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An essential aspect of human motor learning is the formation of inverse models, which map desired actions to
motor commands. Inverse models can be learned by adjusting parameters in neural circuits to minimize errors in
the performance of motor tasks through gradient descent. However, the theory of gradient descent establishes
limits on the learning speed. Specifically, the eigenvalues of the Hessian of the error surface around a minimum
determine the maximum speed of learning in a task. Here, we use this theoretical framework to analyze the speed
of learning in different inverse model learning architectures in a set of isometric arm-reaching tasks. We show
theoretically that, in these tasks, the error surface and, thus the speed of learning, are determined by the shapes
of the force manipulability ellipsoid of the arm and the distribution of targets in the task. In particular, rounder
manipulability ellipsoids generate a rounder error surface, allowing for faster learning of the inverse model.
Rounder target distributions have a similar effect. We tested these predictions experimentally in a quasi-
isometric reaching task with a visuomotor transformation. The experimental results were consistent with our
theoretical predictions. Furthermore, our analysis accounts for the speed of learning in previous experiments
with incompatible and compatible virtual surgery tasks, and with visuomotor rotation tasks with different
numbers of targets. By identifying aspects of a task that influence the speed of learning, our results provide
theoretical principles for the design of motor tasks that allow for faster learning.

1. Introduction

Humans are capable of producing fast and accurate movements to
skillfully execute a variety of motor tasks. To accomplish such tasks, the
central nervous system (CNS) uses feedforward mechanisms, as it cannot
rely solely on delayed sensory feedback to guide the execution of
movements (Kawato et al., 1987; Schmidt et al., 1979). Growing evi-
dence indicates that the CNS generates feedforward motor commands
via inverse models, which compute motor commands to achieve a
desired sensory consequence given the current state of the body and
environment (Golub et al., 2015; Kawato, 1999; Pierella et al., 2019;
Schweighofer et al., 1998; Shidara et al., 1993; Wolpert et al., 1998).

Inverse models must be able to adapt to changes in the environment
or the body to maintain successful task execution. This adaptation faces
two main challenges: (1) errors in task space do not directly inform how
motor commands should be adjusted to eliminate the errors, and (2) the
models are generally not unique because of the redundancy of the motor
system (more motor commands than task variables). Accordingly,

* Corresponding author.
E-mail address: barradas.v.aa@m.titech.ac.jp (V.R. Barradas).

https://doi.org/10.1016/j.neunet.2023.10.049

several computational models such as direct inverse modeling (Kuper-
stein, 1988; Sanger, 2004), distal learning (Jordan & Rumelhart, 1992),
and feedback error learning (Kawato, 1990) have been proposed as
mechanisms to solve these challenges. These models differ in their ar-
chitectures and mechanisms to adequately relate task errors to changes
in motor commands. However, despite differences in their theoretical
underpinnings, these models are all learned based on attempts to
minimize an error quantity, such as performance error (distal learning)
or motor error (direct inverse modeling and feedback error learning).
Thus, from a computational perspective, the inverse learning problem
can be formulated as a function fitting problem (mapping from desired
motor outcomes to motor commands), where the strengths of neural
connections in the inverse model circuit are the parameters that are
tuned to fit the function.

It is now well accepted that the CNS encodes movement errors in the
cerebellum, suggesting that the errors are used to drive motor adapta-
tion in a supervised learning fashion (Doya, 1999; Gilbert & Thach,
1977; Ito, 1984; Kawato et al., 2011; Kitazawa et al., 1998; Schlerf et al.,

Received 31 October 2022; Received in revised form 8 September 2023; Accepted 30 October 2023

Available online 31 October 2023

0893-6080/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).



V.R. Barradas et al.

2012; Schweighofer et al., 1998, 2004). This implies that the CNS uses
some form of gradient descent on the errors to tune the parameters in the
inverse model. In gradient descent, the parameters are adjusted in small
steps in the direction which minimizes the error locally, given by first
order derivatives of the error function with respect to the parameters.
Thus, learning can be visualized as a path of successive steps in the
multi-dimensional space of inverse model parameters. This path lies on a
surface composed by the values of the error at each point in the inverse
model parameter space.

Theoretical results in statistical learning establish that the shape of
the error surface limits the speed of learning (Bishop, 1995). Round or
isotropic surfaces allow faster learning because the gradient points in the
general direction of the minimum of the error function, resulting in a
relatively straight path to the minimum (see also Schweighofer et al.
(2001), Spanne & Jorntell (2015)). In contrast, less round or anisotropic
surfaces bring about slower learning because in large regions of the
parameter space the gradient is misaligned with the direction of the
minimum. The shape of the error surface can be described locally by the
eigenvalues of a Hessian matrix, which contains the second order de-
rivatives of the error with respect to the inverse model parameters
(Bishop, 1995).

Here, we provide a theoretical analysis of the speed of learning an
inverse model using gradient-following optimization by analyzing the
relationship between the Hessian matrix of the learning system, the
goals of the task, and the forward physics of the musculoskeletal system.
In particular, we analyze learning both in isometric arm tasks with
visuomotor transformations, which change the relationship between
produced forces and visual feedback, and in musculoskeletal trans-
formations, which change the role of muscles in force production. In
these simple motor learning tasks, the CNS can be conceptualized as an
inverse model represented as a feedforward neural network. In addition,
the visuomotor and musculoskeletal transformations and the musculo-
skeletal system can be mathematically integrated in the forward physics
of the arm as a linear mapping (Berger et al., 2013; Valero-Cuevas,
2009). As a result, the system composed of the inverse model and the
forward physics of the arm (the musculoskeletal system and a trans-
formation) can be viewed mathematically as a single feedforward
network. We demonstrate that the Hessian matrix for this composite
network can be readily computed, allowing us to make predictions about
the speed of learning an inverse model for these tasks.

Analyzing the Hessian of the composite network allows us to identify
how the goals and forward physics of the task influence the speed of
learning under different transformations. In particular, we show that
both 1) changes in the force manipulability ellipse of the arm (the ability
to generate end-effector forces given a joint configuration (Yoshikawa,
1985)) brought about by different transformations, and 2) the shape of
the distribution of target forces can limit the speed of learning.

In addition, we show that our theoretical results are valid for a range
of assumptions about learning inverse models. Specifically, our results
generalize to different learning architectures (distal learning and direct
inverse learning), to different inverse model architectures (radial basis
function networks and multi-layer perceptron networks), and to
different gradient-following algorithms (backpropagation and node
perturbation (Werfel et al., 2005; Williams, 1992)). Importantly, we also
show that our results are compatible with the theory of optimal control
in motor learning, in which the objective of learning is the minimization
of both errors and effort (Emken et al., 2007; Todorov & Jordan, 2002).

We then confirm our theoretical predictions via two experiments that
tested the role of the force manipulability ellipse and the target distri-
bution on the speed of learning a quasi-isometric task in a virtual
environment. In the first experiment, we compare the speed of learning a
visuomotor rotation with isotropic or anisotropic manipulability ellip-
ses. In the second experiment, we compare the speed of learning a
visuomotor rotation with targets in a circular or elliptical configuration.

Finally, we use our theoretical framework to account for differences
in the speed of learning in two previous studies. First, we study a virtual
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surgery task, a type of musculoskeletal transformation in which the
pulling forces of muscles in a mapping between muscle activations and
end-point forces are changed, simulating tendon transfer surgeries
(Berger et al., 2013). Our results suggest that the shapes of the manip-
ulability ellipses of the system after applying the virtual surgeries ac-
count, at least in part, for the differences in learning speed. Second, we
address the speed of learning in visuomotor rotation experiments with
different number of targets (Krakauer et al., 2000). We show that our
framework accounts for these differences in learning speed because the
number of targets has a direct influence on the shape of the distribution
of targets.

2. Methods
2.1. Computational modeling framework

2.1.1. Overview

We propose a computational framework to study the speed of motor
learning during isometric arm reaching tasks, including visuomotor
transformations and compatible and incompatible virtual surgeries
(Berger et al., 2013). We focus exclusively on feedforward control,
which enables us to model the tasks as a static mapping between target
and output forces, and to ignore transient forces. In the main text, we
derive theoretical results based on the distal learning architecture
(Jordan & Rumelhart, 1992) (Fig. 1a), in which a forward model of the
arm is used to estimate the relationship between task errors and motor
commands to learn the inverse model. We then show in Appendix A that
our framework generalizes to direct inverse modeling (Kuperstein,
1988; Sanger, 2004). Note that feedback error learning is not directly
applicable to this feedforward control isometric task.

For simplicity, we use a model of the upper extremity that simulates
production of isometric planar forces to reach different targets in a
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Fig. 1. Structure of computational model for the distal learning of isometric
arm tasks in which the inverse model is implemented with an RBF network a.
Model diagram. The CNS learns an inverse model g~* of the motor system g by
using a forward model & to update g~! based on the minimization of the error fy
- f. b. Structure of the inverse model g~* and the motor system g. The input to
g1 is an RBF representation of a 2D force. The inverse model is a single-layer
network and is fully defined by W, the weights of the connections between the
input and the output units. The output of g ! is the motor command m, which is
the input to g. The motor system g and the forward model g are linear trans-
formations P and A, respectively, of m after a non-linear transformation ¢. Note
that the CNS and motor system as a whole can therefore be seen as a two-layer
network with linear outputs.
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virtual environment. Because the tasks are isometric, the biomechanics
of the arm can be approximated adequately as a linear mapping between
motor commands and output forces (Barradas et al., 2020; Berger et al.,
2013; Valero-Cuevas, 2009; Zhou & Rymer, 2004).

2.1.2. Model structure and implementation

The model learns an inverse model g~} of g, the motor system after
applying a transformation T, which represents a visuomotor trans-
formation or a virtual surgery. The inverse model g~ receives a target 2-
D force f4 to generate a motor command m, which can represent joint
torques, muscle activations or muscle synergy activations (Barradas
et al., 2020). Then, the motor command m propagates through the for-
ward physics of the motor system g, producing a realized force f;
(Fig. 1a). Note that, despite its biological implausibility, we also
consider the case in which m represents joint torques because it allows a
totally analytical derivation of the properties of the speed of learning in
the system, which provides insight into the more complex cases where m
represents muscle or synergy activations. Specifically, the motor system
g is represented as:

g(m) = Po(m) =f., )

where P represents the forward physics of the isometric task, and m is an
Np,-dimensional motor command vector produced by the inverse model
(joint torques, muscle activations or muscle synergy activations).
Because the task is isometric, forces can be modeled as a linear function
of the motor command m, or the transformed motor command o(m)
(Barradas et al., 2020; Berger et al., 2013; Valero-Cuevas, 2009; Zhou &
Rymer, 2004). Thus, if the motor system is unperturbed, then P = M,
where M is a matrix containing a linear mapping between motor com-
mands and planar forces (2 x Ny,) (Barradas et al., 2020; Berger et al.,
2013). A transformation T, such as a visuomotor transformation or
virtual surgery, can alter the forward physics of the task such that P =T
(M) (see Sections 2.2.2 Motor command to force mapping, 2.2.3 Aniso-
tropic scaling task, and 2.2.5 Virtual surgery task for details). If m repre-
sents joint torques, the activation function ¢(m) is a linear function.
Otherwise, it is a non-linear function that maps each element of m into a
non-negative muscle or synergy activation. The non-linear function can
be a sigmoid or a rectified linear unit (RELU) function.

We first consider the case in which the inverse model g! is learned
via a radial basis function (RBF) network, as these kind of networks are
biologically plausible (Thoroughman & Shadmehr, 2000), and simplify
theoretical derivations. With this inverse model architecture, and for
isometric tasks, the structures and connections of g~ and g allow us to
view g ! and g as a single neural network with one hidden layer and
linear outputs (Fig. 1b). We note, however, that our approach is not
limited to the RBF architecture, and show that it extends to multi-layer
perceptron networks, for instance (see Section 2.1.5 Generalizability of
the results to muscular models, realistic error function, and neural network
structure). In the RBF network, the inverse model is given by:

g ) =Wo(f) =m
&,(f) = exp( =1 2(f; = f) Hz)a

(2)
3

where W is a matrix of weights (N, x N?), ¢(f) is a vector of N? two-
dimensional RBFs ¢;(f) evaluated at f, f; are the centers of the RBFs
placed on a N x N square grid centered on the origin of the force space,
and X determines the shape of the RBFs.

The distal learning model includes an internal forward model g,
which is used to estimate the relationship between task errors and
changes in the motor commands produced by g~ (Jordan & Rumelhart,

1992). The forward model g uses an efferent copy of m to produce fr, an

estimate of f;, to compute a sensory prediction error f, — f,. Since the
forward physics of the arm are linear, we define g as a linear operator on
o(m):
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2(m) = Ao(m) = £, )
where A has the same dimensions as P, so that g has the same mathe-
matical formulation as g (Eq. (1)).

2.1.3. Learning of the inverse model

Learning in the isometric tasks aims to minimize the task perfor-

mance error given by the cost function
1 2
7= Slfa=t P 5)

In distal learning, the learner uses the forward model g to compute an
approximate gradient of J because the exact gradient of J is not avail-
able, as f; is a function of g, which is generally unknown to the learner.
Assuming that g is a good enough representation of g, learning converges
to the minimum of J (Jordan & Rumelhart, 1992). As stated above, we
can view g~ ! and g as a composite neural network (Fig. 1b). Therefore,
the approximate gradient for the network can be computed using
methods such as backpropagation, stochastic methods like weight or
node perturbation (Mazzoni et al., 1991; Werfel et al., 2005), or other
reinforcement learning-based methods like REINFORCE (Williams,
1992). Here, we used backpropagation to illustrate the properties of the
speed of learning under gradient-following algorithms.

The learning procedure starts with the forward propagation of a
given f; through g~ and the actual motor system g, resulting in f; and a
task performance error fyq - f;. Then, the task performance error is
backpropagated through g and g_l, which provides @wJ, an approxi-
mation of VyJ, the gradient of J with respect to the weights W of g
(Eq. (2)). Lastly, @WJ is used to update W:

Wit =W, — Y, (6)
where W, is the weight matrix at the current trial, W, is the updated
weight matrix, and #; is the learning rate parameter. Notice that the
forward model g is not updated in this backward pass; g is only used to
compute VyJ, the approximation of VyJ.

We assume that the forward model is learned at a much faster rate
than the inverse model, and that learning of the forward model is per-
fect. That is, we set A = P = T(M) according to the transformation T used
in the task. Therefore, the approximation of the gradient becomes equal
to the actual gradient, @WJ = VywJ. This is justified because learning
forward models is much simpler than learning inverse models, and in-
verse models can be learned via distal learning even when using
imperfect forward models (Jordan & Rumelhart, 1992). This assumption
allows us to apply the methods described in Section 2.1.4 to estimate the
limits on the speed of learning the inverse model g~* when the forward
physics are subject to T.

2.1.4. Estimation of limit on learning speed

In this section we demonstrate that the speed of learning in the
isometric task is limited by the shapes of the force manipulability ellipse
and the distribution of targets in the task.

The cost function in Eq. (5) can be approximated locally around its
minimum as a second order Taylor expansion (Bishop, 1995):

Tw) = Jw) + 30w —w ) Hw — ) @
o1
H; = T €)

where w is a vector of weights, w* is the vector of weights at the min-
imum of cost function J, and H is the Hessian of J, a matrix of second
order derivatives of J with respect to w. In this second order approxi-
mation, the gradient of J is VyJ= H(w — w*). Therefore, the update
equation of w using gradient descent can be approximated by the
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following learning rule:

Wiyl =W, — ”H(wn - W*)v (9)
where 7 is the learning rate parameter. Previous work has demonstrated
that in the vicinity of w*, there is an upper limit on the value of 5, beyond
which updates to w become unstable. This value of  also determines the
slowest time constant of learning, which limits the speed of convergence
to w* and is a function of Agmin/AHmax, the ratio of the smallest to largest
eigenvalue of H (Bishop, 1995) (see Appendix C for a derivation of this
result). From a geometric point of view, H describes the shape of the cost
function J around w*. Namely, it can be shown that the contours of
constant value of J are ellipsoids, and that the sizes of the axes of these
ellipsoids are proportional to the square roots of the non-zero eigen-
values of H. Therefore, if both eigenvalues Agmin and Agmax have similar
magnitudes, the shape of the cost function J is relatively round, allowing
faster convergence to the minimum. On the other hand, a large disparity
in the magnitudes of Agmin and Agmax corresponds to a highly anisotropic
J, producing slower convergence to the minimum (see Appendix C for an
illustration of this effect). Importantly, because the ratio Agmin/Asmax is @
descriptor of the shape of J, it characterizes the slowest rate of conver-
gence independently of the value of 7.

Based on these theoretical results relating the speed of learning and
the Hessian H of the learning system, we aimed to derive H and its ei-
genvalues in the distal learning system for isometric tasks. In particular,
we investigate how visuomotor and musculoskeletal transformations
affect the structure of H and its eigenvalues, allowing us to estimate the
limits on the speed of learning given by the slowest time constant of
learning for each task. For mathematical simplicity, we first consider the
case in which the activation function o(m) is linear, that is c(m) = m.
This can be interpreted as m representing a joint torque vector, and P
representing a mapping between joint torques and end-point forces of
the limb (i.e. the inverse Jacobian of the limb). As indicated in Section
2.1.3 Learning of the inverse model, we assume that g learns a perfect
model of the perturbation as soon as the perturbation is introduced,
namely, & becomes equal to g. This allows us to compute the gradient
VwJ and the Hessian H analytically, and to estimate the limits on the
speed of learning in terms of the goals and forward physics of the tasks.

Using Egs. (2) and (5), the cost function is:

1
J= ZEHfdz _PW(I)(fdi) sz (10)

where f3; corresponds to each target in the task, withi=1, ...., N1, and
Ny is the number of targets. Using standard matrix algebra (see Ap-
pendix D), the gradient VyJ is

0. T T
W‘;’ =VwJ = Z[(PTP)W(q)(fdi)(b(fdi) ) =P fad(fa) ], an
and the Hessian Hy is
aZ
Hy =55 = S0P & @000, a2

where the symbol ® denotes the Kronecker product. The derivation of
Egs. (11)and (12) is provided in Appendix D. We now use the associative
property of the Kronecker product:
Hy = (PTP) ® Z[d’(fdi)q’(fdi)—r}' (13)

The term on the right side of the Kronecker product is a scaled sample
covariance matrix of the RBF representation of targets ¢(f4;):

Koy = NLTZ [q)(fdi)q’(fdi)q ) (14

where N7 is the number of targets in the task. Therefore:
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Hy = (P"P) ® (N1Kgy) = Ny (PP @ Kyy) - (15)

The eigenvalues of the Kronecker product of two matrices are the set
of products between each eigenvalue of the first matrix and each
eigenvalue of the second matrix (Horn & Johnson, 1994). That is, iy =
{Ntippik | App E€App, Ak €Ak} Where App and Ak are the sets of eigen-
values of PP and Ky, respectively. Because both P'P and Kyg are
positive semi-definite (all eigenvalues are non-negative) the largest and
smallest eigenvalues of H are Agmax = NrAppmaxAkmax and Agmin =
N1AppminAkmin, respectively. Thus,

/1Hmin _ APPminiKmin

/leax B j-PI’ma)Jvaaxv (16)

Thus, the ratio Amin/Amax of Hw is a function of the Amin/Amax ratios of
P'P and Kyp. The matrix PP is related to the properties of the motor
system g, and how it interacts with the perturbation T. The matrix Ky is
related to the distribution of target forces fg.

Next, we show how the ratio Appmin/Appmax is directly related to the
force manipulability ellipse of the arm. The force manipulability ellipse
is a mapping from a unit ball of joint torques to endpoint forces. It
characterizes the force generation capabilities of the arm, showing that
the arm can more readily produce forces along the major axis of the
ellipse than in other directions (Yoshikawa, 1985). If P corresponds to a
mapping between joint torques and end-point forces, the mapping can
be described by the force manipulability ellipse. The axes of the force
manipulability ellipse have sizes that correspond to the singular values
sp of P (Yoshikawa, 1985). It is also known that sp; = \/App;. Thus,

_ <5Pmin >
SPmax

The force manipulability ellipse concept can be generalized to the
case where P corresponds to a mapping between muscle or synergy
activations and forces. In this case the ellipse is the image of a unit ball of
muscle or synergy activations in the space of end-point forces.

We have therefore demonstrated analytically that Agmin/AHmax can be
controlled by independently adjusting the force manipulability ellipse of
P (varying the ratio of the magnitudes of the ellipse axes), or by
adjusting the distribution of targets fyq or other RBF parameters in the ¢
function. Notice that the transformation T in P can alter the shape of the
force manipulability ellipse. This happens if T'is a scaling transformation
or a virtual surgery, as described in Sections 2.2 Simulation methods and
2.3 Experimental methods.

2
/‘[Hmin /1Kmin

a7

/1H max j-K ‘max

2.1.5. Generalizability of results to realistic error function, learning
algorithms, muscular models, and neural network structure

The theoretical results derived above were obtained for a learning
system that minimizes performance errors. However, there is ample
evidence that suggests that the CNS actually minimizes a trade-off be-
tween performance errors and effort during learning (Emken et al.,
2007; Ganesh et al., 2010; Todorov & Jordan, 2002). In Appendix E, we
show that our theoretical results generalize to learning systems that
optimize a trade-off between the performance error and the effort term,
which penalizes large motor commands.

Additionally, the above results are derived from the idealized case of
a linear system with joint torques as the motor command. In Appendix F
we demonstrate that introducing the nonlinearity o(m) to the motor
command produces qualitatively similar results to the linear case. That
is, we show that our theoretical results are also useful to model the speed
of learning in systems with pulling muscles. Including the error-effort
trade-off and the musculoskeletal model in the calculation of the Hes-
sian H of the distal learning system results in

H= [(P"P)e(c(m")o(m")") +T] @ d(fs)d(f )", (18)

where ¢’ is the first derivative of the non-linearity ¢, which ensures that
muscle activations are non-negative, and I' is a matrix containing terms
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related to the minimization of effort. The derivation of Eq. (18) is shown
in Appendix F.

Furthermore, the above theoretical results are based on a learning
algorithm that can directly compute the gradient Vy.J, such as back-
propagation. However, the way in which the CNS actually computes the
gradient or approximations to the gradient is still a subject of research.
In Appendix B, we show that the node perturbation algorithm, a bio-
logically plausible learning algorithm that produces parameter updates
that on average follow the gradient, produces qualitatively similar re-
sults to the backpropagation algorithm.

Finally, although we defined above the inverse model g~! as an RBF
network, the above results can generalize to other inverse model ar-
chitectures. For instance, the RBF network in the inverse model can be
replaced by a typical multi-layer feedforward network or any other
function approximator. To see why this is the case, we can visualize the
new inverse model to include a function h on the network input with
tunable parameters wpe such that

g (f) = Wh(F, wye) = m.

This functional form also encompasses the inverse model in Eq. (2),
as h(f,wpre) can describe the output of the RBF units. Therefore, if we
assume that a set of valid parameters wpe is known prior to learning and
learning only occurs on W, then all the above arguments about the speed
of learning are also valid for the new architecture. This idea is similar to
our treatment of the RBF network, where the RBF unit parameters
(center and shape) are not considered for the calculation of the gradient.
Of course, the parameters wy, are generally not known a priori, so they
must be learned using gradient descent or other methods. However, it
follows that the dynamics of learning W must be influenced by the
shapes of the force manipulability ellipse and the target distribution in
the same way that we have described above.

19)

2.2. Simulation methods

2.2.1. Overview

Based on the theoretical results of our computational framework, we
simulated learning in four isometric arm tasks: (1) anisotropic scaling
task, 2) anisotropic target distribution task, 3) virtual surgery task, and
4) target number task. In the anisotropic scaling and virtual surgery
tasks we control the shape of the manipulability ellipse of the arm in
different conditions. In the anisotropic target distribution and target
number tasks, we control the target distributions in different conditions.
The virtual surgery and target number tasks were included to explain
experimental findings reported in previous studies in the context of our
theoretical results. We simulated all tasks using the distal learning and
direct inverse modeling paradigms (Appendix A). In Section 2.1
Computational modeling framework we described a network in which the
motor commands are joint torques for illustration purposes. However,
our main interest is using a musculoskeletal system for a more accurate
representation of the CNS. Therefore, we used sigmoidal activation
functions in the outputs of the inverse model so that the motor command
corresponds to muscle activations (Appendix F). We also considered
network architectures in which muscle synergies are explicitly included
in the model. This is important, because previous results in the virtual
surgery task attribute differences in the speed of learning between
conditions to the presence of muscle synergies in the CNS (Berger et al.,
2013). Finally, we also considered a cost function that minimizes a
trade-off between error and effort in the task in all simulations (Ap-
pendix E, F).

We ran all four simulated tasks with 15 simulated participants. Each
simulated subject consists of a mapping between muscle activations and
planar forces (M) and a set of muscle synergies (S). We used experi-
mental data from 15 human participants during an isometric reaching
task to obtain M and S for each simulated participant, as described in
Barradas et al. (2020). This allowed us to create simulated participants
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that produce realistic muscle activations (Appendix G).

We also computed Agmin/AHmax, the ratio of the smallest and largest
eigenvalue of H, for each simulated subject in each task according to the
model structure described above using Eq. (18) and as described in
Appendix F.

2.2.2. Motor command to force mapping

Each simulated participant was defined by a mapping between motor
commands m and forces f;. Each mapping was obtained from a real
human participant in a previous study (Barradas et al., 2020), as
described in Appendix G. We focus on two cases: m represents activa-
tions of muscles that cross the shoulder and elbow, or m represents
muscle synergy activations of the same muscles. In both cases, the
mapping is defined by P in Eq. (1).

Muscle activations as motor commands. In the case of a muscle activation
to force mapping P = M, where each column of M indicates the force
produced by each muscle, which is scaled by the elements of o(m).
Notice that the nonlinearity ¢ ensures that m will produce only pulling
forces as defined by M. The M mappings taken from the real human
participants had 10 muscles (N, = 10).

Synergy activations as motor commands. In the case of a muscle synergy
activation to force mapping, m is a Ns-dimensional vector of muscle
synergy activations, and P = MS, where S is an N, x N matrix repre-
senting a set of muscle synergies, and N; is the number of muscle syn-
ergies. Notice that muscle synergies can be represented as an additional
layer in the network in Fig. 1b. However, because muscle synergies are
often modeled as a linear transformation of synergy activations, it is
possible to incorporate them into P. This collapses the additional
network layer, resulting in the same model structure illustrated in
Fig. 1b. This simplification is convenient for our analyses, as it allows us
to treat the case in which m are muscle synergy activations using the
same computational framework. Each simulated participant was asso-
ciated to a set of synergies S obtained from the same real participant
from which the mapping M was taken (Barradas et al., 2020). The
number of synergies Ns ranged from 3 to 5. Notice that S is in general
different from Sex;, described in Section 2.2.5 Virtual surgery task.

2.2.3. Anisotropic scaling task

Based on the theoretical results in Eq. (17), we designed a task with
visuomotor transformations that control the shape of the force manip-
ulability ellipse of P to show its effects on the speed of learning (Fig. 2d,
e). In our models, visuomotor transformations modify the motor
command-force mapping P by applying a linear transformation in force
space:

P=TP (20)
where T is a 2 x 2 matrix that constitutes the visuomotor trans-
formation. We designed T as the combination of a rotation and a scaling
transformation. We use a rotation in addition to the scaling so that we
can observe learning even in the absence of scaling:

T= TmlTsc-, (21)
where T; is a 30° counterclockwise rotation, and Ty is a linear trans-
formation that alters the shape of the manipulability ellipse, given by the
ratio of the singular values spin/Smax Of P’. The T transformation is a
composition of a rotation and a scaling that allows to directly control
Smin/Smax- Because the axes of the manipulability ellipse of P are not
necessarily aligned with the horizontal and vertical directions, Ts. must
first align P to the axes of the ellipse:
Tsc = Tﬁ] TscalcTalign

align

(22)
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Fig. 2. Experimental setup and protocols. a. Experimental setup. Participants performed a reaching task using the trackpad of a laptop computer. b. Session structure.
Each experimental session was conducted on a different day and was composed of 13 blocks of 8 trials. The first 5 blocks were baseline blocks, where cursor feedback
was veridical. The next 25 blocks were perturbation blocks, where the position of the cursor was transformed by transformation T (experiment 1: scaling and
rotation; experiment 2: rotation). The final 13 blocks were counter-perturbation blocks, where the rotation component of T was switched in direction. Both
experiment 1 and experiment 2 had identical session structure. c. Trial structure. Each trial began with the cursor at the center of the virtual environment. After a
target appeared, participants quickly moved the cursor to the target. Participants only received visual feedback of the final position of the cursor. At the end of the
trial, the cursor and the target disappeared, and participants returned the cursor to the center of the virtual environment. Only a circle indicating the distance of the
cursor to the center was visible during this stage. A new trial started after keeping the cursor at the center for 500 ms. d. Experiment 1: anisotropic scaling. During the
perturbation and counter-perturbation phases of experiment 1, visual feedback of the cursor was transformed by scaling the position of the cursor in the vertical axis
of the screen by a factor s¢,cursor and rotating the resulting position 30° around the center of the screen in the counterclockwise or clockwise direction. e. Experimental
conditions in experiment 1. Each participant performed the reaching task in three separate sessions. In each session the scaling factor s¢ cursor Was different (1.0, blue;
0.5, red; 0.2, green) but the rotation angle was the same. f. Experiment 2: target distributions. Each participant performed the reaching task with a visuomotor
rotation in two separate sessions. In each session the distribution of target positions was different. In the first condition targets were uniformly and radially
distributed around the center of the screen (st targer = 1). Thus, this condition is equivalent to the condition in experiment 1 in which s cyrsor = 1 (blue). In the second
condition the targets were arranged into an elliptical shape by scaling the vertical position of the targets in the first condition by s arger = 0.2 (red).

1 0 one, targets were placed on the outline of an ellipse, constituting an
Tcae = (23) anisotropic distribution. The targets in the anisotropic distribution were
St cursor . . . .
defined by applying a scaling transformation on the targets of the
Therefore, the Ty transformation first rotates P according to a isotropic distribution:
rotation Tajigy such that the left singular vector of P corresponding to . 24)
Smax Decomes aligned with the x axis, then scales the aligned P according Ja=Twada ;

to a scaling Tscale such that spmin/smax changes, and finally, rotates P again
according to the inverse rotation ’I';lilgn such that the left singular vector
of P returns to its original orientation. The transformation Tgce is
defined by st cursor, @ scaling factor. We created three conditions in which
Sf,cursor = [0.2 0.51].

where f4 are the target forces in the isotropic distribution, f4’ are the
target forces in the anisotropic distribution, and Tscale is a scaling
transformation as defined in Eq. (23). The value of the scaling factor s¢,
target Was set to 0.2.

2.2.5. Virtual surgery task

Following the methods described in Berger et al. (2013), we designed
virtual surgeries that were either incompatible or compatible with the
muscle synergies Sex extracted from the models. A virtual surgery
modifies the forward physics of the arm (P) by applying a linear trans-
formation in muscle space:

2.2.4. Anisotropic target distribution task

Based on the theoretical results in Eq. (17), we designed a task with
targets taken from distributions of different shapes to show their effects
on the speed of learning (Fig. 2f). The task was a 30° counterclockwise
visuomotor rotation. We defined two different target distributions. In
the first one, targets were placed uniformly on the outline of a circle on
the horizontal plane, constituting an isotropic distribution. In the second P=MT or P =MTS, (25)
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where T is an orthonormal N, x Ny, matrix that constitutes the trans-
formation or virtual surgery, and S is a Ny, x Ng matrix representing the
synergies embedded in the model. N; is the number of synergies in the
model. The first equation corresponds to the case in which m are muscle
activations, and the second equation to the case in which m are muscle
synergy activations.

Incompatible virtual surgeries are designed such that muscle acti-
vations produced by S are restricted to generate forces along only one
dimension of the force space, while the resulting muscle activation-force
mapping MT spans the whole force space. Therefore, theoretically, any
force can be produced by a new combination of muscle activations, but
in practice, forces are biased towards one dimension of the plane. In
contrast, compatible virtual surgeries are designed such that muscle
activations produced by S span the whole force space. We show that
incompatible surgeries produce highly anisotropic manipulability el-
lipses of P, whereas compatible surgeries do not affect the shape of the
manipulability ellipse. Therefore, both kinds of surgeries have different
effects on the speed of learning in the task.

For each simulated subject, we extracted muscle synergies Sey; using
non-negative matrix factorization (Lee & Seung, 1999) on the set of
muscle activations that the simulated subject produced in response to a
set of desired forces with magnitudes between 5 and 20 N in all di-
rections of the horizontal plane. The number of synergies was selected as
in previous studies (Barradas et al., 2020; Berger et al., 2013). We then
designed an incompatible and a compatible surgery based on the
simulated subject’s M and extracted Sex;. We designed both surgeries
according to the methods described in Berger et al. (2013). The
incompatible surgeries were built by finding T; that maps muscle acti-
vations in the column space of Sy into the null space of M. In contrast,
the compatible virtual surgeries were built by finding T that transforms
the muscle activations into different muscle activations outside of the
null space of M. Details can be found in Berger et al. (2013). We
randomly generated incompatible and compatible surgeries and applied
them to the forward physics of the system to calculate the initial average
error in force direction under each surgery. We used eight radially and
uniformly distributed force targets. We selected surgeries that produced
an initial average error in force direction close to 60°. This was decided
based on previously reported results for the mean initial error during
incompatible and compatible virtual surgeries (Berger et al., 2013). We
followed the experiment schedule defined in Berger et al. (2013).

2.2.6. Target number task

We simulated a visuomotor rotation reaching task in which target
sets with different numbers of targets are presented. This simulated task
is based on a previous experiment (Krakauer et al., 2000). We show that
different numbers of targets produce differences in the eigenvalues of
the covariance matrix of targets Kpg, which influences the speed of
learning. We used 3 target sets with 1, 4 and 8 targets each. The targets
in the 4- and 8-target sets were radially and uniformly distributed. The
visuomotor rotation was a counterclockwise 30° rotation. We followed
the experiment schedule defined in Krakauer et al. (2000).

2.2.7. Simulation procedure

We ran simulations of each experiment for 15 simulated participants
based on mappings between muscle activations and planar forces M and
muscle synergy matrices S computed in a previous study (Barradas et al.,
2020). We trained each simulated subject to adequately perform the
baseline task without perturbations while producing plausible muscle
activations (see Appendix G for details). Each simulation trial was
defined as one cycle of target presentation, force production, and a
learning step. The simulations followed the protocol defined in the
corresponding experiment (number of baseline and perturbation trials
defined in Section 2.3 Experimental methods, in Berger et al. (2013), and
in Krakauer et al. (2000), except for counter-perturbation and washout
phases, which we did not simulate.
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The model takes the learning rate of the inverse model #; as a
parameter (Eq. (6)). We defined a set of learning rate values (; = [1, 2,
5]1x10~“ where a = [6, 5, 4, 3, 2], that is, 15 different values spanning
different orders of magnitude) and ran simulations for each value. For
each value of #; and simulated subject, we ran 10 different simulations
with a different target order. The target order in each simulation was
pseudo-randomly generated within cycles of the defined targets. We
averaged the learning curves corresponding to the error in force direc-
tion obtained from each set of these 10 simulations. We then further
averaged the error in direction for every sequence of eight targets to
obtain smooth learning curves (except for the multi-target experiment,
in which there are only 18 trials per condition). For each simulated
subject, we selected the value of 5y that best fit the mean experimental
results in the corresponding task, as measured by the root mean square
error (RMSE) between the subject’s and the mean experimental learning
curves. Note that for a given simulated participant, the value of #7; was
the same for all conditions in a given simulated task. Finally, we aver-
aged the resulting learning curves across all 15 simulated participants.

2.3. Experimental methods

Based on the insights provided by our computational framework, we
hypothesized that anisotropy in the force manipulability ellipse and in
the distribution of targets would slow down motor learning with respect
to more isotropic force manipulability ellipses and target distributions.
To test these hypotheses, we performed experiments based on the
anisotropic scaling and anisotropic target distribution tasks described in
Sections 2.2.3 and 2.2.4. Experiments for the virtual surgery task and the
number of targets task have been performed in previous studies (Berger
et al., 2013; Krakauer et al., 2000).

2.3.1. Participants

Twenty-three right-handed participants [mean age, 27.9 yr (SD 5.6);
18 men] were included in the study after providing written informed
consent. All 23 participants participated in Experiment 1, whereas a
subset of 21 participants participated in Experiment 2. Additionally, we
used data from 15 participants reported in a previous study [mean age,
27.9 yr (SD 8.8); 13 men] (Barradas et al., 2020) to model learning in the
isometric tasks. All procedures were approved by the Ethical Review
Board of the Tokyo Institute of Technology.

2.3.2. Experimental setup

Because of the COVID-19 pandemic, which restricted in-person ex-
periments, the experiments were implemented on an online platform
(OnPoint) that participants accessed remotely using a laptop computer
(Tsay et al., 2021). This online platform has been shown to produce
similar results to in-person experiments in studies of adaptation to
visuomotor transformations (Avraham et al., 2021; Tsay et al., 2021,
2022). Participants were instructed to place the laptop on a table or desk
and to sit comfortably in front of it with the laptop centered at the body
midline (Fig. 2a). A virtual environment was displayed on the laptop
screen. The virtual environment consisted of a circular white cursor, a
ring-shaped white target at the center of the screen, and several circular
blue targets displayed on a black background.

2.3.3. Experimental protocols

Participants used their right index finger and the built-in trackpad of
a laptop computer to control the position of a cursor on the visual
display. The experimental task required the displacement of the cursor
from a center position to one of eight targets uniformly distributed
around the center of the screen. Displacements of the cursor in the vir-
tual environment were amplified by a factor of 3 with respect to the
default settings of each participant’s laptop computer to ensure that the
targets in all tasks were reachable. Participants were instructed to make
quick center-out movements with the cursor towards the target, and to
attempt to stop inside the target. Participants were also informed that for
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some trials visual feedback of the cursor would be perturbed and not
match their expected feedback. Participants were instructed to continue
aiming toward the displayed target and to ignore the perturbation,
which allows the observation of the implicit component of motor
adaptation (Morehead et al., 2017).

Each trial started by displaying the target at the central position,
which roughly corresponded to the center of the trackpad. After the
cursor was placed inside the central target for 500 ms, one of the targets
appeared. Visual feedback of the cursor position was suppressed during
the reaching movement and was only provided at the end of the trial as a
static image of the cursor at the position where the cursor stopped. Vi-
sual feedback of the cursor at the end of the trial was held on the screen
for 1 s, after which it was suppressed. Next, the central target and a
white ring appeared. The radius of the white ring indicated the distance
between the cursor and the central target and was used to eliminate
direction-specific feedback of the cursor. Participants were asked to
return to the central target by reducing the diameter of the ring. The
central target turned into a white circle when the cursor was placed
inside of it. After this, the next trial started. Fig. 2c illustrates the
structure of a trial.

2.3.4. Experiment 1: anisotropic scaling

Participants completed three experimental sessions on different
days, with 1 to 4 days between sessions, depending on the availability of
each participant. In each session, participants performed a total of 43
target cycles (344 trials), divided into baseline, perturbation and
counter-perturbation phases, which consisted of 5, 25 and 13 target
cycles, respectively (Fig. 2b). Each target cycle contained a sequence of
eight targets distributed uniformly around the center of the screen in a
pseudorandom order (Fig. 2f, blue targets). Targets were located at a
distance equivalent to 1/4 of the height of the screen of each partici-
pant’s laptop. In the baseline phase, cursor feedback was veridical. In
the perturbation phase, a composition of a 30° counterclockwise rota-
tion and a scaling transformation was applied to the position of the
cursor (Fig. 2d). In the counter-perturbation phase, the rotation was
switched to the clockwise direction, and the scaling transformation was
the same as in the perturbation phase. The counter-perturbation was
included to induce retrograde interference (Krakauer et al., 2005),
minimizing possible savings in learning the rotation aspect of the
perturbation in subsequent sessions. In a similar way to the simulated
anisotropic scaling task, the perturbations were defined as:

xp = Ix = T TscarX, (26)
where x and xp are two-dimensional vectors containing the position of
the cursor on the screen before and after applying the perturbation, T is
a visuomotor transformation consisting of a scaling and rotation, Ty is a
rotation matrix, and Tyl is a scaling matrix as defined in Eq. (23), The
value of the scaling factor sfcursor in Tscale Was different in all three
sessions (0.2, 0.5 or 1, Fig. 2e), and the order of the sessions was
counterbalanced across participants. Notice that scaling transformations
produce errors both in the direction and the extent of a reach.

2.3.5. Experiment 2: target distribution

A subset of the participants in Experiment 1 completed an additional
experimental session after 2 - 4 weeks from the last session in Experi-
ment 1. The trial structure in Experiment 2 was identical to that of
Experiment 1, except for the position of the targets and the nature of the
perturbation and the counter-perturbation. The positions of the targets
were defined by scaling the vertical position of the targets defined in
Experiment 1 according to the anisotropic target distribution described
in Section 2.2.4 (scaling factor s¢target = 0.2, Fig. 2f, purple targets). The
perturbation was a 30° counterclockwise rotation of the cursor position,
and the counter-perturbation was a 30° clockwise rotation, both with no
scaling component.

The results of Experiment 2 were compared to the results of the
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condition in Experiment 1 in which s¢cursor = 1. This is because this
condition is equivalent to using a pure rotation and a round target
distribution.

2.3.6. Outcome measures

We measured the error in reaching direction between the target and
the final cursor position as the outcome variable. Similar to the simu-
lations, we averaged the error for all targets in a target cycle. For each
subject and condition, we fitted the error curve with a first order
exponential to obtain a learning rate parameter. We used the fit non-
linear least squares fitting function in Matlab R2019b. We compared
the computed learning rate parameter to Agmin/AHmax based on the
Hessian of the network of the corresponding condition.

2.3.7. Statistical analysis

The main outcomes of the experiments were the degree of adaptation
to the visuomotor transformations (initial error - final error in reaching
direction) and the computed decay rate parameter of the exponential fit
to the time course of the error in direction, estimated as indicated in
Section 2.3.6 Outcome measures. For Experiment 1, we tested the null
hypothesis that the means of the outcome variables in the three aniso-
tropic scaling conditions were equal by means of a repeated measures
ANOVA. In cases where the outcome variables did not satisfy the
normality assumptions of the ANOVA test, we performed a longitudinal
non-parametric test using the nparLD package in R (Noguchi et al.,
2012).We then performed post-hoc multiple comparisons using Bon-
ferroni corrections. In Experiment 2, we tested the null hypothesis that
the means of the outcome variables in the two target distribution scaling
conditions were equal by means of a paired t test. In cases where the
outcome variables did not satisfy the normality assumptions of the ¢ test,
we performed a Wilcoxon signed rank test. The significance threshold
was set to p = 0.05. All analyses were performed in R 4.2.1.

3. Results

3.1. High anisotropy in manipulability ellipsoids is associated with lower
degrees of adaptation to visuomotor transformations

Fig. 3 shows the performance of a representative participant before,
at the onset and at the end of the transformation block for all conditions
in experiments 1 and 2. Notice that errors for each target at the onset of
transformations with higher degrees of scaling were widely different due
to the anisotropy of the transformation (Fig. 3b, ¢). In experiment 1
(anisotropic scaling task), we found that scaling the manipulability el-
lipse had a statistically significant effect on the degree of adaptation to
the visuomotor transformation (initial error — final error) [sfcursor = 1.0,
initial error: 27.4° (SD 3.4), final error: 18.9° (SD 6.1); S cursor = 0.5,
initial error: 27.3° (SD 2.3), final error: 22.5° (SD 4.9); S cursor = 0.2,
initial error: 30.2° (SD 3.3), final error: 28.3° (SD 4.1); F(2,44) = 12.98,
p < 1x107* repeated measures ANOVA]. Post hoc tests indicated that
the degree of adaptation was significantly larger when no scaling factor
was used (s¢,cursor = 1.0) [sf,cursor = 1.0 V8 8¢ cursor = 0.5, p = 0.027; S¢ cursor
=1.0 Vs Sgcursor = 0.2, p < 1% 1073]. However, there was no statistically
significant difference in the degree of adaptation between scaling factors
Sf,cursor = 0.5 and Sf,cursor = 0.2 (P = 0~12)'

Fig. 4b shows the time course of learning as measured by the mean
absolute error in the direction of the reach in all conditions of experi-
ment 1 across all participants. We found that scaling the manipulability
ellipse had a statistically significant effect on the learning rate parameter
of a single exponential fit to each participant’s learning curve (Fig. 4a)
[st,cursor = 1.0, learning rate: 0.0186 (SD 0.0196); st cursor = 0.5, learning
rate: 0.0077 (SD 0.0081); Sfcursor = 0.2, learning rate: 0.0027 (SD
0.0036); F=21.9,df =1.77,p< 1 x107°, nparLD (data in condition s,
cursor = 1.0 not normal according to Shapiro-Wilk test)]. Post hoc tests
indicated that the learning rate parameter was significantly larger when
no scaling factor was used (sf,cursor = 1.0) [St,cursor = 1.0 VS S¢,cursor = 0.5,
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Fig. 3. Cursor positions at the end of a target cycle before, at the onset, and at the end of training in all conditions of experiments 1 and 2 for a representative
participant. a. Baseline block. b. First block of training. c. Last block of training. The mean absolute value of the error in final direction is indicated for each condition
and target cycle. d. Performance error measured as the mean absolute value of the error in initial direction for one block, comprising 8 targets. Shaded areas indicate

the blocks corresponding to the cursor positions in a, b and c.

p < 10_3; Stcursor = 1.0 VS Sgeursor = 0.2, p < 107°]. Additionally, the
learning rate parameter in scaling condition s cursor = 0.5 was signifi-
cantly larger than in condition sfcyrsor = 0.2 (p = 0.039). Because the
anisotropic scaling task induces errors in both direction and extent of
reach, we also inspected the time courses of the magnitude of the end-
point error. The time course of the magnitude of the error in all task
conditions resembled the time courses of the error in direction (results
not shown). The differences in the extent of adaptation and learning
rates in all the experimental conditions suggest faster learning rates for
tasks with the least anisotropic virtual manipulability ellipsoids.
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3.2. High anisotropy in target distributions is associated with lower
degrees of adaptation to visuomotor transformations

In experiment 2 (anisotropic target distribution task), we found that
the round target layout was associated with a statistically significantly
larger degree of adaptation to the visuomotor rotation than the elliptical
target layout [sf target = 1.0, initial error: 27.9° (SD 3.0), final error: 18.9°
(SD 6.0); 5 target = 0.2, initial error: 27.0° (SD 4.4), final error: 23.3° (SD
6.3); p = 0.005, paired t test]. Fig. 4d shows the time course of learning
in all conditions of experiment 2. We found that the shape of the target
distribution had a statistically significant effect on the learning rate
parameter of each participant’s learning curve. The mean of the learning
rate parameter was greater for the circular target layout than for the
elliptical target layout (Fig. 4¢) [Sttarget = 1.0, learning rate: 0.0186 (SD
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Fig. 4. Experimental and simulation results in the anisotropic scaling and anisotropic target distribution tasks. a. Experimental learning rates in Experiment 1, and c.
Experiment 2. We estimated the experimental learning rates by fitting the learning curves of each participant to simple exponentials. Bars indicate the mean, and
error bars the standard deviation. Asterisks indicate significant differences between conditions: *** p < 0.001, ** p < 0.01, * p < 0.05. b, d. Experimental mean error
in initial direction during learning in Experiments 1 and 2. e. Estimates of the slowest time constant of learning given by Agmin/Aumax for the three scaling conditions
in Experiment 1, and g. the two scaling conditions in Experiment 2. We generated the estimates of the slowest time constant of learning using the Hessian matrix of
networks with sigmoidal hidden units for the 15 simulated participants (Eq. (18)). Bars indicate the mean, and error bars the standard deviation. f. Simulated mean
error in initial direction during learning in the three scaling conditions in Experiment 1 (mean of the 15 simulated participants), and h. in Experiment 2. The
simulation results were fitted to the mean experimental curves by adjusting the learning rate 5; in Eq. (6) for each simulated participant. Error bars indicate the

standard error.

0.0196); St targer = 0.2, learning rate: 0.0048 (SD 0.0075); p < 10’3,
Wilcoxon signed rank test (data in condition S targer = 1.0 not normal
according to Shapiro-Wilk test)]. The differences in the extent of adap-
tation and learning rates in all the experimental conditions suggest faster
learning rates for tasks with rounder target distributions.

3.3. Hessian analysis predicts the effects of the manipulability ellipse and
target distribution on the speed of learning a visuomotor transformation

We computed the Hessian of the network defined by the computa-
tional models of 15 simulated participants to estimate the slowest time
constant of learning for each condition in Experiments 1 and 2 using the
distal learning and direct inverse modeling architectures. We focused on
the case where the motor command m corresponds to muscle synergy
activations. For distal learning, we used Eq. (18), considering sigmoidal
hidden activation functions (to use a musculoskeletal model) and a cost
function that minimizes a trade-off between error and effort to compute
the Hessian and its eigenvalues (Appendix F). Results using the direct
inverse modeling architecture are provided in Appendix A. Consistent
with our hypothesis, derived from the assumption of a network with
linear hidden activation functions, the estimated slowest time constant
of learning is larger for conditions with rounder manipulability ellip-
soids or target distributions in the non-linear network (Fig. 4e, 8) [AHmin/
AHmax in anisotropic scaling: s cursor = 1.0: 0.066 (SD 0.024), St cursor =
0.5: 0.038 (SD 0.019), st cursor = 0.2: 0.012 (SD 0.008); Afmin/AHmax in
anisotropic target distribution: s targer = 1.0: 0.066 (SD 0.024), sf,target =
0.2: 0.029 (SD 0.010)]. The measured learning rates in the experiments
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show a similar pattern to the estimated slowest time constant of learning
(AHmin/AHmax) in both the distal learning and direct inverse modeling
architectures, with a monotonic relationship between the scaling factor
of the manipulability ellipsoid and target distributions, and the observed
speed of learning (Fig. 4a, c).

Furthermore, for distal learning, the simulated learning curves in
both the anisotropic scaling and target distribution tasks (Fig. 4f, h)
closely match the learning curves observed experimentally after select-
ing an appropriate learning rate n; (Eq. (6)) for each simulated subject
(anisotropic scaling task: R = 0.90, anisotropic target distribution task:
R? = 0.90). We also found that the mean simulated learning curves for
individual targets in each task condition qualitatively resemble the
asymmetric pattern of initial errors observed experimentally (results not
shown). Note, however, that the simulated learning curves using direct
inverse modeling (Fig. A.2c) have a lower quality fit to the experimental
observations (anisotropic scaling: R? = 0.78, anisotropic target distri-
bution: R?> = 0.83).

3.4. Hessian analysis predicts differences in learning rates in virtual
surgery tasks

We applied the computational framework to a virtual surgery task
(Berger et al., 2013). We found that the distal learning framework can
only predict differences in the learning rates of an incompatible and a
compatible virtual surgery when the model includes explicitly defined
muscle synergies, (i.e., the motor command m corresponds to muscle
synergy activations and P = MS) [distal learning, non-linear network;
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AHmin/AHmax With synergies, compatible: 0.029 (SD 0.016); incompat-
ible: 0.017 (SD 0.014); Agmin/AHmax Of compatible larger for 13 of the
simulated participants] (Fig. 5a). If muscle synergies are not included in
the model (i.e., the motor command m corresponds to muscle activations
and P = M), the framework predicts that the learning speed in the
incompatible task is slightly larger than in the compatible task, which
does not align with experimental observations [distal learning,
non-linear network; Agmin/AHmax Without synergies, compatible: 0.094
(SD 0.036); incompatible: 0.112 (SD 0.048); Agmin/4Hmax Of incompat-
ible larger for 12 of the simulated participants]. In fact, for linear net-
works without muscle synergies, there is no difference in the value of
AHmin/AHmaxbetween the compatible and incompatible tasks. This is
because in the case where synergies are not included in the model, the
eigenvalues of PTP are not a function of T, given that for non-zero ei-
genvalues A(P'P) = A(PPT), and PPT = MTT™M" = MMT, as by definition,
T is an orthonormal matrix (TT® = I). However, the direct inverse
modeling framework predicts differences in the learning rates of both
tasks whether muscle synergies are explicitly defined in the model or not
[direct inverse modeling, Agmin/Agmax Without synergies, compatible:
0.05 (SD 0.039); incompatible: 0.007 (SD 0.006); Agmin/AHmax Of
compatible larger for 14 of the simulated participants] (Fig. A.2a). In
both simulated frameworks, the simulated learning curves in the
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Fig. 5. Simulation results in the virtual surgery and multi-target tasks. a. Es-
timates of the slowest time constant of learning given by Agmin/Aamax for the
compatible (T¢) and incompatible (Ty) virtual surgeries. We generated the es-
timates using networks with sigmoidal hidden units and muscle synergies in the
distal learning framework for the 15 simulated participants (Eq. (18)). Bars
indicate the mean, and error bars the standard deviation. b. Simulated mean
error in initial direction during learning in T and T;. Simulated learning curves
were fitted to the mean experimental curves by adjusting the learning rate #; in
Eq. (6). Solid lines correspond to the mean error in the 15 simulated partici-
pants. Dashed lines correspond to the mean error in experimental observations
(Berger et al., 2013). Error bars indicate the standard error. c. Estimates of the
slowest time constant of learning given by Agmin/Armax for the multi target task
with 1, 4 and 8 targets (1T, 4T and 8T). We generated the estimates as indicated
in a. d. Simulated mean error in initial direction during learning in 1T, 4T and
8T. Learning curves are double exponentials fitted to the mean simulated
curves, which in turn were fitted to the mean experimental curves by adjusting
the learning rate #; in Eq. (6). Dashed lines correspond to double exponential
fits to the experimental observations (Krakauer et al., 2000).
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compatible and incompatible surgeries closely match the learning
curves observed experimentally after selecting an appropriate learning
rate 1 for each simulated subject (distal learning: R? = 0.88; direct in-
verse modeling: R? = 0.86) (Figs. 5b and Al.2c).

3.5. Hessian analysis predicts differences in learning rates in multi-target
task

Finally, we applied the computational framework to a visuomotor
rotation task in which experimental conditions are defined by the
number of targets in the task (2, 4 or 8 targets) (Krakauer et al., 2000).
We found that the framework predicts that the speed of learning de-
creases as the number of targets increases, consistent with experimental
observations [distal learning, non-linear network; Agmin/AHmax With
synergies, 1 target: 0.356 (SD 0.196); 4 targets: 0.157 (SD 0.096); 8
targets: 0.069 (SD 0.029); Agmin/AHmax 1T > AHmin/AHmax 4T and
AHmin/AHmax 4T > AHmin/AHmax sT for all 15 simulated participants]
(Fig. 5c). The direct inverse modeling framework also predicts a
monotonic relationship between the number of targets and the speed of
learning. However, the monotonic pattern of this relationship is appre-
ciably different from the experimental observations (Fig. A.2a). The
simulated learning curves in the number of targets task with the distal
learning architecture closely match the learning curves observed
experimentally after selecting an appropriate learning rate #; for each
simulated subject (R2 = 0.92) (Fig. 5d). However, the simulated curves
using direct inverse learning have a lower quality fit to the experimental
observations (R? = 0.77) (Fig. A.2¢).

4. Discussion

In this study, we showed that analyzing models of human motor
learning through the lens of optimization theory allows us to predict
how fast the CNS can learn new motor tasks. Specifically, we analyzed
learning in a set of isometric force tasks for two different inverse
learning paradigms, distal learning and direct inverse modeling. The
simplicity of the forward physics of the isometric tasks allowed us to
analytically derive the Hessian of a linear approximation of the learning
system. We found that the eigenvalues of the Hessian matrix, and thus
the speed of learning, are a function of the shapes of the force manip-
ulability ellipsoid of the arm and the distribution of target forces. We
extended these theoretical results to a non-linear representation of the
motor system that includes muscles. Furthermore, our modeling
framework establishes that these results are generalizable to other task
conditions, and even different isometric tasks such as virtual surgeries.
Although in the main text we have used backpropagation to illustrate
the properties of the speed of learning under gradient-following algo-
rithms, we also showed that our results do not depend on this choice and
are also valid for the more biologically plausible node perturbation al-
gorithm (Appendix B).

4.1. Testable predictions

Based on our theoretical results, we hypothesized that altering the
manipulability ellipsoid of the arm or the force target distributions
would directly impact the learning speed during a visuomotor rotation
(VMR) in the isometric reaching task. We tested our hypothesis by
having participants perform the VMR task under four different condi-
tions. In the first three conditions, we altered the roundness of the
manipulability ellipsoid in a virtual environment. In the fourth condi-
tion we used a target distribution in the shape of an ellipse. We found
that rounder manipulability ellipsoids and target distributions allow for
faster learning in the VMR task, confirming our hypothesis. Previous
research supports our theoretical and experimental conclusions by
showing in simulation that mechanical biases in the pulling directions of
muscles influence the speed of learning (Hagio & Kouzaki, 2018). These
biases can be interpreted as a factor that reshapes the generalized
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manipulability ellipsoid in the space of muscle activations (see Section
2.1.4 Estimation of limit on learning speed).

Our results suggest that the differences in the speed of learning in the
task brought about by factors such as manipulability ellipsoids and
target distributions may be an inherent computational property of
learning in the isometric task. Both of these factors predict differences in
the speed of learning for both the distal learning and direct inverse
modeling paradigms, indicating that the differences may arise regardless
of a particular architecture or optimized cost function (performance
error vs motor error). However, although both inverse learning models
are affected in a qualitatively similar way by these factors, the predicted
relative speed of learning in different tasks is quantitatively different
(Figs. 4e, g, 5a, ¢, Al. 1a), which is reflected in the simulated learning
curves. Other factors seem to be particular to a given architecture. For
example, the activation levels of muscles are involved in shaping the
Hessian and thus the speed of learning in distal learning (Eq. (F.4)), but
not in direct inverse modeling (Egs. (A.5), (6)). Similarly, another
architecture-specific factor that could influence the speed of learning is
the nature of the RBFs encoding the network inputs, as mentioned
above. Therefore, our framework can be used as a tool to generate sys-
tematic hypotheses to infer the type of algorithms that the CNS uses for
motor learning in different tasks. For instance, our results show that the
distal learning paradigm is able to describe the relative speeds of
learning in all of the VMR tasks more adequately with respect to the data
than the direct inverse learning paradigm. However, both paradigms
provide similarly adequate descriptions of the speed of learning in the
virtual surgery task.

Some of the factors that influence the speed of learning identified by
our framework may be obvious based on previous theoretical and
experimental studies. For example, the number of targets in a VMR task
has been shown to affect the speed of learning because learning of ro-
tations is only generalized locally. Learning around one target does not
contribute to learning around faraway targets, increasing the overall
number of trials needed to learn to counteract the perturbation for all
targets (Krakauer et al., 2000). Since the models we used encode the
positions of targets with local RBFs, it is not surprising that our simu-
lations can reproduce the effects of the number of targets on the speed of
learning. However, it is notable that this effect is predictable by exam-
ining the Hessian of the learning models. Increasing the number of
targets tends to increase the rank of the covariance matrix of the RBF
inputs, resulting in a decrease in the ratio of the smallest and largest
eigenvalues of the matrix, which is associated with slower learning (Eq.
(14), fewer targets than RBF units produce a rank deficient covariance
matrix, and thus, as the number of targets increases, the rank increases).
This suggests that other unexplored factors that affect the speed of
learning, such as the properties of neuron populations in the inverse
model (number of neurons, distribution of centers of neurons, or shape
and size of receptive fields of neurons) could be identified by analyzing
the Hessian of the learning models, even if their effect cannot be easily
interpreted through intuitive mechanisms.

Additionally, our framework could potentially allow us to generate
hypotheses about the role of different structures in the CNS on the speed
of learning. Here, we found that a distal learning approach requires
muscle synergies to be actual neural structures in the CNS to reproduce
the results of virtual surgery experiments. These neural circuits in
conjunction with the virtual surgeries reshape the manipulability ellip-
soid of the arm in the virtual environment, and thus, compatible and
incompatible surgeries elicit a difference in learning speeds. Otherwise,
without these neural structures, the virtual surgeries have an unspeci-
fied effect on the manipulability ellipsoid, and the differences between
compatible and incompatible surgeries are not captured by the model
(see in-line equations in Section 3.4 Hessian analysis predicts differences in
learning rates in virtual surgery tasks). In contrast, the direct inverse
modeling approach can reproduce the experimental results with or
without neural structures for muscle synergies in the model. This is
because the virtual surgeries themselves differentially change the
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distribution of realized forces, which influences the speed of learning
(Appendix A). However, other mechanisms may also explain the dif-
ferences in learning speeds between the compatible and incompatible
surgeries, with or without explicitly defined muscle synergies. For
example, a recent study has shown that these differences can be
explained by differences in the efficiency of learning a forward model of
the surgeries due to task-relevant and irrelevant motor noise (Dal’Bello
& Izawa, 2022).

Note, however, that care must be taken when comparing the results
on the speed of learning in different architectures. Although both inverse
learning paradigms, distal learning and direct inverse modeling, rely on
gradient descent to learn an inverse, the way in which the inverse model
is updated in both paradigms is different. Distal learning attempts to
minimize predicted errors on performance via a forward model of the
physics of the body, whereas direct inverse modeling attempts to
minimize the error between the realized motor command and the motor
command it would use to produce the realized action. That is, the
quantities optimized in both paradigms are different. Therefore, our
analysis pertains only to the learning rates of the quantity optimized in
each paradigm. Our results are directly applicable in the case of distal
learning, as the performance error is one of the main variables of interest
in motor learning. In contrast, in the case of direct inverse modeling, our
analysis corresponds to the learning rate in the motor error, which in
general is not possible to measure experimentally, and does not directly
relate to task performance. However, previous studies have shown that
in linear systems, minimization of the motor error also leads to mini-
mization of the performance error given appropriate initial conditions
and/or exploration noise (Rolf & Steil, 2014). Furthermore, our direct
inverse modeling simulations show that learning rates in the motor and
performance domains correlate across tasks (Fig. A. 2), so our analysis is
still useful provided that the minimization of performance and motor
errors is coupled. This condition would be violated in the case of failure
to form an adequate inverse model (Jordan & Rumelhart, 1992) or the
occurrence of other failure modes (Sanger, 2004).

4.2. Future perspectives

One open question is the relation between the timescales of learning
given by the eigenvalues of the Hessian and the different timescales of
learning processes identified in the CNS. Motor adaptation is often
described as the superposition of slow and fast processes that allow fast
error corrections in the face of a changing environment and retention of
the learned task in a stable environment (Smith et al., 2006). Models
employing one fast and one slow process have been quite successful in
describing motor adaptation in many tasks (Coltman et al., 2019; Lee &
Schweighofer, 2009), although processes with multiple timescales have
been identified (Kim et al., 2015). The neural basis of these processes is
still not well understood, but may originate from different circuits in the
CNS (Kim et al., 2015; Sarwary et al., 2018). However, in our frame-
work, the multiple timescales defined by the Hessian describe the
inherent dynamics of learning as an optimization process, without
separate neural circuits operating at different timescales, as discussed
below. Therefore, further research that considers the inherent dynamics
of learning to study learning processes with different timescales seems
necessary.

The dynamics of learning an inverse model are characterized by the
eigenvalues of the Hessian and are reflected in the resulting learning
curves as different timescales. The number of non-zero eigenvalues of
the Hessian (its rank) then defines the number of timescales involved in
learning. In the distal learning model, the eigenvalues of the Hessian are
defined by the eigenvalues of the PTP and ¢p¢™ matrices, representing the
manipulability ellipsoid and target distribution, respectively (Eq. (16)).
P'Pisin general only rank 2, whereas the rank of ¢@" can be as large as
the number of RBF input units, and depends on the number of targets. In
our simulations, the rank of the Hessian is in general 16, as most ex-
periments modeled use 8 targets (rank(H) = rank(PTP)-rank(¢¢T)). We
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found that considering only the ratio of the slowest and fastest time
constants predicts the relative speed of learning of several tasks quite
well. However, it is possible that an analysis of other timescales (i.e.,
other eigenvalues) could provide a more specific description of the
learning curves in the tasks. This could be especially important in tasks
in which the time frame of the experiment does not allow convergence to
zero error, as is the case in some of the experiments we conducted here.
Additionally, considering other timescales could provide further differ-
entiation between candidate models to describe learning in a task.

4.3. Limitations

One limitation of our framework is that it assumes that updates to the
inverse model are obtained based on the batch gradient, which attempts
to minimize the error for all target forces simultaneously. That is, errors
for the whole set of targets are known and used for each learning update.
However, in humans, learning takes place mainly on a trial-by-trial
basis, although a memory of previous errors can contribute to learning
(Herzfeld et al., 2014; Sugiyama et al., 2023). This shorter learning
timeframes are more akin to online or stochastic gradient descent.
Therefore, because the batch and the single-trial gradient are different in
general, the actual limit of the speed of learning in the model may differ
from the theoretical estimates. In practice, however, we found that using
this assumption still adequately predicts the relative learning speed in
different tasks both in simulations that use online learning, and
experiments.

A further limitation in the analytical results of our computational
framework is that we have made a simplifying assumption regarding the
role of the target distribution. The eigenvalues of the Hessian matrix of
the distal learning system are a function of the distribution of RBF inputs
to the network rather than simply the two-dimensional distribution of
target forces (Eq. (17)). Therefore, variables such as the number, centers
and shapes of the RBF units also impact the eigenvalues of the Hessian.
Unfortunately, these properties of the RBFs are hard or impossible to
control in an experimental setup. However, because the RBF units
encode the desired forces, the distribution of RBF inputs must also
encode information about the distribution of target forces. This makes
the distribution of target forces an ideal proxy for the distribution of RBF
inputs, as it is an easily controllable variable.

Another limitation comes from our choices in the experimental
design. Due to restrictions arising from the COVID-19 pandemic, we
conducted the experiments using an online platform (Tsay et al., 2021).
Although the results obtained from the online platform are similar to
in-person results for VMR tasks (Avraham et al., 2021; Tsay et al., 2021,
2022), the arm posture in our experiment should be controlled, as it is
related to the shape of the manipulability ellipse of the arm because the
posture determines the arm Jacobian (Yoshikawa, 1985). We instructed
the participants to adopt a similar posture across all experimental con-
ditions, but did not control for the posture. However, considering that
changes in arm posture during the experiment are unlikely to have as
dramatic an effect on the shape of the manipulability ellipse as the
visuomotor transformations that we used, any effects of changes in arm
posture are likely not important.

An additional limitation stemming from our choices on experimental
design is that our computational framework considers an isometric task
in which the forward physics of the arm are linear. We referred to the
experimental task as “quasi-isometric”, as the cursor movements are
controlled by small finger and/or arm movements (ideally around 1 cm
in end-point movement extent, without appreciable changes in arm joint
angles). Therefore, even though the forward physics of the arm are not
linear because of these movements, the movement extent is small
enough that a local linear approximation may be adequate for its
description. Nevertheless, previous research in motor control and
learning in arm reaching tasks shows that modeling reaching tasks as a
linear system can have good descriptive and predictive power (Smith
et al., 2006).
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4.4. Conclusion

In conclusion, we have developed a framework to theoretically
identify factors that influence the speed of learning. This could poten-
tially be used in more complex tasks to systematically identify body and
environment parameters that facilitate learning, as well as to evaluate
the difficulty of the task based on the elements of the task. Additionally,
it could be used to systematically find candidate hypotheses about
model architecture and components in the CNS to describe learning in a
task. Our results show the relevance of the theory of artificial neural
networks to understand the mechanisms underlying learning in the CNS,
as advocated in recent perspectives (Lillicrap et al., 2020; Marblestone
et al., 2016; Richards et al., 2019).
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