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Abstract

Previous research has demonstrated significant inter-individual variability in the recruitment of
the fast-explicit and slow-implicit processes during motor adaptation. In addition, we previously
identified qualitative individual differences in adaptation linked to the formation and updating
of new memory processes. Here, we investigated quantitative and qualitative differences in
visuomotor adaptation with a design incorporating repeated learning and forgetting blocks,
allowing for precise estimation of individual learning and forgetting rates in fast-slow adaptation
models. Participants engaged in a two-day online visuomotor adaptation task. They first adapted
to a 30-degree perturbation to eight targets in three blocks separated by short blocks of no
feedback trials. Approximately 24 hours later, they performed a no-feedback retention block and
a relearning block. We clustered the participants into strong and weak learners based on
adaptation levels at the end of day one and fitted a fast-slow system to the adaptation data. Strong
learners exhibited a strong negative correlation between the estimated slow and fast processes,
which predicted 24-hour retention and savings, respectively, supporting the engagement of a
fast-slow system. The pronounced individual differences in the recruitment of the two processes
were attributed to wide ranges of estimated learning rates. Conversely, weak learners exhibited
a positive correlation between the two estimated processes, as well as retention but no savings,
supporting the engagement of a single slow system. Finally, both during baseline and adaptation,
reaction times were shorter for weak learners. Our findings thus revealed two distinct ways to
learn in visuomotor adaptation and highlight the necessity of considering both quantitative and

qualitative individual differences in studies of motor learning.
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Introduction

Motor adaptation, a type of motor learning that allows return to baseline performance by
reducing the error caused by an external perturbation, is generally thought to depend on two
main synergistic systems, e.g., (Huberdeau et al., 2015; Lee & Schweighofer, 2009; Mazzoni &
Krakauer, 2006; Smith et al., 2006; Taylor et al., 2014). The first system exhibits fast learning and
short-term retention of prior learning, necessitates extended preparation times for expression,
and is thought to operate explicitly. Conversely, the second system exhibits slow learning,
remains temporally stable during short intervals, can be expressed at short reaction times, and

operates implicitly.

Significant advances in understanding these two systems have been possible via a combined
experimental and modeling approach. The dual-rate model (Smith et al., 2006) for a single task,
and its extension to multiple tasks (Lee & Schweighofer, 2009), accounts for several behavioral
phenomena, such as anterograde interference, spontaneous recovery, rapid unlearning, and some
form of savings. In these models, the fast and slow processes compete for the same error, yielding
the prediction that the fast-learning-fast-decaying process decays later in learning when the
remaining error becomes small. At the population level, the slow process has been shown to
predict long-term retention (Joiner & Smith, 2008). A recent study (Hadjiosif et al., 2023) further
delineated the different contributions of a temporally volatile process and a persistent learning
process in predicting savings and long-term retention, respectively, with the processes tentatively

mapping onto a fast and a slow process.
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It has long been recognized that motor learning exhibits considerable individual variability, e.g.
(Ackerman, 1988; Keele & Hawkins, 1982), recent work has begun to study individual variation
in motor adaptation, e.g., (Della-Maggiore et al., 2009; Miyamoto et al., 2020; Stark-Inbar et al.,
2017; Trewartha et al., 2014). For instance, (Miyamoto et al., 2020) showed that learners varied
widely in how the implicit and explicit processes sum to the total adaptation level, with some
learners displaying high implicit but low explicit learning and vice versa. Recruitment of the
explicit process, which has been linked to spatial working memory (Anguera et al., 2010;
Vandevoorde & Orban de Xivry, 2020), involves increased reaction times (Haith et al., 2015;
McDougle & Taylor, 2019). Accordingly, learners who show faster learning and smaller
aftereffects associated with the explicit process exhibit longer reaction times (Fernandez-Ruiz et

al.,, 2011).

Whereas these previous studies proposed quantitative differences in the recruitment of fast and
slow processes in adaptation, we (Oh & Schweighofer, 2019) recently exposed qualitative
differences in adaptation to a 20-degree visuomotor rotation, with two classes of learners: those
who only updated a single “baseline” or (“body” (Berniker & Kording, 2011) ) process showed
gradual de-adaptation and little or no savings, and those who additionally created a new memory

showed savings and a quick return to baseline in the absence of perturbation.

Here, we, therefore, hypothesized that learners in a motor adaptation experiment with a 30-
degree rotation would belong to one of two qualitatively different groups: strong learners, who
engage the competing fast and slow processes, and weak learners, who only engage the slow

process. The strong learners are expected to show large variability in recruitment of the
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competing fast and slow processes. In addition, we also posit that in strong learners, the slow
process would predict 24-hour retention and the fast process would predict savings, as recently
suggested by (Hadjiosif et al., 2023). In weak learners, the process would be slow and only predict
retention. Finally, we test whether weak learners exhibit shorter reaction times than strong

learners.

Methods

Participants

We recruited 44 participants (21 Females, 23 Males) for a 2-day experiment via the Prolific.com
online recruitment platform designed for online scientific research studies (Palan & Schitter,
2018). Participants were residents of the United States, and reported to be fluent in English, 19 to
40 years old (29.1 + 4.1; all results as mean * standard deviation unless noted) and right-handed.
Participants received monetary compensation of $10 per hour and a $5 completion bonus if they
completed the second session in a 24 plus or minus 5 hours window. Informed consent was
obtained before the study began, and the Institutional Review Board of the University of Southern

California approved all procedures.

Experiment Setup

The online experiment was modified from (Tsay et al., 2021). The task required participants to
shoot at targets positioned at eight pseudo-random locations on a circle. On perturbation trials, a

counterclockwise visuomotor rotation of 30 degrees was applied to the cursor (Figure 1 A). At
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the start of each trial, participants positioned their cursor on a centered fixed point corresponding
to the home position. A target appeared 500 ms later at one of the 8 locations in pseudo-random
order. Participants were instructed to aim directly at the target by moving their index fingers on
a laptop trackpad (Figure 1 B). If the duration of the cursor movement from the home position to
the target circle exceeded 1 second, a “too slow” signal was displayed. In data analysis, however,

all trials are considered valid regardless of movement time.

The experiment involved two sessions, with the second occurring within 24 + 5 hours after the
tirst session. On day 1, following instructions, which contained a short video, and a questionnaire
about demographic information, participants performed a familiarization block of 16 trials,
followed by a baseline block of 40 trials. Participants were randomly assigned to one of three
training schedules based on a small, medium, or large dose of perturbation trials. Each group
performed three training blocks, with each block separated by a 32-trial no-feedback block
(Figure 1 C). The small dose group (n=16) completed 56 trials per block, the medium dose group

(n=15) 112 trials, and the large dose group (n=13) 168 trials.

During feedback trials, both the cursor's online position was displayed in real-time. The final
position was then shown for 0.2s where the cursor intersected the target circle. During no-
feedback trials, participants were only shown the targets and were instructed to aim directly at
the targets. The second session on day 2 (Figure 1 C, rightmost), which was identical for all
participants, started with a no-feedback block of 32 trials to assess 24-hour retention, then a

relearning block of 32 trials to assess 24-hour savings.
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Data Analysis

Data were downloaded from Firebase as JavaScript Objective Notation files (JSON) and
converted into csv files. At each trial, the adaptation level was computed as the angle between
the position where the cursor crossed the target circle minus the target angle. Trials with an angle
greater than 60 degrees or less than -30 degrees were classified as outliers. We replaced outliers
with the angle means of their 8 non-outlier neighbors. The total percentage of outliers was 1.6%

for the overall data and 3.2% or less for any individual data.

In the session of day 2, we measured the retention level by computing the mean of the adaptation
level of the no feedback 32-trial retention block. To measure savings, we removed any bias by
subtracting the retention level from the mean adaptation in the 32 relearning trials. We then
computed savings as the difference between this baseline-corrected relearning measure and the

mean initial adaptation in the first 32 trials of the first learning block on day 1.

Reaction times (RTs) were extracted from the raw data and computed as the time between the
presentation of the target and the cursor crossing the 1 cm circle from the start position, as in
(Tsay et al., 2021). We computed the median RT both in baseline trials and in training trials when

the perturbation was 30 degrees.
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Figure 1. The visuomotor adaptation experiment. A. Illustration of the adaptation task, in which
a 30-degree counterclockwise rotation was applied to the cursor as participants reached a target.
To counter this perturbation, subjects needed to learn to shoot at 30 degrees to the right of the
target by moving their index finger on a laptop trackpad. B. Timeline of each trial during the

8



bioRxiv preprint doi: https://doi.org/10.1101/2024.11.02.621678; this version posted November 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

adaptation phase. First, a fixation point (solid blue) representing the home position appeared in
the middle of the screen. Participants moved the cursor to the fixation point to start the trial. After
a 0.5s delay, one of 8 targets (separated by 45 degrees, dotted circles) appeared pseudo-randomly
on the target circle. During adaptation trials, the cursor trajectory, rotated 30 degrees relative to
the finger position, was shown in real-time (solid circle), and the endpoint position feedback was
shown for 0.2s before starting the next trial. “+ ... s” indicates the minimum time needed to
complete each step of a trial. During no-feedback trials, neither the trajectory nor the endpoint
position was shown. C. Experiment schedules and examples of the fast/slow model fit for three
subjects, one for each dose level. Day 1 sessions were separated from day 2 sessions by
approximately 24 hours. The green lines indicate the rotation in degrees. “NF” indicates the no-
feedback trial blocks. On day 2, the first no-feedback block of 32 trials is the retention block, and
the second perturbation block of 32 trials is the relearning block. Note the large between-subject
variability in adaptation and the diversity in the dynamics of the fast and slow processes in these
three examples.

Model-based analyses

Fast/Slow Adaptation Model

We fitted a noiseless parallel two-state dual rates model (Smith et al., 2006) to the day 1 adaptation
data of each subject. This model captures both a fast xf state and a slow xs state, each
corresponding to a motor memory that sums up to give the estimated adaptation level (in
degrees). The error between the perturbation amplitude and the model output updates both
states. For each trial f and subject i, the model is thus described by the state update equations for

the fast and slow processes, the error equation, and the output equation:
xflt+1,i] = Af[i] *»xf[t,i] + Bf[i] * e[t, ]
xs[t+1,i] = As[i] *xs[t,i] + Bs[i] *e[t,i] ,

where the error e[t, i] is given by:

plt,i] — y[t,i] for feedback trials
0 for no feedback trials !

elt,i] = {
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and the output is given by the sum of the fast and slow processes:
y[t,i] = xf[t, i] +xs[t,i].

The learning rates are constrained as Bf > Bs > 0 and the forgetting rates as As > As > 0 for
all s, to ensure faster learning and forgetting of the fast process. Note that during no feedback
trials, both states decay exponentially. In additional analyses, we fitted the data to a single-

process model, similar to the dual-process model above but with a single state.
Fitting the models to the reaching angle data

Processed data were analyzed using MATLAB (The MathWorks). We used the fmincon global
optimization function with the interior point method to minimize the mean squared error
between the model-predicted angle and actual angles. Two states and one state models were
individually fitted to each subject's day 1 data. The learning rates were constrained between 0
and 0.5 to prevent excessive oscillations. To enhance the robustness of the fitting process and to
avoid values close to 1, we re-parameterized the forgetting rates into their time-constant
equivalents, mapping the range [0, 1] to positive real numbers- see (Kim et al., 2015), and used

the time constants as free parameters. For instance, for the two-state model,

1
Afli] = exp <—m>

As[i] = exp (— L] ),

Tasli
where 74, > 745 > 0 are the time constants for the slow and fast processes. We used a loss

function that equally weighted feedback and no-feedback trials to adequately fit the decay during
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no-feedback trials and ensure similar fit results across doses. Furthermore, we initialized the
model with 500 distinct initial parameter conditions to avoid local minima. We analyzed the
estimates of slow, fast, and total adaptation at the end of training by extracting these values on

the last trial of day 1.

Parameter recovery simulations

We designed our experiment to improve the estimation of the fast and slow process at the
individual level. Most previous adaptation studies included a single learning block, a decay (or
washout) block, and a relearning block, e.g., (Joiner & Smith, 2008; Smith et al., 2006; Taylor et al.,
2014). Because parameter estimation of the fast-slow model is relatively poor in such single-block
designs, previous studies fitted the model to average data, improving fit because of reduced trial-
by-trial variability. Here, to improve the fit of the models to individual data, we designed our
experiment with three learning blocks, in which the fast and slow processes are updated via
errors, and two short retention blocks, in which the fast process quickly decreases. To show the
advantage of this multi-block design in parameter estimation, we performed parameter recovery
in simulations and compared the recovered parameters in our design and a design with a single
learning block. We simulated patients using one- and two-process models with realistic trial-by-
trial variability. True parameters (n = 44) were sampled from estimated model fit parameters to
actual data with replacement. We added zero-mean Gaussian noise to the model output first
using a standard deviation of 4.4 degrees, which corresponds to the average standard deviation
in baseline trials in the experiment, and then using a standard deviation of 6.5 degrees, which is

~50% above the baseline average. The schedule for each simulated subject in the three-block
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experiment was randomly chosen among the long, medium, and short schedules with the same
proportion as in the experiment. The schedules for the simulated single-block experiment
contained the same number of learning and decay trials as in the three-block experiment but
concatenated in one adaptation block followed by one forgetting block. We then fitted the
simulated data with a corresponding one or two-process model. The recovery error for each

parameter was computed as the mean relative error ((recovered-true)/true) in percentages.

Predicting the adaptation from baseline reaction times

Because we observed lower baseline reaction times in weak learners, we tested how well median
baseline reaction time could predict subjects as strong or weak learners. For this, we used a
weighted logistic regression with inverse frequency weighting. Weighted logistic regression (Lee
& Liu, 2003) is an extension of logistic regression that accounts for class imbalance by assigning
different weights to classes based on their prevalence (13 weak learners and 31 strong learners in
our case). For each subject i, the weighted logistic regression model predicts the probability of

being a strong learner as:

Logit(P(strong | RT[i])) = B0+ B1 = RT[i]

Where Logit is the log odds and 0 and f1 are the intercept and slope estimated during model
fitting. To validate the robustness of the model, we employed a standard bootstrapping
procedure, which involves repeatedly resampling the data with replacement and refitting the

model to each resampled dataset with 1000 bootstrapped samples.
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Results

Cohort-level analysis and modeling

We first analyzed data from all subjects by assuming that all learners develop explicit and implicit
processes, as modeled by fast and slow states. The model fit was good overall, with the RMSE
between the model and data of 7.7 + 1.5 degrees, with a 95% CI range of 4.3 — 10.6 (compared to
the baseline mean standard deviation of 4.4 degrees, with a 95% CI range of 1.9 - 9.2). Parameters
show a wide range of dispersion in estimated parameters, indicating high between-subject

variability (Af: 0.68 + 0.2 (mean + SD); As: 0.99 + 0.11; Bf: 0.21 + 0.20; Bs: 0.01 + 0.01).

Thanks to our design with three learning blocks, parameter recovery was good overall, as shown
by the small recovery error between the true (known) and estimated parameters (see
Supplementary Figure S1). The recovery performance with three learning blocks largely
surpassed that with a single learning block, especially for the time constant of the slow process

(see Supplementary Figure S2 for details).
Slow and Fast Processes predict retention and savings, respectively.

We then tested whether the fast and slow processes at the end of day 1 predicted the 24-hour
savings and retention, respectively. This hypothesis is based on three previous studies. A first
study showed that when a fast/slow process was fitted to average data in multiple dose groups,
the slow process predicted 24-hour retention (Joiner & Smith, 2008). Next, we previously showed
that the slow implicit process accounted for retention at the individual level in a 10-minute

retention test (Lee et al., 2018). Finally, a recent study showed that a component of motor memory
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that is temporally persistent after 60 seconds contributes to long-term retention, whereas a
temporally volatile component that has decayed by 60 seconds contributes to savings (Hadjiosif

et al., 2023).

As hypothesized, the slow process at the end of day 1 training positively correlated with retention
(R =0.57, p=0.00005, Figure 2 A), and the fast process positively correlated with savings (R =
0.49, p = 0.0007, Figure 2 D). Conversely, the fast process showed a non-significant correlation
with retention (R = -0.21, p = 0.18, Figure 2 C), and the slow process showed a non-significant
correlation with savings (R = -0.27, p = 0.08, Figure 2 B). (Note that the moderate negative
correlation between slow process and savings and fast process with retention are expected

because the slow and fast processes are negatively correlated - see below and Figure 3 A).
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Figure 2. Predicting 24-hour retention and savings from the fast and slow model at the end of the
training session on day 1. A. Strong positive correlation between the slow process and retention.
B. Non-significant negative correlation between the slow process and saving. C. Non-significant
correlation between the fast process and retention. D. Strong positive correlation between the fast
process and saving. The shaded areas show the 95% confidence interval of the population mean.
Each dot represents a subject.
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Individual variability washes out the effect of dose.

Whereas we designed our experiments along that of (Joiner & Smith, 2008) with three doses of
training with a predicted effect of dose on retention, the large inter-individual variability in
adaptation in our data washed out any effect of dose. One-way ANOV As across all doses yielded
non-significant results for total adaptation at the end of training (average of adaptation over last
16 trials, p = 0.54), retention (p = 0.13), and savings (p = 0.75). Additionally, linear models
(Retention ~ Slow *Dose, and Savings ~ Fast *Dose) with dose level as a factor and with the short
dose as the reference showed a non-significant effect of dose on the slow process with retention
(p = 0.32 for the medium dose and p = 0.56 for the long dose compared to the short dose) and the
fast process with savings (p = 0.29 for the medium dose and p = 0.74 for the long dose compared
to the short dose). Thus, despite large differences in the number of adaptation trials between the
three doses (56*3=168, 112*3=336, 168*3=504 trials), the large inter-individual variability washed
out the effect of doses. As we will see in the following, the variability is due to both qualitative

and quantitative differences between subjects.

Analysis of Individual Differences in Learning, Retention, and Savings

Given the large variability in performance at the end of day 1, and our previous study suggesting
two qualitatively distinct groups of learners (Oh & Schweighofer, 2019), we used k-means
clustering with k=2 to classify learners across all doses into two learnability levels based on the
mean of the last 8 trials of day 1. This clustering resulted in 31 strong learners and 13 weak

learners, with a cut-off of 15.0 degrees (Supplementary Figure S3).
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Strong learners showed significant retention and savings (one-sample t-test, p = 0.0001, 7.8 + 5.2
degrees for retention; one-sample t-test, p =0.0056, 3.9 + 7.3 degrees for saving). In contrast, weak
learners exhibited significant retention (one-sample t-test, p = 0.0001, 5.3 + 3.0), but no savings
(one-sample t-test, p = 0.59, 0.8 + 5.4). Accordingly, there was a difference in savings between
strong and weak learners (2-sample t-test, p = 0.041), but no difference in retention (2-sample t-

test, p =0.096).

Compensation between fast and slow processes in strong but not in weak learners

The above findings for strong and weak learners suggest that 1) strong learners rely on two
processes that predict retention and savings, and 2) weak learners rely on a single memory
process that only predicts retention. We now provide additional evidence for these insights in

four complementary model-based analyses.

First, a BIC analysis of two- and one-state models to the data supports the recruitment of two
processes in the strong-learner group and a single process in the weak-learner group
(Supplementary Figure S4 A, B). The bootstrapped BIC distributions showed that, for the strong
learner group, the BIC confidence intervals are much lower for the two-state model than the one-
state model. In contrast, for the weak learner group, the BIC confidence intervals overlap for the

two models, supporting the simplest, one-state model.

Second, the two groups showed qualitative differences when we plotted the slow state as a
function of the fast process estimated at the end of day 1. Because the fast and slow components
of the model sum up to the total adaptation, and assuming approximately equal adaptation
Y[tenal at the end of adaptation t,,4, the fast and slow states are negatively correlated, with a

17



bioRxiv preprint doi: https://doi.org/10.1101/2024.11.02.621678; this version posted November 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

slope of -1 (because xfl[tenq,il = — xS[tena,i]l + Yltenal; see model equation above, and
simulations in Figure 3A). Correspondingly, the correlation between slow and fast processes at
the end of day 1 for all 44 subjects in the experiment was negative (r = -0.46, p = 0.002) (Figure 3

B black).

However, the correlation patterns differ when separating the subjects according to learnability.
For strong learners (Figure 3 B red), the slow and fast processes showed a strong negative
correlation (r=-0.89, p = 0.00012), and wide dispersion along this line (standard deviation: 4.8
degrees), due to largely variable learning rates (Bfstrong: 0.3 + 0.21, BSsirong : 0.01 £0.01 ). Such
dispersion along the negative slope can be seen in simulations of two-process models in which
the learning rates were independently sampled from normal distributions capped between 0 and
1 (Bf=0.3 £0.21, mean Bs = 0.01 + 0.01, with fixed retention rates Af = 0.75, As = 0.95; Figure 3 A

red).

In contrast, weak learners (Figure 3 B cyan) showed a positive correlation between the two
processes (r = 0.59, p = 0.033). A linear model (Slow ~ Fast * Learning Level) further confirmed the
significant effect of learning level in modulating the slopes for the two groups (p = 0.0098). The
positive correlation for weak learners is due to the estimation of two slow processes: the estimated
learning rates (Bf: 0.043 + 0.07; Bs: 0.03 + 0.06) are highly positively correlated (r = 0.78). To verify
that this result is compatible with a single underlying process generating the data, we simulated
multiple subjects with a single-state model (with A: 0.95 + 0.02; B: 0.04 + 0.2; noise std = 4.4), and

then fitted the same 2-states model as above to these simulated data and estimated slow and fast

18



bioRxiv preprint doi: https://doi.org/10.1101/2024.11.02.621678; this version posted November 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

process at the end of training. The resulting regression line has a positive slope, qualitatively

matching weak learners in data (Figure 3 A cyan; additional simulation details in legend).
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Figure 3 Relationships between fast and slow processes at the end of day 1 training for both strong
and weak learners in simulations and the experiment. A. Fit of two state models to simulated data
generated by two state models with noise added to the model’s output for 44 simulated subjects.
The red group (31 subjects) represents fast and slow processes from a 2-state model at the end of
day 1, where the forgetting rates (As and Af) are fixed, and the learning rates (Bs and Bf) are
sampled from normal distributions. The cyan group (13 subjects) illustrates two processes
estimated from simulations of a single-state model. For this group, we first simulated 44 subjects
using single-state model, where the forgetting rate (A) is fixed, and the learning rate (B) is
sampled from a normal distribution. Then, to match the characteristics of actual weak learners,
the 24 simulated subjects with one process near zero (defined by 0.3 or lower for the recovered Af
parameter) were excluded, and the additional 13 subjects were randomly sampled from the
remaining 20 subjects. B. Fit of two state models to actual data. Correlation scatter plots and
regression lines between fast and slow processes at the end of training in day 1 estimated from
data for each subject. Colors show group identity based on k-mean clustering. Red: strong
learners; cyan: weak learners. Black line: regression line for all learners.
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Third, we predicted that the savings and retention in weak learner groups are consistent with the
single process. Indeed, the estimated single process at the end of day 1 (Figure 4 A) correlated
with retention (p = 0.001, R = 0.80) but not with savings (Figure 4 B, p = 0.422, R = -0.25). In
addition, the single time constant of weak learners and the time constant of the slow process of
strong learners showed no differences (t-test h =0, p = 0.461; 95% ClI for As =[0.94,0.99] in strong

learners; 95% CI for A =[0.88,0.99] in weak learners).
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Figure 4. Predicting 24-hour retention and savings from one state model at the end of day 1 in
weak learner’s group. One-state model estimate of adaptation at the end of day 1 vs retention
(A) and savings (B). Positive correlation between estimated adaptation at the end of day 1 and
retention (R = 0.80, p = 0.001) but not with saving (R =-0.25., p = 0.42)

Finally, we tested for possible differences in RTs between the two groups. Previous studies have
shown that longer reaction times are associated with more cognitive/slow processes (Fernandez-
Ruiz et al., 2011; Haith et al., 2015; Taylor et al., 2014). We, therefore, predicted shorter reaction

times for weak learners during learning. Indeed, during learning trials (Figure 5 B), strong
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learners also exhibited a larger RT (median 442 ms; IQR = [426, 495]) than weak learners (402 ms;
IQR = [356, 448]; p = 0.027; Mann—-Whitney test). However, surprisingly, during baseline trials
(Figure 5 A), strong learners also exhibited a larger RT (median RT =443 ms, and IQR = [405, 501])
than weak learners (RT =384 ms, and IQR =[364, 406]; p = 0.034, Mann—-Whitney U test). A linear
regression model showed that RT at baseline predicted the level of learning for all subjects
(average of adaptation in the 8 last trials of day 1) (0.023, p = 0.039). We then evaluated the ability
of baseline reaction time (RT) to predict strong and weak learner groups using a weighted logistic
regression model. Overall accuracy was 61.4% (compared to 50% accuracy of a baseline classifier),

with a 95% bootstrapped CI ranging from 49% to 84%.
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Figure 5. Reaction times are larger in strong learners than weak learners both during baseline (A)
and learning (B) trials. Dots: median for each subject. Bar height: the median RT. Error bar: IQR.
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Discussion

Whereas fast and slow models of adaptation are typically fit to data averaged across subjects in
single block designs, here we designed an adaptation experiment with three learning two
forgetting blocks to estimate the model’s parameters in individual learners. A parameter recovery
analysis confirmed that this three-learning block design led to more accurate parameter
estimation than a single-learning block design. We then showed that, despite large differences in
the number of adaptation trials in the three dose groups, the inter-individual variability

overshadowed the expected dose-dependent effects on adaptation, retention, and savings.

The individual variability was both qualitative and quantitative. A clustering analysis identified
two qualitatively distinct groups of learners: strong learners, who exhibited robust retention and
savings, and weak learners, who demonstrated retention but no savings. Additional model-based
analysis showed that strong learners rely on two competitive fast and slow processes, while weak
learners rely on a single, slow process. The strong learners showed a large between-subject
variability in their recruitment of the fast and slow processes, as shown by a large dispersion
along the negative correlation slopes that emerge from the fast and slow models. A recent study
found a similarly large between-subject dispersion of implicit and explicit processes along this
negative correlation slope (Miyamoto et al., 2020). Furthermore, strong learners exhibited longer
reaction times than weak learners during both baseline and learning trials, which further
supports that strong learners rely more on cognitive/explicit processes. Finally, larger reaction
times during baseline in strong learners suggest a predisposition to engage the cognitive/explicit

processes even before adaptation was introduced.
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In recent work (Oh & Schweighofer, 2019), we suggested that interindividual differences in the
rate of de-adaption and re-adaption to a visuomotor rotation depended on the continuous update
of an existing baseline model (resulting in slower de-adaptation and re-adaptation) or on the
ability to create and update new internal models (i.e., motor memories) specific to the
perturbations, and then easily switch between these models (resulting in fast de-adaptation and
re-adaptation). These interindividual differences were controlled by the relative precision of the
different memories, which yielded individual differences in model selection and learning rates
by modulating “responsibility signals”. This initial model was extended into a new contextual
inference model (Heald et al., 2021) that enables detailed, trial-by-trial quantification of how
multiple memories are generated, weighted, and updated in response to varying errors and
contexts. The link between the contextual learning paradigm and fast-slow models of adaptation

warrants further research.

In strong learners, we observed strong relationships between the slow process and retention
on one hand and the fast process and savings on the other hand. Thus, our results extend the
results of (Joiner & Smith, 2008) to individual retention and savings in a visuomotor adaptation
experiment. Our results also suggest that the temporally persistent and volatile memory
processes described in (Hadjiosif et al., 2023) are captured by the fast and slow processes,
respectively. Note that the reproduction of these prior results with our model-based analysis
further validated, at the population level, the goodness of fit of our model to the adaptation data

of day 1.
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Whereas we modeled only one fast and one slow process, behavioral and imaging experiments
have uncovered a third ultra-slow process (Forano & Franklin, 2020; Heuer & Hegele, 2015; Kim
et al., 2015; Kording et al., 2007). Because the estimated time constant of the slow process in our
study is at most 1000 trials (see Supplementary Figure S1), roughly corresponding to 1 hour, the
slow process will have decayed by about 99% in 5 hours. The correlation between the slow
process and 24-hour retention suggests that the ultra-slow process is updated based on the slow
process, as previously proposed (Criscimagna-Hemminger & Shadmehr, 2008), predicting a large
variability in the ultra-slow process related to the variability in the slow process. Additional
research with designs that uncover such ultra-slow processes (for instance, via dual-adaptation

(Forano & Franklin, 2020)) of multi-day adaptation is needed to test this hypothesis.

The main limitation of our study is the use of an online experiment in a non-controlled
environment. In particular, we do not know whether the smaller RTs in weak learners are due to
a trait or to possible dual-tasking during the experiment, which is known to reduce adaptation
(Taylor & Thoroughman, 2008). In addition, given that online experiment data tends to exhibit
higher noise levels than offline data (Tsay et al., 2021), removing online feedback could enhance

data quality in online experiments and further improve the model fit (Kasuga et al., 2015).

Despite these limitations, we have successfully reproduced, and extended with a fast-slow model-
based analysis, previous results demonstrating i) qualitative differences in adaptation based on
whether one or two memory processes are recruited (Oh & Schweighofer, 2019), ii) strong
quantitative differences in competitive recruitment of the implicit/fast and explicit slow processes

(Miyamoto et al., 2020), at least when these two processes are recruited in strong learners, iii) a
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double dissociation between slow and fast memories (Hadjiosif et al., 2023), which we extended
to a multiple target paradigm, but here again exists only for strong learners, iv) longer reaction
times during adaptation associated with involvement of the cognitive/slow processes
(Fernandez-Ruiz et al., 2011; Haith et al., 2015; Taylor et al., 2014) in strong learners. In addition,
we have shown a novel predictive effect of baseline reaction times, which can predict, to some
extent, if a learner will become a strong or weak learner. Thus, our findings underscore the
importance of considering both quantitative and qualitative individual differences in motor
adaptation. Looking forward, investigating between-subject variability in motor adaptation and
long-term retention, ideally in more realistic and relevant 3D tasks (Cesanek et al., 2024; Ferrea et
al., 2022), could help design individualized interventions in neurorehabilitation following cortical

damage.
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