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Abstract

Recent works in amortized sublinear Private Information Retrieval
(PIR) have demonstrated great potential. Despite the inspiring
progress, existing schemes in this new paradigm are still faced
with various challenges and bottlenecks, including large client
storage, high communication, poor practical efficiency, need for
non-colluding servers, or restricted client query sequences. We
present simple and practical amortized sublinear stateful private
information retrieval schemes without these drawbacks using new
techniques in hint construction and usage. In particular, we intro-
duce a dummy set to the client’s request to eliminate any leakage
or correctness failures. Our techniques can work with two non-
colluding servers or a single server. The resulting PIR schemes
achieve practical efficiency. The online response overhead is only
twice that of simply fetching the desired entry without privacy. For
a database with 228 entries of 32-byte, each query of our two-server
scheme consumes 34 KB of communication and 2.7 milliseconds
of computation, and each query of our single-server scheme con-
sumes amortized 47 KB of communication and 4.5 milliseconds of
computation. These results are one or more orders of magnitude
better than prior works.
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1 Introduction

Private Information Retrieval (PIR) [8] allows a client to fetch an
entry from a public database on a server without revealing which
entry the client is interested in [8]. An efficient PIR scheme enables
many privacy-preserving applications, such as password check [1],
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safe browsing [19], anonymous communication [2, 27], and private
media streaming [16].

Despite decades of research [1, 2, 6, 8, 11, 13-15, 20, 25, 26, 28],
PIR protocols are still quite expensive, especially in the single-server
setting that does not assume the existence of non-colluding servers.
This is due in large part to a well-known fundamental barrier that
limits the practical efficiency of conventional PIR schemes: The
amount of server computation will be linear in the size of the
database. Intuitively, a PIR scheme must ask the server to touch
every entry in the database; otherwise, the server learns that the
untouched entries are not what the client is looking for.

Several directions have been explored to circumvent this funda-
mental barrier. A promising and fruitful recent attempt has been
the paradigm of stateful PIR, first proposed by Patel, Persiano, and
Yeo [31]. In this paradigm, the client stores hints (hence called state-
ful) and uses these hints to speed up queries. The hints, usually
in the form of parities of subsets of database entries, need to be
retrieved privately. This is done in an offline phase that can be fairly
expensive or may even require downloading the entire database.
After an expensive offline phase, the client can make many online
queries cheaply before having to rerun the offline phase. This makes
the stateful PIR scheme very efficient in an amortized sense after
sufficiently many queries. Although the first stateful PIR scheme
still incurred linear server computation per query, the paradigm
proves promising.

Corrigan-Gibbs and Kogan [10] give the first stateful PIR scheme
with amortized sublinear server computation. Follow-up works
continue to make further improvements and unlock more poten-
tial of this paradigm [9, 19, 21, 22, 32-34]. Despite the inspiring
progress, existing amortized sublinear stateful PIR schemes are still
faced with various challenges, including large client storage, high
communication, and subpar practical efficiency. Many schemes also
have to resort to heavy-weight theoretical tools [21, 32, 33], parallel
repetition [9, 21, 32, 33], or restricted client query sequences [34].

This paper presents simple and practical amortized sublinear
stateful PIR schemes that avoid most of the aforementioned draw-
backs. Our schemes achieve constant online response overhead,
take milliseconds of computation, rely only on pseudorandom func-
tions, need no repetition, and have no restrictions on client queries.
We could not address all the bottlenecks, though. Our schemes
still require relatively large client storage and moderate request
size, and the single-server variant still requires streaming the entire
database in the offline phase.

Overview of existing amortized sublinear stateful PIR. To better
explain our techniques and contributions, let us briefly go over the
blueprint of amortized sublinear stateful PIR by Corrigan-Gibbs
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Table 1: Comparison with recent practical amortized sublinear stateful PIR schemes. Request size and client computation
are measured in words of size A or log N. Response size, client storage, and server computation are measured in database
entry size (response is thus a blowup over the insecure baseline). Major performance bottlenecks are marked in red.

No. of Amortized communication Storage Amortized computation

Scheme Servers Request Response Client Client Server
Corrigan-Gibbs-Kogan [10] 2 O(AVN) o) O(A*+/N) O(AVN) O(AMVN)
Checklist [19] 2 O(log N) 0(1) O(N) O(VN) O(VN)

TreePIR [22] 2 O(log N) O(VN) ! O(AVN) O(VNlogN) O(WNlogN)

This paper 2 O(VN) o(1) O(AVN) O(VN) O(VN)
Corrigan et al. [9] O(AVN) 0} O(22VN) O(AVN) O(AVN)
Piano PIR 2 [34] 1 O(VN) O(VN/A) O(AWN) O(VN) O(VN)
This paper 1 O(VN) O(VN/A) O(AWN) O(VN) O(VN)

! TreePIR [22] can invoke an extra single-server PIR to reduce the asymptotic response overhead, but a variant without this second PIR gives better

practical efficiency and makes a fairer comparison.

2 Piano requires a stronger assumption than standard PIR, i.e., client queries must have no adversarial influence.

and Kogan [10]. The client privately retrieves hints in an offline
phase. Each hint involves a subset S of VN random distinct indices
within [0, N — 1] where N is the number of entries in the database.
For each hint, the client stores the subset S and the corresponding
parity €P; ¢ DB[i] where DB[i] is the i-th entry of the database,
and @ represents XOR. In the online phase, if the client wants
to retrieve the i-th entry, it finds a subset S that contains i. Since
the client stores the parity of entries in S, ideally, it just needs to
ask the server for the parity of entries in S \ {i}, from which it can
easily recover DB|i].

However, with the above high-level strategy, the client always
sends the server a subset that does not contain the queried index i.
This is insecure because the server learns that the queried entry is
not one of those in S \ {i}. To fix this problem, Corrigan-Gibbs and
Kogan suggest that the client occasionally removes an index other
than i from S. However, when the client does so, the client loses the
ability to retrieve the queried entry i. To compensate for this loss of
correctness, A instances of their protocol are executed in parallel to
achieve an exponentially small (in A) failure probability. This blows
up all efficiency metrics (communication, computation, and client
storage) by a factor of A and renders the scheme impractical.

Two schemes have been proposed [19, 22] to avoid this A fac-
tor blowup, but both come with notable drawbacks. First, both
schemes require two non-colluding servers, and there is no clear
way to extend them to single-server stateful PIR. Second, both
schemes make sacrifices on efficiency. The Checklist scheme by
Kogan and Corrigan-Gibbs [19] requires the client to pay either
Q(N) storage or Q(N) computation per query, both of which are
clearly undesirable. The TreePIR scheme by Lazzaretti and Papa-
mathou [22] incurs a response overhead of ©(VN) on every query.
This large response overhead would be prohibitive for databases
with large entries. Though this problem could be mitigated in the-
ory by invoking another regular (i.e., not stateful) single-server PIR
scheme, that would not be efficient in practice. We will explain this
in more detail in Section 5.

Another closely related recent work is Piano PIR by Zhou et
al. [34]. Their paper adapts the TreePIR scheme to the single-server
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setting but has to make an extra assumption that the client queries
have no adversarial influence. While this extra restriction may
be justifiable in certain scenarios, it is not always valid and is a
departure from the standard PIR model. Section 2 discusses this
issue in more detail.

Our results. In this paper, we propose new techniques in hint
construction and usage to obtain simple and practical amortized
sublinear stateful PIR schemes. Our new hint system eliminates
the aforementioned leakage associated with removing the queried
index, thus obviating the need for parallel repetition. We achieve
constant online response—just twice that of simply fetching the
desired entry without privacy—as well as sublinear client storage
and sublinear client computation. Our method works for both the
two-server and the single-server settings. The two-server version
further achieves constant amortized response overhead, while the
single-server version has O(VN/2) amortized response overhead
due to the need to stream the entire database in the offline phase.

Table 1 compares recent practical amortized sublinear PIR schemes
in terms of asymptotic efficiency. We exclude schemes that rely on
heavy theoretical tools, such as those based on oblivious locally
decodable codes [5, 7, 23] or privately puncturable/programmable
pseudorandom functions [21, 32, 33]. The three major performance
bottlenecks in prior works are marked in red: A factor repetition,
O(VN) response overhead, and linear client storage. Our schemes
avoid all three bottlenecks. Compared with Piano PIR, our scheme
has the same asymptotic efficiency but has better concrete efficiency
and places no restriction on client queries.

Our scheme enjoys good concrete efficiency. Take for example
an 8 GB database consisting of 2?8 entries where each entry is 32
bytes. Our two-server scheme requires 60 MB of client storage, and
consumes 34 KB of communication and 2.7 milliseconds of computa-
tion per query. In comparison, existing two-server schemes require
either over 1 GB of client storage or over 1 MB of communication.

For the same database, our single-server scheme requires 100 MB
of client storage, and consumes 47 KB of communication and 4.5
milliseconds of computation, amortized per query. In comparison,
the best prior scheme achieving the standard PIR correctness would



Simple and Practical Amortized Sublinear Private Information Retrieval using Dummy Subsets

be at least two orders of magnitude more expensive. Compared
with Piano PIR [34], our protocol offers up to 43% reduction in
client storage, up to 53% reduction in amortized communication,
and up to 73% reduction in amortized computation, in addition to
the stronger and standard PIR correctness.

2 Model and Preliminary

Private Information Retrieval (PIR). Given a database DB of N
entries and a query index i, the client wants to privately retrieve
the i-th entry in the database. A PIR protocol should satisfy the
following two properties.

e Correctness: If the client and the server correctly execute
the protocol, then the client retrieves the queried entry.

o Privacy: The server learns nothing about the client’s query
index.

The privacy requirement of PIR can be more rigorously captured
by a game between the server, who is also the adversary, and the
client. The game resembles the standard message indistinguishabil-
ity game for encryption.

(1) The server picks two indices i and i’, and send them to the
client.

(2) The client flips a coin b «— {0, 1}. The client queries index i
if b = 0 and queries index i’ if b = 1.

(3) The server tries to guess b.

If the server can guess b correctly with 0.5 + € probability where e
is non-negligible, then the PIR protocol is insecure.

Stateful PIR. We now extend the above PIR definition with a
single query to a stateful PIR that deals with a sequence of queries.
Given a database DB of N entries and a sequence of query indices
I = [iy,i2,i3,...], the client makes any (polynomial) number of
queries one by one. A stateful PIR protocol should satisfy the fol-
lowing two properties.

e Correctness: If the client and the server correctly execute
the protocol, then the client retrieves the i;-th entry in the
database at the end of the j-th query.

e Privacy: The server learns nothing about the client’s se-
quence of query indices.

Similarly, the privacy requirement of stateful PIR can be more
rigorously captured by a game between the client and the server.

(1) The server picks two sequences of query indices [ and I’ of
equal length and send them to the client.

(2) The client flips a coin b «— {0, 1}. The client queries sequence
Lif b = 0 and queries index I if b = 1.

(3) The server tries to guess b.

If the server can guess b correctly with 0.5 + € probability where e
is non-negligible, then the stateful PIR protocol is insecure.

Note that we let the server choose the two sequences of query
indices it wants to distinguish, similar to the indistinguishability
game for encryption. Likewise, correctness should also hold for
any query sequence, including ones chosen by the adversary. We
could make the server (adversary) even more powerful by letting
it choose the query sequences adaptively, i.e., it can choose the
next pair of query indices after interacting with the client for the
previous query in the sequence. Likewise, correctness can also
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be stated for any adaptively constructed sequence. Most existing
stateful PIR schemes, including ours, are correct and secure even
for adaptively constructed sequences of queries.

Importance of supporting arbitrary query sequences. Piano PIR [34],
however, does not satisfy the above definition (even for statically
constructed queries) because it requires the client query sequence
to have no adversarial influence. This assumption may be justifiable
in some use cases but not always. It is not hard to conceive scenarios
in which the client’s query sequence is influenced by a malicious
third party (who is different from the honest but curious server).
As a concrete example, consider DNS lookup, which is a primary
application that Piano PIR targets. The threat model of DNS typi-
cally assumes that the client may visit a malicious webpage that
can trigger DNS queries of the adversary’s choosing, e.g., as in the
Kaminsky attack. This immediately breaks the assumption of no
adversarial influence on the client queries. Such an adversary can
easily make Piano PIR fail in correctness (see Section 5). If an upper-
level application behaves differently when a PIR query succeeds vs.
fails, a correctness failure can lead to a privacy violation.

Pseudorandom functions. We assume the server is computation-
ally bounded. We will make use of pseudorandom functions (PRF).
PREF is one of the most common cryptographic primitives and can
be instantiated from any one-way function, including the standard-
ized and widely used AES block cipher and SHA cryptographic
hash functions. A PRF takes a secret key and an input. For conve-
nience, we will omit writing the secret key since there should be
no confusion in our schemes that the client holds the secret key
(and shares the secret key with one of the servers in the two-server
setting). The input to the PRF is often a concatenation of multiple
values. For example, a PRF call in our algorithms will be written as
PRE(x [l y || 2).

3 Algorithms
3.1 Overview

The key idea is a new type of hint that eliminates the information
leakage due to the absence of the queried index. This immediately
obviates the need for parallel repetition because there will be no
(non-negligible) correctness failure. Our techniques can be applied
to the original sublinear scheme of Corrigan-Gibbs and Kogan [10]
or the partition-based hints of TreePIR [22]. We will describe our
techniques on top of the partition-based hints because they offer
advantages in compact hint storage and fast membership testing.
In this context, our techniques help avoid the large responses and
the need for non-colluding servers in TreePIR’s partition paradigm.

Construction of our hints. A database of size N is divided into
VN partitions each of size VN. For convenience, we assume VN is
an even integer. The database can always be padded to the square
of the next even integer with very small extra overhead.

Let R denote the following distribution: first, select VN/2 + 1
random distinct partitions (i.e., sample without replacement) out of
the VN total partitions; then pick one random index from each of
these VN /2 + 1 partitions. Each hint in our algorithm consists of a
sample from R and its corresponding parity. Hence, a hint contains
VN/2 + 1 random indices from VN/2 + 1 random partitions, one
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index per partition. Note that the number of partitions we select in a
hint is exactly one more than half of the total number of partitions.

For correctness, the client needs to store M hints (M will be
specified later). For each j = 0,1,2,..., M — 1, the client samples
Sj < R and stores S; along with };c5, DB[i] as one hint.

Usage of the hint also resembles previous works in principle.
When the client makes a query to the i-th entry of the database,
the client looks for a hint whose subset S; contains index i. The
client sends S; \ {i} to the server. We will call it the query subset.
The server returns the parity for S; \ {i}. The client easily recovers
DB[i] since it has been storing the parity for S;. We need M = A\VN
where A is a security parameter so that a subset containing the
queried index can be found with all but exponentially small (in 1)
probability.

Eliminating the leakage. We now tackle the main challenge men-
tioned in Section 1. With the approach described so far, the query
subset sent by the client involves VN/2 random partitions and
contains one random index from each of them. However, since the
client always removes the queried index, the query subset will not
contain any index from the partition to which the queried entry
belongs. Thus, the server learns that the queried entry is definitely
not in any of the VN/2 partitions in the query subset.

Our main idea to address this leakage is for the client to addition-
ally send a dummy subset of indices. The dummy subset contains
one random index from each of the VN/2 partitions that do not
appear in the query subset. The client also randomly swaps the
two subsets. Le., with half probability, the client sends the query
subset followed by the dummy subset, and with the other half prob-
ability, the dummy subset followed by the query subset. This way,
the server cannot distinguish between the query subset and the
dummy subset.

Note that this dummy subset is precisely what is needed to elim-
inate the aforementioned leakage: the two subsets together cover
every partition! We next give a proof sketch. The full security proof
is given in Section 3.5. The client sends two subsets that together
cover all VN partitions. A random index is picked from each parti-
tion, so we only need to show that the grouping of the partitions
leaks no information. The grouping of the partitions is indistin-
guishable from a random arrangement. The dummy subset bundles
the partition of interest with VN /2—1 other random partitions, and
the query subset covers the remaining VN/2 partitions. A purely
random arrangement would anyway group the partition of interest
with \/JT[ /2 — 1 other random partitions and leave the rest as the
other group.

The online phase. The online phase of our stateful PIR protocol
follows naturally from the above hint system. Upon an input query
index i, the client finds a hint whose subset contains the query
index i. The client removes i from the subset (this is the real query
subset). The client then constructs a dummy subset that consists of
one random index from each partition not represented in the real
query subset. The client now sends the two subsets, permuted, to
the server. Figure 1 illustrates this process.

The server returns the two parities corresponding to the two
subsets. The client discards the dummy parity and uses the parity
of the real query subset to recover the desired entry. As a result,
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Figure 1: An illustration of the hint system and the client’s request.
The database has N = 36 entries and is divided into VN = 6 partitions.
Each hint selects VN /2+1 = 4 random partitions and picks a random
index from each. The queried index is removed to produce the real
query subset. A dummy subset is constructed by picking one random
index from each of the remaining three partitions.

the response overhead of our scheme is close to optimal: only twice
that of simply fetching the desired entry without privacy.

Hint replenishment and the offline phase. After each query in the
online phase, the client needs to replenish one hint since it has
just consumed one. The replenished hint must follow the same
distribution as the one just consumed, i.e., contains index i in the
subset. How we carry out the hint replenishment and how we run
the offline phase depend on whether we have a single server or two
non-colluding servers. We will describe the two variants in detail
later in the section.

3.2 Details of Hints and Online Phase

Sampling a subset of exact size. A step that warrants more clar-
ification is how we sample a subset of size exactly VN/2 + 1 out
of the VN partitions. For reasons that will become clear later and
involve hint replenishment, we will sample a subset of size exactly
VN/2 and then supply one extra index.

To sample exactly half of the partitions, we compute a pseu-
dorandom value using PRF for each hint-partition combination,
ie.,

v;x = PRF(“select” || j || k)
for the k-th partition of a hint with ID j. The prefix “select” is
added because we later need another pseudorandom value for each
hint-partition combination.

For each hint j, compute V; = [0}0,9},1,0j2,. .., Uj,\/ﬁ—l]' We
then find a cutoff value d; to divide V; into two equal-sized halves,
ie. exactly VN/2 elements in V; are smaller than 6; and exactly

VN /2 elements in V; are larger than 4;. A natural choice of 9;



Simple and Practical Amortized Sublinear Private Information Retrieval using Dummy Subsets

is the median of V;. Since we assume VN is an even integer, the
median is the average of two elements in V;. We save this cutoff
median value alongside the hint ID for each hint. This will give
us an efficient method to check if a partition is selected by a hint,
using O(1) time and O(1) client storage per hint.

Next, we need to pick one more index from a random partition
among the VN/2 unselected partitions. An easy and effective way
to do so is to keep picking random indices and checking if the
corresponding partition has already been selected, until hitting an
unselected partition.

Hint storage. Each hint is stored as a tuple (j,9;, ej, Pj) where
Jj is a unique hint ID, 9; is the cutoff median value, e; is the extra
index, and Pj is the parity.

With the hint construction and storage details in place, we can
now give more details of the algorithm for the online phase, shown
in Algorithm 2.

Finding a suitable hint. Upon input query index i, the client com-
putes £ = |i/ VN |, which is the partition that index i belongs to.
The client then goes through the hints to find one whose subset
contains i. There are two cases a hint’s subset contains i. A straight-
forward case is that the extra index e; equals i. The other case is
when partition ¢ is selected and index i is picked from partition ¢
for that hint. For each hint j, the client computes v, and checks
if vj ¢ is smaller than the median cutoff 4;. If so, the client further
computes a pseudorandom offset for the partition,

rje = PRF(“offset” || j || €),

and checks if rj, =i mod VN. If both checks pass, or if the extra
index ej = i, then index i is included in the subset of hint j.

We remark that this step showcases the benefit of partition-based
hints: the partitioning allows us to test in O(1) time whether a hint’s
subset includes a particular index, as we only need to check the
corresponding partition.

Constructing and encoding the two subsets. After finding a hint
that contains the query index i, the client reconstructs the hint’s
subset and then removes the query index i to obtain the query
subset. The client also constructs a dummy subset that contains
one random index from each partition that is not in the query
subset. Note that a random index (possibly i) will be drawn from
the partition of interest. This index will certainly be part of the
dummy subset, but the server cannot tell which subset is the dummy
one once the client permutes the two subsets.

Although we write our pseudocode to send two subsets for sim-
plicity, there is an equivalent and more compact way to encode the
two subsets. We can use a bit vector b = [bg, by, ..., b\/ﬁ—l] and
an offset vector r = [ro, 71, ..., rm_l]. The offset vector encodes

which index is picked from each partition. Concretely, s, = r+kVN
is the index picked from partition k. The bit vector encodes whether
each partition is part of the first or the second subset. In other words,
let Sy and S; denote the two subsets of indices that the client would
have sent in the pseudocode of Algorithm 2. Then, s € So if b =0
and s € Sp if by = 1. We note again that the two subsets are per-
muted by the client, so the real subset may be either So or Sy, with
half-half probability.
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It is not hard to see that this encoding is equivalent to sending So
and Sp as done in the pseudocode of Algorithm 2, but is slightly more
efficient. Sending Sp and S; directly would cost VN log N bits. The
encoding using b and r costs VN + VN log VN = (VN/2+1)log N
bits, roughly reducing the client’s request size by half.

3.3 The Two-Server Scheme

When there are two non-colluding servers, we use one server for the
offline phase and hint replenishment and the other for the online
queries. For convenience, we call the two servers the offline server
and the online server, even though the offline server also helps with
the hint replenishment step during the online phase.

The offline phase only needs to run once at the beginning of
the entire protocol to help the client start with sufficiently many
hints. After that, the client invokes hint replenishment on the fly
at the end of each online query. The pseudocode of the complete
two-server stateful PIR protocol is given in Algorithms 1, 2, and 3.

The offline phase. The offline phase is shown in Algorithm 1 and
is fairly straightforward. The client initiates the offline phase by
sending its PRF evaluation key to the offline server. This allows
the offline server to fully construct the hints. For each hint, exactly
half of the partitions are selected using the cutoff median method
described in Section 3.2, and a random index is picked from each
selected partition. After that, an extra index is picked from a par-
tition that has not been selected yet. The offline server can easily
compute the parity of these entries. Lastly, the offline server sends
the cutoff, the extra index, and the parity for each hint to the client.
This completes the offline phase.

Hint replenishment. To replenish a hint after querying index i,
the client asks the offline server to run Algorithm 3. Since the offline
server has the PRF evaluation key, it can construct a new hint using
the next available hint ID, similar to what it did in the offline phase.
But there are two new catches. First, the offline server does not add
the extra index because the client needs to add index i, the index
that is just queried, so that the replenished hint follows the same
distribution as the consumed one, i.e., has i in the subset. Second,
we do not want the offline server to learn the new hint’s subset,
because that would reveal some information to the offline server
about the query the client just made. Therefore, we let the offline
server compute the parities of both halves and send both parities
to the client along with the new hint ID and median cutoff.

Upon receiving the above from the offline server, the client
chooses the half that does not select the partition of i as the real half.
To do so, the client may have to redefine the operator < for this hint.
In other words, the client stores a bit that indicates whether this
hint chooses all partitions whose pseudorandom values (07 ) are
smaller or larger than the median cutoff. This essentially permutes
the two halves and makes them indistinguishable to the offline
server. The client then adds index i to the hint’s subset as the ex-
tra index and adds DB[i] (which the client has just retrieved) to
the parity. The new hint is now fully constructed and replaces the
consumed hint.
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Algorithm 1 The offline algorithm with two non-colluding servers, run by the offline server

1:
2
3:
4
5

6
7:
8
9:

10:
11:

forj=0,1,2,...,M—1do

Initializes parity Pj = 0
Compute V; = [0j,0,0j,1,0j2, . "’Uj,\/ﬁ] where v = PRF(“select” || j || k)
Find the median 4; of V; as the cutoff for selection
S={klvjx <9;} > the set of partitions selected by this hint
Pj=Pres DB[rj + kVN] where rik = PRF(“offset” || j || k) > one random index per selected partition
Set the extra index e; to a random index from a random partition not in S
Pj = P; @ DB[ej]
Send (j,9j, e, Pj) to the client to be stored
end for
Set J = M, the next available hint ID > J will be strictly increasing

Algorithm 2 The online algorithm, run by the client

1:

2:
3
4:
5
6

7:

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

19:

Input: queried index i >0k T ko hj,9;,ej, Pj as defined in Algorithm 1 or 4
¢ =|i/VYN] > ¢ is the partition that i belongs to
: Find main hint j such thatvj, < djandrj, ==i mod VN > hint j contains i
Initialize S=0 and §’ = 0 > S will be the real subset and S” will be the dummy subset
. fork=0:VN—-1do
if Vjk < 171' then
S=SU{rjx+kVN}
else if e; belongs to partition k then
S=S5u {Ej}
else
§" =8 U {rand() + kVN} > add a random index from partition k to the dummy subset
end if
end for
S=8\{i} > remove the queried index from the real subset
§’ =8’ U{rand() + tVN} > add a random index from partition ¢ to the dummy subset
Send (S, S”) or (5, S) to the server with half-half probability > permute the real and dummy subsets
Receive the two subset parities P and P’ from the server > in the order S and §’ are sent

Return P ® P;j as DB[i]

Replenish a hint that contains index i from partition ¢ using Algorithm 3 or 5

Algorithm 3 The hint replenish algorithm with two non-colluding servers, run by the offline server and the client

[ I N T

® N

10:
11:

12:
13:

: Use the next available hint ID J > The client asks the offline server to start hint replenishment
: Initializes parity Py = P7 =0

J

: Compute V; = [U],O,U]’I,U]’Z,...,U]"/ﬁ_l]
: Find the median 45 of Vy
: SZ{k|U],k<ﬁ]}

: Py = PregDBry + kVN] > recall r; . = PRF(“offset” || j || k)

: P} = Dpgs DBIryx + kVN]

: Send J, 4y, Py, P} to the client > The rest of the algorithm is run by the client

- if 7, < 07 then > pick the half that does not select partition ¢
P =P

Set a bit to redefine < to be “greater than” for this hint > Algorithm 2 should check this bit and interpret < accordingly for each
hint, but we omitted these details in Algorithm 2 for readability of the pseudocode
end if
Replace hint j with new hint (J,9y,i, Py @ DB[i]) > add i as the extra index to the new hint J
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Algorithm 4 The streaming offline algorithm with a single server, run by the client

> M main hints and 0.5M pairs of backup hints
> backup hints come in pairs

> main hints

> download partition k

> a pseudorandom entry is picked from partition k
> partition k is selected by hint j

> also construct the backup hint in the pair

> the extra index e; is in partition k

1: for j=0,1,2,...,1.5M - 1do

2: Initialize parity P; = 0, and additionally initialize P]’. =0ifj>M

3 Compute V; = [0j,0,0},1,0;2,. "’Uj,\/ﬁ—1] where v ;. = PRF(“select” || j || k)
4 Find and store the median 9; of V; as the cutoff for partition selection
5: if j < M then

6 Set the extra index e; to a random index from a random partition not in {k | v < 9;}
7 end if

8: end for

9. fork=0:VN—1do

10: Download DB[kVN : (k + 1)VN — 1] from the server

11: for j=0,1,2,...,1.5M - 1 do

12: x=DB[rj; + kVN] where rjx = PRF(“offset” || j || k)

13: if vjp < dj then

14: Pj=Pj®x

15: else if j > M then

16: PJ'. = P} ®x

17: end if

18: if |ej/VN] == k then

19: P; =P; ® DB[ej]

20: end if

21: end for

22: end for

Algorithm 5 The hint replenish algorithm with a single server, run by the client

1: Let J be the ID of the next unused pair of backup hints
2 if vy, > 4 then

3 P] = P}

4 Set a bit to redefine < to be “greater than” for this hint
5. end if

6: hj =]

7 €ej = i

s: Pj = P; & DBJ[i]

9: Replace hint j with backup hint (J, 47,1, P; @ DB[i])

> pick the half that does not select partition ¢

> Algorithm 2 checks this bit to interpret <

> add i as the extra index to the new main hint J

3.4 The Single-Server Scheme

Hint replenishment using backup hints. With a single server, we
no longer have the luxury of replenishing a hint on the fly. Instead,
we will use the idea of backup hints from [9]. The client retrieves
additional backup hints in the offline phase so that the client can
replenish a hint during the online phase without contacting the
server. Since backup hints will eventually run out, the offline phase
needs to be run periodically. The pseudocode of our complete single-
server stateful PIR protocol is given in Algorithms 4, 2, and 5.

In the offline phase, the client retrieves not only the AVN primary
hints but also AVN backup hints. A backup hint does not have the
extra index and thus contains one fewer index in its subset than a
main hint. After the client makes a PIR query for index i, it finds
a backup hint that does not select i’s partition. The client then
adds index i to the subset as the extra index and adds DB[i] to the
parity. The new subset and parity now form a regular main hint
that follows the same distribution as the consumed one, i.e., has i
in the subset.

1426

A simple strategy is to have AVN independent backup hints.
Then, there are in expectation 0.5AVN backup hints that skip any
given partition. So the client can make close to, but fewer than,
0.5AVN (say 0.4AVN) online queries before having to rerun the
offline phase. Even if the client keeps querying entries from the
same partition, it will not run out of backup hints that skip that
partition, except for exponentially small (in AVN) probability.

A more clever strategy is to have backup hints in pairs, similar
in spirit to the two-server hint replenishment algorithm. This is the
strategy taken in the pseudocode of Algorithm 5. From a backup
hint ID J, the client computes V; as well as the cutoff ;. The cutoff
o divides the partitions into two equal-sized halves. The client will
store the parities of both halves. When it is time to replenish a hint
that contains index i, the client picks the half that does not select
the partition ¢ that index i belongs to, and then adds i as the extra
index. Like the two-server scheme, the client needs to store a bit
indicating whether < is redefined to be “greater than” for this hint.
This way, the client only needs one pair of backup hints per query,
as one of the two halves will certainly meet the need. The client
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can now store AVN /2 pairs of backup hints and can make exactly
AVN/2 online queries before having to rerun the offline phase.

Offline phase. In the offline phase, the client needs to retrieve
main hints and backup hints in a private manner. This can be done
in a few ways. The simplest and most practical way is perhaps to
stream the entire database, one partition at a time. The pseudocode
of the streaming offline phase is given in Algorithms 4. The extra
index of each main hint can be sampled in the same way described
in Section 3.2: keep picking a random partition and checking if it is
already selected. This is now done by the client prior to streaming
the database. After downloading a partition, it is straightforward
to use v;; and r; to determine, for each main or backup hint j,
which index, if any, should be drawn from the current partition k.
For each main hint, the client also checks if its extra index is from
the current partition. For each backup hint pair, the client updates
the parity corresponding to the correct half based on whether v;
is smaller or larger than the median cutoff.

3.5 Correctness and Privacy Analysis

We will first focus on the very first query after the offline phase
and then extend the analysis to subsequent queries.

Correctness. For correctness, we need to prove that, upon an in-
put query index i, the client will be able to find, with overwhelming
probability, a hint whose subset includes i. To this end, we first
observe the following simple fact.

LEMMA 1. Each hint in our construction has at least #ﬁ proba-

bility of containing a particular index.

ProoF. A hint contains a particular index i if the hint selects i’s
partition and picks i from that partition. The former happens with
(VN/2+1)/VYN > 1/2 probability (the plus one is due to the extra
index), and the latter happens with 1/VN probability. O

For correctness to be violated, none of the AVN main hints con-

tains the query index. This happens with less than (1— #ﬁ)&\/ﬁ <

e~A/2 probability. For a sufficiently large A, this probability is astro-
nomically small.

Privacy. We need to prove that the two subsets sent by the client
reveal no information about the query index. We will carry out
the proof as if the PRF is perfectly random. The privacy of our PIR
protocol is then reduced to the pseudorandomness of the PRF.

It is more convenient to reason about privacy with the more
compact encoding described in Section 3.2. Recall that the client
sends a bit vector b grouping partitions into two subsets along with
an offset vector r encoding the index picked from each partition.
First, observe that the offset vector r consists of pseudorandom
values that are independent of the query index.

e For partitions not selected by the hint, a fresh pseudorandom
dummy offset is used (Line 11 of Algorithm 2).

o For the partition that contains the query index i, i is removed
and is replaced with a fresh pseudorandom dummy offset
(Line 15 of Algorithm 2).

o For the remaining partitions that are selected by the hint, the
offsets are picked pseudorandomly during the offline phase,
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and this is the first (and only) time they are revealed to the
(online) server.

Thus, from the (online) server’s perspective, all VN offsets are fresh,
pseudorandom, and independent of the query index.

The crux of the proof is to show that the bit vector b reveals no
information about the query index. Formally, we will prove that the
distribution of b is not affected by, and hence reveals no information
about, the query index.

LEMMA 2. For any two query indicesi andi’,Pr(b | i) = Pr(b | i’).

ProoF. Let ¢ denote the partition index i belongs to and ¢’ denote
the partition index i’ belongs to. When the query index is i, an index
from partition ¢ is added to the dummy subset. For the client to send
b, two events must happen. First, the bit b, represents the dummy
subset (as opposed to the opposite bit 1 — by). This happens with
1/2 probability. Second, besides partition ¢, the set of partitions
selected by this hint are those marked by the opposite bit, i.e.,
T = {k | by # b¢}. Since each hint selects VN/2+1 partitions at
random, the probability for the other VN/2 selected partitions to

-1
be those in T is 7 = (%721 ) . These two events are independent,
so Pr(b | i) = /2. By the exact same argument, we have

Pr(b | i) = 7/2 = Pr(b | i). o

Lemma 2 is sufficient to establish the privacy of our protocol. But
to make things more explicit, we can derive the following simple
facts from Lemma 2.

Pr(b) = Z Pr(b | i) - Pr(i) = 7/2 - ZPr(i) =1/2.

Thus, for all query index i,

Pr(i,b) _ Pr(b|i)-Pr(i)
Pr(b) Pr(b)

The fact that Pr(i | b) = Pr(i) for all i means that observing b does
not change an observer’s prior on the query index, which is to say
b does not reveal any information about the query index. Therefore,
the server will have no advantage in distinguishing the two queries
in the privacy game.

Pr(i | b) = = Pr(i).

Extension to subsequent queries. The above completes the correct-
ness and privacy proofs for the first query after the offline phase.
Next, we extend the proofs to subsequent queries. For this step,
we need to show that after a query consumes and replenishes a
hint, the distribution of the main hints remains the same. Then, our
privacy proof above would apply directly to all subsequent queries,
and the correctness failure probability over a sequence of queries
can be upper bounded by a simple union bound.

Let H; i be the random variable representing the index picked
from partition k in hint j. If hint j does not select from partition
k,Hjy = L. Then, the following matrix of random variables fully
describes the main hints.

N
Ho | [ Hoo o Hoa Hy vy
H; Hio Hi, H N1
H-= = X
Hy—1 Hy-10 Hwm-11 Hy 1 yN-1
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Let H represent the main hints before the current query and H’
represent the main hints after the current query. We want to show
that H” and H are identically distributed.

Each hint (row vector) in H is drawn from the distribution R de-
scribed in Section 3.1. Let R; be the distribution of a hint conditioned
on the event that it contains index i. Let R_; be the distribution of
a hint conditioned on the event that it does not contains index i.

Suppose we scan the main hints from 0 to M — 1 to look for
the query index i. Each hint independently has a probability g =
VN /2+1

VN
needs to be picked from partition ¢. Let J be the hint consumed. J

follows a geometric distribution with parameter q. (The event that
no hint contains i is a negligible one, and for convenience, we can
assume no hint is consumed or replenished in that case.) Thus,

Pr(J > j) = (1-¢)/*,
Pr(J=j)=(1-q)q

. LN to contain i: partition ¢ needs to be selected and i

j-1
Pr(J<j) =) .(1-glg=1-(1-gq).
1=0

Both the consumed and the replenished hints follow distribution
R;. All the other hints are unmodified. Moreover, all the hints
prior to J follow distribution R_;, and all the hints after J follow
distribution R.

Let us now focus on any particular hint j in H’. Given the dis-
tribution of J, we can think of hint j in H’ to be sampled in the
following manner: with 1 — (1 — q)/ probability, sample from R; for
the remaining (1— g)/ probability, sample from R; with probability
g and sample from R_; with probability (1 — ¢)/*1.

Observe that the g vs. 1 — g ratio is exactly the likelihood that
an original hint in H does vs. does not contain index i, or equiv-
alently, follows R; vs. R_;. Thus, every hint j in H’ follows the
same distribution as the hint j in H. This shows that the main
hints after a query are identically distributed as they were before
the query. Then, by transitivity, the main hints at any point are
identically distributed as their original states right after the offline
phase. Therefore, our correctness and privacy proofs apply to all
subsequent queries.

3.6 Efficiency Analysis

The two-server scheme. The offline phase costs O(AVN) commu-
nication and O(AN) computation at the offline server. But because
the offline phase runs only once, these costs do not factor into the
amortized costs after sufficiently many queries. Hence, the amor-
tized cost of our two-server scheme only depends on the online
phase and the hint replenishment step. The online request size
is (VN/2 + 1) log N bits using the compact encoding of the two
subsets. The online response overhead is O(1), or 4X to be precise,
since the online server and the offline server both send back two
parities.

The expected computation cost of the client is O(VN) due to
searching for a hint and reconstructing the hint’s subset. Because
each hint has at least —L— probability of containing a particular

index by Lemma 1, the client will find a suitable hint after checking
2VN hints in expectation (and each check takes O(1) time). The
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computation cost of the server is O(VN) due to computing the
parities. These give the two-server results in Table 1.

The single-server scheme. The online phase is very similar to the
two-server scheme: each online query costs O(VN) bits in request,
O(1) overhead in response, O(VN) client computation, and O(VN)
server computation. The streaming offline phase costs N communi-
cation and O(AN) computation, and needs to be run every 0.5A1VN
online queries. This leads to the single-server results in Table 1.
The only difference from the two-server case is that the response
overhead is O(VN/A) because the O(N) offline communication is
amortized over 0.51VN online queries.

4 Evaluation

4.1 Implementation Details

We implemented our scheme in C++. The implementation is avail-
able at https://github.com/renling/S3PIR/. Due to the simplicity of
our schemes, the two-server version of our implementation com-
prises about 600 lines of code and the single-server version com-
prises about 500 lines of code. We set the parameter A to 80. We
use AES as the pseudorandom function. We use CryptoPP’s imple-
mentation of AES, which leverages Intel’s AES-NI instructions. We
break up a single 128-bit AES output into four to eight pseudoran-
dom numbers (i.e., v and r;x in the algorithms) across different
hints or partitions to save computation.

We use 32-bit numbers for elements in V; to save client storage
and computation. It is worth noting that this gives rise to a corner
case where two or more elements in V; are equal to the median.
When this happens, the median alone does not give a way to evenly
divide V; into two equal-sized halves. We could add additional
metadata to handle this corner case, but because this corner case
happens with a very small probability, we simply consider such a
hint invalid and discard it. We have omitted the handling of this
corner case from the pseudocode for readability.

The median finding procedure, if implemented nalively, would
be the bottleneck of the single-server scheme’s offline phase. We
could directly use introselect [30] or a similar linear time selection
algorithm. But we can take advantage of the fact that elements of V;
are uniformly random. We can filter out elements that are too large
or too small, i.e., outside two heuristic bounds, and run introselect
on the reduced array. We keep count of the number of filtered
elements. If we filter out X small elements, we use introselect to find
the (VN/2-X —1)-th and (VN /2 —X)-th smallest elements among
the remaining elements. These will be the two middle elements
that give the median of V;. With appropriately selected bounds, the
probability of filtering out one of these two elements is very small.
(And when that happens, we simply consider this hint invalid and
discard it.) We think of the random values as 32-bit fixed-point
numbers between 0 and 1, and choose the two filtering bounds
as % + %6. In expectation, this filters out 7/8 of the elements. The
probability that one of the middle elements is filtered out is 6 x 107>
for a database of size 22°, and this probability keeps decreasing with
the size of the database.

When log N does not exceed 32, we use 32-bit integers for the
extra indices. The hint IDs in our single-server version can also use
32-bit numbers since they will reset periodically upon offline phases.
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In the two-server version, however, hint IDs can grow unbounded,
so we use 64-bit integers for them.

4.2 Experimental Setup

Baselines. We compare with several practical two-server and
single-server schemes, which we briefly describe below.
Two-server baselines include:

o The protocol of Boyle, Gilboa, and Ishai [4] based on distributed
point functions (DPF) is the state-of-the-art two-server PIR scheme
that uses linear server computation. It has a logarithmic request
size and a constant response overhead. We use their C++ imple-
mentation.!

e The protocol of Kogan and Corrigan-Gibbs for checklists [19]
is the first two-server amortized sublinear PIR scheme that is
implemented. Their scheme has a logarithmic request size and
a constant response overhead but requires either linear client
computation or linear client storage. Their implementation in
Go? uses linear client storage.

o TreePIR by Lazzaretti and Papamathou [22] is the state-of-the-
art two-server amortized sublinear PIR scheme. Their scheme
uses sublinear client storage and client computation and has a
logarithmic request size. The downside of their scheme is the
O(VN) response overhead. We use their implementation in Go.3

Single-server baselines include:

Spiral PIR by Menon and Wu [26] is the latest single-server

single-query PIR. It is based on lattice-based leveled FHE and

needs to perform a linear amount of homomorphic operations at
the server. We use their C++ implementation.*

SimplePIR by Henzinger et al. [17] is a single-server stateful PIR

scheme that still uses linear arithmetic operations on the server.

We use their implementation in Go.>

Piano PIR by Zhou et al. [34] is the latest single-server stateful PIR.

We discuss it in detail in Section 5. We use their implementation

of the updated version in Go.°

Experimental setup. We run all experiments on an AWS m5.8xlarge
instance equipped with a 3.1 GHz Intel Xeon processor and 128
GB RAM. Our instance runs Ubuntu 22.04, GCC 11.3, and Golang
1.18. We run our scheme and all baselines with a single thread. We
test the performance of our scheme and the baseline schemes with
databases of varying entry counts and entry sizes. We first test
databases with 220, 224 and 228 entries while fixing the entry size
to 32 bytes. We then fix the database to 228 entries and test 8-byte
and 256-byte entry sizes.

4.3 Evaluation Results

Two-server schemes. Table 2 gives a performance comparison of
two-server PIR and stateful PIR schemes. The offline phases of the
three stateful PIR schemes are run only once, so their amortized
per-query costs are simply the online costs after sufficiently many
queries are made. The checklist implementation crashed in our

!https://github.com/dkales/dpf-cpp
Zhttps://github.com/dimakogan/checklist
3https://github.com/alazzaretti/treePIR
“https://github.com/menonsamir/spiral
Shttps://github.com/ahenzinger/simplepir
Chttps://github.com/wuwuz/Piano-PIR-new
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last experiment, so its results for the 64 GB database are missing.
The DPF implementation does not support 256-byte entries, so its
computation result for the 64 GB database is estimated.

DPF-PIR requires no offline phase or client storage. It also has
efficient communication ranging from 0.91 KB to 1.52 KB in our
tests. Its computation is linear in database size and grows from 2.5
milliseconds on a 32 MB database to 5960 milliseconds on a 64 GB
database. Overall, DPF-PIR is very efficient in all aspects for small
databases but is costly in computation for large databases.

In comparison, the three stateful PIR schemes require offline
phases and client storage and, in return, achieve orders of magni-
tude lower per-query computation.

The checklist scheme boasts the lowest communication cost
among the schemes we test. It also has a low online computation
cost that is comparable to our scheme. Its biggest downside is the
linear client storage. This cost is manageable for small databases
but becomes prohibitive for large databases. For example, on the
8 GB database, the checklist scheme’s client storage is over 1 GB,
about one-eighth of the entire database and > 20X of TreePIR and
our scheme.

TreePIR requires the smallest client storage among the three
but has a high per-query communication cost that is two orders
of magnitude larger than our scheme. Its per-query computation
is also around 3.8 — 12.8x higher than our scheme. We also test
TreePIR with an extra single-server PIR call (not shown in the
table). Its communication would improve to around 30 KB (refer
to the Spiral result in Table 3), but its computation would worsen
significantly (refer to the discussion in Section 5).

Our scheme achieves a balance of low client storage, low com-
munication, and low computation for all database parameters, by
avoiding major bottlenecks in previous schemes such as linear client
storage, linear server computation, or high communication.

Single-server schemes. Table 3 gives a performance comparison
of single-server PIR and stateful PIR schemes. The amortized per-
query cost of Piano and our scheme are calculated as the offline
cost divided by the number of queries supported per offline, plus
the online cost. Spiral has no offline phase, and SimplePIR has
a one-time offline phase, so their amortized per-query costs are
simply the online costs after sufficiently many queries are made.
Spiral crashed in our last experiment, so its results for the 64 GB
database are missing. The SimplePIR implementation’s offline phase
also crashed in our last experiment; luckily, their implementation
provides a way to test online efficiency without running the offline
phase (and naturally, without correctness).

Spiral’s communication cost remains relatively stable at different
database parameters. Its linear server computation, however, is
expensive even for small databases and becomes prohibitive for
large databases. Concretely, its per-query computation is over 3
seconds for a 512 MB database and over 30 seconds for an 8 GB
database. In comparison, our scheme is thousands of times faster
than Spiral in per-query computation: just 4.5 milliseconds on the
same 8 GB database. In terms of per-query communication, our
scheme is better than Spiral on small databases but becomes worse
on large databases due to the Q(VN) request size.

SimplePIR’s online server computation is a constant factor bet-
ter than Spiral’s, but it is still linear and still very expensive for
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Table 2: Comparison of two-servers PIR schemes.

Database Client Storage Offline Online
Parameters (MB) Comm. (MB) Compute (s) | Comm. (KB) Compute (ms)
DPF-PIR - — - 0.91 2.5
Checklist 220 32-byte entries 7.07 2.88 3.3 0.50 0.17
TreePIR 32 MB in total 2.88 2.88 1.0 65.9 0.45
This paper 3.76 3.76 2.3 2.26 0.12
DPF-PIR - - - 1.1 47
Checklist ~ 22* 32-byte entries 78.60 11.53 73 0.56 0.72
TreePIR 512 MB in total 11.53 11.53 23 262.6 4.9
This paper 15.04 15.04 41 8.64 0.54
DPF-PIR - - - 1.21 182.4
Checklist 2%8 8-byte entries 1085.27 11.53 1394 0.52 19
TreePIR 2 GB in total 11.53 11.53 398 262.6 20
This paper 30.16 30.16 636 34.0 2.19
DPF-PIR - - - 1.31 745
Checklist 228 32-byte entries 1119.74 46.14 1141 0.64 18
TreePIR 8 GB in total 46.14 46.14 430 1049.6 14
This paper 60.16 60.16 842 34.1 2.7
DPF-PIR 228 256-byte entries - - - 1.52 5960
TreePIR 64 GB in total 369.09 369.09 1843 8389.6 67
This paper 340.16 340.16 2242 35.0 5.23
Table 3: Comparison of single-server PIR schemes.
Database Client Storage Offline Online Amortized per query
Parameters (MB) Comm. (MB) Compute (s) | Comm. (KB) Compute (ms) | Comm. (KB) Compute (ms)
Spiral - - - 28 767 28 767
SimplePIR  22° 32-byte entries 20.9 20.9 4.8 40 14 40 14
Piano 32 MB in total 7.32 32 5.4 4.03 0.54 6.34 0.92
This paper 6.25 32 4 2.18 0.14 2.99 0.25
Spiral - - - 34.0 3177 34.0 3177
SimplePIR  22* 32-byte entries 86.8 86.6 154 168 103 168 103
Piano 512 MB in total 32.97 512 96 16.03 1.35 23.73 2.8
This paper 25 512 65 8.56 0.62 11.76 1.0
Spiral - - - 34.5 8427 34.5 8427
SimplePIR 228 8-byte entries 173.4 173.4 623 338 319.1 338 319.1
Piano 2 GB in total 70.5 2048 1565 64 4.1 70.6 9.0
This paper 40 2048 989 34.02 2.4 37.22 3.9
Spiral - - - 35.0 30273 35.0 30273
SimplePIR 228 32-byte entries 352.98 352.98 2788 688 1123 688 1123
Piano 8 GB in total 144.75 8192 1822 64.03 3.8 90.41 9.6
This paper 100 8192 1146 34.06 2.7 46.86 4.5
SimplePIR 228 256-byte entries 983.64 983.64 failed 1965 7935 1965 7935
Piano 64 GB in total 837.75 65536 2775 64.25 5.3 275.3 14.0
This paper 660 65536 2327 34.5 4.2 136.9 7.8

large databases. Piano, being a sublinear scheme, addresses the
server computation bottleneck, but it has to weaken the correctness
guarantee of PIR.

Our scheme achieves better communication and computation
than these two stateful PIR schemes. Compared with SimplePIR,
the state-of-the-art scheme that provides the same standard PIR

correctness, our scheme is 9 — 14X better in communication and
hundreds of times faster in computation. Compared with the latest
version of Piano PIR, which is concurrent with our work, our com-
munication is about 2X better, and our amortized computation is
1.7 — 3.7X better. Moreover, we achieve these improvements while
providing a stronger correctness guarantee.
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Our single-server scheme does have a drawback (shared by Pi-
ano): offline communication is very high for large databases due to
streaming the whole database. Even though this can be amortized
over many online queries, it is still undesirable as it significantly
delays the very first query.

5 Related Works

Private Information Retrieval (PIR) was first introduced by Chor
et al. [8]. There has been an extensive list of works on both multi-
server PIR and single-server PIR. Since this work focuses on the
two-server and the single-server settings, we will focus on these
two settings in this section and omit schemes that require three or
more servers.

Single-query PIR with linear server computation. Research on
PIR started with the simplest and most standard variant: a client
has a single entry to fetch from the server. We call it single-query
PIR. Chor et al. [8] gives the first single-query PIR scheme. Their
scheme uses multiple non-colluding servers. With two servers,
the communication cost of their scheme is O(N 1 3). The state-
of-the-art two-server single-query scheme is based on distributed
point functions [15], uses polylogarithmic communication, and is
reasonably fast in computation.

Kushilevitz and Ostrovsky give the first single-server single-
query PIR scheme [20] based on additive homomorphic encryption
(AHE). Subsequent AHE-based schemes include [6, 11, 14]. Recent
practical single-server single-query PIR schemes [1, 2, 25, 26, 28]
have switched from AHE to lattice-based leveled Fully Homomor-
phic Encryption (FHE) to reduce server computation.

All the above schemes, multi-server and single-server ones alike,
require linear server computation. As mentioned, this is unavoid-
able in the most standard single-query PIR model. This is formal-
ized by Beimal, Ishai, and Malkin [3] as a lower bound that any PIR
scheme where the server stores an unmodified N-entry database
must incur Q(N) computation at the server. Three avenues have
been explored in an attempt to circumvent the linear server compu-
tation barrier: database preprocessing, batch PIR, and stateful PIR.
We focus on stateful PIR in this section after briefly discussing the
other two approaches below.

PIR with database preprocessing. In the same paper that estab-
lished the Q(N) server computation lower bound, Beimel, Ishai, and
Malkin [3] also show that the lower bound can be circumvented by
preprocessing and encoding the database offline. This approach is
also taken by a line of works known as doubly efficient PIR [5, 7, 23].
These efforts have so far remained largely theoretical because they
have to significantly blow up server storage (superlinearly or by the
number of clients), require heavyweight theoretical tools (such as
oblivious locally decodable codes or virtual black box obfuscation),
or suffer from both drawbacks.

Batch PIR. Batch PIR [2, 18] also assumes the client has many
entries to fetch from the server. The difference between batch PIR
and stateful PIR is that batch PIR assumes the client has many
queries to fetch in one go, while stateful PIR allows the client to
generate queries sequentially (e.g., the client decides what the next
query is after receiving the response for its previous query). This
can be formally captured by the adaptive version of the stateful PIR
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in Section 2. Note that batch PIR is an easier problem than stateful
PIR because the client can always send a batch of queries one by
one, but it cannot batch chronologically sequential (and potentially
causal) queries.

Ishai et al. [18] propose the first batch PIR scheme (and called
it amortized PIR in their paper) using batch codes. Angel et al. [2]
gives the first practical batch PIR scheme using cuckoo hashing. The
Angel et al. scheme nicely amortizes the linear server computation
cost: it costs O(N) server computation to fulfill all the queries in the
batch, no matter how large the batch is. But their scheme does not
amortize the response overhead: O(b) ciphertexts must be returned
for a batch of b queries. Mughees and Ren [29] give a batch PIR
scheme that amortizes the response overhead over the batch using
vectorized FHE where a single ciphertext can hold as many queried
entries as what can fit.

Stateful PIR. Patel, Persiano, and Yeo [31] propose the paradigm
of stateful PIR in which the client retrieves hints privately in an
offline phase and later uses these hints to speed up online queries. At
some level, this offline phase can also be viewed as a preprocessing
step, but it does not alter the server’s database and hence requires
no extra server storage. The goal of this first stateful PIR was less
ambitious: it was to replace the linear homomorphic encryption
operations with linear PRF evaluations, rather than circumventing
the linear server computation bound. Recent works like SimplePIR
and FrodoPIR [12, 17] further improved server computation to linear
arithmetic operations.

Corrigan-Gibbs and Kogan [10] give the first amortized sublinear
stateful PIR scheme. Their scheme initially works in the two-server
setting and is later extended to the single-server setting using the
idea of backup hints [9]. Several works resort to privately punc-
turable or programmable pseudorandom functions (PRF) to improve
the request size from Q(AVN) to polylogarithmic, first in the two-
server setting [32] and later in the single-server setting [21, 33].
These works are mostly theoretical at the moment because privately
puncturable/programmable PRFs are heavyweight theoretical tools
and do not have practical instantiations.

It is worth noting that a more pressing performance bottleneck
than the request size is the parallel repetitions. All of the above
works [9, 10, 21, 32, 33] allow a small probability of correctness
failure. Thus, their schemes must be repeated A times in parallel
to make the correctness failure probability negligible. This will
blow up all efficiency metrics, including request size, response size,
client storage, client computation, and server computation. To our
knowledge, none of the above schemes has been implemented.

Two recent works give methods to eliminate this correctness
failure and avoid the parallel repetitions [19, 22], leading to prac-
tical amortized sublinear stateful PIR schemes that have been im-
plemented. As we have mentioned, both schemes only work for
the two-server setting and have no clear paths to be extended
to the single-server setting. Moreover, both schemes come with
substantial efficiency losses. The Checklist scheme by Kogan and
Corrigan-Gibbs [19] requires either ©(N) client storage or @(N)
client computation per query. Since the motivation of stateful PIR is
to avoid linear server computation, it is hard to justify shifting a lin-
ear cost to the client, which is often more resource-constrained than
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the server. The TreePIR scheme by Lazzaretti and Papamathou [22]
is more relevant to our work, and we discuss it in more detail next.

TreePIR [22]. The TreePIR scheme adds a logarithmic factor to
both client and server computation due to the use of the tree-based
weakly private puncturable PRF. It also increases the response
overhead to ©(VN). This large response overhead is usually more
problematic than a large request size because requests are measured
in log N-sized words (usually less than 32 bits), while the responses
are measured in the database entry size, which can be hundreds of
bytes or more.

In theory, the large response overhead can be mitigated by invok-
ing an extra single-server single-query PIR. However, this would
not be efficient in practice. Most importantly, state-of-the-art FHE-
based single-query PIR schemes perform a one-time preprocessing
of the database using Number-Theory Transform (NTT) [1, 2, 26,
28]. Since the O(VN)-sized response is computed by the server
based on the query, this NTT preprocessing step will have to be
performed on the fly at the end of each query. This will make FHE-
based PIR at least an order of magnitude slower. For example, for
the N = 2% database with 32-byte entries, the NTT preprocess-
ing phase of Spiral PIR on VN = 21 entries would cost 1100 ms,
which is even slower than simply running Spiral PIR on the entire
(preprocessed) N = 2% database. In addition, this approach will
inherit other drawbacks of FHE-based PIR, such as large ciphertexts
of lattice encryption, key-dependent security, and megabytes of
server storage per client, the latter two of which result from the
substitution keys for query (de-)compression.

Despite the shortcomings in the response overhead and the need
for two servers, the TreePIR scheme introduces an elegant technique
that is crucial for our work. Their scheme uses a more structured
hint construction where the database is divided into equal-sized
partitions, and each subset consists of one index per partition. These
partition-based hints are more amenable to succinct pseudorandom
representations and faster membership testing. Thus, they enable
more space-efficient hint storage and offline processing. Our work
adopts their partition-based hints.

Piano PIR [34]. The initial version of Piano PIR [34] adapts the
TreePIR scheme to the single server setting by combining TreePIR’s
partition-based hints and Corrigan-Gibbs et al’s backup hints [9].
Naturally, it inherits the ®(VN) online response overhead from
TreePIR. Concurrent with our work, an updated version of Piano
PIR achieves O(1) online response by adding singleton entries as
extra hints.

A major downside of (both versions of) Piano PIR is that they
have to weaken the correctness guarantee of PIR and require that
the query sequence is not influenced by the adversary. This is be-
cause their backup hints are “partition-specific”. In other words,
each backup hint is tied to a particular partition and can only re-
plenish a consumed hint when the client queries a database entry
belonging to that partition. As a result, they require the queries in
the sequence to be balanced across all partitions. To do so, they let
the server permute the entire database and publish the permutation
key. They then require the client’s query sequence to be indepen-
dent of the server’s permutation. Because the server’s permutation
is public, an adversary that can influence the client queries can
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easily force the client to query many entries in the same partition
and make Piano PIR fail in correctness. Therefore, Piano PIR is
weaker than a standard (stateful) PIR scheme defined in Section 2.
We also discussed the importance of the standard PIR definition in
Section 2.

In terms of techniques, Piano PIR and our work may appear
similar at first glance because both works adopt established tech-
niques in the literature: TreePIR’s partition-based hints [22] and
Corrigan-Gibbs et al’s backup hints [9]. But beyond that, our work
does not borrow any idea invented in Piano PIR, and vice versa.
The main techniques of Piano PIR are partition-specific backup
hints and singleton hints. We propose a new hint system that only
involves a random half of the partitions and the dummy subset
technique to make the new hint system secure.

6 Conclusion

We have presented simple and practical stateful PIR schemes with
amortized sublinear communication and computation for both the
two-server and single-server settings. Our schemes avoid the major
performance bottlenecks in prior works: parallel repetition, linear
client storage, and large response overhead.

Our schemes also have drawbacks that call for further studies.
An obvious one is the Q(VN) request size. There exist techniques
to reduce the request size, but the challenge is to do so without
sacrificing other aspects of the algorithm. A limitation shared by
all existing amortized sublinear schemes is that the O(AVN) client
storage, while sublinear, is still quite large in practice. An indirect
consequence is that the single-server offline phase cannot do much
better than streaming the whole database when the client needs so
many hints. Other general challenges involving stateful PIR include
how to handle updates to the database and how to support queries
by keywords, and recent works have made some progress in these
directions [19, 24].
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