirable as it signi�cantly

delays the very �rst query.

5 Related Works

Private Information Retrieval (PIR) was �rst introduced by Chor

et al. [8]. There has been an extensive list of works on both multi-

server PIR and single-server PIR. Since this work focuses on the

two-server and the single-server settings, we will focus on these

two settings in this section and omit schemes that require three or

more servers.

Single-query PIR with linear server computation. Research on

PIR started with the simplest and most standard variant: a client

has a single entry to fetch from the server. We call it single-query

PIR. Chor et al. [8] gives the �rst single-query PIR scheme. Their

scheme uses multiple non-colluding servers. With two servers,

the communication cost of their scheme is $ (# 1/3). The state-

of-the-art two-server single-query scheme is based on distributed

point functions [15], uses polylogarithmic communication, and is

reasonably fast in computation.

Kushilevitz and Ostrovsky give the �rst single-server single-

query PIR scheme [20] based on additive homomorphic encryption

(AHE). Subsequent AHE-based schemes include [6, 11, 14]. Recent

practical single-server single-query PIR schemes [1, 2, 25, 26, 28]

have switched from AHE to lattice-based leveled Fully Homomor-

phic Encryption (FHE) to reduce server computation.

All the above schemes, multi-server and single-server ones alike,

require linear server computation. As mentioned, this is unavoid-

able in the most standard single-query PIR model. This is formal-

ized by Beimal, Ishai, and Malkin [3] as a lower bound that any PIR

scheme where the server stores an unmodi�ed # -entry database

must incur ¬(# ) computation at the server. Three avenues have

been explored in an attempt to circumvent the linear server compu-

tation barrier: database preprocessing, batch PIR, and stateful PIR.

We focus on stateful PIR in this section after brie�y discussing the

other two approaches below.

PIR with database preprocessing. In the same paper that estab-

lished the ¬(# ) server computation lower bound, Beimel, Ishai, and

Malkin [3] also show that the lower bound can be circumvented by

preprocessing and encoding the database o�ine. This approach is

also taken by a line of works known as doubly e�cient PIR [5, 7, 23].

These e�orts have so far remained largely theoretical because they

have to signi�cantly blow up server storage (superlinearly or by the

number of clients), require heavyweight theoretical tools (such as

oblivious locally decodable codes or virtual black box obfuscation),

or su�er from both drawbacks.

Batch PIR. Batch PIR [2, 18] also assumes the client has many

entries to fetch from the server. The di�erence between batch PIR

and stateful PIR is that batch PIR assumes the client has many

queries to fetch in one go, while stateful PIR allows the client to

generate queries sequentially (e.g., the client decides what the next

query is after receiving the response for its previous query). This

can be formally captured by the adaptive version of the stateful PIR

in Section 2. Note that batch PIR is an easier problem than stateful

PIR because the client can always send a batch of queries one by

one, but it cannot batch chronologically sequential (and potentially

causal) queries.

Ishai et al. [18] propose the �rst batch PIR scheme (and called

it amortized PIR in their paper) using batch codes. Angel et al. [2]

gives the �rst practical batch PIR scheme using cuckoo hashing. The

Angel et al. scheme nicely amortizes the linear server computation

cost: it costs$ (# ) server computation to ful�ll all the queries in the

batch, no matter how large the batch is. But their scheme does not

amortize the response overhead:$ (1) ciphertexts must be returned

for a batch of 1 queries. Mughees and Ren [29] give a batch PIR

scheme that amortizes the response overhead over the batch using

vectorized FHE where a single ciphertext can hold as many queried

entries as what can �t.

Stateful PIR. Patel, Persiano, and Yeo [31] propose the paradigm

of stateful PIR in which the client retrieves hints privately in an

o�ine phase and later uses these hints to speed up online queries. At

some level, this o�ine phase can also be viewed as a preprocessing

step, but it does not alter the server’s database and hence requires

no extra server storage. The goal of this �rst stateful PIR was less

ambitious: it was to replace the linear homomorphic encryption

operations with linear PRF evaluations, rather than circumventing

the linear server computation bound. Recent works like SimplePIR

and FrodoPIR [12, 17] further improved server computation to linear

arithmetic operations.

Corrigan-Gibbs and Kogan [10] give the �rst amortized sublinear

stateful PIR scheme. Their scheme initially works in the two-server

setting and is later extended to the single-server setting using the

idea of backup hints [9]. Several works resort to privately punc-

turable or programmable pseudorandom functions (PRF) to improve

the request size from ¬(_
√
# ) to polylogarithmic, �rst in the two-

server setting [32] and later in the single-server setting [21, 33].

These works are mostly theoretical at the moment because privately

puncturable/programmable PRFs are heavyweight theoretical tools

and do not have practical instantiations.

It is worth noting that a more pressing performance bottleneck

than the request size is the parallel repetitions. All of the above

works [9, 10, 21, 32, 33] allow a small probability of correctness

failure. Thus, their schemes must be repeated _ times in parallel

to make the correctness failure probability negligible. This will

blow up all e�ciency metrics, including request size, response size,

client storage, client computation, and server computation. To our

knowledge, none of the above schemes has been implemented.

Two recent works give methods to eliminate this correctness

failure and avoid the parallel repetitions [19, 22], leading to prac-

tical amortized sublinear stateful PIR schemes that have been im-

plemented. As we have mentioned, both schemes only work for

the two-server setting and have no clear paths to be extended

to the single-server setting. Moreover, both schemes come with

substantial e�ciency losses. The Checklist scheme by Kogan and

Corrigan-Gibbs [19] requires either Θ(# ) client storage or Θ(# )
client computation per query. Since the motivation of stateful PIR is

to avoid linear server computation, it is hard to justify shifting a lin-

ear cost to the client, which is often more resource-constrained than
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the server. The TreePIR scheme by Lazzaretti and Papamathou [22]

is more relevant to our work, and we discuss it in more detail next.

TreePIR [22]. The TreePIR scheme adds a logarithmic factor to

both client and server computation due to the use of the tree-based

weakly private puncturable PRF. It also increases the response

overhead to Θ(
√
# ). This large response overhead is usually more

problematic than a large request size because requests are measured

in log# -sized words (usually less than 32 bits), while the responses

are measured in the database entry size, which can be hundreds of

bytes or more.

In theory, the large response overhead can be mitigated by invok-

ing an extra single-server single-query PIR. However, this would

not be e�cient in practice. Most importantly, state-of-the-art FHE-

based single-query PIR schemes perform a one-time preprocessing

of the database using Number-Theory Transform (NTT) [1, 2, 26,

28]. Since the Θ(
√
# )-sized response is computed by the server

based on the query, this NTT preprocessing step will have to be

performed on the �y at the end of each query. This will make FHE-

based PIR at least an order of magnitude slower. For example, for

the # = 220 database with 32-byte entries, the NTT preprocess-

ing phase of Spiral PIR on
√
# = 210 entries would cost 1100 ms,

which is even slower than simply running Spiral PIR on the entire

(preprocessed) # = 220 database. In addition, this approach will

inherit other drawbacks of FHE-based PIR, such as large ciphertexts

of lattice encryption, key-dependent security, and megabytes of

server storage per client, the latter two of which result from the

substitution keys for query (de-)compression.

Despite the shortcomings in the response overhead and the need

for two servers, the TreePIR scheme introduces an elegant technique

that is crucial for our work. Their scheme uses a more structured

hint construction where the database is divided into equal-sized

partitions, and each subset consists of one index per partition. These

partition-based hints are more amenable to succinct pseudorandom

representations and faster membership testing. Thus, they enable

more space-e�cient hint storage and o�ine processing. Our work

adopts their partition-based hints.

Piano PIR [34]. The initial version of Piano PIR [34] adapts the

TreePIR scheme to the single server setting by combining TreePIR’s

partition-based hints and Corrigan-Gibbs et al.’s backup hints [9].

Naturally, it inherits the Θ(
√
# ) online response overhead from

TreePIR. Concurrent with our work, an updated version of Piano

PIR achieves $ (1) online response by adding singleton entries as

extra hints.

A major downside of (both versions of) Piano PIR is that they

have to weaken the correctness guarantee of PIR and require that

the query sequence is not in�uenced by the adversary. This is be-

cause their backup hints are “partition-speci�c”. In other words,

each backup hint is tied to a particular partition and can only re-

plenish a consumed hint when the client queries a database entry

belonging to that partition. As a result, they require the queries in

the sequence to be balanced across all partitions. To do so, they let

the server permute the entire database and publish the permutation

key. They then require the client’s query sequence to be indepen-

dent of the server’s permutation. Because the server’s permutation

is public, an adversary that can in�uence the client queries can

easily force the client to query many entries in the same partition

and make Piano PIR fail in correctness. Therefore, Piano PIR is

weaker than a standard (stateful) PIR scheme de�ned in Section 2.

We also discussed the importance of the standard PIR de�nition in

Section 2.

In terms of techniques, Piano PIR and our work may appear

similar at �rst glance because both works adopt established tech-

niques in the literature: TreePIR’s partition-based hints [22] and

Corrigan-Gibbs et al.’s backup hints [9]. But beyond that, our work

does not borrow any idea invented in Piano PIR, and vice versa.

The main techniques of Piano PIR are partition-speci�c backup

hints and singleton hints. We propose a new hint system that only

involves a random half of the partitions and the dummy subset

technique to make the new hint system secure.

6 Conclusion

We have presented simple and practical stateful PIR schemes with

amortized sublinear communication and computation for both the

two-server and single-server settings. Our schemes avoid the major

performance bottlenecks in prior works: parallel repetition, linear

client storage, and large response overhead.

Our schemes also have drawbacks that call for further studies.

An obvious one is the ¬(
√
# ) request size. There exist techniques

to reduce the request size, but the challenge is to do so without

sacri�cing other aspects of the algorithm. A limitation shared by

all existing amortized sublinear schemes is that the $ (_
√
# ) client

storage, while sublinear, is still quite large in practice. An indirect

consequence is that the single-server o�ine phase cannot do much

better than streaming the whole database when the client needs so

many hints. Other general challenges involving stateful PIR include

how to handle updates to the database and how to support queries

by keywords, and recent works have made some progress in these

directions [19, 24].
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