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ABSTRACT

Oblivious RAM (ORAM) allows a client to securely outsource mem-

ory storage to an untrusted server. It has been shown that no ORAM

can simultaneously achieve small bandwidth blow-up, small client

storage, and a single roundtrip of latency.

We consider a weakening of the RAM model, which we call

the Single Access Machine (SAM) model. In the SAM model, each

memory slot can be written to at most once and read from at most

once. We adapt existing tree-based ORAM to obtain an oblivious

SAM (OSAM) that has $ (log=) bandwidth blow-up (which we

show is optimal), small client storage, and a single roundtrip.

OSAM unlocks improvements to oblivious data structures/algo-

rithms. For instance, we achieve oblivious unbalanced binary trees

(e.g. tries, splay trees). By leveraging splay trees, we obtain a notion

of caching ORAM, where an access in the worst case incurs amor-

tized$ (log2 =) bandwidth blow-up and$ (log=) roundtrips, but in
many common cases (e.g. sequential scans) incurs only amortized

$ (log=) bandwidth blow-up and $ (1) roundtrips. We also give

new oblivious graph algorithms, including computing minimum

spanning trees and single source shortest paths, in which the OSAM

client reads/writes $ ( |� | · log |� |) words using $ ( |� |) roundtrips,
where |� | is the number of edges. This improves over prior custom

solutions by a log factor.

At a higher level, OSAM provides a general model for oblivious

computation. We construct a programming interface around OSAM

that supports arbitrary pointer-manipulating programs such that

dereferencing a pointer to an object incurs$ (log3 log=) bandwidth
blowup and$ (log3) roundtrips, where 3 is the number of pointers

to that object. This new interface captures a wide variety of data

structures and algorithms (e.g., trees, tries, doubly-linked lists) while

matching or exceeding prior best asymptotic results. It both uni�es

much of our understanding of oblivious computation and allows

the programmer to write oblivious algorithms combining various

common data structures/algorithms and beyond.
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1 INTRODUCTION

Oblivious RAM allows a client to outsource memory to an untrusted

server while hiding both the data being accessed and the memory

access pattern, and thus provides a general framework for oblivious

computation. The most important e�ciency metrics of ORAM are

the bandwidth blow-up and the number of roundtrips. Bandwidth

blow-up is the number of blocks transferred between the client and

the server for every block (unit of memory access) requested. One

roundtrip is de�ned as a batch of read-then-write operations that

can be dispatched in parallel. These costs are heavily a�ected by

the block size and client storage assumed. In the typical setting, the

client storage is small compared to the total memory size =, and

the block size is Θ(log=) bits.
First proposed by Goldreich and Ostrovsky [11], numerous ef-

forts have been made towards reducing the cost of ORAM, and the

community has made encouraging progress [2, 3, 12, 13, 15, 18, 21,

24, 25]. But an overall e�cient scheme remains elusive. Table 1 sum-

marizes costs incurred by existing works. The recent breakthrough

work of OptORAMa [2] achieves a bandwidth blow-up of $ (log=),
which is asymptotically optimal but has a very large hidden con-

stant. Moreover, all the above schemes require $ (log=) roundtrips.
Existing ORAM schemes that achieve constant roundtrips [9, 10, 27],

on the other hand, require expensive server computation and incur

high bandwidth blow-up with Θ(log=) block size. A lower bound

has been shown that a single-roundtrip ORAM (without server

computation) must incur ¬(
√
# ) bandwidth blow-up or ¬(

√
# )

client storage [6] .

In sum, it is di�cult to construct anORAM that is optimal in every

aspect. While ORAM provides a general framework for oblivious

computation, it does not serve as an e�cient general framework.

Our contribution. We introduce a new model of computation

called the Single Access Machine (SAM) model. In short, a single

access machine is a RAM, with the restriction that each memory

address can be written to at most once, and read from at most once.

Because the capabilities of SAM are strictly weaker than that

of RAM, OSAM is easier to instantiate than ORAM. We show
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Table 1: Comparison of our construction with existing

ORAMs for a block size of Θ(log=) bits. No existing ORAM

construction simultaneously achieves optimal bandwidth

blow-up, roundtrips and client storage.

Bandwidth Round- Client Server Stat.

blow-up trips storage compute secure

Circuit OSAM $ (_) $ (1) $ (1) : 6

Path OSAM $ (log=) 1 $ (_) : 6

Circuit ORAM [25] $ (_ log=) $ (log=) $ (1) : 6

Path ORAM [24] $ (log2 =) $ (log=) $ (_) : 6

OptORAMa [2] $ (log=)† $ (log=) $ (1) : :

SR-ORAM [27] $ (log3 =) 1 $ (1) 6 :√
=-ORAM [11] $̃ (

√
=) 1 $ (1) : :

† With a hidden constant of ≈ 2228 , later reduced to ≈ 9400.
-
ą (typically 128) is the statistical security parameter. Some prior works set their
statistical security parameters toĈ (1) logĤ for a negligible inĤ probability of failure.
We choose to write it explicitly as ą to make the failure probability concrete.

-
ċ̃ ( ·) hides poly-logarithmic factors.

Table 2: Amortized bandwidth blowups and roundtrips of

our OSAM-based solution as compared to existing practical

oblivious solutions to the same problems. In all considered

cases, our approach matches or exceeds the asymptotic per-

formance of prior work.

Algo Ours Prior Work

Bandwidth Rounds Bandwidth Rounds Ref

DLL $ (log=) $ (1) $ (log=) $ (1) [26]

BBST $ (log2 =) $ (log=) $ (log2 =) $ (log=) [26]

Splay

Tree
$ (log2 =) $ (log=) $ (log2 =)† $ (log2 =) [2]

Trie $ (ℓ · log=) $ (ℓ) $ (ℓ · log=)† $ (ℓ · log=) [2]

DFS/

BFS
$ ( |� | log |� |) $ ( |� |) $ ( |� | log |� |)† $ ( |� | log |� |) [2]

SSSP $ ( |� | log |� |)★ $ ( |� |) $ ( |� | log2 |� |) $ ( |� | log |� |) [16]
MST $ ( |� | log |� |)★ $ ( |� |) $ ( |� | log2 |� |) $ ( |� | log |� |) [16]
- Acronyms - DLL : Doubly Linked List, BBST : Balanced Binary Search Tree, SSSP :
Single Source Shortest Path, MST : Minimum Spanning Tree

- Symbol † indicates solving the problem with OptORAMa. In this case, the hidden
constant is ≈ 9400.

- Symbol★ denotes that we extend OSAM with a priority queue [20].
- A trie enables lookup of strings of arbitrary length; we use ℓ to denote the length of
the search string.

- For graph algorithms, we consider arbitrary graphs, i.e., with arbitrary degrees and
where |ā | and |Ē | are independent.

that a straightforward simpli�cation of existing tree-based ORAMs

achieves OSAM that is optimal in every aspect: a single roundtrip,

$ (log=) bandwidth blow-up with small hidden constants, small

client storage, and no server computation.

Although more restrictive, a surprising variety of oblivious data

structures and algorithms can be e�ciently implemented in the

SAMmodel. Table 2 summarizes some of our results. In [26], the au-

thors present oblivious data structures for linked-lists and balanced

trees that are more e�cient than using general purpose ORAM.

Their observations �t neatly into the SAM model.

Linear data structures. Oblivious stacks, queues, deques, linked

lists, and doubly-linked lists can all be implemented using only$ (1)
SAM operations per data structure operation, leading to optimal

$ (log=) bandwidth and a single roundtrip.

Balanced trees, arrays, and connections to ORAM. Tree-based data

structures can also be implemented in the SAMmodel. For instance,

balanced binary search trees can be implemented with $ (log=)
SAM operations per insertion/update/lookup. This also implies that

we can use OSAM to implement an oblivious RAM at $ (log2 =)
bandwidth blow-up and$ (log=) roundtrips, matching Path ORAM.

The results of [26] are restricted to linked-list like structures and

balanced trees. We show that the SAM model can also be used to

implement unbalanced trees and graphs.

Unbalanced trees and caching ORAM. More interestingly, OSAM

can implement unbalanced binary trees with only $ (log=) band-
width blow-up. This allows us to achieve oblivious data structures

including tries, as well as the fascinating splay tree [23]. Splay trees

are known to have good locality properties, where, for example, re-

cently accessed elements can be more e�ciently accessed a second

time.

By using OSAM to implement a splay tree, we achieve a notion

of caching ORAM that (1) has worst-case amortized$ (log2 =) band-
width blow-up and$ (log=) roundtrips, (2) has amortized$ (log=)
bandwidth blow-up and $ (1) roundtrips for many “common” ac-

cess patterns, (3) is statistically secure, and (4) has constant factors

similar to the best tree-based ORAMs.

Graph algorithms.We show that the SAM model extends beyond

trees and captures common graph algorithms (for arbitrary graphs),

including depth-�rst search (DFS) and breadth-�rst search (BFS).

By augmenting the OSAM model with an oblivious priority queue

from [20], we obtain new oblivious algorithms for the minimum

spanning tree (MST) problem and the single source shortest path

(SSSP) problem. In all four of our oblivious graph algorithms, we

incur a bandwidth-blowup of $ ( |� | log |� |) and $ ( |� |) roundtrips,
where |� | is the number of edges. These algorithms outperform

prior best custom solutions by a log factor and match commonly-

used non-oblivious algorithms for those problems.

General pointer manipulating programs.More generally, the SAM

model admits arbitrary pointer-manipulating programs. Derefer-

encing a pointer to access an object that has 3 incoming pointers

incurs a cost of $ (log3) SAM operations. When compiled to an

OSAM program, the bandwidth blow-up and roundtrips are respec-

tively$ (log3 log=) and$ (log3), which are signi�cantly less than

the$ (log2 =) bandwidth blow-up and$ (log=) roundtrips incurred
by practical tree-based ORAM (typically 3 j =).

Writing pointer-manipulating programs starting from bare-bones

SAM operations can be tedious, so we provide an interface – which

we call smart pointers – that handles the tedious details of enforcing

the single-access rules and makes OSAM programs almost identical

to their non-oblivious counterparts. In short, the smart pointer

abstraction automatically handles the details needed to properly

maintain more than one pointer to the same object.

2 BACKGROUND AND RELATEDWORK

2.1 Oblivious RAM

Oblivious RAM (ORAM) allows a client to outsource its main mem-

ory to an untrusted server [11]. An ORAM can be thought of as

a compiler that translates logical memory queries into physical

queries to the server’s memory, with the crucial security property

that the server learns nothing other than the number of logical
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queries. At the highest level, ORAM clients achieve security by

continually shu�ing the server’s encrypted memory content.

Tree-based ORAM and position maps. The ORAM constructions

most related to our work are tree-based ORAMs [7, 18, 22, 25]. In

state-of-the-art tree-based ORAMs [18, 24, 25], server memory is

organized as a binary tree where each tree node holds up to a

constant number of physical blocks. Each logical block is mapped

to a leaf in the tree. The crucial invariant of a tree-based ORAM is

that each logical block must reside somewhere on the path from

the root to its mapped leaf. To read a logical block, the client reads

that entire length-$ (log=) path from the server to �nd the block

of interest; this is guaranteed to succeed by the invariant. Once the

read �nishes, the client remaps the block to a fresh random leaf

such that the same block can be securely queried again later. Lastly,

the client performs an eviction step, where blocks in client memory

are sent back to the server. The eviction step is carefully designed

to have the same $ (log=) asymptotic cost as reading a path.

The client stores which leaf each logical block is mapped to in a

data structure called the position map. Ignoring the position map,

state-of-art tree-based ORAM like Path ORAM incur$ (log=) blow-
up and a single roundtrip. However, the position map has linear (in

=) size, so it is too big for the client to store. The solution is to re-

cursively store the position map in another tree-based ORAM until

the �nal position map is small enough to �t in client memory. This

recursion pushes the bandwidth blow-up of tree-based ORAM from

$ (log=) to $ (log2 =), and the roundtrips from $ (1) to $ (log=).
Looking ahead, our OSAM saves a log factor in both metrics over a

tree-based ORAM because the weaker capability of single accesses

obviates the need for a position map, avoiding recursion and its

associated cost. Using a balanced tree to implement the position

map, we can use OSAM to implement ORAM at $ (log2 =) band-
width blowup and $ (log=) rounds. Thus, even for RAM programs,

OSAM is never asymptotically worse than tree-based ORAM.

Hierarchical ORAM. While this work focuses on tree-basedORAM,

the other major ORAM paradigm, known as hierarchical ORAM, is

also interesting as it gave rise to OptORAMa [2], the �rst ORAMcon-

struction with asymptotically optimal$ (log=) bandwidth blow-up.

Its concrete performance, however, is prohibitive due to its use of

an impractical primitive called “linear oblivious tight compaction”.

[8] improved tight compaction’s hidden constant from ≈ 2228 to

≈ 9400, but the approach remains expensive. Recently, [4] showed

practical improvements to OptORAMa, but at the cost of greatly

increasing client storage. Asymptotically, the bandwidth blowup of

OSAM is at most a log factor worse than OptORAMa, but OSAM’s

round complexity is never worse than OptORAMa.

2.2 Special-Purpose Oblivious Computations

In this section, we review priorworks that construct special-purpose

oblivious computations. [19] provides a good survey.

Oblivious Data Structures. [28] was one of the �rst works to

study custom oblivious data structures, i.e., without using ORAM.

They showed that stacks and queues can be implemented as small

Boolean circuits, which can be handled in an oblivious manner.

[26] studied oblivious data structures using tree-based ORAM,

and their work is closely related to ours. [26] also investigates cases

where the positionmap can be removed. They give constructions for

data structures based on linked lists and balanced binary trees, such

as sets, maps, stacks, queues, and priority queues. They also show

algorithms for graphs of low doubling dimension, which roughly

means that the graph is a grid in a low dimensional space. Our ap-

proach is more general and handles unbalanced trees and arbitrary

graphs. We discuss details of the [26] approach in Section 3.

Oblivious priority queue. Recently, [20] used tree-based ORAM

techniques to construct an e�cient oblivious priority queue. The

author shows that each priority queue operation can be achieved

at only $ (log=) blow-up and $ (1) roundtrips.
We can combine the priority queue of [20] with our OSAM

construction since our OSAM is instantiated with a tree-based

ORAM. This helps us attain e�cient algorithms for graph SSSP and

MST. We remark that it is the combination of OSAM and priority

queues that enables these improved results.

Other works on special-purpose oblivious computation. [5] gave

oblivious graph algorithms for BFS, DFS, SSSP, and MST at a band-

width blowup of $ ( |+ |2). This is optimal for dense graphs where

|� | = Θ( |+ |2), but not for graphs where |+ | and |� | are independent.
[16] built a programming framework for secure computation.

With their framework, they implement oblivious algorithms for

MST and SSSP with a blow-up of $ ( |� | log2 |+ |) and $ ( |� | log |� |)
roundtrips, and for DFSwith a bandwidth blow-up of$ ( |+ |2 log |+ |)
and $ ( |+ | log |+ |) roundtrips. Our oblivious algorithms for all of

these incur $ ( |� | log |� |) blow-up and $ ( |� |) roundtrips.
[17] presented a framework for implementing secure parallel

algorithms for a class of data analytic algorithms such as computing

a histogram using MapReduce, matrix factorization, and PageRank,

but they do not solve the common graph traversal problems that

we consider in this paper.

2.3 Notation

• _ denotes a statistical security parameter.

• = denotes the memory size in words.

• F denotes the word size. We setF = Θ(log=) to ensure that

words are big enough to index a memory while keeping

communication low.

• A block is a unit of memory of sizeΘ(F) stored on the server.

• Jumping ahead, we distinguish a single access machine (SAM)

from a SAM program. The program issues memory requests,

and the machine satis�es them; see Sections 3 and 4.

• < denotes the number of memory requests issued. We as-

sume< = poly(=), and hence log< = Θ(log=) = Θ(F).
• A pointer points to a pointee. A pointer has one pointee, but

a pointee may have many pointers.

3 OVERVIEW

In this section, we sketch our techniques at a level su�cient to

demonstrate the usefulness of the SAM model. Subsequent sections

formalize all the details of our approach.

A point on notation: we will routinely use tree-based ORAM to

implement tree-like data structures. Unless otherwise stated, the

words “tree” and “path” will henceforth refer to those in the logical

data structure to be implemented, not to those in the ORAM. We
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use the term ORAM position to abstractly represent a set of physical

addresses on the server that a logical block may reside in.

3.1 Avoiding Position Maps; Review of [26]

Recall from Section 2.1 that in existing tree-based ORAM, the client

maintains a structure called the position map, which maps each

logical block to an ORAM position. The position map is linear in

size and is recursively instantiated. This recursive position map

blows up bandwidth and roundtrips by a log factor.

For particular oblivious computations, the position map can be

removed, and a non-recursive ORAM su�ces. Such cases were �rst

studied in detail by [26]. The authors noticed that when the end

goal of an oblivious computation is to implement a constant-degree

rooted tree, the position map is not needed. The idea is to augment

nodes in the tree such that each parent node stores a pointer to each

of its children, and each pointer carries the ORAM position of the

child. The client, who holds a pointer to the root, can traverse a tree

path by simply chasing pointers stored in each node and storing

the path in local memory.

When the client completes its traversal, it must write the path

back to the server so that those same nodes can be accessed later.

However, the security requirements of the ORAM force the client

to write each node back to a fresh ORAM position. Thus, existing

pointers to those nodes holding the old ORAM positions are in-

validated. [26] observe that for tree-like structures, it is easy to

eliminate invalid pointers, since all newly invalidated pointers lie

on the path itself. Hence, the client simply writes back nodes start-

ing from the leaf, and as it proceeds up the path, it updates pointers

to each node with the updated ORAM positions of its children.

Limitations. While [26]’s approach opened the door to many

improvements in oblivious computations, their approach is not

fully general. The main limitation is that they cannot generate two

pointers that point to the samememory block. In particular, imagine

we would like to implement a graph-like structure where two nodes

� and � each hold a pointer to some shared node � .

The challenge here is that if the client traverses a path from, say,

� to� , the client must write� and� back to fresh ORAM positions

so that they can be accessed again. But if the client does not also

update �, then � holds an invalid pointer to� . If the client attempts

to dereference the invalid pointer from � to� , it will not obtain the

latest copy of � . Even worse, this dereference is not secure, since

the server will observe two accesses to the same ORAM position.

On the other hand, if the client does naïvely update �, then it must

also update all predecessors of � with the new location of �, and

this can cascade and require that the client access essentially all

of memory. Note that tree-like structures circumvent this problem,

since each node has only one incoming pointer.

Beyond the inability to handle shared pointers to nodes, the [26]

approach is also limited in that they can only handle balanced

trees. This second limitation emerges from the fact that the client

stores entire tree paths in local memory, which must be small.

More generally, [26]’s approach only works for linked-list-like data

structures and balanced trees. In this work, we are interested in a

rich class of general pointer-manipulating programs.

3.2 SAM and OSAM

Our SAM model extends the capabilities of prior work. This section

explains the interesting aspects of the model.

The SAM model centers on an interaction between a SAM pro-

gram and the machine that it runs in. The SAM program itself

is an arbitrary randomized algorithm, with the restriction that it

runs in a small amount of space, e.g. $ (1) or $ (_) words. If the
program needs more memory, it must issue memory requests to

the machine. The machine can hold any polynomial amount of

memory. Looking ahead, the machine component of our oblivious

SAM will further outsource all memory requests to an untrusted

random access memory (i.e., the server).

The limitation of the SAMmodel is that for each of the machine’s

logical memory addresses 8 , the program can write to 8 at most once,

and it can read from 8 at most once. This constraint is meant to

capture limitations imposed by an ORAM: we can only write/read

each ORAM position once. Before the SAM program can read or

write a value, we insist that it �rst ask the machine to allocate an

address. The machine can respond with an arbitrary fresh address

(in our OSAM instantiation, an address encodes an ORAM position).

We will see how this preallocation of addresses is useful shortly.

Jumping ahead, our de�nition of OSAM will require that any

sequence of Read/Write operations (of the same length) should be

indistinguishable, and our OSAM construction will require that

for each Read/Write operation, the client will read/write Θ(log=)
words from the server.

A basic example; stacks. The basic way a SAM program can use

machinememory is by allocating an address, writing to that address,

and then later reading from it:

addr← Alloc( ), . . . ,Write(addr, val), . . . , val← Read(addr)

As an example, we can implement a program that achieves a stack

data structure. The program maintains a pointer to the top of the

stack. Pushing/popping from the stack is a simple matter of issuing

appropriate calls to Alloc/Read/Write and renaming variables:

def push(x) :

top’← SAM.Alloc( )

SAM.Write(top’, { x, top })

top← top’

def pop( ) :
{ x, top’ }←
SAM.Read(top)

top← top’

return x

Similarly, we can implement binary trees in SAM by storing

pointers to child nodes in the parent nodes, as was done in [26].

Allocating before writing; unbalanced trees. So far, we have not

shown additional capabilities as compared to prior work. In [26], it

was not possible to traverse an arbitrary length path through an

unbalanced tree, since client memory is bounded.

In the SAMmodel, we can traverse paths of arbitrary length. The

key to this is our decoupling of the allocation of an address from the

writing to that address. Recall that the challenge of ORAM-based

path traversal is that we must rebuild the path after we traverse it,

since each pointer along the path will be invalidated. In the SAM

model, we can rebuild the path as we go. More speci�cally:

• Suppose address addr that points to the tree root. We allocate

a fresh address: addr′ ← Alloc( ) to store the updated root.
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• We call Read(addr) to load the root from machine memory,

which invalidates addr. The machine returns a block that, in

particular, holds addresses of child nodes.

• Depending on the traversal algorithm, we choose some child

address to read. Before we read that child we (1) allocate a

new address addr′′ ← Alloc( ) to save the updated accessed

child (2) update the content of the root to point to addr′′, and
(3) write the root node to addr′. Thus, we have proactively
rebuilt the root node by updating it to point to where its

child node will be, before anything actually resides there.

• From here, we can recursively traverse the child node, and

so on, resulting in a full traversal of the target path.

The crucial point is that the program can traverse an arbitrary

path through a tree while maintaining only a constant number

of words of local memory; the program only needs to keep data

corresponding to the current node under consideration.

Section 6 formalizes our ability to handle unbalanced trees. Be-

cause we can handle arbitrary trees, we are able to handle oblivious

tries and oblivious splay trees with better e�ciency than prior work.

Oblivious splay trees allow us to achieve an interesting notion of

caching ORAM; see Section 6.

Sharing. Perhaps somewhat surprisingly, we allow a SAM pro-

gram to read from an allocated address without writing to it �rst.

In other words, the sequence below is valid.

addr← Alloc( ), . . . , val← Read(addr)

When such a sequence occurs, the machine responds to the Read by

returning a distinguished symbol None. A slight adjustment to tree-

based OSAM can easily handle read-without-write: the OSAM client

scans a path through the OSAM tree, and if the desired address is

not present, the lookup returns None.

The ability to read without write is surprisingly powerful. The

crucial point is that the program can use the None symbol to branch

its execution, depending on whether or not a particular address has

been written. Recall from Section 3.1 our discussion of two nodes�

and �, each of which holds a pointer to some node� . This problem

is di�cult for prior work, but by using read-without-write, we can

solve it. Consider the following picture:

A

B

C

X

Y

Here, we indeed give to � and � a pointer to � , and we also give

each of these a pointer to an auxiliary address,- and. respectively.

These auxiliary addresses are also given to � and are initially al-

located, but not written.When a SAM program wishes to traverse

from � to� , it �rst reads �’s pointer to - . Per SAM semantics, this

read returns None, which the program interprets as an indication

that it is safe to read � . The memory cell pointed to by � now

resides in SAM program local memory, but �’s pointer to � is now

invalid. Since � is in local memory, the program holds a pointer to

�’s auxiliary address . . The program writes a value to . , indicating

that a traversal from � to � is not safe.

By using these auxiliary memory addresses, we can use just a

few SAM operations to convey a single bit of information – whether

a pointer is valid or not – and this is su�cient to enable� to alert �

without updating � in memory. This means that we avoid the need

to recursively update � and all of its predecessors, which would in

the worst case lead to updating all of memory.

Building on this basic technique, we can not only alert � that its

pointer to� is invalid, we can also tell it where the new version of�

resides. To achieve this, we implement a simple queue of addresses

between a pointer (e.g. �) and the pointee (e.g. �). The pointee

can push to the end of a queue to indicate its new location. The

pointer can traverse this queue from beginning to end; it knows it

has reached the end of the queue when it reads None from memory,

and it uses the last address in the queue to fetch the latest copy of

the pointee; see a full description in Section 5.

Smart pointers. SAM’s ability to manage multiple pointers to one

node, described above, is relatively intricate. It involves managing

and creating queues between nodes that must be updated carefully.

In light of this intricacy, we build a pointer model on top of the

basic operations of SAM. We call the pointers in this model ‘smart

pointers’. The idea is to provide a small number of operations on

smart pointers: (1) given a value, we can construct a pointer to a

value, (2) we can make an explicit copy of a pointer, (3) we can

delete a pointer, and (4) we can dereference a pointer.

The implementations of smart pointer operations are non-trivial.

For instance, copying a smart pointer involves setting up a new

queue between the new copy and the pointee. With these details

worked out, it becomes much easier to reason about SAM programs.

Algorithms/data structures written using these smart pointer oper-

ations tend to look very similar to their standard implementation in

the RAMmodel. We show that each of the smart pointer operations

reduces to (amortized) $ (log3) SAM operations, where 3 is the

number of pointers pointing to the pointee being dereferenced.

Smart pointers enable us to handle a broad class of pointer-

manipulating programs. Because of the ease with which smart

pointers can be used, we implement all of our oblivious data struc-

tures and algorithms on top of them; see Section 6.

Graph algorithms; priority queues. Dereferencing a pointer incurs

$ (log3) SAM operations. This immediately reduces bandwidth

blow-up and roundtrips while handling graphs of constant degree,

but does not do so for graphs of arbitrary degree. Despite this, we

achieve breadth-�rst search and depth-�rst search with asymptotics

that outperform prior works. We achieve this improvement by

emulating a graph of arbitrary degree via a graph of constant degree.

The considered algorithms traverse the entire graph, and we exploit

this to circumvent overhead imposed by the emulation.

Achieving our e�cient algorithms for SSSP and minimum span-

ning tree is more nuanced. To achieve our stated costs (Table 2),

we need to integrate in our OSAM the oblivious priority queue

operations of [20]. This amounts to mainly adding two additional

operations to the SAM model: Insert, which inserts an element to

a global priority queue, and Pop, which extracts the element of

highest priority. We note that it is the combination of SAM and

priority queue operations that achieve our stated $ ( |� | · log |� |)
e�ciency. See Section 7 and the full version of our paper [1] for

details on our graph algorithms and priority queue integration.
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4 OBLIVIOUS SINGLE ACCESS MACHINES

This section formalizes our de�nitions of SAM and OSAM, we give

our OSAM construction. We refer the reader to Section 3 for an

informal explanation of our model. Our construction is achieved

by removing the position map from tree-based ORAM.

De�nition 4.1 (Single Access Machine (SAM)). A Single Access

Machine (SAM) is a memory storing a polynomial number of

addressable memory cells, each of some speci�ed bit-widthF . The

machine responds to three types of memory requests:

• addr← Alloc(): The machine responds with a fresh memory

address (i.e., an address that has not been chosen before).

The machine may choose addresses in any arbitrary manner.

• Write(addr, val): The machine writes value val ∈ {0, 1}ĭ to

address addr. If (1) addr was not allocated by the machine

or (2) addr was already written to, then the machine instead

halts and outputs §.
• val ← Read(addr): The machine responds with the value

written to addr, or it responds withNone if nothing is written.

If (1) addrwas not allocated or (2) addrwas already read from,

then the machine instead halts and outputs §.
A SAM program is an interactive, randomized algorithm that

issues memory requests to the machine. A program is valid if it

never issues a request that causes the machine to output §.

From here on, we only consider valid SAM programs (i.e., pro-

grams that properly allocate memory addresses and read/write each

address at most once). For simplicity, we consider SAM programs

that use at most $ (F) bits of local space. Looking forward, we will

instantiate oblivious SAM using two tree-based ORAM techniques:

Path ORAM [24] and Circuit ORAM [25], which require that the

client have $ (_ ·F) and $ (F) bits of space respectively. Thus, the
compilation of our SAM programs by our OSAM compiler will use

either $ (F) bits of space or $ (F · _) bits of space, depending on

the underlying ORAM technique.

An oblivious single access machine (OSAM) is formally a compiler

that translates SAM memory requests into requests to a standard

random access memory (allowing repeated accesses to an address).

In an OSAM protocol, these requests are sent to the server, which

satis�es each request. The crucial security property is that these

requests can be simulated. This, in particular, means that the server

learns nothing more than the number of read/write SAM requests:

De�nition 4.2 (Oblivious Single Access Machine (OSAM)). A single

access machine compiler Π is a poly-time, online algorithm that im-

plements the single access machine interface (it correctly responds

to Alloc/Read/Write requests) and issues random access memory

requests. We say that Π is an oblivious single access machine

(OSAM) if there exists a poly-time simulator S such that for any

polynomial-length sequence of requests R that form a valid SAM

program, the following ensembles are statistically close (in _):

Π(1ą,R) ĩ= S(1ą,L(R))

Above, L(R) denotes the number of Read/Write requests (i.e., non-

Alloc requests). In other words, the RAM requests issued by the

OSAM can be simulated given only the total number of Read/Write

requests in the underlying SAM program.

4.1 Our OSAM Construction

counter← 0

stash← empty-list

def Alloc()→ addr :

leaf←$ [# ] // Uniformly

sample a leaf

a← counter ⊔ leaf

// symbol ⊔ denotes

concatenation

counter← counter + 1

return a

def Read(i : addr)→ val

| None :
v← ReadAndRm(8)

// None if no such address

written to previously

Evict()

return v

def Write(i : addr, v : val) :
ReadAndRm(Alloc())

// Read a dummy address

stash.append({ i, v })

Evict()

def ReadAndRm(i : addr)→
val | None :

interpret i as counter ⊔
leaf

// Load path to leaf from

server, then search the

path and stash for

element labelled with 8 ;

See [24, 25]

def Evict() :

// Store stash elements to

server by evicting paths;

See [24, 25]

Figure 1: Our OSAM removes the position map from tree-

based ORAM. In particular, procedures ReadAndRm and

Evict can be taken from the Path ORAM construction [24] or

the Circuit ORAM construction [25].

Figure 1 formalizes our tree-based OSAM. We present three algo-

rithms – Alloc, Read, andWrite – that respectively formalize how

we compile the corresponding SAM operation into RAM operations.

At a high level, our construction follows the handling of existing

tree-based ORAMS [24, 25], except that we have no need for a

position map – the underlying SAM program is responsible for

keeping track of ORAM positions. Our compiler (i.e., our OSAM

client) maintains the common tree-based ORAM structure stash

that temporarily holds a small number of blocks.

Alloc allocates fresh addresses by sampling a uniformly random

leaf position, and then concatenating this with a global and mono-

tonically increasing counter to ensure that each address is unique.

ReadAndRm and Evict are sub-procedures typical in tree-based

ORAM [24, 25]. ReadAndRm fetches the value (if any) written to a

speci�ed address by reading the stash and the path from the root

to the speci�ed leaf. If no value is written to the speci�ed address,

then ReadAndRm returns None (recall, returning None is important

for allowing read-without-write). Evict moves values, including

those in the stash, towards their assigned leaves and is used to

write values back to the server. Thus, ReadAndRm can be used to

implement Read and Evict can be used to implement Write. Note

that Write also calls ReadAndRm on a dummy address to ensure

obliviousness: regardless of whether the memory request is a Read

or a Write, the server observes the client read a uniformly random

path, followed by an eviction.

Figure 1 can be instantiated with di�erent underlying tree-based

ORAMs. The two most natural choices are Path ORAM [24] and

Circuit ORAM [25]. Path ORAM bounds the stash size (client mem-

ory) to $ (_) words, and each read/write consumes $ (log=) words
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of communication [24]. Circuit ORAM can additionally outsource

the stash to server memory to achieve $ (1) client memory, at the

expense of $ (_) read/write cost [25]. These immediately give the

following main results of this paper. Let Π denote the compiler in

Figure 1.

Theorem 4.3 (SAM Correctness). Π is a single access machine.

Proof. Since the considered SAM operation sequence is valid

(De�nition 4.1), when the client reads an (allocated) address, there

are two cases.

The address has been written to : the OSAM construction ensures

that the written element is stored either (1) along its assigned path

or (2) in stash. On a read, ReadAndRm searches both the stash and

the path, �nds the corresponding element, and returns it.

The address has not been written to : the client’s call to ReadAndRm

exhaustively searches the address’s assigned path and the stash;

since allocated addresses are unique, the client will not �nd an

element with the target address, so ReadAndRm will return None.

Note that prior work [24, 25] show that the stash will not over-

�ow (except with negligible probability). □

Theorem 4.4 (Oblivious SAM). Π is an oblivious single access

machine.

Proof. We prove our construction is oblivious by constructing

a simulator S. Let ! = L(R) be the number of Read or Write oper-

ations in the sequence R (i.e, not counting Alloc()). S does the fol-

lowing ! times: call ReadAndRm(Alloc()), then call Evict(). This is
indistinguishable from the real-world since both Read andWrite call

ReadAndRm followed by Evict (see Figure 1). The server observes

an alternating sequence of (1) requests to read particular paths (via

calls to ReadAndRm) and (2) requests to evict paths (via calls to

Evict). Consider the entire sequence of calls to ReadAndRm/Evict in

both worlds. The only di�erences between these sequences are the

leaf addresses passed as arguments to ReadAndRm. We show that

in both worlds these leaf addresses are uniformly random. There

are two types of requests to consider:

- Write request : Write calls ReadAndRm on a uniformly random

address by calling Alloc.

- Read request : Since R is a valid request sequence, each address

read is a uniformly random leaf that is never read again.

The underlying tree-based ORAM thus ensures the simulated

view and the real execution are statistically close. □

The below theorem is straightforward from the respective un-

derlying ORAM construction (see [24], [25]).

Theorem 4.5 (SAM Performance). If Π is instantiated using

Path ORAM [24], then Π achieves the following performance:

• Π(1ą,R) outputs$ (< · log=) random access memory requests,

• Π(1ą,R) runs in$ (F · _) bits of space where _ is a statistical

security parameter,

• Π(1ą,R) incurs exactly< roundtrips.

If Π is instantiated using Circuit ORAM [25], then Π achieves the

following performance:

• Π(1ą,R) outputs $ (< · _) random access memory requests,

• Π(1ą,R) runs in $ (F) bits of space,
• Π(1ą,R) incurs $ (<) roundtrips.

Augmenting SAM with Priority Queue Operations. We leverage

prior work [20] to extend the SAM model with the following op-

erations of a priority queue (1) Insert(val, ?) : inserts value val ∈
{0, 1}ĭ into a priority queue with priority ? (2) val← Pop() : reads
and removes the element with the highest priority from the queue

(3) IsQueueEmpty : checks if the queue is empty. In this extended

model, the number of Read/Write/Insert/Pop requests are leaked. A

formal de�nition, as well as our construction and related theorems,

is presented in [1].

Space Complexity of the OSAM Server. The space required on

the server scales with the number of addresses that are written to

but not read. This is because when an address is read, ReadAndRm

removes data from the stash and the server, thus clearing space.

5 SMART POINTERS

In subsequent sections, we use the SAM model to construct speci�c

data structures and algorithms. Here, we develop smart pointers,

which abstract detailed handling needed to allow two nodes to

share the same SAM address. We begin by describing the interface

of our smart pointers; our implementation on top of the basic SAM

operations (Alloc/Read/Write) follows.

A smart pointer is conceptually a pointer that can be derefer-

enced to obtain a value of some user speci�ed type, which we

henceforth refer to as userT. A user speci�ed type is permitted to

hold a constant number of smart pointers. This allows us to build

up complex data structures. Operations on pointers, which are of

type ptr, include the following:

• new(userT) → ptr : Save an instance of the user datatype to

memory, and return a smart pointer to the allocated address.

• get(ptr) → userT : Dereference a smart pointer. A pointer

can be dereferenced multiple times.

• put(ptr, userT) : Overwrite content of the pointee. A pointer

can be used to overwrite its pointee multiple times.

• operator ← (ptr, ptr) : Assign one smart pointer to another

by creating a copy, thereby creating multiple pointers that

point to the same content.

• delete(ptr) : Delete a smart pointer.

• isnull(ptr) → {0, 1} : Check if a given smart pointer is null.

There are two points worth exploring. First, we have overloaded

the syntax G ← ~. In particular, if G and ~ are smart pointers (are of

type ptr), then the statement G ← ~ does not mean that G becomes

a verbatim, bitwise copy of ~. Instead, an algorithm runs to set up

queues between nodes (see discussion in Section 3). As a result, ~

becomes a “smart copy” of G , and it is safe to dereference both G

and ~.

Second, when a variable falls out of lexical scope, we automat-

ically call delete on that variable. Calling delete is important to

ensure that the cost of dereferencing a pointer depends solely on

the number of pointers currently referencing an object.

Our �nal two operations extend our assignment and delete op-

erators to user speci�ed types in the natural manner:

• operator ← (userT, userT) : Assign one piece of user data to

another by smart-copying any contained pointers.

• delete(userT) : Delete the speci�ed content by deleting any

contained pointers.
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5.1 Implementing Smart Pointers

def initQueue()→ addr,addr :

head← SAM.Alloc()

tail← head

return head, tail

def enqueue(tail: addr, a:

addr)→ addr :

tail’← SAM.Alloc()

SAM.Write(tail, { a, tail’ })

return tail’

def dequeue(head)→ addr,

addr :
switch SAM.Read(head)

do

case None do
return null, null

case { a, head’ } do
return a, head’

Figure 2: SAM program fragment for an address queue.

Address queues. Recall from Section 3 that we enable multiple

pointers to share a pointee via address queues. The pointee uses

such queues to update pointers to it, alerting each pointer of its

latest SAM address. We start by constructing this simple address

queue data structure in the SAM model; see Figure 2.

An address queue is a sequence of addresses sent from a sender

to a receiver. Each node in the queue stores (1) an address from

the sender and (2) the address of the next node in the queue. The

SAM program manipulates the queue via a pair of addresses – head

points to the queue’s �rst node, and tail is a pre-allocated address

that the next node will live at. Addresses are dequeued by reading

head, and they are enqueued by writing to the queue’s tail and

allocating a fresh tail. The underlying SAM requests are valid since,

whenever head is read during dequeue, it is updated to the address of

the next node in the queue. Further, head was previously allocated

and written to during enqueue. Note that calling dequeue when the

head has not been written to returns None, which indicates that the

queue is empty. This is also a valid SAM request, since head was

not read before. It is clear from inspection that each of our address

queue operations uses only $ (1) SAM operations.

Overview of implementation of smart pointers. We �rst describe

how address queues can be used to allow two pointers to point to

the same pointee. We later extend this idea to allow an arbitrary

number of pointers to the same pointee.

A connection between a pointer and its pointee is established

by allowing them to share a queue, with the pointer as the receiver

and the pointee as the sender. Each pointer holds the head of an

address queue, and the pointee holds the two tails (as there is one

queue per pointer). When one of the two pointers is de-referenced,

the pointee is re-written to a new address and alerts both pointers

of this fact by calling enqueue to write the new address into both

queues using their tails. If the other pointer is de-referenced later,

the dequeue procedure can be used to chase addresses through the

queue until reaching the tail. The last address in the queue can then

be read to fetch the pointee. We can determine if the queue’s tail

has been reached due to SAM’s support for read-without-write.

To allow an arbitrary number of pointers to point to the same

pointee, we construct an “inverted” binary tree. The pointee is at

the root of this tree. A non-root node has a directed edge to its

parent, and has at most two address queues “leading to” it. Just like

the case with two pointers sharing the same pointee, after fetching

the node using one of these queues, we can still fetch the node

Figure 3: De-referencing pointer 1 in an inverted tree of 4

pointers. Black and blue arrows indicate queue heads and

tails respectively. =1, =2 and =3 have moved from addresses

021, 0
2
2 and 023 to 031, 0

3
2 and 033 respectively.

struct ptr :
head : addr

struct userT :

. . . // user-speci�ed �elds

// node in inverted tree

struct node :

tailL : addr

tailR : addr

isRoot : bool

// root holding the pointee

struct rootNode extends node

:

content : userT

isRoot : true

// non-root node

struct branchNode extends

node :

headP : addr

isRoot : false

def chase(head : addr)→
node :

target← null

latest← null

tail← null

while head ≠ null do

latest← target

tail← head

target, head←
dequeue(head)

n← OSAM.Read(latest)

if n.tailL = tail then
n.tailL← null

else n.tailR← null

return n

def saveNode(n: node) :

a← OSAM.Alloc()

if n.tailL then
n.tailL←
enqueue(n.tailL, a)

if n.tailR then
n.tailR←
enqueue(n.tailR, a)

OSAM.Write(a, v)

def addTail(n: node)→ addr :

head, tail← initQueue()

if n.tailL= null then

n.tailL← tail

else n.tailR← tail

return head

Figure 4: Smart pointers helper procedures.

using the other queue. Thus, when a pointer is de-referenced, we

can fetch the pointee by fetching the parent until we reach the root.

Figure 3 provides an illustration.

Figure 4 implements helper procedures for our smart pointer

operations, building on basic SAM operations and address queues.

At the top we declare our data types which include the type of smart

pointers (ptr), a user-speci�ed datatype (userT) for the pointee, and

a type node for each node in the inverted tree. Figure 5 implements

smart pointer operations using the helper procedures.
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def get(p: ptr)→ userT :

n← chase(p.head)

p.head← addTail(n)

while ¬n.isRoot do
n’← chase(n.headP)

n.headP← addTail(n’)

saveNode(n)

n← n’
// out is a smart copy of n.content

out← n.content

saveNode(n)

return out

def put(p: ptr, c: userT) :

n← chase(p.head)

p.head← addTail(n)

while ¬n.isRoot do
n’← chase(n.headP)

n.headP← addTail(n’)

saveNode(n)

n← n’
// n.content is a smart copy of c

n.content← c

saveNode(n)

def delete(p: ptr) :

if p.head ≠ null then

n← chase(p.head)

if n.isRoot then

if ¬(n.tailL ( n.tailR) then
delete(n.content)

else saveNode(n)

else

if n.tailL then tail← n.tailL

else tail← n.tailR

n← chase(n.headP)

if ¬n.tailL then
n.tailL← tail

else n.tailR← tail

saveNode(n)

def delete(c: userT) :

// Delete user type by deleting

// its constituent pointers

...

def isnull(p: ptr)→ bool :
return p.head = null

def operator←(p0 : ptr, p1 : ptr) :

n← chase(p1.head)

if n.tailL ( n.tailR then

nNew← branchNode {

.headP← addTail(n) }

saveNode(nNew)

n← nNew

p0.head← addTail(n)

p1.head← addTail(n)

saveNode(n)

def operator←(c0 : userT, c1 : userT) :

// Copy user type by smart copying

// its constituent pointers

...

def new(c: userT)→ ptr :

// .content is a smart copy of c

n← rootNode {

.tailL← null,

.tailR← null,

.content← c }

p← ptr { .head← addTail(n) }

saveNode(n)

return p

Figure 5: Smart pointers abstract the underlying SAM model, making SAM operations easier to work with. A smart pointer can

be created (new), deleted (delete), copied (←), dereferenced (get), or updated (put). When dereferenced, a smart pointer returns

a user-speci�ed data type, which might hold other smart pointers. If a (smart) copy of that same pointer is also dereferenced, it

will yield a (smart) copy of the same content.

Smart pointer helper procedures. The procedure chase is used to

fetch a node in the inverted tree by reading an address queue till

the end. Note that this destroys the queue. To be able to fetch the

node again, addTail is used to initialize a new address queue and

stores the tail in the node. Once a node is fetched, it must be saved

back to SAM memory so that it can be dereferenced again later.

This involves allocating and writing the node to a new address, and

we enqueue the newly allocated address to each queue leading to

the node. The helper procedure saveNode handles these.

Smart pointer operations. Each of our smart pointer operations

is primarily a delegation to the above three helper procedures.

get dereferences a pointer by repeatedly calling chase to fetch

the parent node to eventually fetch the root of the inverted tree

where the pointee resides. Note that chase chases down an address

queue, and then removes the tail of the chased queue from the deref-

erenced element. This is because after an address queue is chased

down, it is destroyed. get ensures that a dereferenced pointer can

be dereferenced again by re-establishing the connection between a

node and its parent (via addTail) before saving it back to memory.

get contains one subtle but important detail: get returns a smart

copy of the user data type i.e., any pointers within the user type are

“smart copied”. This is crucial, because it ensures that the version

of the element stored in machine memory and the version stored

in the SAM program’s local memory do not hold two copies of the

same SAM address. This avoids a possible error where one could

(1) dereference an element stored in SAM memory, (2) read a SAM

address within that element, (3) dereference the element from SAM

memory a second time, and (4) read the exact same SAM address

within that element a second time. Such a sequence would yield an

invalid SAM program, and we avoid it by making a smart copy

when dereferencing.

put is similar to get: we repeatedly use chase to fetch the root,

make a smart copy of the value to be stored in memory, and save the

root back to memory.While doing this, we make sure to re-establish

queues between nodes and their parents. put makes a smart copy

for the same reasons as get.

new saves a user datatype (possibly some default initial value)

to memory and returns a pointer to it. This creates the root of the

inverted tree with the pointer directly pointing to this. To do so, we

initialize a single address queue (via addTail) and save the resulting

rootNode to memory (via saveNode). newmakes a smart copy of the

saved value for the same reasons as discussed above for get.

delete deletes a pointer by by deleting the node that the pointer

points to. This is done by copying the tail of the other queue leading

to the node to the node’s parent, and saving the parent back to

memory. Special care is taken when the pointer directly points to

the root. In this case, if the root does not have another pointer

pointing to it, we recursively delete the content of the pointee.

The overloaded← operator for pointers creates a smart copy of

a pointer by using the pointer’s address queue to fetch the node,

say n, being pointed to. If n already has a second queue leading to
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it, a new pointer cannot be made to point to it. Instead, a new node

nNew is created, and the new pointer and the pointer being copied

are made to point to nNew, which is made to point to n.

5.2 Validity and E�ciency

In the subsequent sections, we will use smart pointers to implement

data structures and algorithms. To properly analyze such programs,

we must argue two points:

• A smart-pointer-based program is a valid SAM program.

• Smart-pointer operations have good e�ciency.

Both of these points rely on the properties of the smart pointer in-

terface itself. Thus, we formalize the rules for using smart pointers:

De�nition 5.1 (Smart-Pointer-Based Program). A SAM program

P makes legal use of the smart pointer interface if it satis�es the

following criteria:

• P issues no calls to Alloc/Read/Write, except those implied

by the implementation of smart pointers.

• P does not call get/put on null smart pointers. That is, P
does not dereference null smart pointers.

If it satis�es the above criteria, we say that P is a smart-pointer-

based program.

We argue that any smart-pointer-based program is a valid SAM

program. The← operator for pointers is overloaded to create only

smart pointer copies. This ensures that, under the hood, every

address queue used by the program is unique. We provide a proof

sketch of the below Lemma in Appendix A.

Lemma 5.2. Let P be a smart-pointer-based SAM program (De�-

nition 5.1). P is a valid SAM program (De�nition 4.1).

We also argue the e�ciency of smart-pointer-based programs.

Lemma 5.3. Consider a smart-pointer-based SAM program (Def-

inition 5.1). Each call to a smart pointer operation (Figure 5) issues

amortized $ (3) SAM memory requests, where 3 pointers point to the

associated pointee.

Proof. It su�ces to show that addTail, chase, and saveNode each

issue amortized$ (1) SAM requests. Since the height of the inverted

tree is 3 in the worst case, each smart pointer operation makes

$ (3) calls to these sub-procedures, and the lemma is proved. From

Figures 2 and 4, addTail and saveNode each issue$ (1) SAM requests.

chase is more nuanced: a call to chase can cause the program to chase

down a queue of arbitrary length, incurring an arbitrary number

of calls to dequeue. However, we discharge this cost by charging in

advance - for every block that is read, we charge this cost at the

time when block was written to the queue during saveNode. □

We reduce this cost to $ (log3) by maintaining that the tree of

pointers pointing to a pointee is always a complete (balanced) binary

tree. This is done with the following changes to← (copy) and delete.

Our new implementation of← creates a new node at the location

expected for a complete binary tree with one more node, and the

new pointer is made to point to this new node (irrespective of which

source pointer is being copied). Our new implementation of delete

also needs to keep the tree complete. This is done by swapping the

to-be-deleted pointer with the last pointer in the complete binary

tree, i.e., the one that points to the rightmost node in the last level.

We ensure that given the root, this rightmost node can be fetched

by 1) storing the value of 3 in the root and 2) making each node

also store edges to its children. These edges are implemented as

address queues.

On concrete e�ciency. The cost of dereferencing a pointer de-

pends on the number of pointers held in the pointee; it is 7 log3

SAM requests if the pointee does not contain any pointers, and

35 log3 even if it contains just two. Note that get uses the← op-

erator to smart copy pointers contained in the pointee. This re-

quires walking up and down an inverted pointer tree. If the pointee

contains two pointers, this leads to ×5 blowup in cost. We leave

improving the constant factors in SAM-based handling of pointer

programs as future work.

We provide updated algorithms and concrete e�ciency analysis

in the full version [1].

6 OBLIVIOUS DATA STRUCTURES

In this section, we apply the SAM model to construct oblivious

data structures. Table 2 summarizes the asymptotic performance

of our constructions. Our constructions are formalized using our

smart pointer interface (Section 5); each construction is a smart-

pointer-based (De�nition 5.1) program (and hence a valid SAM

program), and each program is almost identical to the equivalent

RAM implementation. As we present our constructions, we use

them to prove interesting properties of OSAM.

6.1 Doubly Linked Lists; OSAM Lower Bound

Doubly Linked Lists. We start with a doubly-linked list (DLL) to

showcase the capabilities of smart pointers. A DLL is a list of nodes

where each node stores some data, as well as pointers to the next

and previous nodes in the list. The user can access the �rst and last

elements of the list, and if holding a pointer to an element in the

middle of the list, canmove to the left/right, and access/insert/delete

elements. Figure 6 lists our smart-pointer-based implementation.

Note that two nodes of the DLL can point to one another, and this

non-tree-like structure was out of scope for prior work.

Each of our DLL procedures uses a constant number of smart

pointer operations. Since each node has at most two pointers point-

ing to it, each procedure uses amortized$ (1) SAMoperations. Thus,

when we compile our data structure with our OSAM, our DLL uses

amortized $ (log=) words of communication per procedure call.

We remark that [26] also describes an oblivious doubly-linked list,

but theirs requires packing Θ(log=) elements in each ORAM block,

requiring a block size of ¬(log2 =).

OSAM Lower Bound. Using the same smart-pointer-based style

as Figure 6, we can construct stacks supporting push/pop. Each

procedure uses $ (1) smart pointer operations, and the compiled

oblivious stack incurs amortized$ (log=) words of communication.

These constructions imply a lower bound on the bandwidth cost of

any OSAM. [14] proved that any oblivious stackmust have expected

amortized cost ¬(log=), if the client runs in sublinear space and

the data structure stores elements of Θ(log=) bits.

Theorem 6.1 (OSAM Lower Bound). LetΠ be an OSAM compiler

that runs in space =1−Ċ , where n > 0 and where the word size is
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// The type userT is set to node

struct node :

prev : ptr

next : ptr

data : int

�rst : ptr← null

last : ptr← null

def next(p: ptr)→ ptr :

n← get(p)

return n.next

def prev(p: ptr)→ ptr :

n← get(p)

return n.prev

def insertAfter(p: ptr, d: int)

→ ptr :

n← get(p)

q← new(node {

.prev← p,

.next← n.next,

˙data← d })

if isnull(n.next) then
;0BC ← q

else
nnext← get(n.next)

nnext.prev← q

put(n.next, nnext)
n.next← q

put(p, n)

return q

def insertBefore(last : ptr, d:

int)→ ptr :

// Analogous to insertAfter

def insertBeg(d: int)→ ptr :

if isnull(�rst) then

p← new(node{

.prev← null,

.next← null,

.data← d })

�rst← p

last← p

else insertBefore(�rst, d)

def insertEnd(d: int)→ ptr :

// Analogous to insertBeg

def remove(p: ptr) :

n← get(p)

if isnull(n.prev) then
�rst← n.next

else

nprev← get(n.prev)

nprev.next← n.next

put(n.prev, nprev)
if isnull(n.next) then

last← n.prev

else

nnext← get(n.next)

nnext.prev← n.prev

put(n.next, nnext)

Figure 6: Our SAM-based doubly-linked list.

F = Θ(log=). Given a length-< sequence of SAM requestsR,Π(R) in
expectation outputs a sequence of RAM requests of length ¬(< · log=).

This implies that our tree-based OSAM construction (Figure 1)

is essentially optimal, as it issues sequences of length $ (< · log=).

6.2 Trees

By applying our smart-pointer-based methodology, we can imple-

ment arbitrary tree data structures, so long as each tree node has a

constant number of children. We emphasize our ability to handle

arbitrarily unbalanced trees with depth l (log=). Our implementa-

tions are almost identical to their non-oblivious versions and we

provide them in ??. We highlight our ability to handle tries and

splay trees, and use these to connect OSAM with ORAM.

Tries and connections to RAM. A trie (or pre�x-tree) is a search

tree where each key is a string over some alphabet. The tree is

structured such that each subtree contains all strings that start with

the same pre�x, and each node has one child per character in the

alphabet. Thus, a given search string determines a path through

the tree, and we store the value associated with that string at the

end of that path. Because the height of a trie is determined by the

longest string in its key set, it may be unbalanced.

The full version of our paper [1] formalizes our smart-pointer-

based trie. We limit our handling to alphabets of constant size. To

search for a string of length ℓ , our trie issues $ (ℓ) SAM requests.

By compiling with OSAM, we obtain an oblivious trie structure

where each lookup incurs$ (ℓ · log=) bandwidth blow-up and$ (1)
roundtrips.

The lookup operation issues a number of memory requests that

depends on the search string length ℓ , and this may raise concern

about security. However, the server’s view is determined by the

aggregate of all requests issued by an entire SAM program. A SAM

programmight look up elements in a trie multiple times, interleaved

with operations to other SAM-based data structures; the server

learns only the total number of SAM memory requests.

A trie on the alphabet {0, 1} can instantiate a random access

memory: each logical address is treated as a string, and by searching

for a logical address, we access the content of that logical access.

For a memory with = elements, each logical address is a string of

length log=, so the trie has log= depth. Since each node has a single

pointer pointing to it, searching for a logical address can be done

using $ (1) SAM operations. By implementing a trie in the SAM

model, we establish a connection between RAM and SAM:

Theorem 6.2 (RAM from SAM). Let P be a random access ma-

chine program with memory size = and word-sizeF = Θ(log=) that
halts in time ) . There exists a SAM program that on the same input

incurs while issuing ) ·$ (log=) SAM memory requests.

Thus, we can plug SAM-based RAM in our OSAM construction

(Figure 1) and achieve an ORAMwith$ (log2 =) bandwidth blow-up
and $ (log=) roundtrips. This is not surprising: the SAM program

embeds the $ (log=) position maps of a tree-based ORAM into a

single trie. Thus, moving from the RAM model to the SAM model

does not lose asymptotic performance.

Splay trees and caching ORAM. A splay tree [23] is a self-adjusting

binary tree where each time a node is accessed, a splay operation

rotates that node to the tree’s root. Splay trees are known to have

good locality properties. For instance, performing an in-order tra-

versal of the leaves of a size-= splay tree only takes time $ (=); The
data structure also has good amortized performance: its lookup

procedure incurs amortized $ (log=) cost, regardless of the access
pattern. It is easy to embed splay trees in our smart pointer frame-

work. The interested reader is referred to the full version of our

paper [1] for the code.

Splay trees are rightfully the focus of some theoretical attention.

Since their introduction [23], they have been conjectured to be

the “asymptotically best possible binary tree”. The long-standing

Dynamic Optimality Conjecture [23] roughly states that for any se-

quence of lookups, the tree will perform within a constant factor of

any binary tree algorithm that is custom designed for that sequence.

It is easy to implement random access memory with a splay tree

by using logical memory addresses as keys. By plugging a splay

tree into our OSAM, we obtain what we call a caching ORAM:
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Theorem 6.3 (Caching ORAM). Assume the Dynamic Optimal-

ity Conjecture holds. There exists a statistically-secure ORAM Π with

the following properties:1

• The RAM has = addressable memory cells.

• The client runs in $ (F · _) bits of space.
• Let R be a length-¬(=) sequence of memory requests issued by

the client, and suppose there exists some binary tree algorithm

that could satisfy the requests inR in time) . Then Π(R) issues
$ () · log=) memory requests to the server.

This caching ORAM has amortized cost at most $ (log2 =) per
access, but it can have cost as low as $ (log=), depending on the

access pattern. Sequences that tend to repeatedly access a relatively

small number of elements, or that scan elements that are close

together, will be accelerated. Even if the Dynamic Optimality Con-

jecture proves false, this splay-tree-based statistical ORAM will

still have interesting properties, as splay trees are known to satisfy

certain weaker properties, such as the static optimality; see [23].

7 OBLIVIOUS GRAPH ALGORITHMS

In this section, we use the SAMmodel to implement oblivious graph

algorithms for the breadth-�rst search (BFS), depth-�rst search

(DFS), single-source shortest path (SSSP), and minimum spanning

tree (MST) problems. We refer to these as our target algorithms. We

solve SSSP using Dijkstra’s algorithm and solve MST using Prim’s

algorithm. All our algorithms run at cost $ ( |� |) SAM requests,

where |� | is the number of edges. We remark that we consider

directed graphs. For SSSP and MST, we equip our OSAM with an

oblivious priority queue using the techniques of [20].

Smart pointers can be directly used to implement textbook ver-

sions for these problems (after some natural modi�cations). These

algorithms require dereferencing each pointer to a vertex to visit

it. Since smart pointer operations incur $ (log3) SAM memory

requests when the dereferenced pointee is shared by 3 pointers,

oblivious versions of these textbook algorithms are only e�cient if3

is a small constant. But for graphs of arbitrary degree,$ ( |� | log |� |)
SAM requests can be made in the worst case.

We can reduce the cost to$ ( |� |) even for arbitrary degree graphs
by emulating the arbitrary degree graph, which we call the original

graph, by a larger graph of constant degree that stores information

about whether a vertex has been visited. If the original graph has

|+ | vertices and |� | edges, then the emulating graph has $ ( |� |)
vertices and $ ( |� |) edges. Our approach is to specify a template

algorithm that traverses each edge in the emulating graph at most

twice. Being a graph of constant degree, this incurs only $ ( |� |)
SAM memory requests – and hence the compiled OSAM program

makes$ ( |� | log |� |) requests to the server. Each target algorithm is

achieved by plugging in appropriate details to the template. More

precisely, our emulation proceeds as follows:

• For each vertex in the original graph, create an original vertex

in the emulating graph, denoted by D.

• Consider an original vertexD. For each ofD’s incoming edges

(E,D) in the original graph, we add a vertex to the emulating

1The stated e�ciency is based on an instantiation with Path ORAM. If we instead
instantiate caching ORAM via Circuit ORAM, we achieveċ (ĭ ) bits of client space
andċ (Đ · ą) memory requests.

graph encoding that edge. Each such vertex is called an

incoming edge vertex, denoted ĬD.

• For each edge (E,D) in the original graph, we create a smart

pointer to ĬD. This pointer is called an original edge, denoted

by E → D.

• For each edge (D, E) in the original graph, we create a vertex

in the emulating graph. We call this vertex an outgoing edge

vertex, denoted DĬ . We store the original edge D → E (recall,

the original edge is a pointer) in DĬ .

• Consider all outgoing edge vertices originating from D. We

use smart pointers to create a binary tree where the original

vertex D is the root and each outgoing edge node DĬ is a leaf.

This tree is called D’s outgoing edge tree.

• Consider all incoming edge vertices incident on D. We use

smart pointers to create a binary tree where the original

node D is the root and each incoming edge node ĬD is a leaf.

We augment this tree with parent pointers. Namely, from a

tree node, we can traverse to its two children or its parent.

This tree is called D’s incoming edge tree.

Note that the number of edges in the emulating graph is only

a constant factor higher than the number of edges in the original

graph.

7.1 Implementing Oblivious Graph Algorithms

A common structure shared by these algorithms is to traverse the

graph and generate a labeling for the original vertices. In the case

of SSSP, each label is that vertex’s distance from the source; in the

other algorithms, each label is a pointer to the parent in a tree that

describes the traversal. Each algorithm’s traversal is guided by a

data structure that dictates the order in which vertices should be

visited. The particular traversal structure is speci�c to the algorithm:

Problem Labels Traversal Structure

DFS pointer to parent in tree stack

BFS pointer to parent in tree queue

MST pointer to parent in tree priority queue

SSSP distance from source vertex priority queue

Typically, graph algorithms are written in a style where metadata

corresponding to each vertex (e.g., latest distance from the source

node in Dijkstra’s algorithm) is stored in an external array. For us,

it is more e�cient to store such metadata in the vertices themselves.

In particular, we store whether an original vertex has been visited or

not in its incoming edge vertices, we store edge weights in outgoing

edge vertices, and the label in the original vertex itself.

The core loop of each of our algorithms follows the following

template .

• Pop a pointer to a vertexD from the traversal structure. More

precisely, pop a pointer to some incoming edge vertex ĬD,

along with information needed to update D’s label.

• Check whether or not D has been visited. We store whether

D has been visited in each incoming edge vertex ĬD. If D has

been visited, proceed to the next iteration of the loop.

• Otherwise, traverse the incoming edge tree to �nd the origi-

nal vertex D and update D’s label.

• Add all neighbors of D to the traversal structure. More pre-

cisely, we walk D’s outgoing edge tree, and for each leaf DĬ ,
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we add DĬ to the structure, along with data (the output of

getL) needed to update that neighbor’s label.

• WemarkD as visited so that it will not be visited again. More

precisely, we walk D’s incoming edge tree, and for each leaf

ĬD, we update ĬD to denote that D has already been visited.

Instantiating our graph algorithms amounts to plugging into the

above template: (1) the correct traversal structure and (2) algorithm-

speci�c handling for labels. We remark that we tweak Dijkstra’s

algorithm to �t into the template. The full version of our paper gives

a [1] a side-by-side comparison of the original Dijkstra’s algorithm

and the tweaked version and presents SAM programs for BFS, DFS,

SSSP, and MST .

Crucially, each of our algorithms dereferences each emulating

graph vertex at most twice. We dereference each original vertex,

as well as each of its outgoing edge vertices, once. We dereference

each incoming edge vertex once to set an original vertex as visited,

and some incoming edge vertices will be dereferenced a second

time to perform a visit. Since there are$ ( |� |) vertices in the emulat-

ing graph, our algorithms perform a total of $ ( |� |) SAM memory

requests and, when compiled with OSAM, our oblivious algorithms

incur $ ( |� | · log |� |) bandwidth blow-up and $ ( |� |) roundtrips.
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Appendices

A PROOFS OF SECURITY

Recall that a SAM program is valid if an address is allocated before

use, and each address is read from or written to only once. It is

essential that a SAM program is valid for obliviousness, as secu-

rity of our OSAM compiler holds only for valid SAM programs.

In this section, we prove that any smart-pointer-based program

(De�nition 5.1) is a valid SAM program.

We do this in three parts. First, we show that operations per-

formed on address queues result in valid SAM programs, as long

as they are performed in a certain queue-valid way. Similarly, we

next show that invoking helper procedures (Figure 4) in a certain

helper-valid way results in a valid SAM program. Finally, we show

that any smart pointer program invokes helper procedures in a

helper-valid way, and is thus a valid SAM program.

First, we de�ne queue-valid sequences of procedure calls to ad-

dress queues.

De�nition A.1. A sequence of address queue operations is said

to be queue-valid if

– Any address passed to dequeue is either (1) a �rst output of

initQueue or (2) a second output of dequeue, and any such

argument is passed to dequeue at most once.

– Any address passed as the �rst argument to enqueue is either

(1) a second output of initQueue or (2) an output of enqueue,

and any such argument is passed to enqueue at most once.

Lemma A.2. Any queue-valid sequence of calls to procedures in

Figure 2 is a valid SAM program.

Proof. By inspection of Figure 2. In more detail, we prove that

every address used in the sequence is �rst allocated, then written

to / read from at most once.

Consider any tail that is written to during a call to enqueue. If tail

was returned by initQueue, then it was allocated during initQueue.

Otherwise, it was allocated during another call to enqueue. Since

the sequence of calls is queue-valid, tail is passed only to a single

call to enqueue, so it is written to at most once.

Now, consider any head that is read from during a call to dequeue.

If head was returned by initQueue, then it was allocated during

initQueue. Otherwise, it was returned from another call to dequeue.

Each node in any address queue stores values of the form {2, head},
where head is allocated during a call to enqueue. dequeue returns

this head, and thus head is an allocated address. Since the sequence

of calls is queue-valid, head is passed only to a single call to dequeue,

so it is read at most once. □

We next de�ne a helper-valid sequence of procedure calls. Recall

that helper procedures are used to manipulate nodes in an “inverted

pointer tree”: addTail creates a queue “leading” to a node, saveNode

writes a node to a new address, and chase reads a node from its

latest address. Our de�nition captures how these procedures must

be called so that the underlying address queues are used in a queue-

valid way, and so that they always point to the latest address of the

node.

De�nition A.3. Suppose that calling the constructor rootNode /

branchNode returns a node that contains an assigned id. When we

refer to node =, we refer to the node with id =. We say that a call

to a helper procedure is tied to node = if it takes = as argument

or returns =. A sequence of helper procedure calls (Figure 4) is

helper-valid if for every node =, the helper procedure calls tied to =

satisfy the following.

(1) Any head passed to chase is returned by a previous call to

addTail, and is not used in a previous call to chase.

(2) For every pre�x of the sequence, the number of addTail

operations exceeds the number of chase operations by at

most 2, i.e. at all times = has at most two incoming queues.

(3) Ignoring calls to addTail, the sequence is an alternating se-

quence of calls to saveNode and chase, starting with a call to

saveNode.

Lemma A.4. Any helper-valid sequence of helper-procedure calls

(Figure 4) is a valid SAM program.

Proof. We prove that every address used in a helper-valid se-

quence of helper-procedure calls is �rst allocated, and read / written

at most once. Note that there are two types of address (1) addresses

used as part of address queue operations and (2) addresses used to

write (or read) any node = in an inverted tree to (or from) memory

(see mentions of read/write in Figure 4).

For addresses of the �rst type, we show that any sequence of

address-queue operations is queue-valid. All calls to enqueue are

made during calls to saveNode, which check that tail passed to

enqueue is not null. Further, tail is either returned by initQueue

during a call to addTail, or is updated to be the tail returned from a

call to enqueue. Similarly, any head read during dequeue is not null,

and is either returned by initQueue during a call to addTail, or is

updated to be the head returned from the call to dequeue. Also note

that since tail and head are updated to be the addresses returned

from enqueue and dequeue respectively, each tail and head is used

at most once. Thus, the sequence of address-queue operations is

queue-valid.

Now, consider an address of the second type. This address is

allocated and written to during a call to saveNode. Since each call

to saveNode allocates and writes to a new address, each address is

written to at most once. Addresses are read during calls to chase,

and each address (say 0) read is the last address in an address-

queue. Since the sequence of calls is helper-valid, any later call to

chase is preceded by a call to saveNode. Thus, addTail called during

saveNode appends a new address (say 0′) to each queue leading to

=. The last address that is dequeued by a later call to chase for any

incoming queue to = is 0′ (not 0), and 0 is read at most once. To

�nish the proof, note that any later call to chase is indeed performed

on an incoming queue to =. Since the sequence is helper-valid, =

has at most 2 incoming queues at any point in time, and = stores

the tails of both queues.

□

Finally, we show that any smart-pointer-based program makes

helper procedure calls in a helper-validway, and is thus a valid SAM

program.

Lemma 5.2 Let P be a smart-pointer-based SAM program (De�-

nition 5.1). P is a valid SAM program (De�nition 4.1).
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Proof. By inspection of Figure 5. Note that P makes no calls

to SAM operations except those implied by helper procedures. We

show that P is a valid SAM program by showing that the helper

procedure calls it makes form a helper-valid sequence (Lemma

A.4). Consider node = in any inverted pointer tree. For the helper

procedure calls tied to =, we show that the following hold.

(1) Any head passed to chase is returned by a previous call to

addTail, and is not used in a previous call to chase : There

are two cases to consider (1) head is held in a pointer ? (2)

head is held in a branchNode (a node that is not the root).

In the former case, since ? is not null, ? was either created

using a new operation, or by copying another pointer using

←. In both cases, ?.head is initialized by a call to addTail.

Thus, the statement holds when chase(?.head) is used imme-

diately after ? is created. Otherwise, note that after calling

chase(?.head), calls to get, put and← immediately update

?.head to be the value returned by a call to addTail.

Now, consider the case when head is held in a branchNode

(say 1). Note that 1 is created while copying a pointer using

the ← operator. When 1 is created, 1.headP is initialized

using addTail. Thus, the statement holds when chase is used

immediately after 1 is created. Otherwise, similar to the

previous case, calls to get, put and← immediately update

1.headP to be the value returned by a call to addTail after

calling chase(1.headP).
Finally, note that no (bitwise) copy of head is ever created.

The only way to copy a pointer is by using the← opera-

tor, which returns a new head for the copy. This argument

also extends to user de�ned data-types: the← operator for

userT is overloaded to copy contained pointers. Note that get

and put invoke the overloaded← operator while fetching /

saving the pointee.

(2) At most 2 queues lead to = : By inspection of Figure 4, a new

queue is created in two ways (1) immediately after calling

chase and (2) after creating a new pointer during a call either

to← or to new. In the former case, addTail is used to re-build

a new queue in place of one that was just destroyed, and

thus, no new queue is created to =. In the latter case, if this

is done during a call to new, then this is the only queue that

leads to =. Otherwise, when← copies a pointer that points

to a node (say =′) that already has two incoming pointers,

the pointer and its copy are made to point to a new node.

The new node is made to point to =′. Thus, each node always
has at most two incoming queues.

(3) Ignoring calls to addTail, the sequence is an alternating se-

quence of calls to saveNode and chase, starting with a call to

saveNode : Consider any node =. = is either a root node, or a

branch node, created during a call to new or← respectively.

In both cases, the �rst helper procedure called is addTail,

which is immediately followed by a call to saveNode. Thus,

ignoring addTail, the �rst call is made to saveNode.

Now, consider any call made to chase. Irrespective of whether

this is made during get, put,← or delete, this is followed

by a call to saveNode. Thus, the sequence is an alternating

sequence of calls to chase and saveNode.

□
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