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Abstract

Humans exhibit large interindividual differences in motor learning ability. However,
most previous studies have examined properties common across populations, with less
emphasis on interindividual differences. We hypothesized here, based on our previous
experimental and computational motor adaptation studies, that individual differences in
effective learning rates between a generalist memory module that assumes
environmental continuity and specialist modules that are responsive to trial-by-trial
environmental changes could explain both large population-wise and individual-wise
differences in dual tasks adaptation under block and random schedules. Participants
adapted to two opposing force fields, either sequentially with alternating training blocks
or simultaneously with random sequences. As previously reported, in the block training
schedule, all participants adapted to the force field presented in a block but showed
large interference in the subsequent opposing force field blocks, such that adapting to
the two force fields was impossible. In contrast, in the random training schedule,
participants could adapt to the two conflicting tasks simultaneously as a group;
however, large interindividual variability was observed. A modified MOSAIC
computational model of motor learning equipped with one generalist module and two
specialist modules explained the observed behavior and variability for wide parameter
ranges: when the predictions errors were large and consistent as in block schedules, the
generalist module was selected to adapt quickly. In contrast, the specialist modules were
selected when they more accurately predicted the changing environment than the
generalist, as during random schedules; this resulted in consolidated memory
specialized to each environment, but only when the ratio of learning rates of the
generalist to specialists was relatively small. This dynamic selection process plays a

crucial role in explaining the individual differences observed in motor learning abilities.
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Introduction

Acquiring dexterous motor skills such as playing sports or musical instruments can
take years of practice, although considerable individual variability exists (Ackerman &
Cianciolo, 2000; Golenia et al., 2014; Stark-Inbar et al., 2017). This variability has
largely been overlooked in quantitative and computational motor control studies, which
typically only investigate population averages. Studies of motor adaptation with a single
environment, i.e., repeated exposure to the same task, show consistent results with small
individual variability, e.g., (Krakauer et al., 2005). In contrast, studies of adaptation to
multiple tasks show inconsistent results; some studies have reported that humans can
learn conflicting multiple tasks simultaneously (Forano & Franklin, 2020; Lee &
Schweighofer, 2009; Osu et al., 2004; Shelhamer et al., 2005; Wada et al., 2003), while
others indicate that such learning is difficult or even impossible (Gandolfo et al., 1996;

Gupta & Ashe, 2007; Hinder et al., 2008).

Sequential exposure to opposing force fields or visuomotor transformations in
blocked schedules often leads to anterograde and retrograde interference (interference is
anterograde when the preceding task interferes with the subsequent task, while it is
retrograde when the subsequent task interferes with the memory of the preceding task).
These interferences create large motor errors whenever the block alters (Brashers-Krug

et al., 1996; Caithness et al., 2004; Gandolfo et al., 1996; Karniel & Mussa-Ivaldi,



bioRxiv preprint doi: https://doi.org/10.1101/2024.07.15.603502; this version posted July 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

2002; Krakauer et al., 2005; Wigmore et al., 2002), although re-adaptation is often
faster with repetitive blocks (a phenomenon called savings) (Heald et al., 2021;
Herzfeld et al., 2014; Oh & Schweighofer, 2019; Sugiyama et al., 2023; Turnham et al.,
2012). Because of such interference, it has been claimed that dual adaptation is

impossible (Gupta & Ashe, 2007; Hinder et al., 2008).

However, several studies have shown that humans are capable of overcoming
interference by consolidating the motor memories of multiple environments and
immediately switching among them by randomly presenting the multiple environments
and/or providing additional environmental contexts (Forano & Franklin, 2020; Forano
etal., 2021; Heald et al., 2021; Hinder et al., 2008; Howard et al., 2013; Krouchev &
Kalaska, 2003; Lee & Schweighofer, 2009; Magnard et al., 2024; Osu et al., 2004;
Shelhamer et al., 2005; Wada et al., 2003). Consolidation here is defined as resistance to
retrograde interference (Caithness et al., 2004; Krakauer et al., 2005), assuming that
motor memory is transformed from a fragile to a more stable state (Albouy et al., 2013;
Thurer et al., 2018), and switching as the effective retrieval of the saved motor memory
corresponding to presented contextual cues, being susceptible neither to anterograde nor
retrograde interference (Zarahn et al., 2008). In particular, simultaneous learning of two
opposing environments is possible when these conflicting environments are presented

randomly with contextual cues (Forano & Franklin, 2020; Forano et al., 2021; Lee &
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Schweighofer, 2009; Osu et al., 2004; Shelhamer et al., 2005; Wada et al., 2003),
although simultaneous adaptation is slower than adaptation for each task. Given these
previous reports of both the ability and the inability to learn, we propose that there must

be memory mechanisms that can adequately explain these contradictory results.

When adapting to novel environments, motor memories that capture the
relationships between the desired behavioral consequences and the motor commands are
formed as internal models in the central nervous system (CNS) (Kawato, 1999;
Shadmehr & Mussa-Ivaldi, 1994; Shadmehr et al., 2010; Wolpert et al., 1998). The
internal models are consecutively updated based on errors in preceding trials (Franklin
et al., 2008; Herzfeld et al., 2014; Lee et al., 2018; Mattar & Ostry, 2007; Oh &
Schweighofer, 2019; Scheidt et al., 2001; Takahashi et al., 2001). Smith et al. (2006)
proposed a computational model that comprises a fast-learning, fast-forgetting memory
process and a slow-learning, slow-forgetting memory process; see also (Coltman et al.,
2019; Huberdeau et al., 2015; McDougle et al., 2015; Sing & Smith, 2010; Turnham et
al., 2012). This fast/slow model accounted for several experimental phenomena in
motor adaptation, including anterograde interference, spontaneous recovery, and rapid
unlearning. However, this model cannot by itself reproduce the simultaneous
acquisition and switching of multiple motor memories because a motor memory

corresponding to each environment must be acquired to learn multiple environments
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simultaneously (Forano & Franklin, 2020; Haruno et al., 2001; Heald et al., 2021; Lee
& Schweighofer, 2009; Oh & Schweighofer, 2019; Wolpert & Kawato, 1998). The
MOSAIC (Modular Selection and Identification for Control) model was proposed to
explain adaptation to multiple environments (Haruno et al., 2001; Wolpert & Kawato,
1998). Lee and Schweighofer (Lee & Schweighofer, 2009) then proposed a model with
a single fast-learning, fast-forgetting “generalist” process and multiple slow-learning,

slow-forgetting “specialist” processes, which were protected from interference.

In MOSAIC and recent extensions, selection between multiple models and update of
each model depends on responsibility signals that combine three factors (Haruno et al.,
2001; Heald et al., 2021): the prior history of the perturbation, possible sensory cues,
and following feedback, the likelihood of the model, which depends on the sensory
prediction error for each model weighted by the spatial precision of each model (i.e., the
inverse of its width)(Oh & Schweighofer, 2019). Such models learn multiple
environments simultaneously when information such as context or prediction error is
provided and thus cannot sufficiently explain the observed behaviors of greater
interference in the block than in random schedules. In addition, these models did not

account for the large individual differences in learning in multiple environments.

In recent work (Oh & Schweighofer, 2019), we showed that interindividual

differences in the rate of de-adaption and re-adaption to a visuomotor rotation depended
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on the ability to create and update new internal models specific to the perturbations and
then easily switch between models (resulting in fast de-adaptation and re-adaptation), or
to continuously update an existing model (resulting in slower de-adaptation and re-
adaptation). These interindividual differences were controlled by the relative precision
of the different models, which yielded individual differences in model selection and

learning rates by modulating the responsibility signals.

Here, we hypothesize that individual differences in both the skill level and rate of
skill acquisition in dual-adaptation paradigms largely arise from the ability to learn and
switch between multiple tasks simultaneously. Combining MOSAIC and our previous
single generalist and multiple specialists model (Lee & Schweighofer, 2009), we
propose a new model equipped with two types of memory architecture: one with a
single generalized memory store, which assumes continuity of the environment over
trials as in block schedules, and the other with multiple memory stores specific to each
environment, which assume that the environment may change between trials, as in
random schedules. We further hypothesized that individual differences in model
precisions (i.e., widths) and learning rates between the generalist memory module and
the specialist modules can explain both population-wise and individual-wise

characteristics of motor learning.
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We first performed a series of multi-day force-field dual-adaptation experiments
with block or random schedules. We examined the ability to learn and retain both tasks
in 1-day retention tests, as well as individual differences in learning and retention,
following these two practice schedules. We then simulated the different training
schedules to examine whether the proposed model successfully accounted for poor
memory consolidation and inappropriate switching after block presentation and superior
memory consolidation and successful switching after random presentation, as well as

large individual differences in random schedules.

Results

Participants learned reaching movements to eight targets located radially from a
central start position. The movements occurred in either a clockwise (CW) or
counterclockwise (CCW) velocity-dependent rotational force field (Figure 1). After the
presentation of audiovisual cues that indicates the direction of rotation, one of the eight
targets was randomly presented. Participants were required to reach the target in a
straight trajectory. Participants learned two tasks, CW and CWW, in either block
schedule or random schedule. Participants who practiced in a block schedule for four
consecutive days were tested in either a block schedule (BLOCK-BLOCK group) or a

random schedule (BLOCK-RANDOM group) after the last block training (Table 1).
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Participants who practiced in a random schedule for two consecutive days were tested in
either a block (RANDOM-BLOCK group) or a random schedule (RANDOM-
RANDOM group). During RANDOM training sessions, the number of trials for each
force field (112) was the same as the number of trials in BLOCK training sessions. All
groups executed 448 trials in total during training, with 224 CW trials and 224 CCW
trials. A control group was presented with only a test block session (BLOCK-control
group). The task and feedback in the test blocks were the same as those in the training
blocks. Adaptation was assessed by deviations from the straight path computed as the
signed areas between the actual hand path and the line joining the start and target
centers, with a positive sign indicating a CCW hand path deviation and a negative sign
indicating a CW deviation (directional error). These errors were averaged for each
cycle, whereby one cycle consisted of eight consecutive trials in one of the two force

fields, including movements to all eight targets.
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Figure 1: Experimental procedure, with an example of two trials in the random
condition. Each trial consisted of presenting audio-visual cues, target presentation,
movement, and visual feedback of the movement trajectory. In RANDOM training and
test sessions, the order of presentation of the two force fields was random. The insets
show examples of hand paths at the initial exposure to CW (red) and CCW (blue) force
fields, respectively.
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BLOCK-BLOCK group (8 participants)
Train Day 1: CW (112 trials)
Day 2: CCW (112 trials)
Day 3: CW (112 trials)
Day 4: CCW (112 trials)
Test Day 4: CCW (64 trials) — CW (64 trials) — CCW (64 trials)

BLOCK-RANDOM group (11 participants)

Train Day 1: CW (112 trials)
Day 2: CCW (112 trials)

Day 3: CW (112 trials)
Day 4: CCW (112 trials)

Test Day 4: Random (224 trials)

RANDOM-RANDOM group (10 participants)
Train Day 1: Random (224 trials)
Day 2: Random (224 trials)
Test Day 2: Random (256 trials with 32 catch)

RANDOM-BLOCK group (12 participants)

Train Day 1: Random (224 trials)
Day 2: Random (224 trials)
Test Day 2: CCW (64 trials) — CW (64 trials) — CCW (64 trials)

Control Experiment
BLOCK control group (10 participants)
Baseline CCW (64) — CW (64) — CCW (64)

Table 1. Experimental protocol. The numbers in parenthesis indicate the number of
trials in each session. In block training and test sessions, half of the participants were
exposed to blocks in the reverse order except for training sessions of the BLOCK-

RANDOM group in which all participants were exposed in the order of CW-CCW-CW-
CCW.

11
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Block training induced interference

We first investigated the effect of block schedule training on performance in the
following block or random test session. When participants were initially exposed to the
CW force fields, hand trajectories were highly distorted and curved in the direction of
the applied force (Figure 1, inset). The movement error measured by directional error
(see Methods) was reduced in an exponential-like manner as practice proceeded (Figure
2a, b). When exposed to an opposite CCW force field on Day 2, participants produced a
larger magnitude of directional error than on Day 1, as in previous studies (Caithness et
al., 2004; Krakauer et al., 2005). On Days 3 and 4, the magnitudes of initial errors were
as large as or larger than those on Day 1. The magnitude of the directional error

approached zero in an exponential-like manner at the end of each daily training block.

The observed large aftereffects and considerable re-adaptation process demonstrate
anterograde and retrograde interference, which are incompatible with the possibility of

the consolidation and switching of motor memory learned on Day 1 and 2.

In the following block test session on Day 4 in the BLOCK-BLOCK group, the
magnitude of the directional error was small in the first block (Blk 1 in Figure 2a) in the
test session because the direction of the force field was the same (CW) as that in the last
training session block. However, the error increased when the force field switched to the

CCW block (Blk 2 Figure 2a). The error in the subsequent CW block (Blk 3 in Figure

12
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2a) increased again. The learning curves in the second and third test session blocks were
comparable with those in the BLOCK-control group in which participants only
experienced the block test session (pale blue and pale red dotted curves), suggesting that
the preceding block training session was not effective for memory consolidation or

switching of multiple environmental dynamics.

In the following random test session in the BLOCK-RANDOM group, the
magnitude of the initial directional error was small when CCW was presented and large
when CW was presented (Figure 2b). Good initial performance in CCW test session
trials reflected memory preservation from the preceding CCW training block. Poor
initial performance in CW test session trials suggested that the memory of the CW
training block presented the day before was not preserved. Consequently, although
participants had already experienced both force fields in blocks, the initial directional
error for CW in the random test session was worse than for the first exposure to CW
force field in either block or random schedules (Figure 2¢ and d). As the test proceeded,
performance in CCW worsened in parallel with the gradual improvement in
performance in CW, reflecting probable learning of the average of the two dynamics

rather than learning them separately, as previously reported (Scheidt et al., 2001).

13
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Figure 2: Learning curves for the BLOCK-BLOCK (a), BLOCK-RANDOM (b)
RANDOM-BLOCK (c), and RANDOM-RANDOM (d) groups. Average directional
errors and s.e.m (dashed lines) in CW (red) and CCW (blue) across participants are
plotted against cycles of 8 targets for TRAINING and TEST. The sign was flipped for
the participants who were exposed to blocks in reverse order before averaging. The
thick dotted curves with a light color in TEST denote average directional errors of the
second (blue) and third (red) blocks of the BLOCK-control group.
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Random training reduced interference

We next investigated the effect of training in random presentation on performance
in the following block (Figure 2¢) or random (Figure 2d) test session. In both
RANDOM-BLOCK and RANDOM-RANDOM groups, the average performance was
superior in test sessions compared to that in BLOCK-BLOCK and BLOCK-RANDOM

groups, respectively (compare Figure 2¢ to Figure 2a, and Figure 2d to 2b).

To summarize performance, we defined the difference errors as the difference in the
directional errors between the CW and CCW (CCW - CW), where larger positive values
indicated poorer adaptation, and negative values indicated over-adaptation. Figure 3a
compares the magnitude of difference error computed from the second and third blocks
in the test session of BLOCK-BLOCK, RANDOM-BLOCK, and BLOCK-control
groups. The error was significantly smaller only in the RANDOM-BLOCK group
(Kruskal-Wallis test, p < 0.001; post-hoc Wilcoxon test, p < 0.01, effect size r > 0.6),
suggesting that block training did not result in consolidation and switching of motor
memory responsible for each force field. Results also confirmed the preservation of
multiple motor memories in the block presentation after random training. The difference
error across cycles in random test sessions was significantly smaller in the RANDOM-
RANDOM group than in the BLOCK-RANDOM group (Wilcoxon rank sum test, p =
0.018, effect size r > 0.5; Figure 3b), suggesting that memory consolidation and

15
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effective switching occurred after random training but not after block training. Note that
although RANDOM-RANDOM group received only two days of training, performance

was still much better in test than BLOCK-RANDOM group who received four days for

training.
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Figure 3: (a) Comparison of average difference errors across participants and s.e.m
from the second and third blocks during the test session among BLOCK-BLOCK (BB),
RANDOM-BLOCK (RB), and BLOCK control groups. Errors in the RB test session
were significantly smaller than in the other two groups (** denotes p < 0.01). (b)
Comparison of average difference errors during the test session and s.e.m between
BLOCK-RANDOM (BR) and RANDOM-RANDOM (RR) groups. Errors in the RR
test sessions were significantly smaller than those in the BR test session (* denotes p <
0.05).

Individual differences in random learning

To examine interindividual variability in performance, we compared the distribution

of difference errors between test sessions after random training and those after block

16
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training (Figure 4a). Difference errors were distributed with significantly more
dispersion after random training than after block training (Ansari-Bradley one-tailed test
of equal variance, p = 0.039). Coefficient of variations (standard deviation divided by
the mean) of the difference errors and their bootstrap confidence intervals (95% CI)
after random and block training were 86.8% (58.5, 153.1) and 33.5% (24.0, 50.4),
respectively, showing larger dispersion after random training. These results and those of
Figure 3 show that, overall, performance was poorer after block training than after

random training but also more variable after random training.

We separated the 22 participants assigned to random presentation training
(RANDOM-BLOCK and RANDOM-RANDOM groups) into good or poor learners
based on the mean difference error during the training session on Day 2 (cycles 29 to
56) (Figure 4b and c). Because their mean difference error on Day 2 training was
smaller than the average of 22 participants, we classified ten participants (five per
group) as good learners (solid blue and red lines). The other 12 participants were
assigned as poor learners (seven for RANDOM-BLOCK, five for RANDOM-
RANDOM; dotted blue and red lines). As shown in Figure 4b and ¢, participants who
learned well in the random training session performed well in the subsequent block or
random test session, while those who learned poorly in the random training session

performed poorly in the subsequent block or random test session (Wilcoxon rank sum

17
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test, p < 0.01). There was a significant correlation between difference errors on Day 2
random training and test sessions for both RANDOM-BLOCK (Spearman p = 0.84, p <

0.001) and RANDOM-RANDOM (Spearman p = 0.85, p <0.01) groups.

We then separated the 11 participants in the BLOCK-RANDOM group into good
learners (four participants) and poor learners (seven participants) based on the mean
difference error during the last four cycles (25 to 28) of random test sessions (Figure
4d). The mean difference error of the preceding block training session on Day 3 and 4
(cycles 29 to 56) was not correlated with the final performance in the last four cycles of
the random test session (Spearman p = 0.23, p = 0.50; n.s.), indicating that the memory
shaped during subsequent random training was independent of the memory shaped

during the preceding block training.
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Figure 4: Individual differences in learning under random presentation. (a)
Histogram of the difference errors in test sessions of BLOCK-BLOCK and BLOCK-
RANDOM groups (upper panel), and RANDOM-BLOCK and RANDOM-RANDOM
groups (lower panel). Negative difference errors indicate over-adaptation. (b-d)
Learning curves of good learners (solid curves) and poor learners (dotted curves)
separately presented for RANDOM-BLOCK (RB), RANDOM-RANDOM (RR), and
BLOCK-RANDOM (BR) groups. For RB and RR groups, participants were classified
based on difference errors in the second half of the training session by the threshold of
the mean (8.42 cm?). Five out of 12 participants in the RB group and five out of 10
participants in the RR group were denoted as good learners. For the BR group,
participants were classified based on difference errors in the last two cycles (13 and 14
cycles) by the threshold of the mean (17.00 cm?). Four out of 11 participants were
denoted as good learners.

The ratio of learning rates of the generalist to specialist memory modules

explained behavioral results: a simulation

To account for the experimental results, we performed simulations based on the
MOSAIC architecture, as it can learn and switch among multiple internal models
(Wolpert & Kawato, 1998). In MOSAIC, each module i consists of a pair of forward
and inverse models and is selected and updated based on the responsibility signal A,(r).
In simulations, we defined a simplified environment of the task under CCW and CW
force fields. The position of the cursor and force applied at the cursor were represented

T T
by [ x(t) y() ] and [ u () u(?) ] , respectively. The equation of motion was

defined by:
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¥(1) x(1) u(t)
=Reeworew| . +
[ 5(0) ] [ () ] (1)

: (1

where R.cy o cw are the rotation matrices; Ricy =[ 1% —éO } and

. The mass of the arm tip was 1 kg for simplicity. The state variable

0 10
R =
o [-10 0

T
and motor output were defined as X(l‘)=[ x(®) y(t) x@) y(@) ] and
T
u(®) = [ u () u, () ] , respectively. The following linear forward models predicted

the state with each module i:

X.(t) = AX(1)+ Bu(t)

00 1 O
0 0 1

0
= 0 0 a;;3 a34 X(t)+ ll(t)
0

i

o = O O
- o O O

43 44
0 a a,

i i

, ()
where A, and B are the forward model parameter of module i. The motor output of

each module was computed by inverting the forward models,

u,(1)=(B"B)" B" (X (1)~ Ax(1)) , 3)

where the desired trajectory X“(¢) was set as minimum jerk trajectory. The final motor

output u(z) is the summation of the control signal from each module u,(z) weighted by

its responsibility signal A(r).

u(t) = XL, 4 (0)uy(t). 4)
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In parallel, the internal forward model parameters in A, of each module i are

updated according to the gradient method.

A < A+ (t)e (x(t) )

where 17, is the learning rate of the module i. Note that the effective learning rate for

each module is given by 1,4, (l ) .

The responsibility signal A,(r) is computed from prediction error e,(r) between the
actual state (velocity) X(l‘ ) and the state predicted by the forward model X; (t), and prior

probability of the responsibility signal )Aki(t), as follows:

)AL,, (r)exp [—212 ||el_ (t)||2 ]
A'i (t) Y '

34, t)exp[

j=1

e, (t)”z} , with (6)

e (t)=x(t)- Xi(t)
where the parameter O, ,-2 determines the selectivity spatial width of switching in
responsibility signal of module 7, and M is the number of modules. The prior probability

for each module is given by:

/i[.(t) = exp[—z1 3

, (7)
with E (¢) is a temporally smoothed prediction error. The characteristics of the prior
probability of the responsibility signals 711-(! ), and therefore that of E (¢), is a key factor

for learning in multiple environments (Imamizu et al., 2007). The temporal continuity of
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the environment is informative in recommending not to frequently switch, and to
stabilize network performance. However, in random presentation of the opposing force
fields, environments are discontinuous across trials and continuous within a trial. Thus,
the generalist module is expected to deal with a single environment that will continue to
exist for at least a block of trials. In contrast, the specialist modules are expected to
collectively deal with multiple environments that appear stochastically at each trial.
Therefore, in the present model, in addition to a generalist module with E,(z) that
exhibits temporal continuity across trials (like the modules in MOSAIC), we assumed
the existence of specialist modules whose E, () were smooth within a trial but reset on
the next trial (Equation 8). The temporally smoothed prediction errors of module 7 at

time ¢ are therefore described as

t 1-s

- ; o 2 .
e TE"" + f N ei(s)” ds :generalist
o=

El(t) = t-s

;=
Joe "
s=0

e (s)||2 ds :specialist

) ®)
where the parameter 7 is a time constant for temporal smoothness and was fixed to 1 s
for both generalist and specialist modules in the present simulation, ei(s) is the
prediction error at time s (Equation 6), and E”*"* denotes E, at the end of the

previous trial.
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In our simulation of dual adaptation, we prepared a single generalist module and two

specialist modules with forward model parameters of = seweralist | “specialisty g * specialisty

similarly to (Lee & Schweighofer, 2009). Each module computes a control signal based
on Equation 3. We randomly searched for the learning rate 27, in Equation 5 and the
width of switching in the responsibility signal Giz in Equations 6 and 7, for each type of
module so that the model could reproduce the experimentally observed characteristics

of good learners.

Two requirements needed to be met for the reproduction of good learners. First, the
model needed to account for the retention of motor memories corresponding to two
environmental dynamics and effective switching in test sessions after random training in
RANDOM-BLOCK and RANDOM-RANDOM conditions. Second, the model needed
to account for poor retention or switching in test sessions after block training in
BLOCK-BLOCK and BLOCK-RANDOM conditions. We defined the threshold of
simulated maximum magnitude of directional error (error magnitude) as less than 10
cm? for successful retention. After random training, the error magnitude of test sessions
had to be less than the threshold to replicate good memory retention in good leaners; in
contrast, after block training, the error magnitude of test sessions had to be large and
above threshold to replicate poor memory retention, even in good learners. Assuming

that the parameters of two specialists were the same, we randomly generated 50,000 of
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four parameter sets consisting of My,eraiist » Mypeciatist s O and O and simulated

generalist »

the four experiments (BLOCK-BLOCK, BLOCK-RANDOM, RANDOM-BLOCK, and

RANDOM-RANDOM) using these parameter sets.

Of 50,000 parameter sets, 452 satisfied the two above conditions and thus
reproduced the behavioral characteristics of good learners. The learning rate 27, was
significantly larger for the generalist module than for the specialist module (Wilcoxon
signed rank test, p < 0.0001; see histograms in Figure 5a and b). That is, the generalist
module exhibited faster learning, whereas the specialist module exhibited slower
learning. Thus, in our simulations, fast and slow learning processes emerged
spontaneously even though we did not explicitly preset fast and slow processes
beforehand (Sing & Smith, 2010; Smith et al., 2006). Similarly, the width parameter 0,'2
was significantly larger for the generalist module than for the specialist module
(Wilcoxon signed rank test, p < 0.0001, see histograms in Figure 5c and d). This
indicated that the generalist module was selected even when its prediction error was
large, whereas each specialist module was selected when its prediction was accurate.
Considering the effective learning rate 1,4, (t) (Equation 5), the sharp switching
(smaller 0}) in specialists resulted in even slower learning of specialists, since a
specialist easily leaves out of the selection window for the responsibility signal. This

corresponds to the observed slow learning in random presentations and is consistent
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with the results from a previous model with multiple slow states (Lee & Schweighofer,
2009) that learned each environment separately. Similarly, large 77, and o} in the

generalist module are consistent with the fast memory state in this previous model.
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Figure 5: Parameter sets of the modified MOSAIC model with one generalist
module and two specialist modules that explained human behavior in our experiment,
i.e., no consolidation in BB and BR test sessions and good consolidation in RB and RR
test sessions. (a-d) Histograms of learning rate 7 for generalist (a) and specialist
modules (b), and histograms of width of switching in responsibility signal o> for
generalist (c) and specialist modules (d) from selected parameter sets. (e-h) Examples of
simulated learning curves using one parameter set that satisfied human behavior.

Directional error was plotted against cycles in the same way as the human data shown in
Figures 2 and 3 for BB (e), BR (), RB (g), and RR (h) conditions.

An example of the simulated learning curves using one of the parameter sets that
reproduced all four behavioral results of BB, BR, RB, and RR is depicted in Figure 5
(lower panels). The simulation qualitatively reproduced the time course of errors of the

good learners under all four conditions.

Figure 6 plots the evolution of the responsibility signal A,() using the same
parameter set as that in the example of Figure 5. In the BLOCK-BLOCK condition, the
responsibility signal of the generalist rapidly increased in each block (magenta curves in
Figure 6a). In the BLOCK-RANDOM condition, the responsibility signal of specialists
started to evolve when random test sessions were introduced and then gradually
overwhelmed the generalist module that was dominant in the block training session
(Figure 6b). In the RANDOM-BLOCK and RANDOM-RANDOM conditions, the

responsibility signal of the generalist module gradually decreased, while that of the
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specialist modules evolved during training sessions and remained high in the test period

(cyan curves in Figure 6¢ and d).

a BLOCK-BLOCK (BB) b BLOCK-RANDOM (BR)
1 1 i
]
{
0.5 0.5 !
' |
1
i
i
0 0 !
14 28 42 56 8 16 24 14 28 42 56 8 16 24
c RANDOM-BLOCK (RB) d

RANDOM-RANDOM (RR)

o.sL"" 05\’“'

V ' V

14 28 42 56 8 16 24 14 28 42 56 8 16 24
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Figure 6: Evolution of responsibility signals using the parameter set of Figure 5.
Magenta curves denote the responsibility signal of the generalist. Cyan curves denote
the sum of the responsibility signals of the two specialists. When the magenta curve
reaches 1 (a,b), only the generalist module is selected to control the hand. When the
cyan curve reaches 1 (c,d), one of the two specialist modules is selected. When neither
reaches 1, the hand is controlled by the weighted summation of generalist and specialist
modules.

To examine the relationship between the characteristics of the parameter sets and
consolidation, we plotted the maximum magnitude of directional error (error

magnitude) in test sessions against the ratio of the effective learning rate between
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generalist and specialist modules. It can be shown (see Methods) that the effective

2 2 . .
gen61'alislageneralist )/(nspeL'ialistaspec'ialisl) ,» LE., the ratio Of

learning rates are proportional to (T]
learning rate 77 between generalist and specialist modules, multiplied by the ratio of
width of responsibility signal o between generalist and specialist modules. The
boxplots in Figures 7a and b show the distribution of error magnitude for all 50,000

parameter sets in the simulation of BLOCK-BLOCK, RANDOM-BLOCK, BLOCK-

RANDOM, and RANDOM-RANDOM for different such ratios.

When the generalist learned with similar or slightly faster speed than that of
specialists (approximately) 1 to 20 times faster, (i.e., when the ratio of effective learning
0 2 2 1 .
rate was 10 < (ngeneralistageneralist )/(nspecialistaspecialist) <2 XIO on the abSCISsa)ﬂ the error

magnitude of all conditions was smaller than the threshold of 10 cm?, indicating

retention in all four conditions, which contradicted all observed behavioral results.

Larger ratios accounted for the data. As indicated by the dots showing the error
magnitude for each of the selected 452 parameter sets in Figure 7a and b, the behavior
of good learners was accounted for when the generalist learned 50 to 130 times
(approximately) faster than the specialists (5 x 10! <
(ngenemlmazmmlm ) / (n_ypm,isto fpmm) <13 x 10" on the abscissa). In this case, the median
of the error magnitude and that of the selected parameters in BLOCK-BLOCK and

BLOCK-RANDOM conditions increased (magenta plots in Figures 7a and b: no
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consolidation), while that of RANDOM-BLOCK and RANDOM-RANDOM conditions
stayed below the threshold (green plots in Figures 7a and b: consolidation). The
behavior of poor learners corresponded occurred when the generalist learned
(approximately) more than 200 times faster than the specialists (2 x 10 <

2 2 . . .
(ngeneralistagerzeralist )/(nspecialistaspecialist) on the abSCISsa)' In thlS case, the medlan Of the
error was higher than the threshold in any condition, corresponding to the behavior of

poor learners.

In addition, as observed in the behavior (Figure 4a), the errors were distributed with
significantly more dispersion after random training (RANDOM-RANDOM and
RANOM-BLOCK) than after block training (BLOCK-BLOCK and BLOCK-
RANDOM) in the parameter range that corresponds to both good and poor learners (i.e.,
the generalist learned 50 to 800 times faster) (Ansari-Bradley one-tailed test of equal
variance, p < 0.001). The appropriate ratio of the effective learning rate successfully
explained the average performance difference between block and random training, and

its distribution explained individual performance differences in random training.
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Figure 7: Maximum magnitude of directional error (error magnitude) in test
sessions plotted against the ratio of effective learning rates of generalist to specialist
(Myenerain® seneais )/ (TMieciain speciair) in simulations of TEST BLOCK (a) and TEST
RANDOM (b) following both training conditions RANDOM and BLOCK. The black
horizontal line at 10 cm? indicates the threshold of error magnitude for successful
consolidation in the tests. The boxplots show the median, 25, and 75th percentiles of
error magnitude for all 50,000 parameters for 10%2 bins, for increasing values of the
effective learning rate ratio. The dots show the error magnitude for the good learners
corresponding to the 452 selected parameter sets. The colors correspond to the type of
training, with magenta for BLOCK and green for RANDOM. Thus, in a), magenta
indicates parameters for BLOCK-BLOCK (BB) and in b) for BLOCK-RANDOM (BR).
In a) green indicates parameters for RANDOM-BLOCK (RB) and in b) for RANDOM-
RANDOM (BR). When the ratio of effective learning rates was less than ~20, retention
occurred following both training conditions (as the test error magnitude is smaller than
the threshold in RB and RR), contradicting the data. A ratio of ~50 to ~130 corresponds
to good learners as shown by the distribution as the median of the test error magnitude
is below the threshold following random training and above the threshold following
block training. Larger ratios correspond to poor learners, as the test error magnitude is
greater than the threshold in RB and RR.
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Discussion

Our results show that, as previously reported, all participants in the block training
schedule adapted to the force field presented in a block but showed large interference in
the subsequent opposing force field blocks; thus, adapting to the two force fields was
impossible. In contrast, participants in the random training schedule could, as a group,
adapt to the two conflicting tasks simultaneously. This indicates that the motor
memories of the two perturbations were not consolidated separately after block
presentation. In contrast, the motor memories were consolidated after random
presentation. Such consolidation improved the switching performance among the two
environments in subsequent test sessions with both block and random presentations. In
addition, while we observed little variability in learning performance and retention in
block training across participants, we observed large inter-individual differences in
random training: some participants showed almost perfect learning of both tasks,

whereas others showed minimal learning.

A modified MOSAIC model equipped with one generalist module and two
specialist modules was able to account for both the different behaviors in the two
conditions and the large variability in random schedules for adequate parameter ranges.
Crucially, for the selected parameters, the width (inverse of precision) of switching in

responsibility signals was larger in generalist than in specialist modules. That is, a
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generalist module was selected even when errors were large and by learning quickly,
attempted to cover any environment. Conversely, a specialist module was selected only
when the module accurately predicted the environment and learned slowly to be a
specialist in a given environment. In addition, at the group level, the greater effective
learning rates assigned to the generalist than to the specialists agreed qualitatively with
the difference in learning rates of previously proposed fast memory and slow memory
processes (Lee & Schweighofer, 2009; Smith et al., 2006). Instead of including a single
generalist, Forano and Franklin (2020) proposed a model with multiple parallel motor
memories, each involving a fast, slow, and ultraslow process, all weighted by a
responsibility estimator. They showed that their model better explains the spontaneous
recovery after dual adaptation in a block schedule. Whereas their model could explain
the individual difference by variability in learning rates, we believe that it could not

account for our results in block schedules because of the lack of a generalist module.

Here, we assumed that the prior distribution of the responsibility signal for
specialists was reset for each trial, unlike the prior distribution for the generalist. This
discontinuity in the specialist facilitated the selection of specialists in discontinuous
environments, such as the random conditions, and was suppressed in continuous
environments, such as the block conditions. Recent studies have reported that

environmental consistency plays an essential role in determining the rate of motor
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adaptation (Gonzalez Castro et al., 2014; Herzfeld et al., 2014). It remains unclear
whether resetting the prior responsibility distribution is a fundamental brain property

and how this may be implemented.

An additional strength of the proposed model is its potential to explain individual
differences. We observed smaller individual differences in block learning and larger
individual differences in random learning (Figure 4); this contrast spontaneously
emerged in simulations (Figure 7). When the ratio of effective learning rates between
the generalist and specialist was intermediate, performance was poor in block training
and good in random training as shown by good learners. When the ratio of effective
learning rates between the generalist and specialist was large, performance was poor in
both block and random training. Individual differences during skill acquisition have
been examined in the field of applied psychology (Ackerman & Cianciolo, 2000) but
have not been fully quantitatively investigated in computational motor control and
learning research (but see (Ganesh et al., 2014; Magnard et al., 2024; Oh &
Schweighofer, 2019; Takagi et al., 2017)). A consistent predictor or interindividual
variability in motor learning is the capacity of spatial working memory (Anguera et al.,
2010; Lingo VanGilder et al., 2018; Schweighofer et al., 2011), which may share neural
resources with the fast-learning generalist module. In addition, individual differences

have been examined in brain imaging studies (Bueti et al., 2012; Kanai & Rees, 2011),
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and interindividual variability in motor learning was reported to be correlated to
differences in brain structures (Gelineau-Morel et al., 2012; Sampaio-Baptista et al.,
2014; Vo et al., 2011). Future model-based fMRI studies are needed to relate our
mechanistic explanations of good vs poor learners to such differences in neural

activation or structures.

In our modified MOSAIC model, we did not introduce explicit contextual cue
signals that directly controlled switching. Instead, we assumed that the magnitude of the
errors that influence the responsibility signals would act as cues. We, however, are not
implying that humans do not use contextual signals. For example, learning conflicting
environments is facilitated when associated with synergetic cues such as posture and
target location, which may facilitate the activation of specialist modules more easily
than arbitrary cues (Forano et al., 2021; Gandolfo et al., 1996; Krakauer et al., 1999;
Thomas & Bock, 2012; Tong et al., 2002; Woolley et al., 2007). Heald et al. (Heald et
al., 2021) proposed a contextual inference model computing the probability that each
known context, or a novel context, is active and creating a new memory when
responsibility is high for the novel context. Our future framework should integrate such
computation of contextual inference where probability will be influenced by the

temporal aspect, i.e., how frequently the contextual signal changes.
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Our results showing the benefit of a random practice schedule over block practice
are consistent with previous studies in many types of motor tasks, including high-level
cognitive tasks, and is termed contextual interference (CI) (Schmidt, 1988). Block
conditions, which involve less CI enhance acquisition but degrade memory retention.
Random training involving greater CI initially worsens performance and slows
acquisition but promotes memory retention after a delay. In the model, the CI occurred
because, in a block schedule, the generalist quickly improved performance, therefore
reducing error-driven updates of the specialist processes. Because of interference in the
generalist when another task was presented in the next block, poor long-term retention
ensued. In random schedules, interferences in the fast process led to a slower change in
performance, therefore increasing error-driven updates of the specialist and, thus, good
long-term retention as in our proposed generalist and specialist architecture (see also,
(Cross et al., 2007; Kim et al., 2015; Lage et al., 2015; Li & Wright, 2000; Schmidt,

1988; Schweighofer et al., 2011)).

A limitation of the current study was the exploratory nature of the analyses on
individual variability; further hypothesis-driven experiments are required to confirm our
results, although it is difficult to assign the participants a priori into good and poor
learner groups. In addition, for modeling, the simulation environments were simplified

and did not consider the nonlinear dynamics of the system. Furthermore, we prepared
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two specialists in advance of adaptation. A future model should not pre-specify the
number of models, but the models should be created as needed (Heald et al., 2021; Oh
& Schweighofer, 2019). The practical implication of our study is that individualized
training programs can be provided according to the individual properties of memory
systems when learning motor skills. Acknowledging the existence of individual
differences in memory systems may be helpful for the practice of motor skill coaches or

therapists.
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Methods
Participants

In total, 51 healthy right-handed participants (18 to 38-years-old) participated in the
study and were assigned to one of the five groups (Table 1). The institutional ethics
committee of ATR approved the experiments. Participants provided written informed

consent prior to experiments.

Apparatus

Participants learned reaching movements to eight targets located radially from a
central start position, as described previously (Osu et al., 2004). Movements occurred in
either a clockwise (CW) or counterclockwise (CCW) velocity-dependent rotational

force field produced by a manipulandum. The force fields are expressed as:

where i and y are hand velocity, and F, and F, are forces acting on the hand.

Here, b was positive in the CW and negative in the CCW, and the magnitude of b was

20 Nm's.
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Each force field was associated with different audio-visual cues that were presented
before reaching (Figure 1). Before reaching, in the CW, participants were presented
with a red background, a red windmill-like diagram showing the direction and
magnitude of rotational forces, and a high-frequency beep. Before reaching, in the
CCW, they were presented with a blue background, a blue windmill-like diagram, and a

low-frequency beep.

After 2-s cue presentation, one of the eight targets was randomly presented. After
target presentation, participants were required to start within 1 s and reach the target
within 225 + 50 ms (time between exiting and entering start and target circles,
respectively) using straight and uncorrected trajectories. The distance between the
starting point and each target was 12.5 cm. The force field was off when participants

returned to the start position and was on only during the recorded outward movements.

Visual feedback of hand position was suppressed during movements. The entire
hand path was shown after movement termination. Participants were encouraged to
learn a straight hand path with fixed movement duration by two types of rewards after
each trial: one was given as a score of the current trial and the other as a score
accumulated from the initial to current trial within that session. For each trial,
participants gained 10 points for a successful start after target presentation (within 1 s),
20 points for a straight hand path when the hand was within 2 cm on the left or right of
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the straight line connecting the center of start and target circles, 30 points for stopping
within the 0.15-cm radius target circle, and 40 points for movement duration within 225

+ 50 ms. A total of 100 points was awarded if a movement was fully successful.

Procedure

The two force fields were presented either in blocks or randomly. In the block
presentation, one cycle comprised eight consecutive trials in one of the two force fields,
including randomly ordered movements to all eight targets. In the random presentation,
two cycles consisted of 16 consecutive trials, including randomly ordered movements to
all eight targets in the two force fields. In the random condition, a given force field was

repeated no more than five times.

The BLOCK-BLOCK group (see Table 1 for Experimental protocol of each group)
first learned two force fields in block presentation for four consecutive days as training
and was then exposed to random presentation. On days 1 and 3, half of the eight
participants performed one block comprising 112 movements (14 cycles) in CW. On
day 2, they performed one block consisting of 14 cycles in CCW. On day 4, they
performed one block consisting of 14 cycles in CCW and were then exposed to three
blocks in the order of CCW, CW, and CCW, with each block comprising 64 movements

(eight cycles). The other half was exposed to the force field in the reverse order. The
41



bioRxiv preprint doi: https://doi.org/10.1101/2024.07.15.603502; this version posted July 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

BLOCK-RANDOM group first learned two force fields in block presentation for four
consecutive days as training and was then exposed to random presentation. On days 1
and 3, 11 participants performed one block comprising 112 movements (14 cycles) in
CW. On days 2 and 4, they performed one block consisting of 14 cycles in CCW. In the
BLOCK-RANDOM group, the order was the same for all participants expecting that the
similar results when the order was reversed since we find no significantly different
behavior between the two orders in BLOCK-BLOCK group after subtracting the null
field bias towards CCW. After block presentation on day 4, participants were exposed
to 224 movements (28 cycles) in random order of CW and CCW as a test session.
RANDOM-RANDOM group first learned two force fields in random presentation for
two consecutive days as a training session and were then exposed to random
presentation as a test session. On days 1 and 2, 10 participants performed 224
movements (28 cycles) in random order of CW and CCW, and as a test session, they
were exposed to 224 movements in random order of CW and CCW, interspersed with
32 catch trials without a force field. These catch trials were included to verify that
participants were not employing a co-contraction strategy. The RANDOM-BLOCK
group first learned two force fields in random presentation for two consecutive days as a
training session and were then exposed to block presentation as a test session. On days 1

and 2, 12 participants performed 224 movements (28 cycles) in random order of CW
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and CCW. Then, half of the 12 participants were exposed to three blocks in the order of
CCW, CW, and CCW, with each block comprising 64 movements (eight cycles). The
other half was exposed to three blocks in the order of CW, CCW, and CW. We assigned
10 participants to a baseline control group (BLOCK-control group) who were exposed
to three alternating blocks of 64 trials within one day as a baseline measure for
reduction of interference by preceding training. Five of the participants in the BLOCK-
control group were exposed to blocks in the order of CCW, CW, and CCW; the other

five were exposed to blocks in the reverse order.

All groups except the BLOCK-control group experienced the same number of trials
during the training session (224 movements for each force field). Prior to force field
presentation, participants were familiarized with the apparatus and task during a block

of 192 trials without any force fields (null force field: NF).

Analysis

Adaptation to each force field was quantified by an error measure computed as the
directional error (see above). To assess performance in a particular cycle, the median of
the directional error of a set of eight movements in each force field within the cycle (or
the two cycles for random presentation) was determined and averaged across

participants for each cycle. Since null field performance was biased towards the CCW
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direction, we subtracted the median of the directional errors in the null field from that in
the force fields for each participant. We compared the temporal evolution of these
directional errors in the two force fields. For display reasons, the sign of the directional
error was flipped for the participants who were exposed to blocks in the reverse order.
To statistically confirm learning and retention, difference errors under CW and CCW
were computed for each participant. The difference error was defined as the difference
in directional errors between CW and CCW (CCW-CW), and indicated the average area

enclosed by hand paths in CW and CCW.

Effective learning rate

From equation 7, the effective learning rate for each module is given by 1,4, (l ) .

The generalist responsibility A, (t) increased as o~ / Ofpecialist increased when

generalist
for a constant prediction error amplitude (see Supplementary Figure). Thus, the

responsibility signal 4, (t) monotonously increased with the width of

2
generalist *

responsibility signal O A similar behavior can be shows for the specialist.

Therefore, o can be used as an alternative to A in estimating effective learning rate

nia’i (t) . Then’ (ngenerulisto-ieneralist )/( nspecialistafpecialist) reflected the ratio of the effective

learning rate between generalist and specialist modules.
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Statistical analyses

Statistical analysis was performed using Matlab statistics toolbox (The MathWorks,

Inc.) and JMP software (SAS Institute Inc.). The p-value for significance was set 0.05.
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