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Arid and semi-arid regions of the world are particularly vulnerable to greenhouse gas–
driven hydroclimate change. Climate models are our primary tool for projecting the
future hydroclimate that society in these regions must adapt to, but here, we present
a concerning discrepancy between observed and model-based historical hydroclimate
trends. Over the arid/semi-arid regions of the world, the predominant signal in all
model simulations is an increase in atmospheric water vapor, on average, over the
last four decades, in association with the increased water vapor–holding capacity of
a warmer atmosphere. In observations, this increase in atmospheric water vapor has
not happened, suggesting that the availability of moisture to satisfy the increased
atmospheric demand is lower in reality than in models in arid/semi-arid regions. This
discrepancy is most clear in locations that are arid/semi-arid year round, but it is also
apparent in more humid regions during the most arid months of the year. It indicates
a major gap in our understanding and modeling capabilities which could have severe
implications for hydroclimate projections, including fire hazard, moving forward.

climate change | modeling | humidity | hydroclimate

One of the most pressing issues facing society and ecosystems as the planet warms is
the impact of a changing hydroclimate and its associated effects on drought, wildfire,
and heat extremes. This is particularly true in arid and semi-arid regions where water
resources are limited, and wildfire and heat extremes are already a significant threat. The
US Southwest is a particularly clear example, having been dominated by drought for
the last 20 y with recent extreme conditions that led to unprecedented water shortages
in the Colorado River (1) and extreme wildfire seasons (2) that have almost certainly
been exacerbated by greenhouse gas–driven warming and aridification (1, 3, 4). Burned
forest area in the Southwest is highly correlated with vapor pressure deficit, the difference
between saturation and actual vapor pressure (2, 5, 6), so drought impacts can stem from
changes in precipitation, temperature, and atmospheric humidity. What kind of future
hydroclimate extremes should the Southwest, and regions like it, be preparing for?

Climate models, which simulate the complex interacting processes that govern the
hydroclimate, are an important tool for answering this question. A challenge is that
many of the relevant processes or quantities such as evapotranspiration, root zone soil
moisture, and plant physiological changes have not been observed on the global scale or
on the multi-decadal timescales over which the planet has been changing, to evaluate
our models. We do, however, have a reasonably complete network of station-based
near-surface atmospheric humidity measurements as well as reanalysis-based estimates of
atmospheric water vapor (7–9). In some sense, near-surface water vapor should act as an
integrator of how processes that are of relevance to the hydroclimate are evolving, so a
discrepancy in atmospheric water vapor trends between models and observations would
be indicative of something being wrong in our model representation of processes that are
of relevance to the hydroclimate, assuming atmospheric water vapor observations can be
trusted.

Our expectations for how atmospheric water vapor should change with warming are
based on the Clausius–Clapeyron relationship, which links saturation vapor pressure
(SVP) to temperature. At the temperature range found at the Earth’s surface, it roughly
predicts a rise in SVP of about 7% per Kelvin of warming. Whether atmospheric water
vapor would rise at this rate, to maintain a constant relative humidity, depends on the
availability of moisture from transport or from evapotranspiration. In the global and total
column average, atmospheric water vapor in climate models and observations does tend
to rise at approximately this rate (10, 11). Regionally near the surface over land, it is less
clear that Clausius–Clapeyron scaling will hold, for a number of reasons. Atmospheric
circulation change can lead to altered moisture transports. The land also warms more
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than the oceans (12, 13) so the increased water vapor transport
from the oceans may be insufficient to keep up with Clausius
Clapyeron scaling over land (14). Furthermore, over land, limited
surface water availability, or changes to surface water availability
(either from plants or bare ground), can limit the extent to
which evapotranspiration can increase to satisfy the increased
atmospheric demand. Despite this, while model projections for
the end of the 21st century do exhibit a slight decline in relative
humidity over land, they still suggest that atmospheric water
vapor should increase (15).

Prior studies on historical atmospheric water vapor trends over
land found rising specific humidity in general but, in association
with the hiatus in the warming of the oceans at the beginning of
the 21st century, specific humidity remained fairly constant over
the 2000s with a concomitant relative humidity decline (16–18),
which was likely exacerbated by continued warming of extreme
warm temperatures over land (19). A number of studies have
compared modelled and observed relative humidity trends over
large geographical regions and found that the observed relative
humidity decline has been greater than typically found in models
(17, 20–22). Here, with an observational record that extends
beyond the warming hiatus of the early 21st century, and the
latest generation of global climate models, we further scrutinize
the long-term humidity trends in models in comparison to
observations and will demonstrate a major discrepancy in their
behavior that has strong ties to climatological aridity and is most
apparent in arid and semi-arid locations.

A Case Study: The Southwest United States
We first demonstrate the discrepancy in humidity trends using
the US Southwest, which has a dense network of in-situ humidity
measurements (7) (Materials and Methods). Annual mean vapor
pressure (VP) trends from 1980 to 2020 in the HadISDH (8)
stations and the ERA5 reanalysis (9) (Fig. 1 A and B) agree and
demonstrate a substantial decline over the Southwest (23). While
agreement between ERA5 and the stations is not surprising, given
that ERA5 assimilates station-based humidity measurements, it
is reassuring and indicates that the ERA5 trends are not the
spurious result of changes in observed data streams, or issues in
the underlying forecast model (see theMaterials andMethods for a
discussion of other reanalyses). This VP decline can be compared
with the distribution of trends in CMIP6-era models in Fig.
1C (x-axis). The model members overwhelmingly suggest that
Southwest VP should have increased; the 5th to 95th percentile
range across the CMIP6 members is 0.14 hPa/41 y to 1.04
hPa/41 y and the minimum modeled trend of −0.19 hPa/41 y
falls drastically short of the ERA5/ISD/HadISDH declines of
−0.81/−0.70/−0.58 hPa/41 y. Simulations with prescribed
observation-based sea surface temperatures (SSTs), which are
thought to have driven a precipitation decline over the region
(24, 25), also cannot reproduce the observed VP decline see the
CESM2 Global Ocean Global Atmosphere (GOGA2) points in
Fig. 1C. These conclusions are not strongly affected by ending
the trend in the 2020 drought year (Fig. 1C, open gray diamond).

For SVP, which is only dependent on temperature, the
observed trends lie within the model distribution (y-axis of Fig.
1C), albeit with the models tending to warm more (and show
a greater increase in SVP) on average. The difference between
the SVP and the actual VP (the vapor pressure deficit, VPD) is a
highly relevant quantity for wildfire (2, 5, 26). It has already been
recognized (27, 28) that VPD has increased over the Southwest
with contributions from both increasing SVP and decreasing

actual VP, and Fig. 1C (gray contours) indicates that, while
the model trends in VPD encompass the observed, they do so
for different reasons: A greater increase in modeled SVP (more
warming) compensates for not simulating a decline in actual VP.

Time series of Southwest VP anomalies also compare well
between ERA5 and the stations (ISD and HadISDH) (Fig. 1D).
The observed decline in VP and the difference from CMIP6 is
relatively homogeneous in time (SI Appendix, Fig. S7) and is
not dominated by an episodic jump (or jumps) in the record.
This, together with prior literature on the fidelity of station-
based humidity measurements (see Materials and Methods for an
in-depth discussion), suggests that the decline is not a spurious
result of changes in observing practices. Overall, this leads us to
believe that the station-based observations represent a true trend
that is also well captured by the assimilation in ERA5.

The observed decline in humidity alongside rising temperature
leads to a substantial relative humidity decline (Fig. 1E) that is
also not well captured by the models. The discrepancy in specific
humidity trends between ERA5 and the models maximizes at
the surface but is apparent throughout the lower troposphere
(Fig. 1F) and is relatively uniform throughout the year when
considering the trend as a percentage of the monthly climatology
(Fig. 1G). However, in an absolute sense, the difference in VP
trends maximizes in the summer when the climatological VP is
highest (SI Appendix, Fig. S8).

Precipitation has declined in the Southwest during the study
period, which we expect would cause a decline in VP. Trends in
VP and precipitation are correlated across model members in both
CMIP6 and in LENS2 (Fig. 2A). In LENS2, the difference in
trends between the members is entirely due to internal variability
and since the LENS2 spread in precipitation trends and VP trends
is almost as large as that in CMIP6, it suggests that internal
variability is a dominant contributor to spread in CMIP6. While
the observed decline in precipitation is large, it is not outside
of the range of modelled trends. In order to account for the
influence of precipitation trends, we fit a regression line across
CMIP6 members between VP and precipitation trends (Materials
and Methods). The observed decline in VP is much larger than
would be expected after conditioning on the precipitation trends
in this way and lies at much lower values than any of the CMIP6
residuals from the regression fit (Fig. 2A and see Materials and
Methods).

Considering the shorter 1980 to 2014 period, over which we
can examine prescribed SST experiments from other CMIP6
models (AMIP6, see Materials and Methods), it is clear that
prescribing observed SSTs leads to lower VP trends on average
(SI Appendix, Fig. S9A). This is because observed SSTs force a
greater precipitation decline (SI Appendix, Fig. S9B). However,
while there is a greater overlap between AMIP6 and observations,
those models that exhibit a VP decline as low as observed do
so because they exhibit a precipitation decline that is much
greater than observed. The observed VP decline is, therefore,
also inconsistent with the behavior over this shorter time period
of this broader range of prescribed SST simulations.

Overall, the observed decline in near-surface vapor pressure
is much larger than what is expected based on the models,
even after accounting for the relatively large observed Southwest
precipitation decline. Fig. 2A suggests three possible origins of
this issue: 1) The slope of the relationship between the VP trend
and precipitation trend could be too shallow; 2) the forced,
thermodynamic, rise in atmospheric water vapor which shifts
the entire distribution in Fig. 2A toward positive VP values
could be too large in the models; or 3) models could be deficient
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Fig. 1. Annual mean 1980 to 2020 water vapor trends over the US Southwest. (A and B) Vapor pressure trends in HadISDH stations and ERA5 (Materials and
Methods), respectively with red depicting the six state region (California, Nevada, Arizona, New Mexico, Utah, and Colorado, referred to as the Southwest) used
in other panels (see SI Appendix, Fig. S2A for the trends in the other ISD dataset). (C) Southwest saturation vapor pressure trend versus actual vapor pressure
trend with CMIP6 members depicted by colored dots (different colors for each model), LENS2 members depicted by maroon diamonds, and GOGA2 members
depicted by blue diamonds. Combinations of observation-based data are shown in black and gray with the legend listing the dataset used for humidity first and
for temperature second. The gray diagonal lines depict the trends in VPD in hPa/41 y. The open gray diamond shows the ISD trends ending in 2019 but scaled
by 41 y. (D) Time series of annual mean vapor pressure. For CMIP6, the shading depicts the 2.5th to 97.5th percentile range of all members from all models,
and for LENS2, the shading depicts the 2.5th to 97.5th percentile range of the members. The Right portion of the panel depicts the overall trend for individual
members. (E) is as (D) but for relative humidity. (F) Vertical profiles (on sigma levels, p/ps , with the interpolation to sigma levels performed at each grid point
prior to taking the Southwest average) of specific humidity trends with shading for CMIP6 and LENS2 indicating the minimum to maximum member range. (G)
1980 to 2020 vapor pressure trends for individual months of the year expressed as a percentage of the 1980 to 1990 climatology for that month of the year
with the shading showing the minimum to maximum range across model members.

in their representation of the natural variability of atmospheric
water vapor that is unrelated to precipitation, i.e., the distribution
of points around the regression line in Fig. 2A should perhaps

be broader in the vapor pressure trend direction. In detrended,
interannual variability, there is a similar slope of the relationship
between VP and precipitation to that seen for long-term trends
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A

B

C

Fig. 2. The relationship between 1980 to 2020 annual mean vapor pressure
trend −→VP and precipitation trend −→pr . (A) Vapor pressure trend versus
precipitation trend averaged over the US Southwest for the CMIP6 members
(colored dots, with each color representing a different model with the number
of members summarized in SI Appendix, Table S1), LENS2 (red diamonds),
GOGA2 (blue diamonds), and various observation-based datasets (gray and
black diamonds, crosses, and squares). The diagonal line shows the least
squares regression fit to the CMIP6 members, and the gray shaded range
shows ±2� around this regression line where � is the SD of the residuals of
the individual CMIP6 members from the regression fit. (B) The correlation
between precipitation trend and vapor pressure trend using the CMIP6
members. (C) Observation-based precipitation trends using GPCC data.

in Fig. 2A and observations agree well with the CMIP models
in this metric (SI Appendix, Fig. S10 A–C). This provides hints
that (1) is not the problem, but in the following, we will further
exploit the near-surface humidity trends globally to confirm this
and demonstrate that (3) is also not the primary issue, but rather
(2) is the most likely candidate.

Global Near-Surface Vapor Pressure Trends
Globally, there is good agreement between ERA5 and the station-
based VP trends (Fig. 3 B and C and SI Appendix, Figs. S5
and S6). Aside from the US Southwest, there are a number of
regions where the 1980 to 2020 ERA5 VP trend lies outside of
the CMIP6 member distribution of 1980 to 2020 trends, and
these are all regions where the VP trends are negative or near
zero (Fig. 3C): Northern Argentina, South Africa, South Sudan,
Somalia, Spain and Morocco, Iran, Kazakhstan, Mongolia, and
East Australia. Precipitation has not declined at all these locations
(Fig. 2C) and since precipitation and VP trends tend to be
correlated (Fig. 2B), we incorporate precipitation trends into
the analysis.

Fig. 3D shows the difference between ERA5 VP trends and
the VP trends that would be predicted based on observed pre-
cipitation trends and the CMIP6 relationship between VP and
precipitation trend (See Materials and Methods and Fig. 2A for
a demonstration of the approach, and SI Appendix, Fig. S11B
for the actual VP trends that are predicted in this way). Many
more regions now have ERA5 VP trends that are distinct from
the model distribution, and these are almost all regions where
the ERA5 trends, after accounting for precipitation trends, are
relatively negative (except for Saudi Arabia and parts of India).
The same is true in the CMIP5 models (SI Appendix, Fig.
S20) and when considering the shorter 1980 to 2014 trends in
both CMIP6 and AMIP6 (SI Appendix, Fig. S12). Importantly,
the regions where we see this discrepancy are not randomly
distributed but correspond to arid and semi-arid regions around
the globe (Fig. 3A and seeMaterials andMethods for Aridity Zone
definitions).

We formalize this conclusion by considering the land surface
VP trends binned into equal-area bins according to the climato-
logical Aridity Index and precipitation trends in Fig. 3 E–G
(Materials andMethods). This makes it clear that the annual mean
ERA5 VP trends are distinct from the modeled trends almost
exclusively within arid/semi-arid regions and the discrepancy
occurs regardless of the precipitation trend. Differences between
modeled and observed VP trends could be caused by differences
in temperature trends but the latter are relatively small in
this aridity–precipitation trend space (SI Appendix, Fig. S14).
Furthermore, the same conclusions hold true when we account
for the temperature trend over land as shown when binned
specific humidity trends are expressed per Kelvin of land area-
averaged (excluding Antarctica) temperature trend (Fig. 3 H–J).
In the CMIP6 ensemble mean, the specific humidity trends are
well aligned with Clausius–Clapeyron scaling (∼7%/K) across
the full range of Aridity Indices, with deviations to lower or
higher values depending on the precipitation trend (Fig. 3I). In
contrast, the specific humidity trends in ERA5 in arid and semi-
arid regions are much lower than Clausius–Clapeyron scaling and
even negative where precipitation declines (Fig. 3H) in regions
like the US Southwest. Overall, CMIP6 models suggest that the
historical humidity trends in arid/semi-arid regions should have
been close to Clausius–Clapeyron scaling on average, but this is
at odds with reality.

The close link between climatological aridity and the discrep-
ancy in annual mean humidity trends raises the question, does
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Fig. 3. The global discrepancy in 1980 to 2020 water vapor trends. (A) indicates the land regions classified as humid (blue), arid/semi-arid (orange), and
hyperarid (gray). (B) Annual mean 1980 to 2020 VP trends in the HadISDH station data. (C) as (B) but for ERA5, and the stippling indicates where the ERA5 VP
trend lies within the range of the CMIP6 members. (D) The difference between the ERA5 VP trend (−→VP) and that predicted based on the precipitation trend (−→pr )
using the linear relationship −→VP = a + b × −→pr where a and b are determined for each grid point using the CMIP6 models and GPCC for observed −→pr (see SI
Appendix, Fig. S11 F and G for alternatives). Stippling shows regions where the observed VP trend lies within the ±2� range of CMIP6 residuals around the −→VP-−→pr
relationship. (E) VP trends across land regions binned into 30 equal-area bins according to the annual mean Aridity Index and then binned into 15 equal-area
bins according to the annual mean precipitation trend using GPCC (Materials and Methods and SI Appendix, Fig. S13 for alternative precipitation observations).
Arid/semi-arid zones sit within the black dashed lines. (F) is as (E) but for the CMIP6 ensemble mean using CMIP6 precipitation trends for the bins. (G) is as
(E) but for the difference between ERA5 and the CMIP6 ensemble mean, with dots depicting where ERA5 lies within the CMIP6 model and ensemble member
range. (H–J) are as (E–G) but for specific humidity trend expressed as a percentage of the 1980 to 1990 climatology per trend in land area average temperature
(excluding Antarctica). (K–M) are as (H–J) showing specific humidity trend normalized by land area averaged temperature trend, but trends for each month of
the year are used and rather than binning according to precipitation trend in the x-axis, the months of the year are ordered from most arid on the left to most
humid on the right (based on the climatological monthly Aridity Index) (Materials and Methods). White hatching in panels (H), (I), (K), and (L) indicates bins where
the specific humidity trend lies between 6.5 and 7.5% per K i.e., close to Clausius–Clapeyron scaling.

a similar discrepancy occur in more humid regions but during
the most arid times of the year? In Fig. 3 K–M, monthly specific
humidity trends normalized by temperature trend are shown. The
months of the year are ordered from most arid to most humid
at each location and depicted on the x-axis and all locations are

then binned into 30 equal-area bins according to the annual
mean Aridity Index on the y-axis (Materials and Methods). The
average precipitation trends in each bin are relatively small (SI
Appendix, Fig. S15 F and P). While the model discrepancy is
largest in Arid/Semi-Arid regions, and at the most arid time
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of the year in those regions, the humid regions also show a
significantly lower specific humidity trend on average but only
during their most arid months of the year (Fig. 3M). During these
months, the Aridity Index enters the realms of the aridity indices
that arid/semi-arid regions see year round (SI Appendix, Fig.
S15A), and these tend to be the hottest months with the greatest
climatological specific humidity (SI Appendix, Fig. S15 B and D).
Where and when models overestimate the rise in atmospheric
humidity is, therefore, clearly linked to climatological aridity,
both spatially and seasonally.

Focusing now exclusively on arid/semi-arid regions, as defined
by the annual mean Aridity Index, we present the relationship
between specific humidity trends and precipitations trends in
Fig. 4A for the CMIP6 models compared to observations (See
SI Appendix, Fig. S16 for a LENS2 version of this figure and
SI Appendix, Fig. S20 for a version with CMIP5). In Fig. 2A,
we examined the relationship between humidity trends and
precipitation trends across model members in one location, but
now we are examining this relationship across space in each
member. A version of this figure for VP and not normalized
by temperature trend, which can be more easily compared to
Fig. 2A, is shown in SI Appendix, Fig. S17. This reveals a
similar relationship across spatial grid points to that across model
members in the Southwest, which is not too surprising since most
arid/semi-arid regions exhibit a VP vs precipitation relationship
with a similar slope to that in the Southwest (SI Appendix,
Fig. S10D). But since we are considering the relationship across
space, we can now examine it in the observations as well. Fig. 4
indicates that the primary difference between the models and the
observation-based data is that the model-based specific humidity
trends are offset to higher values at all precipitation trends. While
the model-based specific humidity trends are close to 7 %/K in
regions with near zero precipitation trend, the observation-based
specific humidity trends are close to zero. Over the 1980 to
2014 period when the AMIP6 simulations can be examined, the
time evolution of SSTs does increase the likelihood of negative
specific humidity trends slightly, but the same overall conclusion
can be drawn with prescribed observation-based SSTs, i.e., the
relationship between precipitation trends and VP trends is similar
between models and observations, but the modelled VP trends
are offset to positive values, while the observed trends are centered
around zero (SI Appendix, Fig. S18).

There has essentially been no increase in water vapor over
arid/semi-arid regions in the observation-based data, while there
has been an increase that is close to Clausius–Clapeyron scaling in
the models. This conclusion that we draw from the model ensem-
ble mean is also valid for individual members as demonstrated by
the probability distributions of specific humidity trends in Fig. 4
B andC. Conditioning on locations where the precipitation trend
is low (between −0.05 and +0.05 mm/d/41 y), the difference in
behavior between models and observations is dramatic (Fig. 4C);
in ERA5, around 51.5% of the arid/semi-arid area with low
precipitation trends exhibits a negative specific humidity trend, in
contrast to the maximum area of 10.4% in CMIP6 and only 5.0%
in LENS2 (SI Appendix, Fig. S16). There are also indications
that the distribution of specific humidity trends is broader in the
observation-based data than in the models, but this appears to
be a secondary contributor to the difference in the distributions
compared to the large offset between them on the humidity axis.

In the context of the US Southwest and the relationship
between VP and precipitation trends there (Fig. 2A), we raised
three possibilities that could be contributing to the model-
observation discrepancy: a difference in the slope of the relation-
ship between humidity and precipitation trends; a difference in

A

B

C

Fig. 4. Probabilities of specific humidity trends (−→q ) as a function of
precipitation trends (−→pr ) in arid and semi-arid regions. (A) area weighted
joint probability distribution of specific humidity trend (expressed as a
percentage of the 1980 to 1990 climatology and normalized by the land
area average temperature trend, excluding Antarctica) versus precipitation
trend for arid/semi-arid regions using a Gaussian kernel density estimate.
Gray shows observation-based data (GPCC for pr and ERA5 for q, see SI
Appendix, Fig. S11 for alternatives) and purple shows the ensemble mean of
the first member for each CMIP6 model (probability distribution calculated
for each model first and then averaged). Contours show the probability per
0.025 mm/d/41 y −→pr by 0.5 %/K −→q box with contours starting at 0.04% and
increasing in increments of 0.02% and the circles show the area weighted
average specific humidity trend for −→pr bins of width 0.05 mm/d/41 y. (B)
Gaussian kernel density estimate of the % area of all arid/semi-arid regions
exhibiting specific humidity trends using 0.5 %/K bins. Black shows ERA5
and purple lines show all members from all models for CMIP6. The text
depicts the percent area exhibiting negative trends for ERA5 and the CMIP6
member with the maximum area of negative trends. (C) is as (B) but now the
probability estimates are performed only on arid/semi-arid grid points that
exhibit precipitation trends between −0.05 and 0.05 mm/d/41 y.
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the thermodynamic rise in water vapor with warming; and, a dif-
ference in the variability in specific humidity trends that is unre-
lated to precipitation. Here, aggregating across all arid and semi-
arid regions of the world that differ in their historical precipitation
trends, we can show that the primary issue lies in the representa-
tion of the forced thermodynamic rise in atmospheric water vapor
that is unrelated to precipitation, although there is also slightly
more variability in the observed specific humidity trends that is
unrelated to precipitation. In observations, specific humidity has
not increased over arid/semi-arid regions of the world in contrast
to models where it increases at a rate close to Clausius–Clapeyron
scaling on average. In the annual mean, the agreement between
modelled and observed trends is much closer in humid regions
(SI Appendix, Fig. S19), but as we have already shown in Fig. 3M,
even in humid regions, the most arid months of the year are asso-
ciated with lower humidity increase in ERA5 than in the models.

A summary of the historical time evolution averaged over arid
and semi-arid regions is shown in Fig. 5 (see SI Appendix, Fig. S22
for all land regions and other aridity zones, and SI Appendix, Fig.
S23 for comparison of ERA5 with gridded HadISDH). Near-
surface air temperature has warmed over arid/semi-arid regions
since 1980 (Fig. 5A) with relatively good agreement between
models and observations. In association with this rise in temper-
ature, atmospheric specific humidity increases in the models (Fig.
5C), and only a very small decline in relative humidity occurs (Fig.
5D). This is in sharp contrast to the observation-based record,
where specific humidity has not risen and relative humidity has
declined by about an order of magnitude more than the models
on average. Prescribing observation-based SSTs does lower the
increase in specific humidity during the hiatus period of the early
2000s when the warming of SSTs stalled on average (Fig. 5B)
(11, 16, 17). Even so, specific humidity clearly still rises more,
and relative humidity declines more, in the models compared to
reality even when observation-based SSTs are prescribed. Further,
the GOGA2 simulations exhibit a continued rise in atmospheric
water vapor and become more aligned with the coupled models
after 2014 as the ocean temperatures continue to rise.

Discussion
The observational record should be viewed with the caveat that it
may be subject to errors since artifacts and artificial drifts can be
introduced as instruments and observing practices change over
time. For example, ISD stations tend to be located at airports,
which could in theory exhibit different trend characteristics
from the surrounding regions, and changes in instruments and
perhaps station location have changed over time. However,
we consider the evidence presented more fully in the Station
Data Fidelity section in Materials and Methods to indicate
that observational artifacts are unlikely to be the driver of
this model versus observational discrepancy. Previous studies
(29, 30) investigating station-based measurements of humidity
from the United States have found minimal impacts of changes
in instrumentation or urbanization on trends, and we have
shown here that results are robust to different choices made
in the selection and homogenization of station data through
comparison of our own analysis of ISD with the homogenized
HadISDH dataset. We further demonstrate in SI Appendix, Figs.
S7 and S21 that the discrepancy is robust for a wide range of
running vapor pressure trends with varying start points and
lengths, which indicates considerable homogeneity in the bias
in trends between observations and CMIP6 over the record.
If observational artefacts are responsible, they would have to
explain a) the global nature of the discrepancy, b) its localization

A

B

C

D

Fig. 5. (A) Area weighted average of 12-mo running mean near-surface air
temperature (anomalies from the 1980 to 1990 average) over arid and semi-
arid regions. Black shows ERA5, gray shows BEST, purple shows the CMIP6
ensemble mean, the pink range shows the 2.5th to 97.5th percentile range
across all the members from all models for CMIP6, maroon dashed shows
the LENS2 ensemble mean, blue solid shows the AMIP6 ensemble mean, the
light blue shading shows the 2.5th to 97.5th percentile range across all AMIP
members from all models and blue dashed shows the GOGA2 ensemble
mean. (B) is as (A) but for the average of near-surface air temperature over
oceans from 60◦S to 60◦N. (C) is as (A) but for near-surface specific humidity
averaged over arid and semi-arid regions using ERA5 for observations which
compares well with HadISDH (SI Appendix, Fig. S23), (D) is as (C) but for relative
humidity averaged over arid and semi-arid regions.
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to a particular climate type (arid/semi-arid regions or the most
arid seasons in more humid regions), and c) the homogeneous
nature of the trend discrepancy over time. We, therefore, argue
that a more likely explanation is that some process is being
misrepresented in models.

If a model issue is driving the discrepancy in humidity trends
identified here, its origins are unclear, but we propose a few
candidate mechanisms for further investigation: 1) too much
water may be available from the land in models climatologically;
2) the land surface may have already dried out in response to
warming more than the models simulate; 3) plant physiology
may be responding differently to rising CO2 in reality than in
models (31); 4) runoff and/or its response to warming may be
misrepresented in models, which could also be related to (1) and
(2); and/or 5) there may be a global misrepresentation of the
moisture transport response to warming. Efforts to distinguish
between these and other possibilities must be guided by the fact
that the issue is common to all models, the trend discrepancy is
most severe in arid/semi-arid regions, and in more humid regions,
it is only found in the most arid seasons. A simple explanation
for the links with climatological aridity may be that the water
limitations that are inherent to arid/semi-arid regions result in
any small change in water availability having a larger impact on
evapotranspiration and atmospheric humidity. If so, it is possible
that the underlying model issue may apply more generally, but
it is only in these water-limited regions and seasons that it has
become detectable.

Some recent model-observation comparisons of evapotranspi-
ration anomalies during dry conditions (32, 33) suggest that more
water is available for evapotranspiration during drought in reality
than in models, which runs counter to hypothesis (1). In the
climatological average, however, ref. 34 found evapotranspiration
was overestimated in many regions by the models. There are
candidate mechanisms for issues related to runoff, for example,
precipitation in models is known to lack intermittency (35, 36)
which could lead to runoff being biased low if precipitation is not
intermittent enough, leading to biases in water availability from
the land surface, although model biases in the runoff dependency
on precipitation and temperature are not systematically of
one sign (37). Relatedly, ref. 38 recently documented that
while the moisture transport into some arid regions from the
oceans has increased, the amount of precipitation recycling in
ERA5 has declined, so it is possible that models are somehow
misrepresenting the role of precipitation recycling or its changes.
Missing feedbacks between the land surface and the climate is
another potential candidate. For example, it has recently been
shown that wildfire occurrence alters runoff characteristics (39),
and interactions such as these are not currently represented in
climate models. Both altered transports of moisture from the
ocean and altered availability of water from the land surface
have probably contributed to historical trends in different regions
(40), and the warming of the oceans is very likely an important
control on atmospheric humidity over land (41). However, when
it comes to understanding why atmospheric humidity has not
risen on average and why models might not be representing
this, even when observed SSTs are prescribed, we currently
favor the hypotheses related to water availability from the land
over atmospheric transport issues, given the global nature of the
problem and the fact that it arises in regions that are influenced
by widely varying dynamics and moisture sources. There is some
support for this from ref. 40 which shows large-scale declines in
evapotranspiration over most arid/semi-arid regions and argued
that reduced water availability from the land surface has been a
driver in historic trends over the La Plata basin of Argentina, in

particular. However, future work to understand this issue should
continue to consider both this possibility and the potential role
for issues in atmospheric transport.

While the implications of this discrepancy will not be truly
known until our models can be improved, they are potentially
severe. If, in reality, the rising saturation vapor pressure will
continue without partial compensation from rising actual vapor
pressure, then future increases in VPD and, therefore, wildfire
danger (2, 5, 26) may be greater than predicted based on
climate models in arid/semi-arid regions. There may also be
implications for heat extremes. Given that evapotranspiration
tends to act as a mediator of temperature variability (42) and,
in the tropics, there are theoretical linkages between relative
humidity and temperature change (13, 43), we may expect that if
evapotranspiration and/or relative humidity are reduced more in
reality, then heat extremes may become more severe. Indeed, over
the Southwest, it has been observed that reductions in humidity
are greatest on the hottest days in the historical record (44).

Conclusions
Here, we have demonstrated a major discrepancy between
observation-based and climate model-based historical trends in
near-surface atmospheric water vapor in arid and semi-arid
regions. Climate models suggest that water vapor should have
increased over arid/semi-arid regions at a rate that is close to that
expected from Clausius–Clapeyron scaling, on average. In reality,
atmospheric water vapor over arid and semi-arid regions has es-
sentially remained constant over the last four decades on average,
which is strongly at odds with our model-based expectations. A
discrepancy between modelled and observed humidity trends is
also present in more humid regions, albeit to a lesser extent, and
only during the most arid times of the year. In arid/semi-arid
regions, warming-driven increases in saturation vapor pressure
combined with near zero trends in specific humidity are leading
to increases in vapor pressure deficit which is an important driver
of water stress on ecosystems and wildland fire, and models are
not capturing the role of specific humidity trends in this correctly.
This represents a major gap in our understanding and in climate
model fidelity that must be understood and fixed as soon as
possible in order to provide reliable hydroclimate projections for
arid/semi-arid regions in the coming decades.

Materials and Methods
Observation-Based Datasets. We focus on the 1980 to 2020 period as it is
the period that is common to all observation-based datasets.

ISD and HadISDH. We use two datasets based on the Integrated Surface
Database (7) (ISD) station data. The HadISDH dataset (8) is a homogenized
version of the ISD data that has been produced by making certain choices about
temporal coverage and by applying homogenization procedures. In addition,
we use the raw ISD station data after quality control but without homogenization
to check that conclusions are not sensitive to the choices made about required
temporal coverage, homogenization procedures, or how the diurnal cycle is
dealt with. These are referred to as HadISDH and ISD throughout and are now
described in more detail.
ISD. We use the hourly Integrated Surface Database (7) (ISD) station records of
2-m temperature and 2-m dew point temperature. Starting from 29555 available
stations, we first identified stations for which records began prior to January
1980 and ended after December 2020 and for which the longitude and latitude
information was available, which left 6509 stations. For each of these stations
we then removed data that failed cross-checks (SOURCE flags 2, A and B), were
summary observations created by NCEI that may not share the same data source
flag (SOURCE flag O), were missing (SOURCE flag 9 or REPORT_TYPE 99999) or
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for which no quality control was applied (QUALITY_CONTROL flag V01). Further,
air temperature and dew point temperature values with the following flags were
removed: (2 = Suspect, 3 = Erroneous, 6 = Suspect from an NCEI source, 7 =
Erroneous from an NCEI source, A = Data value flagged as suspect, but accepted
as a good value, C = Temperature and dew point reported in whole degrees
Celsius). After performing this quality control, we removed stations that had at
least 1 y with no data in the 1980 to 2020 record, which left 3506 stations.

To deal with inhomogeneities in the sampling of observations over the
diurnal cycle both within and across stations, we linearly interpolate the quality-
controlled data points to hourly values (on the hour). We then form daily
averages from these linearly interpolated values but only retain data on days
for which there are at least four observations available from which to compute
the interpolated diurnal cycle. We then form monthly averages from the days
available in each month and define “bad months” as those for which there are
more than 15 d without data (i.e., where more than approximately half of the
days in the month had less than 4 valid observations). If a station has at least
48 “bad months” in the 492-mo record from January 1980 to December 2020,
then it is dropped from the analysis. This left 2581 stations overall, and of those,
557 were in arid/semi-arid locations and 49 were in the US Southwest.

Each of these choices are subjective and we choose the thresholds of requiring
at least 15 d with at least 4 valid observations in a month for at least 444 out
of the 492 mo record to retain a sufficiently broad coverage over arid/semi-arid
regions. SI Appendix, Fig. S1 provides an indication of the stations that remain
as a function of the minimum number of observations required in a day and
the number of bad months allowed in the record. Our choice of using the 4
observations per day threshold is motivated by allowing us to retain valuable
stations in Southern Africa, Australia, Northern Argentina, and Northern Asia
(compare SI Appendix, Figs. S1 D and E). However, most of the stations in the
United States have zero bad months with more than 18 observations per day (SI
Appendix, Fig. S1B), and many of the stations in Spain have less than 12 bad
months in the record with a 12 observations per day threshold (SI Appendix, Fig.
S1C). So, while we have chosen thresholds that are liberal enough to allow for a
sufficient number of stations across the arid/semi-arid climate regions, many of
the stations in the US Southwest and Spain, would pass much stricter thresholds.

Given data availability issues in ISD for surface pressure, in the calculation of
specific humidity from ISD dew point temperatures, we use the surface pressure
from the closest grid point of ERA5 on the 1/4◦ longitude-latitude grid, but the
vapor pressure trends discussed here are entirely attributed to the water vapor
content, not the surface pressure trend in ERA5 (SI Appendix, Fig. S3).
HadISDH. HadISDH (8) is based on HadISD (45) which is a quality-controlled
dataset based on the ISD stations. The criterion used for sufficient data to form a
monthly mean in HadISDH is that first the monthly mean for each hour of the day
is computed only if there are at least 15 d present within the month. A monthly
mean value for that station is then only computed if there are at least 4 h with
a monthly mean per day with at least one in each 8-h tercile 00:00 to 08:00,
08:00 to 16:00, 16:00 to 24:00 UTC). As such, the requirements of the amount
of valid data for computing a monthly mean are similar to what we use for ISD,
but the diurnal cycle is dealt with in a different way. In addition, homogenization
of the station time series is performed by detecting change-points and, where
warranted, performing adjustments based on neighbouring stations. We use
the homogenized station data as opposed to the gridded product of HadISDH
so that we can treat the Southwest averaging in a similar way to ISD and follow
similar criteria to that described for ISD to determine whether a station has
sufficient data, but we do show the gridded product in SI Appendix. If a station
has more than 48 missing months, then it is omitted from the analysis and if
a station has a whole year of missing data in the record, it is also omitted. We
only use the vapor pressure data from HadISDH as there were more gaps in the
records for temperature and dew point temperature (See figure 3 of ref. 8). For
vapor pressure, 2457 stations have sufficient data coverage, and of those, 559
are in arid/semi-arid locations and 86 were in the US Southwest.

Station Data Processing. Annual averages are computed by first removing the
monthly seasonal cycle for each station, then averaging over the months for which
data are available, and then adding back the climatological annual average. This
ensures that the annual average is not impacted by unevenly sampling the
seasonal cycle when months are missing. The climatological seasonal cycle is
determined as the climatological average over data available for a given month

from 1980 to 2020. Annual averages are computed prior to averaging over the
Southwest to ensure that each of the Southwest stations has a value for each
timestep (this would not be true if spatial averaging were first performed on
the monthly data). For the monthly trends averaged over the Southwest, the
spatial averaging over the Southwest is performed on the monthly values and
the months for which stations have missing data are assumed to have zero
anomaly from the climatology. To calculate an area average of the ISD station
data over the US southwest, a voronoi tesselation of stations over the contiguous
United States was used to assign weights to each station within the six state
region that covers California, Nevada, Utah, Colorado, New Mexico, and Arizona
(red outline in Fig. 1A).

StationData Fidelity. The majority of the ISD stations are located at airports and
changes in instruments and perhaps station location have occurred over time. It is
also known that inaccuracies in psychrometer measurements are highest at low
humidities (8). For the US station records, ref. 29 investigated humidity trends
using stations from 1961 to 1990 and performed a number of checks to assess
the role of changing observing practices over that period. They concluded that
such artefacts were not impacting their trends. They also noted that increased
aviation traffic at the airports, where the stations are located, could lead to
changes in water vapor through fuel combustion. While they found this to be a
very small effect, it is worth noting that, if anything, this would lead to an increase
in water vapor as opposed to a decrease. Over this period, ref. 29 were actually
investigating an increase in humidity over the Southwest, but this is because
they were primarily covering the period prior to 1980 over which precipitation
in the region was increasing. Ref. 30 also investigated inhomogeneities in US
station records over a longer period from 1930 to 2010 and noted breakpoints
in the dew point temperature time series in the mid 1980s and mid 2000s
associated with instrument changes, but they found this only in a small portion
of the stations. They also concluded that urbanization does not appear to have
biased the observations. Over China, ref. 46 found breakpoints in the time series
of humidity measurements around the year 2000 when a switch from manual
to automated measurements occurred, and it is interesting to note that China is
one region where ERA5 lies outside of the model distribution in Fig. 3D, but the
region is characterized as humid, not arid/semi-arid.

For our purposes, to investigate the potential role of changes in observing
practices, sensors, or station locations, a range of running vapor pressure trends
with varying start points and lengths are shown in SI Appendix, Fig. S7 over the
US Southwest and SI Appendix, Fig. S21 shows the equivalent for ERA5 averaged
over all arid/semi-arid regions. These indicate considerable homogeneity in the
bias in trends between observations and CMIP6 over the record. For example,
in the Southwest, the 30-y trend centered on 2005, which misses the mid-
1980s when the HO-83 hygrothermometer model was introduced (29, 30),
is significantly different between the models and observations. Similarly, a
number of the trends in the lower left quadrant of the diagram which miss
the mid-2000’s introduction of the Vaisala relative humidity sensors (30) are
significantly different from the modeled trends, although significance here is
more challenging given the shorter length of the trend calculation and the
impact of the 1997/1998 El Niño. Overall, given the fairly homogeneous nature
of the trends over time, the lack of clear break points in the time series, the
global nature of the trend discrepancy, and prior studies that have found that
changes in observing practices, urbanization, or airport use have not significantly
impacted on results (29, 30), we conclude that it is unlikely that artifacts within
the station-based observations are dominating in the observed trends.

ERA5. We use 2-m dew point temperature and temperature, surface pressure,
and specific humidity on pressure levels from ERA5 (9). Specific humidity and
saturation specific humidity are calculated from 2-m dew point temperature
and temperature, as outlined in the Humidity and Vapor Pressure Calculations.
ERA5 is the latest generation reanalysis product from the European Center for
Medium Range Weather Forecasts (ECMWF). Of relevance to this analysis is
that ERA5 assimilates in situ station-based humidity measurements as well as
humidity measurements from radiosondes, dropsondes, and aircraft as well as
satellite radiance measurements that are sensitive to humidity and temperature.
Scatterometer estimates of near-surface soil moisture are also assimilated into
ERA5. ERA5 has been shown to exhibit discrepancies over tropical oceans
prior to the mid-1990s when compared with microwave sounding estimates of

PNAS 2024 Vol. 121 No. 1 e2302480120 https://doi.org/10.1073/pnas.2302480120 9 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

U
C

LA
 o

n 
Ja

nu
ar

y 
2,

 2
02

4 
fr

om
 IP

 a
dd

re
ss

 1
31

.1
79

.2
20

.3
0.

https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2302480120#supplementary-materials


tropospheric humidity, but it compares well over tropical land (18), and globally
it compares well with radio occultation measurements and other reanalyses after
1995 but global discrepancies in water vapor trends are found between different
reanalysis products prior to that (11). ERA5 is available on a 0.25◦ longitude by
0.25◦ latitude grid but, unless otherwise stated, we regrid to the ∼1◦ CESM
grid prior to analysis.

MERRA2. VP trends for the MERRA2 (47) assimilation product are shown in theSI
Appendix. MERRA2 is NASA’s latest generation reanalysis product. Of relevance
to this work is that MERRA2 does not assimilate in-situ station-based humidity
measurements or near-surface satellite-based radiance measurements.

JRA55. JRA55 (48), the latest reanalysis from the Japan Meteorological Agency,
is also shown in SI Appendix. It does assimilate in-situ station-based humidity
measurements, but according to ref. 48, it does so using datasets and procedures
from an older generation of ECMWF reanalysis, ERA40 (49), two generations
prior to ERA5 so it is possible that the assimilation of in-situ measurements has
improved in ERA5 compared to this dataset.

Comparison of Reanalysis Trends. SI Appendix, Figs. S2 and S6 show a
comparison of ISD, HadISDH, ERA5, MERRA2, and JRA55 over the US southwest
and globally, respectively. ERA5 compares very well with the ISD stations. While
there are reasons to be cautious about trends in any reanalyses, this close
correspondence between ERA5 and the stations motivates us to trust ERA5
more than other reanalysis datasets. MERRA2 does not resemble ERA5 or ISD.
The vapor pressure trends over arid/semi-arid regions in MERRA2 are relatively
more positive compared to those datasets. In fact, over the Southwest, MERRA2
sits within the model distribution. It is, perhaps, unsurprising that MERRA2
more closely resembles the free running model simulations because it does not
assimilate in situ humidity measurements from stations. JRA55 does assimilate
in situ humidity measurements but using older datasets and procedures than
ERA5. JRA55 more closely resembles ERA5 and ISD than MERRA2 over most
semi-arid regions, but it does not agree well with those datasets over the US
southwest, for reasons that are unclear. Overall, there are good reasons to not
trust MERRA2’s humidity trends and given the close agreement between ERA5
and the ISD stations, we focus our analysis on ERA5 and ISD/HadISDH.

PrecipitationDatasets (GPCP,GPCC, andCRUTS). We use three observation-
based precipitation datasets. Global Precipitation Climatology Project (GPCP) is
a satellite and rain gauge analysis on a 2.5◦ longitude by 2.5◦ latitude grid
(50). The GPCC dataset is a rain gauge-based dataset on a 1◦ longitude by 1◦

latitude grid (51). The Climatic Research Unit Timeseries (CRUTS) dataset is a
rain gauge-based dataset on a 0.5◦ longitude by 0.5◦ latitude grid (52).

Berkeley Earth Surface Temperature (BEST). To provide an additional
estimate for Saturation Vapor Pressure trends given discrepancies in near-
surface air temperature over the US Southwest between ERA5 and ISD (Fig. 1C),
we also use the BEST near-surface air temperature dataset (53) on a 1◦ longitude
by 1◦ latitude grid. This agrees more with ISD than with ERA5.

CMIP6. We use the Historical and Shared Socioeconomic Pathway 5-8.5 (SSP5-
8.5) simulations from the Coupled Model Intercomparison Project phase 6
(CMIP6) (54). These simulations begin in 1850 and are run under historical
forcings prior to 2015 and SSP5-8.5 forcings, thereafter. We use monthly mean
near-surface air temperature (CMIP6 variable tas), near-surface specific humidity
(huss), specific humidity on pressure levels (hus), surface pressure (ps), and
precipitation (pr). In total, 201 members from 41 models have the necessary
data available from the historical and SSP5-8.5 simulations as summarized in SI
Appendix, Table S1.

AMIP6. The Atmospheric Model Intercomparison Project (AMIP) simulations
from CMIP6 (AMIP6) are run with historical forcing and prescribed observation-
based SSTs. These simulations end in 2014, so we only use the period 1980 to
2014 and do not include these simulations for trend calculations in the main
text where we focus on 1980 to 2020 but we show 1980 to 2014 trends in the

SI Appendix and the time series from these simulations in Fig. 5. 117 members
from 35 different models are used (SI Appendix, Table S2).

CESM2. The Community Earth System Model 2 (CESM2) (55) is a CMIP6-era
model, and here we use the CESM2 large ensemble (56) (LENS2), which is a 100
member coupled ensemble that is run under CMIP6 forcings from 1850 to 2100
using historical forcings prior to 2015 and SSP3-7.0 forcings thereafter. We also
usea10-memberensembleofCESM2GlobalOceanGlobalAtmosphere(GOGA2)
simulations (57), in which observation-based SSTs from ERSSTv5 (58, 59) are
prescribed alongside the same forcings as used in LENS2 (historical prior to
2015 and SSP3-7.0 thereafter).

CMIP5. CMIP5 models are shown in SI Appendix, Fig. S20 using the historical
simulations prior to 2006 and the RCP8.5 scenario thereafter for the models and
members summarized in SI Appendix, Table S3.

Data Pre-Processing. Unless otherwise stated, all gridded observation and
model-based datasets were regridded to the ∼1◦ horizontal grid of CESM2
using bilinear interpolation prior to any analysis. For the CMIP6 data, whenever
an ensemble mean is shown, the average over the ensemble members available
for each model is first calculated followed by the mean across models, such that
each model is given equal weight, albeit with greater noise contributions from
models with fewer members. However, when comparing the observations to the
model distribution, the spread across model members from all models is used.
While this means that models that have more ensemble members available
are given more weight in the analysis, this maximizes the chance of the model
spread encompassing the observations. For all datasets, monthly means were
first derived before any vapor pressure or humidity calculations were performed.
See below for the form of these calculations and for a demonstration that results
are insensitive to this choice. Humidity-related quantities and precipitation were
then averaged into annual means and, for trends, the ordinary least squares
trend was computed from 1980 to 2020 on these annual means.

Humidity andVaporPressureCalculations. We derive the various quantities
related to atmospheric water vapor following the relationships provided by
ref. 60. For ISD, ERA5, and JRA55, the vapor pressure (VP), in hPa, is calculated
from 2-m dew point temperature (TD), in ◦C, using:

VP = 6.112× exp
(

17.67TD
TD + 243.5

)
. [1]

Specific humidity (q) can then be calculated from VP using:

q =
0.622VP

ps− 0.378VP
, [2]

where ps is surface pressure, in hPa.
Similarly, for all datasets, the saturation vapor pressure is calculated by

replacing TD in Eq. 1 with near-surface air temperature and the saturation
specific humidity is calculated by replacing VP in Eq. 2with the saturation vapor
pressure.

For the model simulations and MERRA2, near-surface (2-m) specific humidity
is the variable that is provided, so the vapor pressure is calculated by rearranging
Eq. 2 to give:

VP =
q× ps

0.622 + 0.378q
. [3]

For JRA55 for which both TD and 2 m q are available, we checked that it did
not matter whether VP was computed from TD or from q (SI Appendix, Fig. S2)
and our further use of column specific humidity from ERA5 in Fig. 1F provides
confidence that potential inaccuracies in the above empirical relationships are
not playing a role. Furthermore, while the calculation of VP also includes surface
pressure, it is the humidity trends that are leading to trends in VP, not trends in
surface pressure (SI Appendix, Fig. S3).

These humidity-related quantities were derived using monthly mean
variables. We checked for ERA5 that the non-linearities present in the above
equations did not lead to different conclusions if vapor pressure was calculated
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from hourly or daily averaged dew point temperature prior to computing the
monthly average (SI Appendix, Fig. S4) and, aligned with the results of ref. 27,
we found that the difference was minimal. We also show in SI Appendix, Fig. S4
that for ERA5 the same conclusions are drawn if the vapor pressure calculation
is performed using dew point temperature on the native grid.

Incorporation of Precipitation Trends. Denoting the 1980 to 2020 trends

with
−→
(.), we perform an ordinary least squares linear regression across model

members (i), i.e.,

−→
VP(i) = a + b×−→pr (i) + �(i), [4]

where a and b are the regression coefficients, pr is precipitation, and �(i)
represents the residuals from the regression fit. The regression slope (b) at
each grid point can be seen in SI Appendix, Fig. S10D, and this is also similar
to the slope of the relationship between observed interannual variability in
VP and pr (SI Appendix, Fig. S10E). We quantify the uncertainty around the
CMIP6 regression fit using the ±2�(�) range, where � refers to the SD. A
demonstration of this method is given in Fig. 2A for the Southwest, where the
black line indicates the regression fit and the±2�(�) range is given by the gray
shading. In Fig. 3D, we take this approach at every land grid point and plot the
difference between the ERA5 VP trend and that which would be predicted based
on Eq. 4 using precipitation from GPCC. A similar analysis is shown for the other
observed precipitation datasets in SI Appendix, Fig. S11.

Aridity Index and Defining Aridity Zones. We calculate the Aridity Index (AI)
as the ratio of climatological (1980 to 2020, annual mean) precipitation to
potential evapotranspiration using precipitation and potential evapotranspira-
tion from the TerraClim dataset (61) and depict the following aridity zones in
Fig. 3A: Hyper-arid (AI < 0.05); Arid/Semi-Arid (0.05 ≤ AI < 0.5); Humid (AI
≥ 0.5). In Figs. 4 and 5, only the grid points that are defined as Arid/Semi-Arid
by this definition after interpolation onto CESM2’s∼1◦ grid are shown, and in
Fig. 3 E–M, this annual mean AI is used to bin spatial locations into aridity bins.
In Fig. 3 K–M, a monthly AI is used in the ordering of months from most arid
to most humid. This monthly AI is calculated as the ratio of the 1980 to 2020
averaged precipitation to potential evapotranspiration but for each month of
the year separately. In some months of the year, potential evapotranspiration
becomes zero (or close to zero), leading to infinite or very large values of Aridity
Index, so for this reason, we cap the monthly AI at values of 10.

Binning of Trends in Fig. 3. To produce panels Fig. 3 E–J, we take data on all
land surface grid points excluding Antarctica on the∼1◦ CESM2 grid and divide
them into 30 equal-area bins based on the observed annual mean Aridity Index,
described above. For each Aridity Index bin, we then sort the grid points into
15 equal-area bins based on their precipitation trends (using the precipitation
from each model, and GPCC for the observation-based precipitation). The result
is that the same locations are not present in each bin for each dataset because
their precipitation trends differ. We then compute the area weighted average
of the grid points in these bins. To normalize the specific humidity trend by
temperature trend, we divide by the area weighted average temperature trend
over land (excluding Antarctica). SI Appendix, Fig. S13 shows replicas of Fig.
3 H–J but using GPCP and CRUTS precipitation. SI Appendix, Fig. S13 also
demonstrates that the normalized results are similar when instead normalizing
by the local temperature trend, but differ when normalizing by the global mean
temperature including oceans. SI Appendix, Fig. S14 demonstrates that the
precipitation and temperature trends in each bin in observations lie within the
CMIP6 model distribution.

To produce Fig. 3 K–M, we use trends from 1980 to 2020 for each month of
the year and for each land surface grid point on the∼1◦ CESM2 grid. At each

location, we order the months of the year according to the observed monthly
Aridity Index and then we bin all the land spatial grid point into 30 equal-area
bins according to the annual mean Aridity Index.

Data, Materials, and Software Availability. All datasets used in this
study are freely available at the following websites: ISD: https://www.ncei.
noaa.gov/data/global-hourly/archive/csv/ (7); ERA5: https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era5 (9); MERRA2: https://disc.gsfc.
nasa.gov/datasets?project=MERRA-2 (47); JRA55: http://jra.kishou.go.jp/JRA-
55/index_en.html (48); BEST: https://berkeleyearth.org/data/ (53); CMIP6:
https://esgf-node.llnl.gov/search/cmip6/ (54); LENS2: https://www.cesm.ucar.
edu/projects/community-projects/LENS2/data-sets.html (57); GOGA2: https:
//www.cesm.ucar.edu/working-groups/climate/simulations/cam6-prescribed-
sst; GPCC: https://psl.noaa.gov/data/gridded/data.gpcc.html (51); GPCP: https:
//psl.noaa.gov/data/gridded/data.gpcp.html (50); and CRUTS: https://crudata.
uea.ac.uk/cru/data/hrg/cru_ts_4.05/ (52). All datasets used in this study are
freely available as described in each reference of the methods section. The
analysis codes to reproduce the figures of this manuscript are available at
https://github.com/islasimpson/qtrend_paper (62), and the data required to
reproduce the figures is available at https://doi.org/10.5065/5jz0-0n57 (63).
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