Check for
Updates

Asynchronous Consensus without Trusted Setup or Public-Key
Cryptography

Sourav Das
University of Illinois at
Urbana-Champaign
Urbana, USA
souravd2@illinois.edu

Atsuki Momose
University of Illinois at
Urbana-Champaign
Urbana, USA
atsuki.momose@gmail.com

Abstract

Byzantine consensus is a fundamental building block in distributed
cryptographic problems. Despite decades of research, most existing
asynchronous consensus protocols require a strong trusted setup
and expensive public-key cryptography. In this paper, we study
asynchronous Byzantine consensus protocols that do not rely on
a trusted setup and do not use public-key cryptography such as
digital signatures. We give an Asynchronous Common Subset (ACS)
protocol whose security is only based on cryptographic hash func-
tions modeled as a random oracle. Our protocol has O(kn?) total
communication and runs in expected O(1) rounds. The fact that we
use only cryptographic hash functions also means that our protocol
is post-quantum secure. The minimal use of cryptography and the
small number of rounds make our protocol practical. We implement
our protocol and evaluate it in a geo-distributed setting with up to
128 machines. Our experimental evaluation shows that our protocol
is more efficient than the only other setup-free consensus protocol
that has been implemented to date. En route to our asynchronous
consensus protocols, we also introduce new primitives called asyn-
chronous secret key sharing and cover gather, which may be of
independent interest.

CCS Concepts

« Security and privacy — Distributed systems security.

Keywords

Consensus; Asynchrony; Asynchronous Common Subset

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670327

Sisi Duan
Tsinghua University
Beijing, China
duansisi@mail.tsinghua.edu.cn

Ling Ren
University of Illinois at
Urbana-Champaign
Urbana, USA
renling@illinois.edu

3242

Shengqi Liu
Southern University of Science and
Technology
Shenzhen, China
shengqi@illinois.edu

Victor Shoup
Offchain Labs
New York City, USA
victor@shoup.net

ACM Reference Format:

Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, and Victor
Shoup. 2024. Asynchronous Consensus without Trusted Setup or Public-
Key Cryptography. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS "24), October 14-18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3670327

1 Introduction

Byzantine consensus is a fundamental building block in distributed
computing and cryptography. This paper studies the Byzantine
consensus problem in asynchrony, and we are particularly inter-
ested in protocols that do not require a trusted setup and do not
use public-key cryptography such as digital signatures.

Over the years, there have been many asynchronous Byzantine
consensus protocols developed in the literature [5, 8, 14, 16, 23,
24, 27, 32, 36-39, 46]. The vast majority of them require trusted
setups and public-key cryptography. This is partly due to the well-
known FLP impossibility, which says randomization is necessary for
asynchronous consensus. To circumvent FLP, most asynchronous
consensus protocols, especially ones that target practical perfor-
mance [24, 39, 40, 46], rely on strong common coins, i.e., random
values that are agreed upon by all honest parties. However, strong
common coins are not easy to obtain. The most common approach
is to rely on unique threshold signatures [11, 14], which require
trusted setups and public-key cryptography.

Starting from Canetti and Rabin [16], a line of work builds com-
mon coins in the setup-free setting and uses it to build consensus
protocols. The protocol of Canetti and Rabin had a very high com-
munication cost, and there was little improvement for a long time.
The study of setup-free asynchronous consensus became active
again recently, often in conjunction with the asynchronous dis-
tributed key generation (ADKG) problem [3, 4, 18, 20, 28, 35, 47].
This is a natural development because the problem of generating
common coins is a lot like the problem of generating a common
key. A setup-free consensus protocol usually consists of two logical
parts: common coin generation and consensus. The common coin
generation part provides either weak common coins (honest parties
output the same coin with a certain probability) or strong common

https://doi.org/10.1145/3658644.3670327
https://doi.org/10.1145/3658644.3670327
https://doi.org/10.1145/3658644.3670327
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3670327&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 1: Comparison of setup-free asynchronous consensus protocol.
[2] has 1/4 fault tolerance and all other protocols have the optimal
1/3 fault tolerance. In the table, DDH is Decisional Diffie-Hellman,
SXDH is symmetric external Diffie-Hellman (a pairing assumption),
and RO is random oracle.

=
S by

=1 a
% E = 2 %

—_ g " =
g gE 8T £ g
= M g & =] 2 a
2 S 32 2 g
Ay O <8 < =
Canetti-Rabin [16] O(n7) 0(1) None X
Kokoris et al. [35] O(kn%) O(n) DDH,RO X
Abraham et al. [4] O(xn®) 0(1) SXDH,RO X
Gao et al. [28] O(kn3) 0(1) SXDH,RO X
Das et al. [18,20] O(kn®) O(logn) DDH,RO vV
Abrahametal. [2] O(n°) 0(1) None X
This work O(xn® 0(1) RO' v

' In §9, we briefly discuss, how using ideas from [44] and additional tech-
niques, we can prove our protocol secure without the random oracle model.

coins (the probability is 1). The coins are then used in the con-
sensus part, e.g., for leader election [3, 4] or asynchronous binary
agreement [18, 20], to circumvent FLP.

Table 1 lists all the recent setup-free asynchronous consensus
protocols. Kokoris et al. [35] gives a protocol with O(xn?) total
communication and O(n) expected rounds, where n is the num-
ber of parties and « is a computational security parameter. Das et
al. [18, 20] give a protocol with O(kn®) expected communication
and Q(log n) expected rounds (due to the use of n parallel instances
of asynchronous binary agreement). Abraham et al. [4] and Gao
et al.[28] give protocols with O(xn?) expected communication and
Q(1) expected rounds. The above protocols all require public-key
cryptography. Another very recent work [2] gives a setup-free and
public-key-cryptography-free asynchronous consensus protocol
with O(n°) communication and O(1) expected rounds.

With the current state of affairs, an interesting open question is:
Can we obtain a practical consensus protocol without trusted setup
and without public-key cryptography?

Our result. In this work, we answer the question in the affirma-
tive. We give an Asynchronous Common Subset (ACS) protocol (a
variant of asynchronous Byzantine consensus) without using any
private setups or public-key cryptography. The only cryptographic
primitive we use is a cryptographic hash function. Our protocol has
O(xn?) expected communication and runs in expected O(1) rounds.
The fact that we use only cryptographic hash functions also means
that our protocol is post-quantum secure.

To obtain a practical protocol without setup or public-key cryp-
tography, we use several techniques as described below, each of
which might be of independent interest.

Index consensus. In the conventional definition of consensus,
each party inputs a message, and the output is an agreed-upon
message or set of messages. We slightly tweak the problem defini-
tions to better fit our design approach. In our approach, instead of
agreeing on a set of messages, we often need to agree on a party

3243

Sourav Das et al.

(or set of parties) who correctly carried out some actions. The inter-
face of the conventional message-based consensus does not fully
match a use case like this. We thus define alternative index-based
versions of ACS and Validated Asynchronous Byzantine Agreement
(VABA) where the output is an agreed-upon party (or set of parties),
represented by the party ID, who correctly carried out some prior
actions.

Weak leader election from index cover gather and light-
weight asynchronous secret key sharing (ASKS). To instantiate
the weak leader election oracle without public-key cryptography,
we propose a lightweight asynchronous secret key sharing protocol
from hash functions only. We also extend the gather primitive [4]
into a new primitive called index cover gather (ICG), which has
an attractive property that prevents the adversary from arbitrarily
manipulating the weak leader-election process.

Practical efficiency, implementation, evaluation. The minimal
use of cryptography and the small number of rounds make our
protocol practical. To demonstrate the practicality of our protocol,
we implement it in Python and use Rust for cryptographic opera-
tions. Our experimental evaluation shows that our protocol is more
efficient than the ACS protocol of [18], the only other setup-free
consensus protocol that has been implemented to date.

Paper organization. The rest of the paper is organized as follows.
In §2, we present the system model, preliminaries, formal definitions
of our index consensus primitives, and a brief overview of our
core ideas. In §3, we present details of our ASKS and prove its
security. We formally define index cover gather and describe a
perfectly secure construction of index cover gather protocol in §4.
We then use our ASKS and the index cover gather, along with other
standard primitives, to build an index VABA protocol in §5. We
then use the index VABA to build index ACS in §6. We present our
implementation and evaluation results in §7, discuss the related
work in §8, and conclude in §9.

2 Model and Problem Definition

Notations. For any integer a, we use [a] to denote the ordered
set {1,2,...,a}. For any set S, we use s <$ S to indicate that s is
sampled uniformly randomly from S. We use |S| to denote the size
of set S. Throughout the paper, we will use “«” for probabilistic
assignment and “:=” for deterministic assignment. We use k to
denote the security parameter. A machine is Probabilistic Polynomial
Time (PPT) if it is a probabilistic algorithm that runs in poly(x) time.
We also use negl(x) to denote functions negligible in k. Throughout
this paper, we will use FF to denote a large finite field, i.e., we have
that 1/|F| is negl(x).

2.1 System Model

We consider a network of n parties {1,2,...,n} where every pair
of parties are connected via a pairwise private and authenticated
channel. We consider the presence of a static adversary A that can
corrupt up to t out of the n > 3t + 1 parties. Let H C [n] be the set
of honest parties, and C := [n] \ H be the set of corrupt parties. We
assume the network is asynchronous, i.e., A can arbitrarily delay
any message but must eventually deliver all messages sent between
honest parties.

Asynchronous Consensus without Trusted Setup or Public-Key Cryptography

2.2 Problem Definition

To describe index ACS more precisely, we introduce the notion of
parties validating each other.

Party validation. For any i, j € [n], we say “party i has validated
party j”, if party i thinks, based on the messages it has seen so
far, that party j has done some action correctly in the protocol.
The precise notion of “correct actions” will depend on the specific
protocol. We also say that party j has been locally validated if it
has been validated by some honest party, and that party j has been
globally validated if it has been validated by all honest parties.
Completeness of party validation. Throughout the paper, we
will primarily work with a “validate” notion that satisfies the com-
pleteness property. The completeness property ensures that if a
party is locally validated, then it will eventually be globally vali-
dated. Stating differently, it ensures that if an honest party i has
validated a party j € [n], then eventually, party j will be validated
by all honest parties.

Index ACS. We can now define the Index Asynchronous Common
Subset problem.

Definition 2.1 (Index Asynchronous Common Subset). An index
asynchronous common subset (ACS) is a protocol among n parties
{1,2,...,n}, where each party i inputs a set Valid; of parties it has
validated, and outputs a subset X; C [n] of parties with |X;|> n —t.
Note that the input Valid; may grow over time. An index ACS
protocol must satisfy the following properties.

o Agreement. If two honest parties i and j output X; and Xj, re-
spectively, then X; = X;.

Validity. If an honest party i outputs Xj, then every j € X; has
been locally validated.

Termination. If the input party validation satisfies completeness
and at least n—t parties have been locally validated at some point
during the protocol, then every honest party eventually outputs.

It is easy to build a message-based ACS protocol (i.e., the conven-
tional ACS) from an index ACS protocol — see Section 6.2. Simply
have each party send its input message via a reliable broadcast
(RBC) and then use index ACS to agree on a common subset of
RBCs that have finished. The output of the (message) ACS is the
union of outputs from that common subset of RBC instances.

Index VABA. As a stepping stone to our index ACS, we will define
and build an index version of validated asynchronous Byzantine
agreement (VABA). The only difference between VABA and ACS is
that VABA outputs a single element instead of a set.

Definition 2.2 (Index Validated Asynchronous Byzantine Agree-

ment). Anindex validated asynchronous Byzantine agreement (VABA)

is a protocol among n parties {1, 2, .. ., n}, where each party i inputs

a set Valid; of parties it has validated, and outputs a party’s index

x; € [n]. Note that the input Valid; may grow over time. An index

VABA protocol must satisfy the following properties.

o Agreement. If two honest parties i and j output x; and x;, respec-
tively, then x; = x;.

o Validity. If an honest party i outputs x;, then party x; has been
locally validated.

e Termination. Same as in index ACS.

3244

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

2.3 Preliminaries

Index gather. Our index VABA protocol crucially relies on a
gather primitive [16]. To fit our index interface, we define its index
version. Index gather is similar to index ACS but has a weaker
agreement property, which we refer to as binding core. Unlike the
agreement property in Definition 2.1, the binding core property
only guarantees the existence of a core set X of size at least n — t
that will be a subset of every honest party’s (eventual) output.

Definition 2.3 (Index Gather). Anindex gather is a protocol among

n parties {1,2,...,n}, where each party i inputs a set Valid; of par-

ties it has validated, and outputs a subset X; C [n] of parties with

|X;|> n — t. Note that the input Valid; grows over time. An index
gather protocol must satisfy the following binding core property,
besides the same validity and termination properties of index ACS.

e Termination. Same as in index ACS.

e Validty. Same as in index ACS.

e Binding core. At the first time some honest party i outputs Xj,
there exists a core set X, dependent only on the joint views of
the honest parties at that time, with |X|> n — ¢ such that for all
honest party j, X C Xj.

In the protocols we will present in this paper, such a core set
X can be extracted efficiently from the joint views of the honest
parties at the first time some honest party outputs.

Reliable broadcast. We will use the standard asynchronous reli-
able broadcast (RBC) [12, 15, 19] in a black-box manner.

Definition 2.4 (Reliable Broadcast). A Reliable Broadcast (RBC)
is a protocol that allows a designated party D, referred to as the
sender, to broadcast a message to a set of n parties {1,2,...,n}. We
use the convention that D € [n]. A RBC protocol must satisfy the
following properties.

o Agreement. If two honest parties i and j output m; and m;,

respectively, then m; = m;.

o Totality. If an honest party outputs a message, then every honest
party i eventually outputs a message.
o Validity. If the sender is honest and broadcasts m, then every

honest party i eventually outputs m; = m.

Reliable agreement. We will also use a primitive we call reliable
agreement. Intuitively, it is the agreement version of RBC where
every party has an input.

Definition 2.5 (Reliable Agreement). A reliable agreement (RA) is
a protocol among n parties {1,2,...,n} where each party has an
input message and possibly outputs a message. A reliable agreement
protocol needs to satisfy the following properties.
e Agreement. Same as in RBC.
e Totality. Same as in RBC.
o Validity. If all honest parties input m, then eventually all honest
parties output m.
o Integrity. If an honest party outputs m, then at least n — 2¢ honest
parties input m.

Bracha’s RBC [12] can be easily modified into a reliable agree-
ment protocol. We describe the protocol in Algorithm 1. It is not
hard to see this protocol satisfies agreement, validity, and totality,
and the proofs are identical to those of Bracha’s RBC. For integrity,

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 1 Reliable agreement protocol for party i

upon receiving input m;
send (ECHO, m;) to all

upon receiving (ECHO, m) from n — t parties
send (READY, m) to all

upon receiving (READY, m) from t + 1 parties
Send (READY, m) to all

upon receiving (READY, m) from n — t parties
output m and terminate

A U T

simply observe that for any honest party to send ready for m, there
must be n — t echoes for m, out of which n — 2t must come from
honest parties that input m. Algorithm 1 has O(n®L) communication
complexity for L-bit messages, same as Bracha’s RBC.

We want to note that, similar to RBC, a reliable agreement pro-
tocol has a weaker termination property than standard (Byzantine)
consensus protocols [14, 39]. In particular, standard consensus pro-
tocols guarantee termination once every honest party provides
some input to the protocol. In contrast, a reliable agreement proto-
col only guarantees termination if honest parties provide matching
inputs. In return, reliable agreement can be instantiated determin-
istically in asynchrony and much more efficiently.

2.4 Technical Overview

A setup-free consensus protocol usually consists of two logical
parts: common coin generation and consensus. The common coin
generation part provides either weak common coins (honest parties
output the same coin with a certain probability) or strong common
coins (the probability is 1). The coins are then used in the consen-
sus part, e.g., for leader election [2—4, 16] or asynchronous binary
agreement [18, 20], to circumvent the FLP impossibility [25].

We follow a weak-coin-based framework that dates back to
Canetti-Rabin [16] and has been adopted in many subsequent
works [2-4]. The framework proceeds in iterations, where each
iteration has two phases: weak leader election and agreement. The
leader election is weak in the sense that honest parties might dis-
agree on the leader with a (typically constant) probability. At a very
high level, the weak-coin-based framework ensures that if parties
agree on the leader, the entire protocol will succeed. Otherwise,
parties enter the next iteration, and the process repeats.

For the agreement phase, we design a new index gather protocol
based on the weak core set primitive in [28]. Our new index gather
protocol is simpler and more efficient by constant factors than
existing ones [2, 4]. But the more important difference between our
work and prior works lies in the weak leader election phase, so we
will focus on that part in this overview.

Weak leader election. The standard approach to weak leader
election phase is to rely on a gather protocol. For notational con-
sistency, we will describe it using an index gather protocol (see
definition 2.3).

In each iteration, each party is assigned a random rank. These
ranks are hidden at first. Parties run an index gather protocol to
locally output a set of parties who performed some actions correctly.
Recall from definition 2.3 that each party outputs a set of indices
X; that is a superset of some binding core set X. After the index

3245

Sourav Das et al.

gather protocol, the ranks are revealed, and each party i picks the
party ¢ € X; with the highest rank as the leader. Intuitively, if the
party with the highest rank among all parties happens to be in the
core set, then all honest parties will output the same leader.

Given this framework, the natural question is how to derive
ranks for parties such that: (1) the ranks remain hidden until some
honest party outputs in the gather protocol; and (2) the ranks cannot
be manipulated by the an adversary.

Next, we will describe a simple but insecure approach to derive
ranks to illustrate the basic ideas in prior works [2-4, 16]. We
will then explain why this approach is insecure, how prior works
addressed it, and how we address it.

Insecure rank derivation. Each party i starts by sharing a uni-
formly random secret s; using a verifiable secret sharing (VSS)
scheme. Next, each party i selects a subset P; C [n] of t + 1 or more
parties who shared their secrets correctly, and reliably broadcasts
P; to all parties. The rank r; of party i is defined as:

1)

Intuitively, since each party’s rank depends on the secrets of ¢ + 1
or more parties, the ranks remain hidden until parties reconstruct
the secrets. A party starts reconstructing the secrets only after it
outputs from the index gather protocol.

The issue with this approach is that an adversary can manipulate
the ranks of some parties. Let party i be the first honest party to
output from the index gather protocol. After that, the ranks of
parties in X; are fixed and cannot be manipulated by the adversary.
However, the adversary can manipulate the ranks of parties outside
Xij, i.e., in [n] \ X;. This is because once party i reveals its shares of
secrets shared by other honest parties, the adversary learns those
secrets. The adversary can then manipulate the ranks of corrupt
parties (outside X;) to make them higher than the ranks of parties
in X;. More concretely, for a malicious party i, the adversary can
pick the set P; to be i plus those honest parties whose secrets it now
knows, and pick s; accordingly to yield a high r;. The adversary
next manipulates the network delay to make sure this high-rank
corrupt party is included in some honest party’s gather output, i.e.,
ieXx ; for some honest party j # i. This will make honest party
Jj pick a different leader from party i, so the weak leader election
always fails. We note that this attack does not violate any property
of the gather protocol.

Prior works addressed this issue in a few ways. For example, [4]
uses public key cryptography, specifically a pairing-based threshold
verifiable random function, to derive ranks without revealing the
secrets. [2] requires each party to share n secrets in every iteration
so it can use independent secrets to derive ranks of different parties.
This pushes the communication cost to Q(kn?) per iteration.

Our approach. With this state of affairs, we would like to de-
sign a setup-free weak leader election protocol without public-key
cryptography where each party shares a single secret.

The abovementioned attack works because the adversary is able
to manipulate the ranks of parties in [n] \ X to cause disagreement.
A natural fix is to prevent rank manipulation completely. Unfortu-
nately, we do not know how to do that efficiently. Instead, we do
the following. We introduce a new binding cover requirement to

Asynchronous Consensus without Trusted Setup or Public-Key Cryptography

the gather primitive. The binding cover property guarantees that
when the first honest party outputs in the gather protocol, there
exists a set Y C [n] of locally validated parties, such that every
honest party’s eventual output is a subset of Y. We refer to Y as the
cover set and refer to such a protocol as a Index Cover Gather (ICG)
protocol.

We can ensure that ranks of all parties in the cover set Y are
fixed by the first time an honest party starts reconstructing the
secrets. This is because by that time, every party j € Y has reliably
broadcast P; such that every party k € P; has shared its random
secret s using VSS. It is not hard to see that these two properties
combined fix the ranks of all parties in Y by the time the first honest
party outputs in the ICG protocol. Note that an adversary might
still be able to manipulate the ranks of parties in [n] \ Y. However,
this is inconsequential because parties in [n] \ Y will not be in any
honest party’s ICG output, and thus have no impact on the leader
election outcome.

We design an ICG protocol that uses an index gather protocol
in a modular way. Our ICG protocol incurs a communication cost
of O(n®), and requires three additional rounds on top of an index
gather protocol.

Hash-based secret sharing. Another step where prior works rely
on public key cryptography is the verifiable secret sharing (VSS).
For example, [4] needs a VSS scheme that is homomorphic and
provides completeness. All known VSS schemes with these strong
properties use public-key cryptography.

Since our rank derivation protocol first reconstructs the secrets
shared by parties and then sum them up to derive ranks, we no
longer require homomorphism or completeness. These relaxations
allow us to design a weaker primitive called Asynchronous Secret
Key Sharing (ASKS) protocol that is concretely efficient and uses
only hash functions.

3 Asynchronous Secret Key Sharing

In this section, we define and present a simple construction of
Asynchronous Secret Key Sharing (ASKS).

3.1 ASKS Definition

An Asynchronous Secret Key Sharing (ASKS) scheme lets a desig-
nated party D, referred to as the dealer, share a uniformly random
secret key s € S to n parties. Here, S is the secret key space. An
ASKS protocol has two phases: Sharing phase and Reconstruction
phase.

In the sharing phase, D shares a secretkey s «—$ S to all parties. If
D is honest, all honest parties will eventually terminate the sharing
phase. Moreover, for an honest dealer, ASKS provides the secrecy
guarantee that during the sharing phase, the secret key s remains
indistinguishable from an uniformly random key to an adversary
A. Alternatively, if D is malicious, the sharing phase may or may
not terminate, but if it does terminate for one honest party, it will
eventually terminate for all honest parties. Moreover, for a malicious
dealer, the secret key s will be fixed by the first time some honest
party finishes the sharing phase.

After an honest party finishes the sharing phase, it may start the
reconstruction phase. If all honest parties start the reconstruction
phase, then all honest parties will output the secret key s from the

3246

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

sharing phase. If D is honest, A only learns s after the first honest
party starts the reconstruction phase.

Remark. We want to note that the sharing phase of an ASKS
scheme permits a situation where, in the case of a malicious dealer,
some honest parties do not receive correct shares but instead output
the special symbol L as their shares.

Definition 3.1 (Asynchronous Secret Key Sharing). An asynchro-

nous secret key sharing (ASKS) protocol consists of two phases:
Sharing and Reconstruction. During the sharing phase, a dealer D
shares a secret s «—$ S. During the reconstruction phase, parties
interact to recover the secret. We say that an ASKS protocol is
t-secure if the following properties hold with probability 1 — negl(x)
against any probabilistic polynomial time (PPT) adversary A that
corrupts up to t parties:
e Correctness. (i) If one honest party outputs in the sharing phase,
then all honest parties eventually output in the sharing phase.
(ii) If all honest parties start the reconstruction phase, then even-
tually they all output in the reconstruction phase.

Validity. If an honest dealer shares a secret s, then (i) every honest
party eventually outputs in the sharing phase, and (ii) no honest
party outputs s’ # s in the reconstruction phase.

Commitment. At the first time some honest party outputs in the
sharing phase, there is a secret s € S that can be computed from
the joint view of the honest parties, such that no honest party
outputs s’ # s in the reconstruction phase.

Secrecy. If the dealer is honest, then before any honest party starts
the reconstruction phase, the secret key s is computationally
indistinguishable from a uniformly random secret in S.

Clarification on ASKS terminology. Our ASKS notion is very
similar to the “asynchronous weak VSS” notion defined in [21]
(except that our ASKS is defined only for random secrets). We avoid
using the term “weak VSS” because there exist similar-sounding
notions in the literature [42] that are very different.

3.2 ASKS Design

For our construction, we require that the secret space is large, i.e.,
1/|S] is negl(x). Our ASKS protocol uses reliable broadcast (RBC)
and reliable agreement (RA) in a black-box way. Let H : [0, n] XF —
S be a cryptographic hash function. In this paper, we prove our
ASKS construction secure assuming a random oracle. Using ideas
from the recent work of Shoup and Smart [44], the reliance on the
random oracle model can be removed. We give the construction in
Algorithm 2 and describe it next.

Sharing phase. In the sharing phase, the dealer D chooses a ran-
dom polynomial p € F[x] of degree t. The dealer then shares the
random secret s := H(0, p(0)) as follows. For each party j, D com-
putes its share p(j) and a commitment h; = H(j, p(j)). We reiterate
that the secret being shared is s := H(0, p(0)).

Next, D broadcasts the commitment vector h := [hy, hy, ..., hn]
using an RBC protocol. D also sends p(i) to each party i via the
private channel. Simultaneously, all non-dealer parties participate
in a reliable agreement instance RA. Pary i inputs 1 to RA if it
receives consistent values from D via the RBC and via the private
channel, i.e., if h[i] = H(i, p(i)).

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 2 ASKS protocol for party i

SHARING PHASE:

1: if i is the dealer then

Let p(-) be a random degree-t polynomial
Let hj = H(j, p(j)) for each j € [n]
broadcast h = [hy, hy, ..., hy] using a RBC
send (SHARE, p(i)) to party i

2:
3
4
5

6: start a reliable agreement protocol instance RA

7: upon RBC outputs h and having received (SHARE, p(i))
8 if h[i] = H(i, p(i)) then

9: input 1 to RA

10: upon RA outputs 1 and RBC outputs h

11: if received (SHARE, p(i)) and h[i] = H(i, p(i)) then

12: output (h, p(i)) and terminate

13: output (h, L) and terminate
RECONSTRUCTION PHASE:

// every party i after finishing the sharing phase
14: Let (h, s;) be its output from the Sharing phase.
15: if s; # L then
send (RECON, s;) to all

17: Let T = {} // the set of valid shares received so far

18: upon receiving (RECON, s;) from party j

19: if h[j] = H(j,s;) then

20: T=TU {Sj}

21: if |[T|=t + 1 then

22: Let p;(x) be the polynomial defined by T
23: if h[j] = H(j, pi(j)) for all j € [n] then
24: output H(0, p;(0)) and terminate

25: output 0 € S and terminate

All parties then wait for RA to output 1 (which may occur even
if party i did not input 1 to RA) — if and when that happens, party
i outputs either (h, p(i)) or (h, L), depending on whether or not it
received a valid share p(i) from D.

Reconstruction phase. During the reconstruction phase, each
party i who received a valid share s; # L during the sharing phase
sends its share s; to all. Upon receiving s; from party j, party i
accepts s; as valid if h[j] = H(j, s;). Let T be the set of valid shares
party i receives during the reconstruction phase. Upon receiving

t+1 valid shares, party i uses them to interpolate a polynomial p;(x).

Party i then checks whether hj = H(j, pi(j)) for each j € [n]. If the
check passes, party i outputs s := H(0, p;(0)) as the reconstructed
secret; otherwise, i outputs some default value in S. (The default
value could be a special “error” value that indicates the dealer was
malicious.)

3.3 ASKS Analysis

The Validity of our ASKS scheme follows directly from the Validity
of RBC and RA. Correctness is also relatively easy to prove.

3247

Sourav Das et al.

LEMMA 3.2 (CORRECTNESS). If the hash functionH : [0,n] X F —
S is collision-resistant, then Algorithm 2 ensures correctness as per
Definition 3.1.

Proor. Part (i). An honest party terminates the sharing phase if
and only if the RBC terminates and the RA outputs 1. The totality
properties of the RBC and RA ensure that both the RBC and the
RA will terminate at all honest parties. Furthermore, the agreement
property of RA ensures that all honest parties will output 1 from
RA, and hence terminate the Sharing phase.

Part (ii). An honest party starts the reconstruction phase only if
terminates from the sharing phase. The sharing phase terminates
only if RA outputs 1. By the Integrity property of RA, at least
n — 2t > t + 1 honest parties input 1, indicating that they receive
valid shares. Thus, in the reconstruction phase, every honest party

will receive a set T of ¢ + 1 valid shares and output. O

Next, we focus on the Commitment and Secrecy properties of our
ASKS. We prove the Commitment property assuming the collision
resistance of the hash function H. We prove the secrecy property
by modeling H as a random oracle.

LEMMA 3.3 (COMMITMENT). Assuming H : [0,n] XF — S isa
collision-resistant hash function, Algorithm 2 ensures Commitment
as per Definition 3.1.

Proor. Consider the first point in time that some honest party
terminates the sharing phase. Following the proof of Correctness
part (ii), each honest party i will receive t + 1 valid shares and
reconstruct some degree ¢ polynomial p;(x).

The committed secret s can be extracted as follows. Let T C [n] be
an arbitrary set of t+1 honest parties who received consistent shares
as per the above. Let p(x) be the degree ¢t polynomial interpolated
from these ¢ + 1 shares. Now, there are two possibilities.

First, if the vector h is consistent with the polynomial p(x), i.e.,
h[i] = H(i, p(i)) for all i € [n], then let s = H(0, p(0)). By the collision
resistance of H, p;(x) = p(x) for every honest party i. Hence, every
honest party will output s as the reconstructed secret.

Second, if h is inconsistent with p(x), i.e., there exists an index
k € [n] such that h[j] # H(k, p(k)). Let s be the default secret.
Clearly, an honest party i with p;(x) = p(x) will output the default
secret. It remains to show that an honest party j with p;(x) # p(x)
will also output the default secret. Note that p;(x) # p(x) implies
that there exists some k € T such that p (k) # p(k). For this k, by the
collision resistance property of H, h[k] = H(k, p(k)) # H(k, p;(k)).
This implies that party j will also output the default secret. O

LEMMA 3.4 (SECRECY). If we model the hash function H : [0, n] X
F — S as a random oracle, then Algorithm 2 ensures secrecy as per
Definition 3.1.

Proor. Let A be the PPT adversary. Let C be the set of corrupt
parties, and H := [n] \ C be the set of honest parties. A learns
the t evaluation points on the random degree t polynomial p(x)
for x € C and the n — t random oracle outputs H(i, p(i)) for each
i € H. The perfect secrecy of the Shamir secret sharing implies
that A learns no information about p(0) from the ¢ shares. When
we model H as a random oracle, the random oracle outputs H(i, p(i))
for all i € H do not reveal any information about p(0) unless A

Asynchronous Consensus without Trusted Setup or Public-Key Cryptography

Algorithm 3 Index gather protocol for party i

Input: Valid;, the set of parties that p; has validated so far // Valid;
is a growing set and satisfies completeness (see §2.2)

1: upon |Validj|=n—t

2: Let S; := Valid;

3: send (INFORM, S;) to all

4: upon S; C Valid; becomes true for (INFORM, S;) received from

party j
5: send (ACK) to party j // if not done already

6: upon receiving ACK from n — t distinct nodes
7: Let T; := Valid;
8: send (PREPARE, T;) to all

9: Let C; := {} // set of indices of nodes from whom party i received
a valid PREPARE message
- upon T; C Valid; becomes true for (PREPARE, T;) received
from party j
Ci:=Ci U {j}
if |Cij|= n — t then
output X; := Ujec, Tj and terminate

queries the random oracle on some (i, p(i)). Since A makes only
polynomially many random oracle queries, and all p(i)’s for i € H
remain random (though fully dependent on one another) given
the ¢ shares, the probability that A queries the random oracle on
some (i, p(i)) is negligible. Hence, from A’s view, s := H(0, p(0)) and
§ «$ & are indistinguishable. O

Performance analysis. Clearly, the message complexity of our
ASKS protocol is O(n?). Assuming hash outputs and field elements
are k-bit long, the message the dealer broadcasts is O(kn) bits in
size. Hence, using the RBC protocol of [19], the communication cost
of the sharing phase of our ASKS protocol is O(kn?) bits. During
the reconstruction phase, each party sends O(k)-bit messages to all,
so the total communication cost is also O(kn?).

4 Index Cover Gather

In this section, we will first give an index gather protocol. The
protocol we use is embedded in the multivalued validated Byzantine
agreement protocol of the FIN ACS [24, Section 5.3]. We distill their
gather protocol and adapt it to an index version. Next, we will
describe how we can transform the index gather protocol to have
an additional important property called binding cover that we will
define later.

4.1 Index Gather

The index gather protocol is given in Algorithm 3. We will use the
notation of parties inputting validating of each other described in
§2.2.

Design. Let Valid; denote the set of parties that party i has validated.

Note that Valid; grows over time. Each party i waits until it has
validated n — t parties and sends this set of n — ¢t parties to all in
a message (INFORM, S;). Party i, upon receiving (INFORM, S;) from
party j, waits until S; C Valid; becomes true (note that Valid;
grows). In other words, party i waits until it has validated all the

3248

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

parties that j claims to have validated. When this happens, party i
responds back to party j with an ACK message.

A party i then waits to receive n — t ACK messages from other
parties. Party i then sends to all its Valid; set at that time in a
message (PREPARE, T;). Finally, each party i waits for n — ¢ distinct
PREPARE messages (PREPARE, Tj) whose T; C Valid;. Note again
that party i may need to give its own input set Valid; time to grow
for this to finally happen. Let C; be the set of parties from which i
has received such a Tj. Party i then outputs its gather set X; as:

Xi= T

JjeCi

@

Security analysis. Note that in Algorithm 3, each party i outputs
X; € Valid;, so our index gather protocol ensures the validity
property.

Next, we prove, given that the input validation mechanism sat-
isfies the completeness property, then the index gather protocol in
Algorithm 3 satisfies termination.

LEMMA 4.1 (TERMINATION). If party validation in the inputs to
Algorithm 3 protocol satisfies completeness and at least n — t parties
have been locally validated at some point during the protocol, then
every honest party i eventually outputs X;.

Proor. The completeness property of party validation in the
inputs ensures that the n—t locally validated parties will eventually
become globally validated. Hence, eventually, |Valid;|> n — ¢ for
all i € H. This implies that all honest parties will send a INFORM
message.

The completeness property of party validation in the inputs
also ensures that for every i, j € H, eventually S j C Valid; and
T; C Valid;. This implies that each honest party i will receive at
least n — t ACK messages, send PREPARE message to all, receive n— ¢
PREPARE messages, and will have a set C; with |C;|> n — t. Hence,
each honest party will output X; and terminate. O

Next, we prove Algorithm 3 satisfies the binding core property.

LEMMA 4.2 (BINDING CORE). In Algorithm 3, let i be the first honest
party to output X;, then S; is the binding core, i.e., X = S; and for
every honest party j, X C Xj.

PRrROOF. Any honest party will output in the gather protocol only
upon receiving n — t PREPARE message, i.e., only after n — 2t honest
parties have sent their PREPARE message.

Consider the first point in time that some honest party, say i,
sends its PREPARE message. At this time, party i has received ACK
messages from n — t parties, and at least n — 2t of those are honest.
Let H be these n — 2t honest parties.

Each party j € H sends its PREPARE message after party i sends
PREPARE, which is in turn after party j sends ACK to party i. Valid;
is a superset of S; when party j sends ACK to party i, and T; takes
on the value of Valid; at a later time. Thus, S; € T,V € H.

For any honest party k, by quorum intersection, it must be the
case that H N Cy. # 0. This implies that S; € X}.. S; can hence serve
as the required binding core set. O

Performance analysis. Clearly, Algorithm 3 has O(n?) message
complexity and O(n®) communication complexity.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 4 Index cover gather protocol for party i

Input: Valid;, the set of parties that p; has validated so far // Note
that Valid; is a growing set.
1: start n parallel reliable agreement instances, one for each
Jj € [n]. Let RA; for be the j-th reliable agreement instance.
2. Let IGValid; := {} // input of the index gather protocol
. start index gather with 1GValid; as input

w

: Let withdraw; := False
: upon validating a new party j, i.e., when j is added to Valid;
if withdraw; = False then

input 1 to RA;

PN BTN

[

: upon RA; outputs 1
9: IGValid; := IGValid; U {j}

10: if [IGValid;|= n — t then

11: withdraw; := True

12: send (WITHDRAW) to all

13: upon receiving (NITHDRAW) from n — ¢ parties

wait until the index gather protocol outputs X;

15: output X; and terminate

4.2 Index Cover Gather

Definition. We will now strengthen the index gather protocol
above to what we call an index cover gather (ICG) protocol. An index
cover gather protocol is an index gather protocol that additionally
satisfies the binding cover property below.

Definition 4.3 (Binding cover). At the first time some honest party
i outputs, there exists a locally validated set of parties Y, dependent
only on the joint views of the honest parties at that time, such that
Xj C Y for all honest party j € [n]. We call Y the cover set.

It may be helpful to contrast the binding cover property with the
binding core property. A core set is a subset of every honest party’s
eventual output. A cover set is a superset of every honest party’s
eventual output. The term binding means that these two sets can
be determined by the first time some honest party outputs.

We will next present a construction for ICG using an index
gather protocol and reliable agreement. We give the protocol in
Algorithm 4 and describe it next.

Design. Let set Valid; be the input of party i to our ICG protocol.
Similar to index gather, Valid; is the growing set of parties that
party i has validated so far.

Parties participate in n parallel reliable agreement instances, one
for each j € [n]. Let RA; be the j-th reliable agreement instance.
Each party i also maintains a boolean variable withdraw;, initially
set to False (but will eventually be set to True). Intuitively, the
variable withdraw; indicates whether or not party i will continue
to input 1 to remaining reliable agreement instances. Parties also
start an index gather protocol. IGValid; will be party i’s input to the
index gather protocol, which is also a growing set of party indices.

Whenever party i has validated j, i.e., j gets added to Valid;,
party i inputs 1 to RA;, unless withdraw; has been set to True
(in which case we say party i has withdrawn). Next, whenever
party i outputs 1 from some RA;j, it adds the index j to the set
IGValid;. This means party i has validated party j for the purpose of

3249

Sourav Das et al.

index gather (in Algorithm 3). Note that RA satisfies agreement and
totality. Therefore, IGValid; satisfies our completeness requirement
as inputs to index gather.

When the size of IGValid; reaches n—t, party i sets withdraw; :
True, thereby withdrawing from inputting 1 to any remaining RA in-
stance. Party i also sends a (NI THDRAW) message to all. We note that
parties continue to participate (i.e., send READY messages whenever
needed in Algorithm 1) in all RA instances even after withdrawing.

Let X; be the output of the index gather protocol. Party i then
waits to receive (NITHDRAW) from n — ¢ distinct parties, and outputs
X as its index cover gather (ICG) output.

Security analysis. The validity and binding core properties of our
ICG protocol follow from the validity and binding properties of the
index gather protocol we use. We now prove that our ICG protocol
terminates if n — ¢ parties are globally validated during any time
of the protocol. (Note that the two conditions in the termination
property imply that n — ¢t parties are globally validated.)

LEMMA 4.4 (TERMINATION). Ifn —t parties are globally validated,
then Algorithm 4 terminates.

Proor. We first show that if at least n — t parties are globally
validated in the inputs to ICG, then some honest party will even-
tually withdraw. For the sake of contradiction, suppose no honest
party ever withdraws. Then, all honest parties will input 1 to all
RA instances of these n — t globally validated parties. Then, by the
totality property of RA, all these n—t RA instances will output 1. As
a result, all honest parties will withdraw, which is a contradiction.

Now, a party withdraws only after n — ¢t RA instances output 1.
By the totality property of RA, all honest parties will eventually
withdraw. Let i be some honest party that withdraws. By the totality
property of RA, all parties in IGValid; will eventually be globally
validated in the inputs to index gather, and these inputs to index
gather have the completeness property. Thus, the index gather
protocol will eventually terminate. Therefore, every honest party
will eventually receive n — t (NITHDRAW) messages as well as its
output from the index gather protocol, and will output from the
ICG protocol. O

We now prove that our ICG protocol in Algorithm 4 satisfies the
binding cover property. Recall from Definition 4.3 that we need to
prove that at the first time some honest party outputs, a cover set
of validated parties Y exists such that every honest party’s eventual
output is a subset of Y.

LEmMMA 4.5 (BINDING COVER). Algorithm 4 satisfies binding cover.

Proor. Consider the first point in time that an honest party
produces an output. At this point in time, at least n — 2t honest
parties must have already withdrawn. Thus, if any party j has not
been locally validated yet, at most t honest parties will input 1 to
RA;. By the integrity property of RA, this is insufficient for RA; to
output 1. This implies that j will never appear in IGValid; for any
honest party i. Then, by the validity property of index gather, j can
never appear in the output set of any honest party. Therefore, we
can define the cover set Y to be:

Y :=) IGValid;.
ieH

®)

Asynchronous Consensus without Trusted Setup or Public-Key Cryptography

where we use IGValid of honest parties at the time when the first
honest party outputs from the index gather protocol. O

Performance analysis. Our ICG protocol runs n parallel binary
reliable agreement and a single index gather. The communication
cost of our protocol is thus O(n3).

5 Index Validated Asynchronous Byzantine
Agreement

In this section, we will present our index validated asynchronous
byzantine agreement (VABA) protocol. Our index VABA proto-
col uses the following primitives in a black-box manner: (i) RBC,
(ii) ICG, (iii) ASKS, and (iv) RA.
Party ranks. Looking ahead, our index VABA protocol has a step
where we assign a random rank to each party. Parties then take
further actions based on the ordering of ranks for (subsets of)
parties. Intuitively, we require these ranks to satisfy: (i) ranks of
parties are independent of each other and uniformly random from
a sufficiently large space; and (ii) rank of any party is not revealed
to the adversary until the VABA protocol reaches a certain stage.
For ease of presentation, we will first present in §5.1 our index
VABA protocol, assuming a trusted oracle that assigns ranks that
satisfy the above mentioned properties. We want to note that with
such a trusted rank oracle, we only need to use an index gather
protocol (without the binding cover property). Later in §5.3, we will
present the complete protocol, where we derive ranks of parties
carefully using ASKS and replace the index gather protocol with
an index cover gather (ICG) protocol.

5.1 Index VABA with a Rank Oracle

We give our index VABA protocol with a rank oracle in Algorithm 7.
The input of the i-th party to the index VABA protocol is the set
Valid; of parties it has validated so far. Again, the set Valid; grows
over time, and we require the party validation in inputs to satisfy
the completeness property (see §2.2).

Our index VABA protocol proceeds in viewsv = 0, 1,. .., where
each view consists of the following steps. To aid understanding, we
will break down the algorithm into parts.

Prevote (lines 1-4). In each view v, each party i will “prevote”
for one party. Let pre; , € [n] denote the index of the party that i
prevotes for in view v. In view v, party i will only prevote for a party
in its Valid; set (at the time i chooses pre;). Naturally, in view 0,
party i chooses the first party added to its Valid; set. In any view
v > 1, a prevote must be accompanied by a “justification”, denoted
justify; ,. In view 0, justification is not needed and justify; o := 0.

Then, party i broadcasts (pre; ,, justify; ,) using an RBC. Hereon,
when clear from the context, we will drop the subscript v. Thus,
the above message is written as (pre;, justify;) for readability.
Running the index gather protocol (lines 5-12). Each party i
then prepares an input IGValid;, initially empty, for the index gather
protocol they will run in view v. We reiterate that we only require
an index gather (without the binding cover property) with the help
of the rank oracle.

Let (pre;, justify ;) be the message (if any) that party j broadcasts
using RBC. Party i adds j to IGValid; only upon:

(1) pre; is in Valid;.

3250

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 5 Index VABA protocol for party i with a rank oracle

Input: Valid; the set of parties, party i has validated so far // Valid;
is a growing set and has the completeness property
// The protocol proceeds in viewsv = 0,1, 2, ..., where inv:
1: if v = 0 then
2: Let pre; be the first element added to Valid;
3 Let justify; := 0 // first justification is empty
4 broadcast (pre;, justify;) using an RBC denoted RBCpre,;
// Running an index gather instance
s5: Let IGValid; := {} // input to the index gather protocol
6: start the index gather protocol with IGValid; as input
// validating party j’s prevote
7: upon pre; € Valid; A justify; € M;,—1 becomes true where
(prej, justify ;) is the output of RBCpre,j

8 if v > 1 then
9: assert |justifyj|2 n—t
10: assert pre; is a most frequent vote in justifyj

IGValid; := IGValid; U {j} // if all assertions are true
. wait until the index gather protocol outputs X;
// Getting the ranks from an oracle

13: For each party j € Xj, let rank; , be its rank in view v

// Trying to agree on the index with maximum rank

Let ¢ € X; be the index with maximum rank among X;
Let vote; := pre, where (pre,, -) is the output of RBCpre ¢
broadcast vote; using an RBC denoted RBCyote,i

Let M; := {} // set of finished vote RBC and their outputs

upon vote; € IGValid; becomes true where vote; is the output
of RBCyote, j

14:
15:
16:

17:
18:

19: M; o == Mip U {(j, vote;)}

20: if |M; »|= n —t then

21: justify; := M, // to be used in the next view
22: Set pre; to a most frequent vote in justify;

// One reliable agreement across all views, as a termination gadget
. start a reliable agreement instance RA
upon M; , (for any v) contains n — ¢t matching (-, k*)
input k* to RA // input only once
participate in view v + 1 but not v + 2 or later views
: upon RA outputs k*
output k* and terminate

(2) for viewsov > 1, justifyj C M;y—1 (for Mj y—1 we define later),
|justify;|> n —t, and pre; is a most frequent vote in justify;
(i.e., appears at least as often as any other).

Parties then run an instance of the index gather protocol where
party i uses IGValid; as input.

Computing ranks (line 13). Each party i then waits for the index
gather protocol to finish. Let X; be its output from the index gather
protocol. Party i then computes the rank of each party j € X;
by querying the rank oracle. The rank oracle reveals the ranks of
parties only after at least one honest party outputs in the index
gather protocol.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Trying to agree on the maximum rank (lines 14-22). Let £ €
Xi be the party with the maximum rank among all parties in X;.
Party i will adopt the prevote of ¢ as its own vote and broadcast
its vote using an RBC. Party i also maintains a set M; ,, initially
empty, consisting of tuples of vote RBC instances and their outputs
(J, vote) upon vote; becomes locally validated by the index gather,
ie., vote; € IGValid; becomes true. More precisely, for the j-th
RBC output votej, party i adds party j to M;, only upon vote; €
IGValid;.

When the set M; , reaches size n—t, party i computes its prevote
for the next view as follows. Party i sets justify; := M; , and pre; to
a most frequent vote in justify;.

Final output (lines 23-28). If it ever happens that M; ; contains
n — t matching tuples (-, vote) for some vote, party i inputs vote to
an reliable agreement instance RA. It is important to note that there
is only a single reliable agreement instance RA across all views
and parties participate in RA even if they have not input anything
to RA. It is also important that, after inputting to RA, a party will
participate in one more view, but not in any view after that. Finally,
when RA outputs k*, a party outputs k* as the index VABA output
and terminates.

5.2 Index VABA Analysis

We now prove that Algorithm 5 is a secure index VABA protocol
given a trusted rank oracle.

LEMMA 5.1 (VALIDITY). Algorithm 5 satisfies validity.

Proor. The integrity property of the RA ensures that the output
of RA is input by at least n — 2t honest parties. An honest party i
inputs vote; to RA only when vote; appears in M; , for some view
v. Now, node i adds vote; to M; , only upon vote; € IGValid;, and
hence only upon vote; € Valid;.)

Proof of agreement. The agreement property of our index VABA
in Algorithm 5 is straightforward from the agreement property of
the termination gadget RA. However, we still need to prove that
honest parties provide the same input to RA because RA only guar-
antees termination in the case of matching inputs. (In other words,
the termination gadget RA converts a potential violation of agree-
ment to a violation of termination.) This is a proof of agreement in
essence, and we will refer to it as such.

LEmMMA 5.2. Ifin viewo, n —t vote RBC instances output the same
value k*, then in view v + 1, every honest party will input k* to RA,
if it has not input to RA in previous views.

Proor. If n — t vote RBC instances output the same value k*,
every other honest party will receive at least n — 2t of these RBC
outputs of k* among their n — t RBC outputs. Thus, k* will be the
most frequent vote in M; , for every honest party j, and party j
will set its pre; 1 to k™ in view v + 1.

In view v + 1, every honest party i will check |justify; ,.,;|> n—t,
justify; .1 € Mio, and pre; ., is a most frequent vote in justify ;.
This ensures that a malicious party will be added to IGValid only
if pre; .1 = k*. This implies that in view v + 1, regardless of the
ranks of the parties, an honest party i will only populate M; y+1
with tuples (-, k*) and hence will input k* to RA, if it has not input
to RA in previous views. o

3251

Sourav Das et al.

LEMMA 5.3 (AGREEMENT). Honest parties do not provide distinct
inputs to RA in Algorithm 5.

Proor. Consider the smallest view v in which some honest party
inputs to RA. Suppose this party inputs k* to RA only upon receiving
n — t matching RBC outputs of k*. By Lemma 5.2, every honest
party will input k* to RA in view v + 1, unless it has input to
RA in previous views. Since v is the smallest view in which some
honest party inputs to RA, we only need to consider view v. For
another honest party to input k” to RA in view o, it must receive
n — ¢ matching RBC output of k’ in view 0. By a standard quorum
intersection, k’ = k* O

Recall that we require ranks to be independent, uniformly ran-
dom from a large space, and hidden until the protocol reaches a
certain stage. Concretely, we assume each rank is an independent
and random k-bit integer where « is a security parameter, and ranks
in view v remain hidden until some honest party outputs in the
index gather protocol of view v.

Next, we will prove the following simple but crucial Lemma
that says our index VABA protocol terminates in each view with a
probability of at least 2/3.

LEMMA 5.4. With at least 2/3 probability, an index in the core set
X has the unique maximum rank.

ProoF. The probability that all ranks are distinct, i.e., there is
no collision, is at least 1 — n227%. Conditioned on no collision, each
index has a 1/n probability of being the maximum rank. The binding
core property ensures that X is fixed when the first honest party
outputs from the index gather, at which point all ranks remain
hidden from the adversary. Thus, X is independent of the ranks,
and the probability that the maximum rank belongs to some index
in X is |X|/n = (n — t)/n. Therefore, the probability that an index
in X has the unique maximum rank is at least (1 — n27%) . &=L

e
which is greater than 2/3 for n > 3t + 1 and sufficiently large x. O

LEmMMA 5.5 (TERMINATION). Algorithm 7 ensures termination.

Proor. From Lemma 5.4, in each view v, a party £ € X has the
unique maximum party with probability at least 2/3. When this
happens, ¢ also has the unique maximum rank among each honest
party i’s index gather output X; (note that X; 2 X).

In this case, every honest party i will set its vote; , to be pre, .
There will be n — t RBCs that output pre, ,. Then, by Lemma 5.2,
all honest parties will input to RA in view v + 1, if not in smaller
views. By Lemma 3.4, honest parties can only input the same value
to RA, so RA terminates in view v + 1.

Furthermore, an honest party participates in only one more view
after inputting to RA. Therefore, every honest party participates in
expected constant number of views before terminating. O

5.3 Index VABA without a Rank Oracle

In this section, we will describe how we can instantiate the rank
oracle for each view using n parallel ASKS instances and an index
cover gather (ICG) protocol.

We give the protocol in Algorithm 6 and highlight the changes
from Algorithm 5 in gray. We describe these changes next. The first

Asynchronous Consensus without Trusted Setup or Public-Key Cryptography

Algorithm 6 Index VABA protocol for party i without a rank oracle

Input: Valid; the set of parties, party i has validated so far // Valid;
is a growing set and has the completeness property
The protocol proceeds in viewsv = 0,1, ..., where in each view v:

1: if v = 0 then

2 Let pre; be the first element added to Valid;

3 Let justify; := 0 // first justification is emply

4. start n ASKS instances and act as the dealer in the i-th ASKS

5: Let Shared; be the (growing) set of ASKS instances whose
sharing phase finished at i

6: upon [Shared;|=t + 1 for the first time

7: Let P; := Shared; // to propose this set to all

8: broadcast (pre;, P;, justify;) using RBCpre,;

// Running an index [¢oVer gather instance
9: Let IGValid; := {} // input to the index gather protocol
10: start the index cover gather protocol with IGValid; as input
/ validating party j’s prevote
upon pre; € Valid; A justify; € M;jy—1A Pj € Valid; becomes
true where (pre;, P; , justify ;) is the output of RBCpre,j
assert |Pj[> t +1
if v > 1 then
assert |justify;[> n—t
assert pre; is a most frequent vote in justify
IGValid; := IGValid; U {j} // if all assertions are true

wait until the index cover gather protocol outputs X;

11:

12:
13:
14:
15:

16:

17:

// Computing the rank of parties

start reconstruction of all ASKS instances in Shared;. If a new
index gets added to Shared;, reconstruct that as well.

wait until reconstruction of all secrets in Ujex; P; finishes.
Let s;. be the reconstructed secret of k-th ASKS.

Compute for each party j € X;, rankj, = Zkep; Hrank(: sk)

18:
19:
20:

// The rest of the protocol is the same as lines 14 to 28 in Algorithm 5

change is to replace the index gather protocol in Algorithm 5 with
an index cover gather (ICG) protocol.

ASKS sharing (lines 4-8). Before running the index (cover) gather
protocol in each view, parties start n ASKS sharing instances, with
party i as the dealer for the i-th instance. Each party i as the dealer
shares a uniformly random secret s; € S. Each party i then main-
tains a set Shared; of ASKS instances whose sharing phases finished
at party i. Note that Shared; grows over time. Let P; be the first set
of t + 1 ASKS instances that terminate at party i. Party i adds P; to
its prevote RBC.

Running the index cover gather protocol (steps 9-17). As the
voting RBC of party j now additionally includes Pj, two extra
conditions need to become satisfied before we add j to the input of
ICG: Pj contains t + 1 parties that i has validated (i.e., P; C Valid;).

ASKS reconstruction and computing ranks (lines 18-20). Each
party i then waits for the ICG protocol to finish. Party i initiates
the reconstruction phase of all the ASKS instances in Shared; (and
will continue to do so for other ASKS instances as the set Shared;
continues to grow). Let X; be the output of party i from the ICG

3252

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

protocol. Let T; be the union of ASKS instances proposed by all
parties in Xj, i.e.,
Ti=J P

JeXi

4

Each party i waits to reconstruct the secrets for all indices in T;.
Then, for each j € Xj, the rank of party j is computed as:

rank; — > Hgank(, sk)
kEPj

®)

Here, R denote the finite space of ranks with 1/|R| being negligible
in x, and Hyapk @ [n] X 8 — R is a hash function modeled as an
random oracle.

The rest of the protocol is identical to the index VABA protocol
with a rank oracle in §5.3.

Analysis of the rank assignment protocol. At the time the first
honest party starts reconstructing a secret, let Y be the binding
cover set of the index cover gather (ICG) protocol. We now prove
that before any honest party starts the reconstruction, ranks of all
parties in Y are fixed, and are computationally indistinguishable
from uniformly random ranks.

LEMMA 5.6. In each view of Algorithm 6, before any honest party
starts the reconstruction, ranks of all parties in Y are fixed, and are
computationally indistinguishable from uniformly random ranks.

Proor. Recall the rank computation in Equation (5). Party i has
committed to the set P; via RBC before any honest party starts
reconstructing the secrets. This implies the rank of each party in Y
is fixed before any party starts reconstruction.

Now, for each i € Y, P; contains some honest party since |P;|>
t + 1. Let j be an honest party in P;. Then, by the secrecy property
of the ASKS scheme, for each i € Y the secret key s; used in
computing the rank of party i is computationally indistinguishable
from uniform random, and hence so is the output Hg,i (i, s;). O

Analysis of the index VABA protocol. Observe that the proofs
of validity and agreement in Section 5.2 did not depend on the
ranks. For termination, Lemma 5.4 can be easily adapted to show
that, with probability at least 2/3, an index ¢ € X has the unique
maximum rank among the cover set Y. When this happens, ¢ also
has the unique maximum rank among each honest party i’s index
cover gather (ICG) output X;, because X € X; C Y. This is sufficient
for the proof of Lemma 5.5.

6 Asynchronous Common Subset and its
Applications

In this section, we will first present our index asynchronous com-

mon subset (ACS) protocol, and then describe how we can build a

standard ACS using an index ACS and RBC in an black-box manner.

Lastely, we also briefly describe other applications of index ACS

such as hash-based common coin and asynchronous DKG.

6.1 Index ACS

Our index ACS design is based on the standard known technique of
using a VABA protocol to construct an ACS protocol [2, 4, 20, 24].
We summarize our protocol in Algorithm 7, and describe it next.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 7 Index ACS protocol for party i

Input: Valid; the set of parties, party i has validated so far // Valid;
is a growing set and has the completeness property

: Let VABAValid; := {} // to be used as the index VABA input

: upon |Validj|=n—1t

Let I; := Valid;

broadcast I; using an RBC instance RBC;

WY

[

: upon I; C Valid; becomes true where I; is the output of RBC;
6: if |I;|> n -t then

7: VABAValid; := VABAValid; U {;}

8. start Index VABA with input VABAValid;

9: upon Index VABA outputs i*

10: wait until RBC;+ outputs I;+

11 output J;+ and terminate

Algorithm 8 ACS protocol for party i

Input: Message m;
1: broadcast m; using an RBC instance RBC;
2: Let Valid; := {} // to be used as the index ACS input
3: upon j-th RBC finishes and outputs m;
4 Let Valid; := Valid; U {j}

s: start Index ACS with input Valid;

6: upon Index ACS outputs X

7: wait until RBC; outputs m; for each j € X
8 output {m;};cx and terminate

At the start of the index ACS protocol, each party i, upon val-
idating n — t parties, proposes this set I; of n — ¢ parties using an
RBC instance RBC;.

Party i also maintains a set VABAValid;, a set of parties whose
RBC outputs become validated. More precisely, party i adds a party
J to VABAValid;, only when its input Valid; becomes a superset of
the proposal I; broadcasted by party j and |Ij|> n - t.

Parties then run an instance of the index VABA protocol where
party i uses VABAValid; as its input. Let i* be the index VABA
output. Parties then wait until the RBC instance RBC;+ outputs I+,
and then outputs J;+ as the index ACS output.

It is easy to prove this gives an index ACS protocol following a
similar and standard proof as [2].

6.2 ACS

We summarize our ACS protocol in Algorithm 8, and describe it
next. Each party i start the ACS protocol by broadcasting its input
message m; using an RBC instance RBC;. Party i also maintains
a set Valid;, a set of parties whose RBC instances has finished at
party i. More precisely, party i adds a party j to Valid;, only upon
outputting m; from RBC;. Parties then run an instance of the index
ACS protocol where party i uses Valid; as its input. Let X be the
index ACS output. Parties then wait until the RBC instance RBC;
outputs m; for all j € X. Then, each party outputs {m;} jex as the
ACS output.

It is easy to prove this gives an ACS protocol assuming secure
index ACS and RBC protocols.

3253

Sourav Das et al.

6.3 Application to Hash-based Common Coin

Our index ACS protocol can be used with a hash-based verifiable
secret sharing scheme to design a hash-based asynchronous com-
mon coin or randomness beacon. The protocol has two phases:
preparation and reveal.

During the preparation phase, each node acts as a dealer to
share a uniformly random secret using a hash-based secret sharing
protocol. Nodes then agree on a subset of at least ¢ + 1 dealers who
correctly shared their secrets, using an index ACS protocol. During
the reveal phase, nodes reconstruct each of the t + 1 shared secrets.
The coin/beacon output is then the sum of all reconstructed secrets.

Using the recent hash-based asynchronous complete secret shar-
ing scheme from [44] along with the standard randomness extrac-
tion technique using hyper-invertible matrices [7, 18], we can gen-
erate ©(n%) common coins with amortized O(kn) communication
in the failure-free case.

6.4 Application to Asynchronous DKG

We can also use our index ACS to improve the asynchronous DKG
protocol of Das et al. [20] by simply replacing their index ACS
protocol with our index ACS protocol. This improves both the
asymptotic round complexity and concrete runtime. We want to
note that although our index ACS protocol only relies on hash
functions, the overall asynchronous DKG protocol of Das et al. [20]
still requires public key cryptography.

7 Implementation and Evaluation

We implement our ACS protocol in Python 3.7.13 on top of the
open-source asynchronous DKG codebase of [18, 20]. Our imple-
mentation uses the same libraries as [18, 20], such as asyncio for
concurrency, RBC implementation from [19] and finite field opera-
tions from [1, 29]. Our implementation is single-threaded at each
party and is publicly available at https://github.com/shengqi647/acs.

7.1 Optimizations

In previous sections, we prioritized the modularity of the proto-
col and forgo several optimizations. For example, since RA and
RBC have many similarities, RA can often piggyback on RBC. Sim-
ilarly, we can also merge different RBC instances from different
sub-protocols. Next, we will briefly describe the optimizations we
implement and refer the reader to our open-source codebase for
more details.

First, we merge the RBC and RA instances in our ASKS protocol
(Algorithm 2) as follows. In the sharing phase, the dealer sends
(SHARE, p(i)) and h together to party i; each party i participates
in the RBC of the message h only if (SHARE, p(i)) also satisfies the
condition h[i] = H(i, p(i)). With this optimization, the RA in ASKS
comes for free. Second, we similarly merge the RA instances in the
ICG protocol (line 1 of Algorithm 4) into the RBC instances of the
index VABA protocol (line 8 of Algorithm 6). Third, we omit the RBC
instances on line 4 of Algorithm 7. Instead, in our implementation,
party i uses RBCpre,; (line 8 of Algorithm 5) in view v = 0 to
propose I;. More precisely, in view v = 0 of the index VABA protocol,
each party proposes (pre;, P;, I, justify;) using RBCpre ;. With this
optimization, we get our index ACS protocol from our index VABA
protocol without using any additional rounds of communication.

https://github.com/shengqi647/acs

Asynchronous Consensus without Trusted Setup or Public-Key Cryptography

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

=15 ‘ 10 :
é\ E] E Das et al. [20] [Das et al. [20] ? . 20 E] M Das et al. [20] gg
g 0o N2 = 2|08 mNea : . 8 s 0o mNpg Z |
E’D 10 D 0 Ours — g |:| 0 Ours 2 § D 0 Ours 22
o 7 7
g L 7 < 10 7 .
= gp 7 7] 77|
£ 5l - g2 1 g | £ %
g g 2 E %
E 7 = g G 2 0 ; 2l
% HI / / / .
< 7 7’ 7 7}
A o —HE= = o == “ 4 i ‘ ‘
32 64 39 64 128 32 64 128

Number of nodes

Figure 1: Bandwidth usage

7.2 Evaluation Setup

With our evaluation, we seek to illustrate that our index ACS is
practical and achieves comparable or better performance than prior
works while relying only on hash functions. Thus, we only evaluate
the costs of index ACS for both our protocol and baselines. To facil-
itate the evaluation of index ACS evaluation, we use 1-bit messages
as inputs to Algorithm 8. Note that, unlike standard ACS, whose
performance crucially depends on the input size, the performance
of index ACS is independent of the input size.

Experimental setup. We evaluate our implementation with a
varying number of parties: 32, 64, and 128. We run all parties on
Amazon Web Services (AWS) m5.xlarge virtual machines (VMs) with
one party per VM. Each VM has 4 vCPUs, 16GB RAM, and runs
Ubuntu 20.04. We place parties evenly across eight different AWS
regions: Canada, Ireland, N. California, N. Virginia, Oregon, Ohio,
Singapore, and Tokyo. We create an overlay network in which all
parties are pair-wise connected, i.e., they form a complete graph. We
run ten repetitions of our experiments for each choice of parameters,
where in each experiment, we let the protocol run until all nodes
locally output from the index ACS protocol.

Baselines. We distill the index ACS protocol from the Das et al.
asynchronous DKG [20] as the main baseline. This is the only
known implementation of ACS that does not rely on a private setup
or idealized common coins. We also compare with FIN [24], a recent
ACS protocol that is signature-free but assumes idealized common
coins. We implement and evaluate an index ACS protocol based
on FIN (called MVBA in the paper). The FIN implementation uses
the discrete logarithm based threshold pseudorandom function
from [14] to implement the common coin.

Evaluation metrics. We evaluate our protocol and the baselines
as per the following three metrics: bandwidth usage, message count,
and runtime. The bandwidth usage measures the amount of data in
Bytes a party sends during the entire index ACS protocol. Similarly,
the message count is the number of messages a party sends during
the entire index ACS protocol. Finally, the runtime is measured
from the start of the ACS protocol to the time a party outputs from
the ACS protocol. We measure the bandwidth usage and runtime
to illustrate the overall performance of our index ACS protocol. We
also measure the message count, since [31] reports message count
as a bottleneck in the running time of ACS protocol, and that aligns
with what we observe in our experiments.

Number of nodes

Figure 2: Message count

3254

Number of nodes

Figure 3: Runtime

7.3 Evaluation Results

Bandwidth usage. We report the average bandwidth usage in
Figure 1. Asymptotically, the bandwidth usage in all three proto-
cols is O(xn?). Thus, as expected, we see a quadratic increase in
bandwidth usage with an increasing number of parties. Concretely,
the bandwidth usage of [20] is slightly higher than ours due to its
reliance on the Feldman VSS scheme, built using discrete logarithm
assumption. The bandwidth usage of FIN [24] is better than ours
for 32 and 64 parties and slightly worse than ours for 128 parties.
We believe the better bandwidth usage of FIN is due to the fact
that it does not require any VSS scheme and instead relies on an
external common coin oracle for shared randomness.

Message count. We report the average message count in Figure 2.
As expected, the message counts of all three protocols increase
quadratically with the number of parties. The message count of [20]
is approximately 1.8x higher than ours. This is because the index
ACS protocol in [20] requires each party to participate in n parallel
asynchronous binary agreement (ABA) instances. The message
count of FIN protocol is approximately 75% of ours [24]. FIN has a
lower message count as it does not require parties to participate in
VSS schemes and it uses only one ABA instance in each iteration
of the protocol.

Runtime. We report the average runtime in Figure 3. The runtime
of our ACS protocol is approximately 55%-65% of that in [20]. This
was expected as our protocol has slightly better bandwidth usage,
and our message count is approximately only 45% than that of [20].
This also points to message count being the main bottleneck for
runtime.

The runtime of FIN is lower than ours. For example, with 128
parties, the runtime of FIN is only about 36% of our runtime. This
was unexpected as the bandwidth usage of FIN is comparable to
ours, and its message count is 75% of ours. Part of our extra run-
time is because we require one additional RBC and ASKS phase
for coin generation. The runtime advantage of FINs also comes
from its implementation in Golang and its better engineering. For
example, with 128 parties, n parallel 1-bit RBC instances in the FIN
implementation take approximately one second, whereas it takes
approximately 2.7 seconds in our implementation.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

8 Related Work

ACS and asynchronous consensus using idealized common
coins. Asynchronous common subset (ACS) is introduced by Ben-
Or, Canetti, and Goldreich under a different name called agreement
on a core set [9]. Ben-Or, Kelmer, and Rabin (BKR) [10] later pre-
sented a practical construction. Both works study the ACS primitive,
assuming an idealized common coin oracle. In recent years, many
practical ACS protocols have adopted the BKR paradigm and in-
stantiate the common coin oracle with a distributed pseudorandom
function (also known as unique threshold signatures) [23, 37, 46].
The ACS construction in the BKR paradigm uses n parallel asyn-
chronous binary agreement instances, and incurs O(n®) message
and communication complexity and takes expected O(log n) rounds
to terminate. Very recently, the FIN protocol [24] reduces the round
complexity to O(1).

Besides ACS, a line of work studies signature-free asynchronous
Byzantine agreement assuming idealized common coins, beginning
with the seminal work by Rabin [41] and followed by [17, 39, 40].

Asynchronous consensus using weak common coin. An alter-
nate approach to asynchronous consensus is to first build a weak
common coin, meaning that honest parties may disagree on their
values with non-negligible probability, and then use these weak
coins to build an agreement protocol. This is also the approach
we adopt in this paper. This approach first appears in the work of
Canetti and Rabin [16], where they use this approach to design a
setup-free asynchronous binary agreement (ABA) protocol. The
ABA protocol of [16] is information-theoretically secure and has a
very high O(n’) communication cost.

As we discuss in §2.4, recent works [2, 4] have adopted this
approach to build ACS with improved efficiency compared to [16].
Abraham et al., in [4] adopts this approach and designs an ACS
protocol with O(kn®) communication costs, where it relies on public
key cryptography, specifically a pairing-based threshold verifiable
random function, for efficiency. Very recently, Abraham et al. [2]
adopted this approach to build statistically secure ACS with O(n®)
communication costs for t < n/4. For t < n/3, they rely on other
strong primitives (statistically secure AVSS), and the cost is not
fully specified, but it is safe to assume it will be worse than O(n®).

Asynchronous consensus with cryptography and trusted
setup. Cachin, Kursawe, Petzold, and Shoup (CKPS) [13] present an
alternate approach to designing efficient asynchronous consensus
with cryptography. A recent work Dumbo-MVBA [36] improves
upon CKPS and leads to an ACS protocol with O(kn?) communica-
tion cost. This paradigm crucially relies on threshold signatures [43],
threshold pseudorandom functions [14], and constant size poly-
nomial commitments [34] both for efficiency and for generating
strong common coins needed to bypass the FLP impossibility. It is
worth mentioning that these works also assume idealized common
coins.

Asynchronous distributed key generation. A distributed key
generation (DKG) protocol lets a set of parties setup secret keys
for threshold cryptography and agree on a public key. Thus, DKG
is a special type of agreement protocol. Asynchronous DKG that
does not rely on a trusted setup can also be viewed as a setup-
free ACS protocol [4, 20, 35]. The state-of-the-art asynchronous
DKG protocol incurs O(kn®) communication cost and O(1) round

3255

Sourav Das et al.

complexity [4]. All existing asynchronous DKG protocols and the
ACS protocols distilled from them rely on public-key cryptography.

Asynchronous distributed randomness beacon. Very recently,
Bandarupalli et al. [6] proposed a hash-based randomness beacon
protocol called HashRand. The protocol can generate shared coins
with amortized O(xn? log n) communication cost per coin output
after a long bootstrapping period that takes Q(x log n) rounds and
Q(x%n3 log n) communication.

The bootstrapping phase of HashRand uses the asynchronous
common coin protocol from [26]. The common-coin protocol of [26]
uses n parallel asynchronous VSS instances and n parallel determin-
istic approximate agreement instances to let parties derive shared
randomness. It is possible to combine the common coin protocol
of HashRand with the index ACS protocol from FIN [24] to design
a hash-based index ACS protocol without relying on any trusted
setup or public key cryptography. However, the resulting index ACS
would require Q(x?n® log n) communication and Q(k log n) rounds.

Asynchronous verifiable secret sharing (AVSS). Existing AVSS
constructions that do not rely on trusted setup and ensure complete-
ness assume public key infrastructure (PKI) [30, 33, 45]. Our ASKS
construction is closely related to the “secure message distribution”
primitive by Shoup and Smart [44] and the weak AVSS scheme
of [21, 22]. Our ASKS can be viewed as a secret sharing version of
the secure message distribution primitive in [44]. In particular, if
at least one honest party completes the sharing, a fixed secret can
eventually be reconstructed. A notion of “asynchronous weak VSS”
similar to our ASKS primitive has been introduced in [21, 22]. How-
ever, the security properties and corresponding analysis presented
in [21, 22] are very informal.

9 Discussion and Conclusion

In this paper, we have presented trusted-setup-free and public-key-
cryptography-free validated asynchronous byzantine agreement
(VABA) and asynchronous common subset (ACS) protocols with
O(n®) expected communication and O(1) expected rounds, improv-
ing over previous works, which require either O(log n) rounds or
O(n’) communication. Along the way, we also introduce new prim-
itives of asynchronous secret key sharing and cover gather, which
may be of independent interest. We implemented a prototype and
evaluated it with up to 128 geographically distributed parties. Our
experiments demonstrate better performance over the current best
practical schemes.

Removing the random oracle assumption. Recall that our index
ACS protocol relies on the random oracle (RO) assumption in two
places: for the security of our ASKS primitive and in deriving ranks
of parties.

We can remove the need for RO from our ASKS design and
instead rely on the linear hiding assumption as described in [44].
We can remove the need for RO in rank derivation by using a
pseudorandom function (PRF). In particular, the rank of party j will
be the sum of PRF evaluations at j with the secrets s; € P; as the
PRF keys. More precisely, let F : F x {0,1}* — F be a PRF. Then,
the rank of party j will be:

rank; = Z F(sg,)
JEP;

(6)

Asynchronous Consensus without Trusted Setup or Public-Key Cryptography

Intuitively, this ensures a party’s rank remains random before the
secrets shared by parties in P; are revealed.

Acknowledgements

This work is funded in part by a Chainlink Labs Ph.D. fellowship,
the National Science Foundation award #2240976, and the Beijing
Natural Science Foundation award #M23015.

References

(1]

=
S

[11]

[12

[13]

[14]

[15

[16]

(18]

[19

[20

[21]

[22

[n.d.]. curve25519dalek: A pure-rust implementation of group operations
on ristretto and curve25519, 2021. https://github.com/dalek-cryptography/
curve25519-dalek.

Ittai Abraham, Gilad Asharov, Arpita Patra, and Gilad Stern. 2023. Perfectly
Secure Asynchronous Agreement on a Core Set in Constant Expected Time.
Cryptology ePrint Archive (2023).

Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern.
2023. Bingo: Adaptivity and asynchrony in verifiable secret sharing and dis-
tributed key generation. In Annual International Cryptology Conference. Springer.
Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,
and Alin Tomescu. 2021. Reaching consensus for asynchronous distributed key
generation. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing. 363-373.

Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
optimal validated asynchronous byzantine agreement. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing. 337-346.

Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, and Michael
Reiter. 2024. HashRand: Efficient Asynchronous Random Beacon without Thresh-
old Cryptographic Setup. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security.

Zuzana Beerliova-Trubiniova and Martin Hirt. 2008. Perfectly-secure MPC
with linear communication complexity. In Theory of Cryptography Conference.
Springer.

Michael Ben-Or. 1983. Another advantage of free choice (extended abstract) com-
pletely asynchronous agreement protocols. In Proceedings of the second annual
ACM symposium on Principles of distributed computing. 27-30.

Michael Ben-Or, Ran Canetti, and Oded Goldreich. 1993. Asynchronous secure
computation. In STOC. ACM, 52-61.

Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous secure com-
putations with optimal resilience. In Proceedings of the thirteenth annual ACM
symposium on Principles of distributed computing. 183-192.

Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the
Weil pairing. Journal of cryptology 17, 4 (2004), 297-319.

Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130-143.

Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-
cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524-541.

Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random oracles in
constantipole: practical asynchronous byzantine agreement using cryptography.
In Proceedings of the nineteenth annual ACM symposium on Principles of distributed
computing. 123-132.

Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information
dispersal. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05). IEEE.
Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with
optimal resilience. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing. 42-51.

Tyler Crain. 2020. Two More Algorithms for Randomized Signature-Free Asyn-
chronous Binary Byzantine Consensus with ¢ < n/3 and O(n?) Messages and
O(1) Round Expected Termination. arXiv preprint arXiv:2002.08765 (2020).
Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2023. Prac-
tical asynchronous high-threshold distributed key generation and distributed
polynomial sampling. In 32nd USENIX Security Symposium (USENIX Security 23).
Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemina-
tion and its Applications. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security.

Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-
Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2518-2534.

Shlomi Dolev, Bingyong Guo, Jianyu Niu, and Ziyu Wang. 2023. SodsBC: a
post-quantum by design asynchronous blockchain framework. IEEE Transactions
on Dependable and Secure Computing (2023).

Shlomi Dolev and Ziyu Wang. 2020. Sodsbc: Stream of distributed secrets for
quantum-safe blockchain. In 2020 IEEE International Conference on Blockchain
(Blockchain). IEEE, 247-256.

3256

[23

[24

[25

[26

[28

[29]

[30

[31

'w
&,

[33

[34

[35

&
2

[37

[38

(39]

[40

[41

[42]

[43

[44

=
&

[46

[47

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT
made practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 2028—-2041.

Sisi Duan, Xin Wang, and Haibin Zhang. 2023. Fin: Practical signature-free
asynchronous common subset in constant time. In ACM CCS.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374-382.

Luciano Freitas, Petr Kuznetsov, and Andrei Tonkikh. 2022. Distributed random-
ness from approximate agreement. arXiv preprint arXiv:2205.11878 (2022).
Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Dumbo-ng: Fast asynchronous bft consensus with throughput-oblivious
latency. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. 1187-1201.

Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Efficient asynchronous byzantine agreement without private setups. In 2022
IEEE 42nd International Conference on Distributed Computing Systems (ICDCS).
IEEE, 246-257.

Jack Grigg and Sean Bowe.
https://github.com/zkcrypto/pairing.
Jens Groth. 2021. Non-interactive distributed key generation and key resharing.
IACR Cryptol. ePrint Arch. 2021 (2021), 339.

Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Speeding dumbo: Pushing asynchronous bft closer to practice. In NDSS.
Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.
Dumbo: Faster asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security.

Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Hamza Saleem, and
Sri Aravinda Krishnan Thyagarajan. 2024. Non-interactive VSS using Class
Groups and Application to DKG. In Proceedings of the 2024 ACM SIGSAC Confer-
ence on Computer and Communications Security.

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size
commitments to polynomials and their applications. In Advances in Cryptology-
ASIACRYPT 2010: 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings
16. Springer, 177-194.

Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.
Asynchronous Distributed Key Generation for Computationally-Secure Random-
ness, Consensus, and Threshold Signatures.. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 1751-1767.
Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-mvba:
Optimal multi-valued validated asynchronous byzantine agreement, revisited. In
Proceedings of the 39th Symposium on Principles of Distributed Computing.
Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 31-42.

Henrique Moniz, Nuno Ferreria Neves, Miguel Correia, and Paulo Verissimo.
2008. RITAS: Services for randomized intrusion tolerance. IEEE transactions on
dependable and secure computing 8, 1 (2008), 122-136.

Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-free
asynchronous binary Byzantine consensus with t< n/3, O (n2) messages, and O
(1) expected time. Journal of the ACM (JACM) 62, 4 (2015), 1-21.

Achour Mostéfaoui and Michel Raynal. 2017. Signature-free asynchronous Byzan-

[n.d]. zkcrypto/pairing.

tine systems: from multivalued to binary consensus with t< n/3, O(nz) messages,
and constant time. Acta Informatica 54, 5 (2017), 501-520.

Michael O Rabin. 1983. Randomized byzantine generals. In 24th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1983). IEEE, 403-409.

Tal Rabin and Michael Ben-Or. 1989. Verifiable secret sharing and multiparty
protocols with honest majority. In Proceedings of the twenty-first annual ACM
symposium on Theory of computing. 73-85.

Victor Shoup. 2000. Practical threshold signatures. In Advances in Cryptol-
0gy—EUROCRYPT 2000: International Conference on the Theory and Application
of Cryptographic Techniques Bruges, Belgium, May 14—18, 2000 Proceedings 19.
Springer, 207-220.

Victor Shoup and Nigel P. Smart. 2024. Lightweight Asynchronous Verifiable
Secret Sharing with Optimal Resilience. Journal of Cryptology (2024).

Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.
2022. hbACSS: How to Robustly Share Many Secrets. In Proceedings of the 29th
Annual Network and Distributed System Security Symposium.

Haibin Zhang and Sisi Duan. 2022. Pace: Fully parallelizable bft from reproposable
byzantine agreement. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 3151-3164.

Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xuanji Meng, Shengli Liu, Yong
Yu, Fangguo Zhang, and Liehuang Zhu. 2023. Practical asynchronous distributed
key generation: improved efficiency, weaker assumption, and standard model. In
2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 568-581.

https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek

	Abstract
	1 Introduction
	2 Model and Problem Definition
	2.1 System Model
	2.2 Problem Definition
	2.3 Preliminaries
	2.4 Technical Overview

	3 Asynchronous Secret Key Sharing
	3.1 ASKS Definition
	3.2 ASKS Design
	3.3 ASKS Analysis

	4 Index Cover Gather
	4.1 Index Gather
	4.2 Index Cover Gather

	5 Index Validated Asynchronous Byzantine Agreement
	5.1 Index VABA with a Rank Oracle
	5.2 Index VABA Analysis
	5.3 Index VABA without a Rank Oracle

	6 Asynchronous Common Subset and its Applications
	6.1 Index ACS
	6.2 ACS
	6.3 Application to Hash-based Common Coin
	6.4 Application to Asynchronous DKG

	7 Implementation and Evaluation
	7.1 Optimizations
	7.2 Evaluation Setup
	7.3 Evaluation Results

	8 Related Work
	9 Discussion and Conclusion
	References

